KR20140144549A - 발광소자 - Google Patents

발광소자 Download PDF

Info

Publication number
KR20140144549A
KR20140144549A KR1020130066663A KR20130066663A KR20140144549A KR 20140144549 A KR20140144549 A KR 20140144549A KR 1020130066663 A KR1020130066663 A KR 1020130066663A KR 20130066663 A KR20130066663 A KR 20130066663A KR 20140144549 A KR20140144549 A KR 20140144549A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
emitting device
energy band
quantum well
Prior art date
Application number
KR1020130066663A
Other languages
English (en)
Other versions
KR102053388B1 (ko
Inventor
문용태
임현철
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020130066663A priority Critical patent/KR102053388B1/ko
Priority to EP14171853.6A priority patent/EP2814069B1/en
Priority to US14/300,566 priority patent/US9087961B2/en
Priority to CN201410259008.XA priority patent/CN104241469B/zh
Publication of KR20140144549A publication Critical patent/KR20140144549A/ko
Application granted granted Critical
Publication of KR102053388B1 publication Critical patent/KR102053388B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템에 관한 것이다.
실시예에 따른 발광소자는 제1 도전형 반도체층(112); 상기 제1 도전형 반도체층(112) 상에 양자우물과 양자벽(114b)을 포함하는 활성층(114); 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127); 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128); 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116);을 포함하며, 상기 언도프트 라스트 배리어층(127)은 상기 양자우물(114w) 중 상기 제2 도전형 반도체층(116)에 가장 인접한 라스트 양자우물(114wl) 상에 제1 Inp1Ga1 - p1N층(단, 0〈p1〈1)(127a); 상기 제1 Inp1Ga1 - p1N층(127a) 상에 AlqGa1 - qN층(단, 0〈q〈1)(127b); 및 상기 AlqGa1 - qN층 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1)(127c);을 포함할 수 있다.

Description

발광소자{LIGHT EMITTING DEVICE}
실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템에 관한 것이다.
발광소자(Light Emitting Device)는 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드로서, 주기율표상에서 Ⅲ족과 Ⅴ족 등의 화합물 반도체로 생성될 수 있고 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
발광소자는 순방향전압 인가 시 n층의 전자(electron)와 p층의 정공(hole)이 결합하여 전도대(Conduction band)와 가전대(Valance band)의 밴드갭 에너지에 해당하는 만큼의 에너지를 발산하는데, 이 에너지는 주로 열이나 빛의 형태로 방출되며, 빛의 형태로 발산되면 발광소자가 된다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
최근 고효율 LED 수요가 증가함에 광도 개선이 이슈가 되고 있다.
광도를 개선하는 방안으로 활성층(MQW) 구조 개선, 전자차단층(EBL)의 개선, 활성층 하부 층의 개선 등의 시도가 있으나 큰 효과를 보지 못하는 상황이다.
실시예는 광도를 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공하고자 한다.
실시예에 따른 발광소자는 제1 도전형 반도체층(112); 상기 제1 도전형 반도체층(112) 상에 양자우물(114w)과 양자벽(114b)을 포함하는 활성층(114); 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127); 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128); 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116);을 포함하며, 상기 언도프트 라스트 배리어층(127)은 상기 양자우물(114w) 중 상기 제2 도전형 반도체층(116)에 가장 인접한 라스트 양자우물(114wl) 상에 제1 Inp1Ga1 - p1N층(단, 0〈p1〈1)(127a); 상기 제1 Inp1Ga1 - p1N층(127a) 상에 AlqGa1 - qN층(단, 0〈q〈1)(127b); 및 상기 AlqGa1 - qN층(127b) 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1)(127c);을 포함할 수 있다.
또한, 실시예에 따른 발광소자는 제1 도전형 반도체층(112); 상기 제1 도전형 반도체층(112) 상에 양자우물(114w)과 양자벽(114b)을 포함하는 활성층(114); 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127); 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128); 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116);을 포함하며, 상기 언도프트 라스트 배리어층(127)은 AlqGa1 - qN층(단, 0〈q〈1)(127b)을 포함하며, 상기 AlqGa1 - qN층(127d)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있다.
실시예에 따른 조명시스템은 상기 발광소자를 구비하는 발광유닛을 포함할 수 있다.
실시예에 의하면 광도를 증대시킬 수 있는 최적의 구조를 구비한 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한, 실시예에 의하면 양자우물에 가해지는 응력을 최소화하면서 동시에 양자 구속효과를 효과적으로 증대할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이를 통해, 실시예에 의하면 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
도 1은 실시예에 따른 발광소자의 단면도.
도 2는 실시예에 따른 발광소자의 에너지 밴드 다이어 그램의 제1 예시도.
도 3은 실시예에 따른 발광소자의 에너지 밴드 다이어 그램의 제2 예시도.
도 4는 실시예에 따른 발광소자의 내부 양자효율 그래프.
도 5 내지 도 9는 실시예에 따른 발광소자의 제조방법의 공정 단면도.
도 10은 실시예에 따른 발광소자 패키지의 단면도.
도 11은 실시예에 따른 조명장치의 분해 사시도.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
(실시예)
도 1은 실시예에 따른 발광소자(100)의 단면도이다.
실시예에 따른 발광소자(100)는 제1 도전형 반도체층(112)과, 상기 제1 도전형 반도체층(112) 상에 양자우물(114w)과 양자벽(114b)을 포함하는 활성층(114)과, 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127)과, 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128) 및 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116)을 포함할 수 있다.
이건 발명의 관련기술('관련기술'은 이건발명의 출원시 명백히 공지된 기술은 아님을 의미함)에 의하면, 발광소자는 n형 반도체층, 활성층, p형 반도체층을 기본 발광구조로 하면서, 활성층과 p형 반도체층 사이에 전자차단층을 구비하여 이동도가 높은 전자를 차단하여 발광효율을 높인다.
또한, 관련기술에 의하면 활성층의 라스트 양자우물과 전자차단층 사이에 라스트 배리어(last barrier)를 구비하여 라스트 양자우물에 양자구속효과를 제공하고, 전자차단층의 Mg 도펀트가 활성층의 양자우물로 침투하는 것을 방지하는 활성층 보호기능을 수행할 수 있다.
한편, 관련기술에 의하면 라스트 배리어(last barrier)는 라스트 GaN 배리어와 라스트 InGaN 배리어가 있는데 하기와 같은 문제가 있다.
예를 들어, 라스트 GaN 배리어는 p형 반도체층에 인접한 InGaN 양자우물과 라스트 GaN 배리어 사이의 격자 불일치에 기인한 응력에 의해 양자우물에 내부장이 증가하여 양자우물의 발광효율이 저하되는 문제가 있다.
반면, 라스트 InGaN 배리어는 p형 반도체층에 인접한 InGaN 양자우물과 라스트 InGaN 배리어 사이의 격자불일치는 라스트 GaN 배리어 대비 줄어드나, 라스트 InGaN 배리어의 에너지 밴드갭이 라스트 GaN 배리어보다 작아서 양자우물 속에 전자의 양자역학적 구속효과가 줄어드는 문제가 있다.
따라서, 관련기술의 라스트 배리어(last barrier) 구조는 양자구속효과가 좋은 구조(라스트 GaN 배리어)는 격자불일치에 기인한 응력증가로 발광효율이 저하되고, 격자불일치가 줄어든 구조(라스트 InGaN 배리어)는 양자구속효과가 줄어들어 소자의 전류주입효율 저하되는 기술적 모순이 발생하고 있다.
이에 상기 기술적 모순을 해결할 수 있는, 즉 양자우물에 가해지는 응력을 최소화하면서 동시에 양자구속효과를 효과적으로 증대할 수 있는 발광소자의 개발이 요구되고 있다.
도 1은 실시예에 따른 발광소자(100)의 단면도이며, 도 2는 실시예에 따른 발광소자(100)의 에너지 밴드 다이어 그램의 제1 예시도이다.
실시예에 따른 발광소자(100)는 제1 도전형 반도체층(112)과, 상기 제1 도전형 반도체층(112) 상에 양자우물(114w)과 양자벽(114b)을 포함하는 활성층(114)과, 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127)과, 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128) 및 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116)을 포함할 수 있다.
상기 AlxInyGa(1-x-y)N 계열층(128)은 전자차단층 기능을 할 수 있다.
또한, 실시예에서 상기 언도프트 라스트 배리어층(127)은 상기 양자우물(114w) 중 상기 제2 도전형 반도체층(116)에 가장 인접한 라스트 양자우물(114wl) 상에 제1 Inp1Ga1-p1N층(단, 0〈p1〈1)(127a)과, 상기 제1 Inp1Ga1 - p1N층(127a) 상에 AlqGa1 - qN층(단, 0〈q〈1)(127b) 및 상기 AlqGa1 - qN층(127b) 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1)(127c)을 포함할 수 있다.
실시예에 의하면 상기 구조의 라스트 배리어층(127)을 구비함으로써 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선의 효과가 있다.
구체적으로, 실시예에 의하면 AlqGa1 - qN층(127b)에서의 Al을 구비함에 따라 밴드갭 에너지 준위가 상대적으로 높아짐으로써, 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 에너지 밴드갭보다 클 수 있다.
또한, 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 활성층(114)의 양자벽(114b)의 에너지 밴드갭보다 클 수 있다.
이를 통해, 언도프트 라스트 배리어층(127) 내의 AlqGa1 - qN층(127b)의 에너지 밴드갭이 활성층 내의 양자벽의 에너지 밴드갭보다 크므로 양자우물 내에 전자를 효과적으로 구속할 수 있다.
실시예에서 상기 AlqGa1 - qN층(127b)의 두께는 1 nm 내지 5 nm일 수 있다. 상기 AlqGa1-qN층(127b)의 두께가 1nm 이하가 되면 양자역학적인 전자구속효율이 떨어지므로 AlqGa1-qN층(127b)의 두께는 1nm 이상을 구비할 수 있으며, AlqGa1 - qN층(127b)의 두께가 5nm 초과하면 제2 도전형 반도체층(116)에서 활성층(114) 방향으로의 캐리어(정공) 주입효율을 저하시킬 수 있으므로 AlqGa1 - qN층(127b)의 두께는 5nm 이하일 수 있다.
또한, 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 면방향 격자상수는 상기 활성층의 양자우물(114w)의 면방향 격자상수보다 작음으로써 전자는 상대적으로 격자상수가 큰 양자우물 내에 효과적으로 구속될 수 있다.
또한, 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 에너지 밴드갭은 상기 활성층(114)의 양자우물(114w)의 에너지 밴드갭보다 큼으로써 양자우물 내에 전자를 효과적으로 구속할 수 있다.
다음으로, 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 면방향 격자상수는 상기 AlqGa1 - qN층(127b)의 면방향 격자상수보다 클 수 있다.
실시예에 따르면 언도프트 라스트 배리어층(127) 내의 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 면방향 격자상수가 AlqGa1 - qN층(127b)의 면방향 격자상수보다 크므로 AlqGa1 - qN층(127b)로부터 양자우물(114w)에 가해지는 응력을 완화시킬수 있다.
또한, 이로 인해, 활성층(114) 내 양자우물(114w)에 작용하는 내부장을 감소시켜서 양자우물에서 전자와 정공의 발광결합 확률을 증대시킴으로써 발광효율을 개선시킬 수 있다.
결국, 실시예에 따른 언도프트 라스트 배리어층(127)은 활성층에 가하는 응력을 최소화 하면서 동시에 효과적으로 활성층 내에 전자를 양자역학적으로 구속할 수 있다.
또한, 실시예에 따르면 AlqGa1 - qN층(127b)은 p형으로 도핑되지 않고, AlqGa1 - qN층(127b)의 면방향 격자상수가 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)보다 작으므로 제2 도전형 반도체층(116)으로부터 활성층(114) 방향으로의 p형 도펀트인 Mg의 침투를 효과적으로 차단함으로써 소자의 장기 신뢰성을 개선할 수 있다.
또한, 실시예에 의하면 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 작을 수 있다.
상기 AlqGa1 - qN층(127b)는 전자를 차단할 수 있는 충분한 에너지 장벽을 구비하되, 홀의 주입효율 장벽 기능방지를 위해 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 작을 수 있으나 이에 한정되는 것은 아니다.
도 3은 실시예에 따른 발광소자의 에너지 밴드 다이어 그램의 제2 예시도이다.
실시예에 의하면 도 3과 같이 상기 AlqGa1 - qN층(127d)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있다.
실시예에 의하면 상기 AlqGa1 - qN층(127d)의 에너지 밴드갭이 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 큼으로써 전자차단 기능을 효과적으로 수행하며, 홀의 주입 효율을 방해하지 않는 범위에서 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있다.
실시예에 의하면 상기 AlqGa1 - qN층(127b)의 두께는 상기 제1 Inp1Ga1 - p1N층(127a) 또는 상기 제2 Inp2Ga1 - p2N층(127c)의 두께보다 작을 수 있다.
이를 통해, 격자상수 차이에 의한 응력발생을 최소화하면서 전자차단 기능을 효율적으로 수행하기 위해 상기 AlqGa1 - qN층(127b)의 두께는 상기 제1 Inp1Ga1 - p1N층(127a) 또는 상기 제2 Inp2Ga1 - p2N층(127c)의 두께보다 작을 수 있으며, 상기 AlqGa1-qN층(127d)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 실시예에 의하면 Al 농도를 높이지 않으면서 AlqGa1 - qN층(127b)의 두께를 줄임으로써, 두께 감소에 의한 실질적인 밴드갭 에너지 준위를 높이면서 Al 농도를 증가시키지 않는 방법으로 격자상수 차이에 의한 응력발생을 최소화할 수 있다.
도 4는 실시예(E)에 따른 발광소자의 내부 양자효율(IQE)과 비교예(R)의 내부 양자효율 비교 그래프이다.
비교예(E)는 GaN 라스트 배리어를 8nm 채용한 예이며, 실시예(E)는 라스트 배리어층(127)이 제1 Inp1Ga1 - p1N층(127a), AlqGa1 - qN층(127b) 및 제2 Inp2Ga1 - p2N층(127c)을 포함한 실험 예이다.
전류가 300(A/m)인 경우 비교예(R)의 경우 내부 양자효율이 약 42%인 반면, 실시예(E) 적용시 내부 양자효율이 약 48%로 약 6% 이상 개선된 효과가 있었다.
실시예에 의하면 광도를 증대시킬 수 있는 최적의 구조를 구비한 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한, 실시예에 의하면 양자우물에 가해지는 응력을 최소화하면서 동시에 양자 구속효과를 효과적으로 증대할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이를 통해, 실시예에 의하면 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이하, 도 5 내지 도 9를 참조하여 실시예에 따른 발광소자의 제조방법을 설명한다.
먼저, 도 5과 같이 기판(105)을 준비한다. 상기 기판(105)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일수 있다. 예를 들어, 상기 기판(105)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203 중 적어도 하나를 사용할 수 있다. 상기 기판(105) 위에는 PSS(Patterned Sapphire Substrate)(P)가 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 기판(105)에 대해 습식세척을 하여 표면의 불순물을 제거할 수 있다.
이후, 상기 기판(105) 상에 제1 도전형 반도체층(112), 활성층(114) 및 제2 도전형 반도체층(116)을 포함하는 발광구조물(110)을 형성할 수 있다.
이때, 상기 기판(105) 위에는 버퍼층(107)이 형성될 수 있다. 상기 버퍼층(107)은 상기 발광구조물(110)의 재료와 기판(105)의 격자 부정합을 완화시켜 줄 수 있으며, 버퍼층(107)의 재료는 3족-5족 화합물 반도체 예컨대, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다.
상기 버퍼층(107) 위에는 언도프드(undoped) 반도체층(108)이 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1 도전형 반도체층(112)은 반도체 화합물로 형성될 수 있다. 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다. 상기 제1 도전형 반도체층(112)이 n형 반도체층인 경우, 상기 제1도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
상기 제1 도전형 반도체층(112)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다.
상기 제1 도전형 반도체층(112)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN,AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다.
상기 제1 도전형 반도체층(112)은 화학증착방법(CVD) 혹은 분자선 에피택시 (MBE) 혹은 스퍼터링 혹은 수산화물 증기상 에피택시(HVPE) 등의 방법을 사용하여 n형 GaN층을 형성할 수 있다. 또한, 상기 제1 도전형 반도체층(112)은 챔버에 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 실리콘(Si)와 같은 n 형 불순물을 포함하는 실란 가스(SiH4)가 주입되어 형성될 수 있다.
다음으로, 실시예는 제1 도전형 반도체층(112) 상에 질화갈륨계열 초격자층(124)을 형성할 수 있다. 상기 질화갈륨계열 초격자층(124)은 제1 도전형 반도체층(112)과 활성층(114) 사이의 격자 불일치에 기이한 응력을 효과적으로 완화시킬 수 있다. 예를 들어, 상기 질화갈륨계열 초격자층(124)은 InyAlxGa(1-x-y)N(0≤x≤1, 0≤y≤1)/GaN 등으로 형성될 수 있으나 이에 한정되는 것은 아니다.
이후, 상기 질화갈륨계열 초격자층(124) 상에 활성층(114)을 형성한다.
상기 활성층(114)은 제1 도전형 반도체층(112)을 통해서 주입되는 전자와 이후 형성되는 제2 도전형 반도체층(116)을 통해서 주입되는 정공이 서로 만나서 활성층(발광층) 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다.
상기 활성층(114)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다. 예를 들어, 상기 활성층(114)은 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자우물구조가 형성될 수 있으나 이에 한정되는 것은 아니다.
상기 활성층(114)의 양자우물(114w)/양자벽(114b)은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 상기 양자우물(114w)은 상기 양자벽(114b)의 밴드 갭보다 낮은 밴드 갭을 갖는 물질로 형성될 수 있다.
실시예는 양자우물에 가해지는 응력을 최소화하면서 동시에 양자구속효과를 효과적으로 증대하기 위해, 상기 활성층(114) 상에 언도프트 라스트 배리어층(undoped last barrier)(127)을 형성할 수 있다.
도 6은 실시예에 따른 발광소자의 에너지 밴드 다이어 그램의 제1 예시도이다.
실시예에서 상기 언도프트 라스트 배리어층(127)은 상기 양자우물(114w) 중 상기 제2 도전형 반도체층(116)에 가장 인접한 라스트 양자우물(114wl) 상에 제1 Inp1Ga1 - p1N층(단, 0〈p1〈1)(127a)과, 상기 제1 Inp1Ga1 - p1N층(127a) 상에 AlqGa1 - qN층(단, 0〈q〈1)(127b) 및 상기 AlqGa1 - qN층(127b) 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1)(127c)을 포함할 수 있다.
실시예에 의하면 AlqGa1 - qN층(127b)에서의 Al을 구비함에 따라 밴드갭 에너지 준위가 상대적으로 높아짐으로써, 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 에너지 밴드갭보다 클 수 있다.
또한, 언도프트 라스트 배리어층(127) 내의 AlqGa1 - qN층(127b)의 에너지 밴드갭이 활성층 내의 양자벽의 에너지 밴드갭보다 크므로 양자우물 내에 전자를 효과적으로 구속할 수 있다.
실시예에서 상기 AlqGa1 - qN층(127b)의 두께는 1 nm 내지 5 nm일 수 있다. 상기 AlqGa1 - qN층(127b)의 두께가 1nm 이하가 되면 양자역학적인 전자구속효율이 떨어지므로 AlqGa1 - qN층(127b)의 두께는 1nm 이상을 구비할 수 있으며, AlqGa1 - qN층(127b)의 두께가 5nm 초과하면 제2 도전형 반도체층(116)에서 활성층(114) 방향으로의 캐리어(정공) 주입효율을 저하시킬 수 있으므로 AlqGa1 - qN층(127b)의 두께는 5nm 이하일 수 있다.
또한, 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 면방향 격자상수는 상기 활성층의 양자우물(114w)의 면방향 격자상수보다 작음으로써 전자는 상대적으로 격자상수가 큰 양자우물 내에 효과적으로 구속될 수 있다.
또한, 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 에너지 밴드갭은 상기 활성층(114)의 양자우물(114w)의 에너지 밴드갭보다 큼으로써 양자우물 내에 전자를 효과적으로 구속할 수 있다.
실시예에 따르면 언도프트 라스트 배리어층(127) 내의 상기 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)의 면방향 격자상수가 AlqGa1 - qN층(127b)의 면방향 격자상수보다 크므로 AlqGa1 - qN층(127b)로부터 양자우물(114w)에 가해지는 응력을 완화시킬수 있다.
또한, 이로 인해, 활성층(114) 내 양자우물(114w)에 작용하는 내부장을 감소시켜서 양자우물에서 전자와 정공의 발광결합 확률을 증대시킴으로써 발광효율을 개선시킬 수 있다.
실시예에 따른 언도프트 라스트 배리어층(127)은 활성층에 가하는 응력을 최소화 하면서 동시에 효과적으로 활성층 내에 전자를 양자역학적으로 구속할 수 있다.
또한, 실시예에 따르면 AlqGa1 - qN층(127b)은 p형으로 도핑되지 않고, AlqGa1 - qN층(127b)의 면방향 격자상수가 제1 Inp1Ga1 - p1N층(127a) 및 상기 제2 Inp2Ga1 - p2N층(127c)보다 작으므로 제2 도전형 반도체층(116)으로부터 활성층(114) 방향으로의 p형 도펀트인 Mg의 침투를 효과적으로 차단함으로써 소자의 장기 신뢰성을 개선할 수 있다.
상기 AlqGa1 - qN층(127b)는 전자를 차단할 수 있는 충분한 에너지 장벽을 구비하되, 홀의 주입효율 장벽 기능방지를 위해 상기 AlqGa1 - qN층(127b)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 작을 수 있다.
또한, 도 3은 실시예에 따른 발광소자의 에너지 밴드 다이어 그램의 제2 예시도이며, 실시예에 의하면 도 3과 같이 상기 AlqGa1 - qN층(127d)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있다.
실시예에 의하면 상기 AlqGa1 - qN층(127d)의 에너지 밴드갭이 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 큼으로써 전자차단 기능을 효과적으로 수행하며, 홀의 주입 효율을 방해하지 않는 범위에서 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있다.
또한, 실시예에 의하면 상기 AlqGa1 - qN층(127b)의 두께는 상기 제1 Inp1Ga1-p1N층(127a) 또는 상기 제2 Inp2Ga1 - p2N층(127c)의 두께보다 작을 수 있다.
이를 통해, 격자상수 차이에 의한 응력발생을 최소화하면서 전자차단 기능을 효율적으로 수행하기 위해 상기 AlqGa1 - qN층(127b)의 두께는 상기 제1 Inp1Ga1 - p1N층(127a) 또는 상기 제2 Inp2Ga1 - p2N층(127c)의 두께보다 작을 수 있으며, 상기 AlqGa1-qN층(127d)의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층(128)의 에너지 밴드갭보다 클 수 있으나 이에 한정되는 것은 아니다.
실시예에 의하면 양자우물에 가해지는 응력을 최소화하면서 동시에 양자 구속효과를 효과적으로 증대할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
다음으로, 도 7과 같이 상기 언도프트 라스트 배리어층(127) 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1)(128) 및 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116)을 형성할 수 있다.
상기 AlxInyGa(1-x-y)N 계열층(128)은 전자 차단(electron blocking) 및 활성층의 클래딩(MQW cladding) 역할을 해줌으로써 발광효율을 개선할 수 있다.
상기 AlxInyGa(1-x-y)N 계열층(128)은 상기 활성층(114)의 에너지 밴드 갭보다 큰 에너지 밴드 갭을 가질 수 있다. 상기 AlxInyGa(1-x-y)N 계열층(128)은 초격자(superlattice)로 형성될 수 있으나 이에 한정되는 것은 아니다.
또한, 상기 AlxInyGa(1-x-y)N 계열층(128) p형 불순물로 도핑될 수 있다. 예를 들어, 상기 AlxInyGa(1-x-y)N 계열층(128)은 Mg이 약 1018~1020/cm3 농도 범위로 이온주입 등의 방법을 사용하여 도핑되어 오버플로우되는 전자를 효율적으로 차단하고, 홀의 주입효율을 증대시킬 수 있다.
다음으로, 상기 AlxInyGa(1-x-y)N 계열층(128) 상에 제2 도전형 반도체층(116)을 형성된다.
상기 제2 도전형 반도체층(116)은 반도체 화합물로 형성될 수 있다. 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다.
예를 들어, 상기 제2 도전형 반도체층(116)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(116)이 p형 반도체층인 경우, 상기 제2도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
다음으로, 상기 제2 도전형 반도체층(116) 상에 투광성 전극(130)을 형성되며, 상기 투광성 전극(130)은 투광성 오믹층을 포함할 수 있으며, 캐리어 주입을 효율적으로 할 수 있도록 단일 금속 혹은 금속합금, 금속산화물 등을 다중으로 적층하여 형성할 수 있다.
상기 투광성 전극(130)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO 중 적어도 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되는 않는다.
실시예에서 상기 제1 도전형 반도체층(112)은 n형 반도체층, 상기 제2 도전형 반도체층(116)은 p형 반도체층으로 구현할 수 있으나 이에 한정되지 않는다. 또한 상기 제2 도전형 반도체층(116) 위에는 상기 제2 도전형과 반대의 극성을 갖는 반도체 예컨대 n형 반도체층(미도시)을 형성할 수 있다. 이에 따라 발광구조물(110)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
다음으로, 도 8과 같이, 상기 제1 도전형 반도체층(112)이 노출되도록 투광성 전극(130), 제2 도전형 반도체층(116), AlxInyGa(1-x-y)N 계열층(128), 언도프트 라스트 배리어층(127), 활성층(114) 및 질화갈륨계열의 초격자층(124)의 일부를 제거할 수 있다.
다음으로, 도 9와 같이 상기 투광성 전극(130) 상에 제2 전극(132)을 형성하고, 상기 노출된 제1 도전형 반도체층(112) 상에 제1 전극(131)을 형성하여 실시예에 따른 발광소자(100)를 형성할 수 있다.
실시예에 의하면 광도를 증대시킬 수 있는 최적의 구조를 구비한 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한, 실시예에 의하면 양자우물에 가해지는 응력을 최소화하면서 동시에 양자 구속효과를 효과적으로 증대할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이를 통해, 실시예에 의하면 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
도 10은 실시예들에 따른 발광소자가 설치된 발광소자 패키지(200)를 설명하는 도면이다.
실시예에 따른 발광 소자 패키지(200)는 패키지 몸체부(205)와, 상기 패키지 몸체부(205)에 설치된 제3 전극층(213) 및 제4 전극층(214)과, 상기 패키지 몸체부(205)에 설치되어 상기 제3 전극층(213) 및 제4 전극층(214)과 전기적으로 연결되는 발광 소자(100)와, 상기 발광 소자(100)를 포위하는 몰딩부재(230)가 포함된다.
상기 패키지 몸체부(205)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있으며, 상기 발광 소자(100)의 주위에 경사면이 형성될 수 있다.
상기 제3 전극층(213) 및 제4 전극층(214)은 서로 전기적으로 분리되며, 상기 발광 소자(100)에 전원을 제공하는 역할을 한다. 또한, 상기 제3 전극층(213) 및 제4 전극층(214)은 상기 발광 소자(100)에서 발생된 빛을 반사시켜 광 효율을 증가시키는 역할을 할 수 있으며, 상기 발광 소자(100)에서 발생된 열을 외부로 배출시키는 역할을 할 수도 있다.
상기 발광 소자(100)는 도 1에 예시된 수평형 타입의 발광 소자가 적용될 수 있으나 이에 한정되는 것은 아니며, 수직형 발광소자, 플립칩 발광소자도 적용될 수 있다.
상기 발광 소자(100)는 상기 패키지 몸체부(205) 상에 설치되거나 상기 제3 전극층(213) 또는 제4 전극층(214) 상에 설치될 수 있다.
상기 발광 소자(100)는 상기 제3 전극층(213) 및/또는 제4 전극층(214)과 와이어 방식, 플립칩 방식 또는 다이 본딩 방식 중 어느 하나에 의해 전기적으로 연결될 수도 있다. 실시예에서는 상기 발광 소자(100)가 상기 제3 전극층(213)과 와이어(230)를 통해 전기적으로 연결되고 상기 제4 전극층(214)과 직접 접촉하여 전기적으로 연결된 것이 예시되어 있다.
상기 몰딩부재(230)는 상기 발광 소자(100)를 포위하여 상기 발광 소자(100)를 보호할 수 있다. 또한, 상기 몰딩부재(230)에는 형광체(232)가 포함되어 상기 발광 소자(100)에서 방출된 광의 파장을 변화시킬 수 있다.
실시예에 따른 발광소자 패키지는 복수개가 기판 상에 어레이되며, 상기 발광 소자 패키지에서 방출되는 광의 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트, 형광 시트 등이 배치될 수 있다. 이러한 발광 소자 패키지, 기판, 광학 부재는 백라이트 유닛으로 기능하거나 조명 유닛으로 기능할 수 있으며, 예를 들어, 조명시스템은 백라이트 유닛, 조명 유닛, 지시 장치, 램프, 가로등을 포함할 수 있다.
도 11은 실시예에 따른 발광소자를 구비하는 조명장치의 분해 사시도이다.
실시예에 따른 조명장치는 커버(2100), 광원 모듈(2200), 방열체(2400), 전원 제공부(2600), 내부 케이스(2700), 소켓(2800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(2300)와 홀더(2500) 중 어느 하나 이상을 더 포함할 수 있다. 상기 광원 모듈(2200)은 실시 예에 따른 발광소자 또는 발광 소자 패키지를 포함할 수 있다.
예컨대, 상기 커버(2100)는 벌브(bulb) 또는 반구의 형상을 가지며, 속이 비어 있고, 일 부분이 개구된 형상으로 제공될 수 있다. 상기 커버(2100)는 상기 광원 모듈(2200)과 광학적으로 결합되고, 상기 방열체(2400)와 결합될 수 있다. 상기 커버(2100)는 상기 방열체(2400)와 결합하는 결합부를 가질 수 있다.
상기 커버(2100)의 내면에는 확산재를 갖는 유백색 도료가 코팅될 수 있다. 이러한 유백색 재료를 이용하여 상기 광원 모듈(2200)로부터의 빛을 산란 및 확산되어 외부로 방출시킬 수 있다.
상기 커버(2100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는 내광성, 내열성, 강도가 뛰어나다. 상기 커버(2100)는 외부에서 상기 광원 모듈(2200)이 보이도록 투명할 수 있고, 불투명할 수 있다. 상기 커버(2100)는 블로우(blow) 성형을 통해 형성될 수 있다.
상기 광원 모듈(2200)은 상기 방열체(2400)의 일 면에 배치될 수 있다. 따라서, 상기 광원 모듈(2200)로부터의 열은 상기 방열체(2400)로 전도된다. 상기 광원 모듈(2200)은 발광 소자(2210), 연결 플레이트(2230), 커넥터(2250)를 포함할 수 있다.
상기 부재(2300)는 상기 방열체(2400)의 상면 위에 배치되고, 복수의 조명소자(2210)들과 커넥터(2250)이 삽입되는 가이드홈(2310)들을 갖는다. 상기 가이드홈(2310)은 상기 조명소자(2210)의 기판 및 커넥터(2250)와 대응된다.
상기 부재(2300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 상기 부재(2300)는 상기 커버(2100)의 내면에 반사되어 상기 광원 모듈(2200)측 방향으로 되돌아오는 빛을 다시 상기 커버(2100) 방향으로 반사한다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.
상기 부재(2300)는 예로서 절연 물질로 이루어질 수 있다. 상기 광원 모듈(2200)의 연결 플레이트(2230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 상기 방열체(2400)와 상기 연결 플레이트(2230) 사이에 전기적인 접촉이 이루어질 수 있다. 상기 부재(2300)는 절연 물질로 구성되어 상기 연결 플레이트(2230)와 상기 방열체(2400)의 전기적 단락을 차단할 수 있다. 상기 방열체(2400)는 상기 광원 모듈(2200)로부터의 열과 상기 전원 제공부(2600)로부터의 열을 전달받아 방열한다.
상기 홀더(2500)는 내부 케이스(2700)의 절연부(2710)의 수납홈(2719)을 막는다. 따라서, 상기 내부 케이스(2700)의 상기 절연부(2710)에 수납되는 상기 전원 제공부(2600)는 밀폐된다. 상기 홀더(2500)는 가이드 돌출부(2510)를 갖는다. 상기 가이드 돌출부(2510)는 상기 전원 제공부(2600)의 돌출부(2610)가 관통하는 홀을 구비할 수 있다.
상기 전원 제공부(2600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 상기 광원 모듈(2200)로 제공한다. 상기 전원 제공부(2600)는 상기 내부 케이스(2700)의 수납홈(2719)에 수납되고, 상기 홀더(2500)에 의해 상기 내부 케이스(2700)의 내부에 밀폐된다.
상기 전원 제공부(2600)는 돌출부(2610), 가이드부(2630), 베이스(2650), 연장부(2670)를 포함할 수 있다.
상기 가이드부(2630)는 상기 베이스(2650)의 일 측에서 외부로 돌출된 형상을 갖는다. 상기 가이드부(2630)는 상기 홀더(2500)에 삽입될 수 있다. 상기 베이스(2650)의 일 면 위에 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 직류변환장치, 상기 광원 모듈(2200)의 구동을 제어하는 구동칩, 상기 광원 모듈(2200)을 보호하기 위한 ESD(ElectroStatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.
상기 연장부(2670)는 상기 베이스(2650)의 다른 일 측에서 외부로 돌출된 형상을 갖는다. 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750) 내부에 삽입되고, 외부로부터의 전기적 신호를 제공받는다. 예컨대, 상기 연장부(2670)는 상기 내부 케이스(2700)의 연결부(2750)의 폭과 같거나 작게 제공될 수 있다. 상기 연장부(2670)는 전선을 통해 소켓(2800)에 전기적으로 연결될 수 있다.
상기 내부 케이스(2700)는 내부에 상기 전원 제공부(2600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는 몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(2600)가 상기 내부 케이스(2700) 내부에 고정될 수 있도록 한다.
실시예에 의하면 광도를 증대시킬 수 있는 최적의 구조를 구비한 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
또한, 실시예에 의하면 양자우물에 가해지는 응력을 최소화하면서 동시에 양자 구속효과를 효과적으로 증대할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이를 통해, 실시예에 의하면 양자구속효과의 개선, 발광효율의 개선 및 소자신뢰성 개선할 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명시스템을 제공할 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
제1 도전형 반도체층(112), 활성층(114)
양자우물(114w), 라스트 양자우물(114wl), 양자벽(114b)
언도프트 라스트 배리어층(127),
제1 Inp1Ga1 - p1N층(127a), AlqGa1 - qN층(127b), 제2 Inp2Ga1 - p2N층(127c)
AlxInyGa(1-x-y)N 계열층(128), 제2 도전형 반도체층(116)

Claims (15)

  1. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 양자우물과 양자벽을 포함하는 활성층;
    상기 활성층 상에 언도프트 라스트 배리어층(undoped last barrier);
    상기 언도프트 라스트 배리어층 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1);
    상기 AlxInyGa(1-x-y)N 계열층 상에 제2 도전형 반도체층;을 포함하며,
    상기 언도프트 라스트 배리어층은
    상기 양자우물 중 상기 제2 도전형 반도체층에 가장 인접한 라스트 양자우물 상에 제1 Inp1Ga1 - p1N층(단, 0〈p1〈1);
    상기 제1 Inp1Ga1 - p1N층 상에 AlqGa1 - qN층(단, 0〈q〈1); 및
    상기 AlqGa1 - qN층 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1);을 포함하는 발광소자.
  2. 제1 항에 있어서,
    상기 AlqGa1 - qN층의 에너지 밴드갭은 상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 에너지 밴드갭보다 큰 발광소자.
  3. 제1 항에 있어서,
    상기 AlqGa1 - qN층의 에너지 밴드갭은
    상기 AlxInyGa(1-x-y)N 계열층의 에너지 밴드갭보다 작은 발광소자.
  4. 제1 항에 있어서,
    상기 AlqGa1 - qN층의 에너지 밴드갭은
    상기 활성층의 양자벽의 에너지 밴드갭보다 큰 발광소자.
  5. 제1 항에 있어서,
    상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 에너지 밴드갭은
    상기 활성층의 양자우물의 에너지 밴드갭보다 큰 발광소자.
  6. 제1 항에 있어서,
    상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 면방향 격자상수는 상기 AlqGa1 - qN층의 면방향 격자상수보다 큰 발광소자.
  7. 제1 항에 있어서,
    상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 면방향 격자상수는 상기 활성층의 양자우물의 면방향 격자상수보다 작은 발광소자.
  8. 제1 항에 있어서,
    상기 AlqGa1 - qN층의 두께는 상기 제1 Inp1Ga1 - p1N층 또는 상기 제2 Inp2Ga1 - p2N층의 두께보다 작은 발광소자.
  9. 제8 항에 있어서,
    상기 AlqGa1 - qN층의 두께는 1 nm 내지 5 nm인 발광소자.
  10. 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 양자우물과 양자벽을 포함하는 활성층;
    상기 활성층 상에 언도프트 라스트 배리어층(undoped last barrier);
    상기 언도프트 라스트 배리어층 상에 AlxInyGa(1-x-y)N 계열층(단, 0≤x≤1, 0≤y≤1);
    상기 AlxInyGa(1-x-y)N 계열층 상에 제2 도전형 반도체층;을 포함하며,
    상기 언도프트 라스트 배리어층은 AlqGa1 - qN층(단, 0〈q〈1)을 포함하며,
    상기 AlqGa1 - qN층의 에너지 밴드갭은 상기 AlxInyGa(1-x-y)N 계열층의 에너지 밴드갭보다 큰 발광소자.
  11. 제10 항에 있어서,
    상기 언도프트 라스트 배리어층은
    상기 양자우물 중 상기 제2 도전형 반도체층에 가장 인접한 라스트 양자우물 상에 제1 Inp1Ga1 - p1N층(단, 0〈p1〈1);
    상기 제1 Inp1Ga1 - p1N층 상에 상기 AlqGa1 - qN층(단, 0〈q〈1); 및
    상기 AlqGa1 - qN층 상에 제2 Inp2Ga1 - p2N층(단, 0〈p2〈1);을 포함하는 발광소자.
  12. 제11 항에 있어서,
    상기 AlqGa1 - qN층의 에너지 밴드갭은 상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 에너지 밴드갭보다 큰 발광소자.
  13. 제11 항에 있어서,
    상기 AlqGa1 - qN층의 에너지 밴드갭은
    상기 활성층의 양자벽의 에너지 밴드갭보다 큰 발광소자.
  14. 제11 항에 있어서,
    상기 제1 Inp1Ga1 - p1N층 및 상기 제2 Inp2Ga1 - p2N층의 면방향 격자상수는 상기 AlqGa1 - qN층의 면방향 격자상수보다 큰 발광소자.
  15. 제11 항에 있어서,
    상기 AlqGa1 - qN층의 두께는 상기 제1 Inp1Ga1 - p1N층 또는 상기 제2 Inp2Ga1 - p2N층의 두께보다 작은 발광소자.
KR1020130066663A 2013-06-11 2013-06-11 발광소자 KR102053388B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130066663A KR102053388B1 (ko) 2013-06-11 2013-06-11 발광소자
EP14171853.6A EP2814069B1 (en) 2013-06-11 2014-06-10 Multiple quantum well semiconductor light emitting device
US14/300,566 US9087961B2 (en) 2013-06-11 2014-06-10 Light emitting device and lighting system
CN201410259008.XA CN104241469B (zh) 2013-06-11 2014-06-11 发光器件及照明系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130066663A KR102053388B1 (ko) 2013-06-11 2013-06-11 발광소자

Publications (2)

Publication Number Publication Date
KR20140144549A true KR20140144549A (ko) 2014-12-19
KR102053388B1 KR102053388B1 (ko) 2019-12-06

Family

ID=50884825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130066663A KR102053388B1 (ko) 2013-06-11 2013-06-11 발광소자

Country Status (4)

Country Link
US (1) US9087961B2 (ko)
EP (1) EP2814069B1 (ko)
KR (1) KR102053388B1 (ko)
CN (1) CN104241469B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019858B1 (ko) * 2013-07-18 2019-09-09 엘지이노텍 주식회사 발광소자 및 조명시스템
TWI597863B (zh) * 2013-10-22 2017-09-01 晶元光電股份有限公司 發光元件及其製造方法
CN104617174A (zh) * 2015-01-12 2015-05-13 西安神光皓瑞光电科技有限公司 一种光电器件的插入层结构
DE102016111929A1 (de) * 2016-06-29 2018-01-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Leuchtdiode
DE102016117477A1 (de) * 2016-09-16 2018-03-22 Osram Opto Semiconductors Gmbh Halbleiterschichtenfolge
US10971652B2 (en) * 2017-01-26 2021-04-06 Epistar Corporation Semiconductor device comprising electron blocking layers
US10874876B2 (en) * 2018-01-26 2020-12-29 International Business Machines Corporation Multiple light sources integrated in a neural probe for multi-wavelength activation
CN110098293B (zh) * 2019-04-26 2021-03-19 中国电子科技集团公司第三十八研究所 具有异质外延nip结型多量子阱发光层终端的led结构
JP7488456B2 (ja) 2020-06-08 2024-05-22 日亜化学工業株式会社 発光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064629A (ko) * 2002-01-24 2003-08-02 소니 가부시끼 가이샤 반도체 발광 소자 및 그 제조 방법
US20070272936A1 (en) * 2006-05-23 2007-11-29 Lg Electronics Inc. Nitride based light emitting device
KR20120139402A (ko) * 2011-06-17 2012-12-27 엘지이노텍 주식회사 발광소자
KR20130006846A (ko) * 2011-06-24 2013-01-18 엘지이노텍 주식회사 발광소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY129352A (en) * 2001-03-28 2007-03-30 Nichia Corp Nitride semiconductor device
KR100837404B1 (ko) * 2006-10-18 2008-06-12 삼성전자주식회사 반도체 광전 소자
JP4572963B2 (ja) 2008-07-09 2010-11-04 住友電気工業株式会社 Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
KR101017396B1 (ko) * 2008-08-20 2011-02-28 서울옵토디바이스주식회사 변조도핑층을 갖는 발광 다이오드
JP5316276B2 (ja) * 2009-01-23 2013-10-16 住友電気工業株式会社 窒化物半導体発光素子、エピタキシャル基板、及び窒化物半導体発光素子を作製する方法
EP2408028B1 (en) 2010-07-16 2015-04-08 LG Innotek Co., Ltd. Light emitting device
JP5737111B2 (ja) * 2011-03-30 2015-06-17 豊田合成株式会社 Iii族窒化物半導体発光素子
KR101813935B1 (ko) * 2011-06-09 2018-01-02 엘지이노텍 주식회사 발광소자
US20140191192A1 (en) * 2011-07-29 2014-07-10 Samsung Electronics Co., Ltd. Semiconductor light-emitting device
JP5522147B2 (ja) 2011-11-02 2014-06-18 住友電気工業株式会社 窒化物半導体発光素子、及び、窒化物半導体発光素子の作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064629A (ko) * 2002-01-24 2003-08-02 소니 가부시끼 가이샤 반도체 발광 소자 및 그 제조 방법
US20070272936A1 (en) * 2006-05-23 2007-11-29 Lg Electronics Inc. Nitride based light emitting device
KR20120139402A (ko) * 2011-06-17 2012-12-27 엘지이노텍 주식회사 발광소자
KR20130006846A (ko) * 2011-06-24 2013-01-18 엘지이노텍 주식회사 발광소자

Also Published As

Publication number Publication date
CN104241469B (zh) 2018-11-23
US9087961B2 (en) 2015-07-21
EP2814069B1 (en) 2021-05-19
KR102053388B1 (ko) 2019-12-06
US20140361246A1 (en) 2014-12-11
EP2814069A1 (en) 2014-12-17
CN104241469A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
KR102053388B1 (ko) 발광소자
US9431575B2 (en) Light-emitting device
KR20130069215A (ko) 발광소자
JP6087142B2 (ja) 発光素子
US9236531B2 (en) Light emitting device and lighting system
KR101983292B1 (ko) 발광소자
KR102008363B1 (ko) 발광소자 및 조명시스템
KR101886153B1 (ko) 발광소자
KR101904034B1 (ko) 발광소자 및 이를 포함하는 조명시스템
KR101786084B1 (ko) 발광소자의 제조방법
KR20140083243A (ko) 발광소자
KR20160121837A (ko) 발광소자 및 조명시스템
KR102163961B1 (ko) 발광소자 및 조명시스템
KR102057719B1 (ko) 발광소자 및 이를 포함하는 조명시스템
KR102224086B1 (ko) 발광소자 및 조명시스템
KR20150017919A (ko) 발광소자 및 조명시스템
KR101871498B1 (ko) 발광소자
KR20140125599A (ko) 발광소자
KR20160123842A (ko) 발광소자 및 조명장치
KR20170105941A (ko) 발광소자 및 조명장치
KR20150144041A (ko) 발광소자 및 조명시스템
KR20150116274A (ko) 발광소자 및 조명시스템
KR20150109832A (ko) 발광소자 및 조명시스템
KR20140069486A (ko) 발광소자
KR20140069487A (ko) 발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant