KR20140111683A - 광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치 - Google Patents

광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치 Download PDF

Info

Publication number
KR20140111683A
KR20140111683A KR1020147021284A KR20147021284A KR20140111683A KR 20140111683 A KR20140111683 A KR 20140111683A KR 1020147021284 A KR1020147021284 A KR 1020147021284A KR 20147021284 A KR20147021284 A KR 20147021284A KR 20140111683 A KR20140111683 A KR 20140111683A
Authority
KR
South Korea
Prior art keywords
optical element
measurement
exposure apparatus
projection exposure
radiation
Prior art date
Application number
KR1020147021284A
Other languages
English (en)
Other versions
KR101707722B1 (ko
Inventor
샤샤 블라이디슈텔
요아힘 하르트예스
토랄프 그루너
Original Assignee
칼 짜이스 에스엠테 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠테 게엠베하 filed Critical 칼 짜이스 에스엠테 게엠베하
Publication of KR20140111683A publication Critical patent/KR20140111683A/ko
Application granted granted Critical
Publication of KR101707722B1 publication Critical patent/KR101707722B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Abstract

본원 발명의 마이크로리소그래피용 투영 노광 장치(10)는 투영 노광 장치의 광학 요소를 측정하기 위한 측정 시스템(50)을 포함한다. 측정 시스템(50)은 광학 요소(20) 상에 상이한 방향(64)으로 측정 방사(62)를 조사하여 측정 방사(62)가 상이한 입사 방향(64)에 대해 광학 요소(20) 내에서 개별적인 광학 경로 길이(68)를 커버하도록 구성되는 조사 장치(54)와, 개별적인 입사 방향(64)에 대해 광학 요소(20) 내의 측정 방사(62)에 의해 커버되는 대응하는 광학 경로 길이를 측정하도록 구성되는 검출 장치(56)와, 개별적인 입사 방향을 고려하여 측정된 경로 길이의 컴퓨터-단층촬영 역 투영에 의해 광학 요소(20) 내의 굴절률의 공간적으로 분해된 분포를 결정하도록 구성되는 평가 장치를 포함한다.

Description

광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치{PROJECTION EXPOSURE APPARATUS COMPRISING A MEASURING SYSTEM FOR MEASURING AN OPTICAL ELEMENT}
본 출원은 2012년 2월 1일 출원된 독일 특허 출원 번호 10 2012 201 410.1 및 2012년 2월 1일 출원된 미국 가출원 번호 61/593,349에 대한 우선권을 청구한다. 이 독일 특허 출원 및 미국 가출원의 전체 기재 내용은 참조로써 본원에 포함된다.
본 출원은 측정 시스템을 포함하는 마이크로리소그래피용 투영 노광 장치 및 광학 요소를 측정하기 위한 방법에 관한 것이다.
투영 노광 장치를 경제적으로 운용하기 위해서, 가능한 짧은 노광 시간 동안 반도체 웨이퍼 형태의 기판(substrate) 상에 마스크 구조를 결상하는 것이 바람직한데, 이는 노광된 기판의 처리량이 가능한 높게 달성되기 때문이다. 이는 기판들 중 각각의 개별적인 하나의 기판의 충분한 노광을 달성하기 위해 높은 방사 세기를 필요로 한다. 특히, 자외 또는 극자외(EUV) 파장 범위 내의 방사를 사용할 때, 집중적인 방사의 영향은, 투영 노광 장치의 조명 광학 유닛 및 투영 렌즈 내의 개별적인 광학 요소 내의 온도가 국부적으로 변하여, 광학 요소의 굴절률 및 표면 형태에 영향을 미치는 효과를 가질 수 있다. 온도 분포 및 굴절률 분포 역시 광학 요소 내에서 일시적으로 변할 수 있다.
개별 광학 요소의 특성의 이러한 방사-기인 변화는 투영 노광 장치의 결상 거동(imaging behavior)의 편차(deviation)를 초래할 수 있다. 투영 렌즈 내의 광학 요소의 특성의 변화는 투영 렌즈의 수차로서 발현된다. 이러한 수차의 정도는 방사선량에 따라 결정된다. 렌즈 요소 내의 높은 방사 세기의 효과의 예는 렌즈 요소 재료의 밀도의 감소 및 치밀화를 포함한다. 193 nm 방사를 사용하는 경우, 밀도의 특히 큰 변화가 석영 유리에서 관찰되었다. 이러한 효과는 소위 "렌즈 가열(lens heating)"로 통상 지칭되며 또한 공지되어 있다.
렌즈 가열에 의해 생성된 수차는 투영 노광 장치의 작동 도중에 대체로 연속적으로 투영 렌즈의 결상 거동을 변화시킨다. 이는 리소그래피 결상의 품질에 악영향을 미친다. 균일하게 높은 결상 품질을 보장하기 위해서, 많은 경우에 결상 거동을 체크하기 위해 투영 노광 장치의 노광 작동이 규칙적인 시간 간격으로 중단되는 것이 종래의 관행이었다. 하지만, 이러한 중단은 처리량의 감소를 초래하기 때문에 비용적으로 불리하다.
본원 발명에 의해 해결되는 목표 문제는 투영 노광 장치 및 방법을 제공하는 것으로써, 그로 인해 상술된 문제들이 해결되며, 특히 높은 처리량과 함께 투영 노광 장치의 균일하고 높은 결상 품질을 얻는 것이 가능하다.
상술된 목표 문제는 본원 발명, 예컨대 투영 노광 장치의 광학 요소를 측정하기 위한 측정 시스템을 포함하는 마이크로리소그래피용 투영 노광 장치에 의해 해결될 수 있다. 예컨대, 광학 요소는 렌즈 요소일 수 있으며 미러 요소일 수도 있다. 투영 노광 장치는 조명 광학 유닛 및 투영 렌즈를 포함한다. 측정될 광학 요소는 투영 렌즈의 일부 또는 조명 광학 유닛의 일부일 수 있다. 측정 시스템은 상이한 방향들에서 광학 요소 상으로 측정 방사를 조사하도록 구성된 조사 장치를 포함하며, 그로 인해 측정 방사는 상이한 입사 방향에 대해 광학 요소 내에서 개별적인 광학 경로 길이를 커버한다. 또한, 측정 시스템은 검출 장치 및 평가 장치를 포함한다. 측정 시스템은 각각의 입사 방향에 대해 광학 요소 내에서 측정 방사에 의해 커버되는 대응하는 광학 경로 길이를 측정하도록 구성된다. 평가 장치는 각각의 입사 방향을 고려하여 측정된 경로 길이의 컴퓨터-단층촬영 역 투영(computed-tomographic back projection)에 의해 광학 요소 내의 굴절률의 공간적으로 분해된 분포(spatially resolved distribution)를 결정하도록 구성된다.
즉, 본원 발명에 따르는 측정 시스템은 컴퓨터-단층촬영 측정 원리를 기초로 작동하며, 따라서 특히 단층촬영 측정 시스템(tomography measuring system)으로 구현될 수 있다. 컴퓨터-단층촬영 측정에 있어서, 측정될 대상물은 상이한 방향들에서 측정되고, 측정되는 대상물의 내부 공간 구조는 그 측정으로부터 결정되고 예컨대, 슬라이스 이미지(slice image) 형태로 표현된다. 본원 발명에 따르는 측정 시스템은 상이한 방향들에서 수행되는 측정으로부터 광학 요소의 광학적 굴절률의 공간적으로 분해된 분포를 결정한다. 공간적으로 분해된 분포는 실시예에 따라 1차원적으로, 2차원적으로 또는 3차원적으로 결정될 수 있다. 굴절률의 결정된 공간적으로 분해된 분포로부터, 광학 요소가 렌즈 요소인 경우에, 렌즈 요소의 광학적 거동이 직접적으로 추론될 수 있다. 광학 요소가 미러 요소인 경우에는, 예컨대 미러 기판의 굴절률의 공간적으로 분해된 분포가 측정될 수 있다. 따라서, 미러 표면에 대한 변화가 이러한 분포로부터 추론될 수 있다. 또한, 예컨대 광학 요소의 온도 분포가 결정될 수 있다.
개별적인 광학 경로 길이는, 검출 장치상으로의 광학 요소 내에서 대응하는 입사 방향에 대해 측정 방사에 의해 커버되는 경로를 따르는 광학 요소의 굴절률의 투영으로부터 기인한다. 본원 발명에 따른 컴퓨터-단층촬영 역 투영은, 특히 필터링 역 투영(filtered back projection)으로써 수행된다. 이 방법은 라돈 변형(Radon transform)을 기초로 하며, 예컨대 의료 컴퓨터-단층촬영으로부터 본 기술 분야의 통상의 기술자에게 대체로 공지되어 있다. 역 투영은 특히 광학 요소의 적어도 2차원 영역 상에서 수행된다. 이후, 굴절률의 공간적으로 분해된 분포가 그로부터 2차원적으로 결정될 수 있다.
광학적 요소의 측정 도중, 측정 방사는 상이한 방향들로 광학 요소 상에 조사된다. 상이한 방향들은 특히, 적어도 1°, 적어도 5° 또는 적어도 10°의 각도만큼 서로 다른 방향인 것으로 이해된다.
본원 발명에 따른 상이한 방향에서의 광학 요소의 측정은 예컨대, 광학 요소의 에지를 거쳐 수행될 수 있다. 이는 투영 노광 장치의 노광 작업을 중단하지 않고 측정을 수행할 수 있게 한다. 따라서, 투영 노광 장치의 작동 도중, 투영 노광 장치의 결상 거동에 중요한 특성의 공간적으로 분해된 분포를 모니터링하는 것이 가능해진다. 따라서, 이는 예컨대, 조작기(manipulator)에 의해 노광 작동 도중에도 원하는 상태로부터의 결상 거동의 가능한 편차를 보정할 수 있다. 따라서, 본원 발명은 노광 작동의 처리량이 감소하는 중단 없이 균일하고 높은 결상 품질을 가능하게 한다.
본원 발명에 따른 일 실시예에 따르면, 평가 장치는 측정 방사가 통과하는 광학 요소의 체적 영역(volume region) 상으로 측정된 경로 길이를 역 투영하고, 그로 인해 광학 요소 내의 굴절률의 3차원의 공간적으로 분해된 분포를 결정하도록 구성된다.
본원 발명에 따른 다른 실시예에 따르면, 측정된 광학 요소는 렌즈 요소이다. 특히, 이 경우, 투영 노광 장치는 UV 방사, 예컨대 대략 365 nm, 대략 248 nm 또는 대략 193 nm의 파장을 갖는 방사로 노광되도록 설계된다. 또한, 측정된 광학 요소는 회절 또는 산란 요소로 구현될 수 있다.
본원 발명에 따른 다른 실시예에 따르면, 측정 시스템은 광학 요소의 광학축에 대해 횡단방향으로 연장하는 적어도 2개의 상이한 방향들로 광학 요소를 측정하도록 구성된다. 따라서, 측정은 광학 요소의 에지 영역으로부터 수행되며, 다시 말해 광학 요소와 관련하여 사용된 비임 경로는 측정에 의해 악영향을 받지 않는다.
본원 발명에 따른 다른 실시예에 따르면, 측정 시스템은 측정으로부터 광학 요소의 적어도 하나의 섹션 내의 온도의 공간적으로 분해된 분포를 결정되도록 구성된다. 이는 방사가 통과하는 재료의 굴절률의 공지된 온도 의존도를 기초로 광학 요소의 굴절률의 측정된 공간적으로 분해된 분포의 평가에 의해 수행된다.
본원 발명에 따른 다른 실시예에 따르면, 검출 장치는, 광학 경로 길이 측정을 위해, 광학 요소 내의 광학 경로 길이들 중 하나를 횡단한 후 측정 방사를 기준 방사와 중첩하도록 구성되는 간섭계(interferometer)를 포함한다. 일 변형예에 따르면, 기준 방사는 그 진입 전에 측정 방사로부터 광학 요소로 분기된다.
본원 발명에 따른 다른 실시예에 따르면, 조사 장치는 상이한 입사 방향들 중 하나의 방향으로 측정 방사를 방출하도록 각각 구성 및 배열되는 복수의 조사 유닛을 포함하며, 이때 상이한 조사 유닛들의 입사 방향들은 쌍으로 서로 다르다. 즉, 조사 유닛은 각각의 경우에 상이한 입사 방향으로 측정 방사를 방출한다.
본원 발명에 따른 다른 실시예에 따르면, 검출 장치는 상이한 입사 방향들 중 개별적인 한 방향에 대해 광학 경로 길이를 측정하도록 각각 구성되는 복수의 검출 유닛을 포함하며, 이때 상이한 검출 유닛들에게 지정되는 입사 방향들은 쌍으로 서로 다르다.
본원 발명에 따른 다른 실시예에 따르면, 측정 시스템은, 상이한 방향들 중 하나의 방향으로 광학 요소 상에 측정 방사를 조사하고 입사 방향과 반대 방향으로 복귀하는 측정 방사를 측정하도록 구성되는 적어도 하나의 통합식 측정 모듈을 포함한다. 통합식 측정 모듈은 따라서 상이한 입사 방향들 중 하나의 방향에 대해 검출 장치의 기능 및 조사 장치의 기능을 갖는다. 일 실시예에 따르면, 측정 시스템은 복수의 통합식 측정 모듈을 가지며, 각각의 통합식 측정 모듈 내에는, 조사 유닛 및 검출 유닛이 포함되어 있다. 양호하게는, 통합식 측정 모듈은 측정되는 광학 요소의 일 측 상으로만 연장하는 방식으로 긴밀하게 제조된다.
본원 발명에 따른 다른 실시예에 따르면, 측정 시스템은 광학 요소 상으로 측정 방사를 조사하기 위한 적어도 하나의 조사 유닛을 포함하며, 광학 요소 내에서 측정 방사에 의해 커버되는 광학 경로 길이를 측정하기 위한 검출 유닛도 포함한다. 이 실시예에 따르면, 조사 유닛 및 검출 유닛은 광학 요소의 양측에 배열된다.
본원 발명에 따른 다른 실시예에 따르면, 조사 장치는 측정 방사를 방출하기 위한 조사 유닛을 포함하고, 검출 장치는 조사 유닛에 지정되어 광학 요소 내에서 측정 방사에 의해 커버되는 경로 길이를 측정하도록 사용되는 검출 유닛을 포함한다. 또한, 측정 시스템은 로터리 베어링을 구비하는데, 이 로터리 베어링에는 조사 유닛 및 검출 유닛이 고정된다. 로터리 베어링은, 로터리 베어링의 상이한 회전 위치(rotary position)에서 조사 유닛에 의해 방출된 측정 방사가 상이한 방향들로 광학 요소 상에 조사되는 방식으로 구성되고 검출 유닛은 각각의 회전 위치에서 조사 유닛에 의해 방출되는 측정 방사를 측정하도록 배열된다.
또한, 본원 발명은 마이크로리소그래피용 투영 노광 장치를 제공하는데, 이 투영 노광 장치는 투영 노광 장치의 광학 요소의 측정을 위해, 후술되는 측정 시스템을 포함한다. 측정 시스템은 조사 장치를 포함하며, 이 조사 장치는 광학 요소 상으로 상이한 방향들로 측정 방사를 조사하도록 구성되어, 측정 방사는 상이한 입사 방향들에 대해 광학 요소의 적어도 하나의 섹션을 통해 개별적인 광학 경로 길이를 커버한다. 또한, 측정 시스템은, 개별적인 입사 방향에 대해 광학 요소 내에서 측정 방사에 의해 커버되는 대응하는 광학 경로 길이를 측정하도록 구성되는 검출 장치와, 개별적인 입사 방향을 고려하여 측정된 경로 길이로부터 광학 요소의 특성의 3차원의 공간적으로 분해된 분포를 결정하도록 구성되는 평가 장치를 포함한다. 이 투영 노광 장치는 상술된 실시예 및 예시적 실시예에서 언급된 구성을 선택적으로 구비할 수 있다. 특히, 광학 요소의 결정된 특성은 광학 요소의 굴절률일 수 있다.
또한, 본 발명은 측정 시스템을 포함하는 마이크로리소그래피용 투영 노광 장치를 제공하는데, 이 측정 시스템은 상이한 방향들로부터 광학 요소에서 나오는 적외 방사의 개별적인 세기를 측정하도록 구성되는 적어도 하나의 적외 센서를 포함하며, 측정 시스템은 그 측정으로부터 광학 요소의 특성의 공간적으로 분해된 분포를 결정하도록 구성된다. 이 투영 노광 장치는 또한 적절한 경우에 상술된 실시예 및 예시적 실시예에서 언급된 구성을 선택적으로 구비할 수 있다.
본 기술 분야의 통상적인 기술자에게 공지된 바와 같이, 광학 요소의 각각의 체적 요소(volume element)에 의해 방출되는 적외 방사는 각각의 체적 요소의 온도의 4제곱(fourth power)에 비례한다. 본원 발명에 따른 일 실시예에 따르면, 측정 시스템은 측정으로부터 광학 요소의 적어도 하나의 섹션 내의 온도의 공간적으로 분해된 분포를 결정하도록 구성된다.
본원 발명에 따른 다른 실시예에 따르면, 투영 노광 장치는 투영 노광 장치의 광학적 특성을 변화시키기 위한 조작 장치(manipulation device)를 더 포함한다. 또한, 투영 노광 장치는, 광학 요소의 측정된 특성의 공간적으로 분해된 분포를 기초로 조작 장치에 의해 광학적 특성, 특히 투영 노광 장치 내의 광학 요소의 수차 효과(aberration effect)를 변화시키도록 구성되는 제어 장치를 포함한다.
본원 발명은 마이크로리소그래피용 투영 노광 장치의 광학 요소를 측정하기 위한 방법을 제공한다. 이 방법에 따르면, 측정 방사가 상이한 방향들로 광학 요소 상에 조사되어, 측정 방사는 상이한 입사 방향들에 대해 광학 요소의 적어도 하나의 섹션을 통해 개별적인 광학 경로 길이를 커버한다. 또한, 개별적인 입사 방향들에 대해, 광학 요소 내에서 측정 방사에 의해 커버되는 대응하는 광학 경로 길이가 측정되고, 광학 요소 내의 굴절률의 공간적으로 분해된 분포가 개별적인 입사 방향을 고려하여 측정된 경로 길이의 컴퓨터-단층촬영 역 투영에 의해 결정된다.
본원 발명에 따른 방법의 일 실시예에 따르면, 측정 도중 광학 요소는 마이크로리소그래피용 투영 노광 장치의 일부이다. 즉, 광학 요소는 투영 노광 장치 내로 통합된 상태에서 측정된다. 본원 발명에 따른 다른 실시예에 따르면, 광학 요소를 포함하는 투영 노광 장치의 광학적 특성은 광학 요소의 측정된 특성의 공간적으로 분해된 분포를 기초로 변화된다.
본원 발명에 따른 다른 실시예에 따르면, 광학 경로 길이 측정을 위해, 광학 요소 내의 광학 경로 길이들 중 하나를 횡단 한 후 측정 방사는 기준 방사와 중첩된다. 본원 발명에 따른 다른 실시예에 따르면, 측정 방사는 상이한 입사 방향들 중 하나의 방향으로 방출되며, 상이한 조사 유닛의 입사 방향들은 쌍으로 서로 다르다. 본원 발명에 따른 다른 실시예에 따르면, 광학 경로 길이는 상이한 입사 방향들 중 개별적인 한 방향에 대해 측정되며, 상이한 검출 유닛에 지정된 입사 방향들은 쌍으로 서로 다르다. 다른 실시예에 따르면, 본원 발명에 따른 방법은 이전의 실시예들 중 하나의 측정 시스템과 함께 수행된다.
본원 발명에 따른 측정 시스템 및 본원 발명에 따른 투영 노광 장치의 상술된 실시예와 관련하여 열거된 구성은 본원 발명에 따른 방법에 대응적으로 적용될 수 있다. 반대로 본원 발명에 따른 방법의 상술된 실시예와 관련하여 열거된 구성은 본원 발명에 따른 측정 시스템 및 본원 발명에 따른 투영 노광 장치에 대응적으로 적용될 수 있다.
본원 발명의 상술된 그리고 추가의 유리한 구성은 첨부된 개략적인 도면을 참조하여 본원 발명에 따른 예시적 실시예의 후속하는 상세한 설명에서 설명된다.
도 1은 본원 발명에 따른 제1 실시예에서 광학 요소를 측정하기 위한 측정 시스템의 측정 아암이 도시된, 렌즈 요소 형태의 마이크로리소그래피용 투영 노광 장치의 광학 요소의 사시도를 도시한다.
도 2는 도 1에 따른 측정 시스템이 내부에 통합되는, 마이크로리소그래피용 투영 노광 장치를 도시한다.
도 3은 측정 시스템의 측정 모듈이 렌즈 요소 장착부 내에 통합된, 도 2에 따른 투영 노광 장치의 렌즈 요소 장착부의 일 실시예의 상세도를 도시한다.
도 4는 본원 발명에 따른 제1 실시예에서 광학 요소를 측정하기 위한 측정 시스템의 측정 아암이 도시된, 미러 형태의 마이크로리소그래피용 투영 노광 장치의 광학 요소의 사시도를 도시한다.
도 5는 측정 모듈 및 반사 요소를 각각 포함하는 복수의 상이하게 배향된 측정 아암들을 갖는 본원 발명에 따른 제1 실시예 내의 측정 시스템의 평면도를 도시한다.
도 6은 도 5에 따른 측정 모듈을 통과하는 단면도를 도시한다.
도 7은 조사 유닛 및 검출 유닛을 각각 포함하는 복수의 상이하게 배향되는 측정 아암들을 갖는 본원 발명에 따른 다른 실시예 내의 측정 시스템의 평면도를 도시한다.
도 8은 도 7에 따른 측정 시스템의 조사 유닛(렌즈 요소 장착부 내에 통합됨) 및 검출 유닛(마찬가지로 렌즈 요소 장착부 내에 통합됨)을 갖는 도 2에 따른 투영 노광 장치의 렌즈 요소 장착부의 다른 실시예의 단면도를 도시한다.
도 9는 회전 가능하게 장착되는 측정 아암에 대한 다른 실시예의 측정 시스템의 평면도를 도시한다.
도 10은 도 9에 따른 측정 아암을 위한 로터리 베어링의 제1 실시예를 도시한다.
도 11은 도 9에 따른 측정 아암을 위한 로터리 베어링의 추가적인 실시예를 도시한다.
도 12는 본원 발명에 따른 다른 실시예에서 광학 요소를 측정하기 위한 측정 시스템을 갖는 마이크로리소그래피용 투영 노광 장치의 광학 요소의 사시도를 도시한다.
도 13은 도 12에 따른 측정 시스템의 평면도를 도시한다.
후술되는 예시적 실시예 및 실시예들에서, 서로 기능적으로 또는 구조적으로 유사한 요소들은 가능한 동일하거나 유사한 도면 부호와 함께 제공된다. 따라서, 특정한 예시적 실시예의 개별적인 요소들의 구성을 이해하기 위해, 본원 발명의 일반적인 설명 또는 다른 예시적 실시예의 설명이 참조 되어야 한다.
투영 노광 장치의 설명을 용이하게 하기 위해, 도면은 도면 내에서 도시되는 구성 요소의 각각의 위치적 관계를 나타내기 위해 데카르트 xyz 좌표를 나타낸다. 도 1에서 y 방향은 도면의 평면 내로 비스듬하게 후방으로 연장하고, x 방향은 우측을 향해 연장하고 z 방향은 상방으로 연장한다.
도 1은 측정 시스템(50)의 측정 아암(53)을 함께 구비한 렌즈 요소 형태의 광학 요소(20)를 도시한다. 측정 시스템(50)은 상세하게 후술되는 바와 같이, 광학 요소(20)를 측정하며, 상이한 방향들로 배열되는 복수의 측정 아암(53)을 포함한다. 도 1에 도시된 측정 아암(53)은 통합식 측정 모듈(52) 및 미러 형태의 반사 요소(58)를 포함한다. 일 실시예에 따르면, 도 1에 도시된 광학 요소(20)는 도 2에 개략적으로 도시된 마이크로리소그래피용 투영 노광 장치(10), 특히 투영 노광 장치(10)의 투영 렌즈(32)의 일부이다. 대안적으로, 광학 요소(20)는 투영 노광 장치(10)의 조명 광학 유닛(16)의 일부일 수도 있다.
도 2에 도시된 투영 노광 장치(10)는 예컨대, 365 nm, 248 nm 또는 193 nm와 같은 UV 범위 내의 파장을 갖는 노광 방사(14)를 발생하기 위한 방사 소스(12)를 포함한다. 투영 노광 장치(10)는 EUV 리소그래피용으로 설계될 수 있다. 이 경우, 노광 방사(14)는 100 nm 미만의 파장 특히, 대략 13.5 nm 또는 대략 6.8 nm의 파장을 갖는다. 노광 방사(14)는 우선 복수의 광학 요소(20)를 갖는 조명 광학 유닛(16)을 통과한 후, 마스크(18)에 도달한다. 마스크(18)는 마스크 구조를 포함하는데, 이 마스크 구조는 마찬가지로 복수의 광학 요소(20)를 포함하는 투영 렌즈(32)에 의해 웨이퍼 형태인 기판(34) 상에 결상되며, 상기 기판은 기판 스테이지(36)에 의해 유지된다.
도 2에 예로써 도시된 바와 같이 본원 발명에 따른 투영 노광 장치(10)의 실시예에서, 광학 요소(20) 중 하나는 상술된 측정 시스템(50)을 구비한다. 측정 시스템(50)은 특정한 시간 간격에서 지정된 광학 요소(20)를 컴퓨터 단층촬영식으로 측정하도록 구성된다. 이를 위해, 광학 요소(20)는 상이한 방향들에서 측정된다. 도 1에 도시된 측정 시스템(50)의 실시예에서, 광학 요소(20)의 굴절률(n)이 측정의 대상이다. 개별적인 측정의 결과, 광학 요소(20)의 굴절률(n)은 광학 요소(20)의 적어도 하나의 섹션에서 결정된다.
도 3은 도 2에 따른 광학 요소(20) 중 하나 상에 측정 모듈(52)이 배열된 실시예를 도시한다. 이 실시예에서, 광학 요소(20)는 렌즈 요소로 구현되고 클램핑 장착부와 같은 방식의 렌즈 요소 장착부(26)에 의해 고정된다. 이를 위해, 렌즈 요소 장착부(26)는 조절 가능 클램핑 조오(jaw)(28) 및 고정 클램핑 조오(29)를 포함한다. 상기 두 개의 클램핑 조오(28, 29)는 광학 요소(20)를 상부 및 저부로부터 광학 요소의 에지에서 클램핑하는데, 다시 말해 크램핑 조오(28, 29)는 광학 요소(20)의 두께 정도와 관련하여 양측으로부터 광학 요소(20)를 파지한다. 클램핑 조오(28)는 베어링 볼(30)을 구비하며, 이 베어링 볼은 베어링에 대한 특정한 유연성을 보장하도록 사용된다. 그 표면이 광학 요소(20)의 광학축(21)에 실질적으로 평행하게 연장하는, 광학 요소(20)의 에지 영역(23)은 렌즈 요소 장착부(26)의 측벽(27)에 대해 유격을 갖는다. 즉, 간극(25)이 광학 요소(20)의 에지 영역(23)과 렌즈 요소 장착부(26)의 측벽(27) 사이에 제공된다. 절결부(31)가 측벽(27)에 제공되고, 측정 모듈(52)은 상기 절결부 내에 배열된다. 따라서, 측정 모듈(52)은, 측정 모듈(52)의 조사 유닛(54)으로부터 나오는 측정 방사(62)가 방해받지 않는 방식으로 광학 요소(20) 내로 관통할 수 있으며 복귀하는 측정 방사는 도 1에 도시된 바와 같이 측정 모듈(52)의 검출 유닛(56)에 의해 다시 검출될 수 있는 위치에 배열된다. 렌즈 요소 장착부(26) 내의 반사 요소(58)의 배열은 도 3에 따른 측정 모듈(52)의 배열에 대해 유사하게 수행될 수 있다.
상술된 바와 같이, 개별적인 측정의 결과로, 광학 요소(20)의 굴절률(n)은 광학 요소(20)의 적어도 하나의 섹션에서 결정된다. 도 1에 도시된 바와 같이, 측정된 광학 요소(20)가 렌즈 요소인 경우, 측정된 굴절률은 렌즈 요소 재료의 굴절률이다. 이미 상술된 바와 같이, 측정된 광학 요소(20)는 미러 요소일 수도 있다. 이러한 미러 요소는 도 4에 도시된다. 이 미러 요소는 EUV 투영 노광 장치에 포함되도록 설계되어 EUV 방사를 반사하는데 사용된다. 이를 위해, 미러 요소는 EUV 방사를 반사하는 코팅(24)을 갖는다. 코팅(24)은 미러 기판(22)의 오목한 표면 상에 적용된다. 미러 기판(22)은 예컨대, ULE 또는 제로더(Zerodur)로부터 생산될 수 있다. 도 4에 따른 미러 요소를 측정하는 경우, 굴절률(n)은 미러 기판(22)의 굴절률과 관련하여 측정된다.
도 1 또는 도 4에 따른 광학 요소(20)의 컴퓨터-단층촬영 측정을 위해, 측정 시스템(50)은, 상이한 방향들로 배향되고 각각의 경우에 광학 요소(20)의 광학 축(21)에 대해 횡단방향으로 배향되는 복수의 측정 아암(53)을 포함한다. 이러한 측정 아암은 도 1 및 도 4에 도시된 실시예의 반사 요소(58) 및 통합식 측정 모듈(52)을 포함한다.
이미 상술한 바와 같이, 통합식 측정 모듈(52)은 조사 유닛(54) 및 검출 유닛(56)을 포함한다. 조사 유닛(54)은 광학 요소(20)의 광학축(21)에 수직하게 배향되는 입사 방향(64)으로 광학 요소(20) 상에 측정 방사(52)를 조사한다. 측정 방사(62)는 렌즈 요소 재료 또는 미러 기판(22)의 재료에 투과되는 파장을 갖는다. 이를 위해, 측정 방사(62)는 광학 요소(20)의 외부 에지 영역 상에 조사될 수 있다. 모든 경우에, 측정 방사(62)는 광학 요소(20)의 적어도 하나의 섹션을 통과하고, 광학 요소로부터 다시 나온 후 반사 요소(58)에 의해 광학 요소(20) 내로 다시 반사된다. 반사 후, 측정 방사(62)는 복귀 방향(66)으로 진행하는데, 이 복귀 방향은 일 실시예에 따르면 입사 방향(64)의 반대이다.
그 후에, 복귀하는 측정 방사(62)는 측정 모듈(52)의 검출 유닛(56)에 의해 검출된다. 검출 유닛(56)은 광학 요소(20) 내의 측정 방사(62)에 의해 커버되는 광학 경로 길이를 결정한다. 도 5는 5개의 상이하게 배향된 측정 아암(53-1 내지 53-5)을 갖는 도 1 및 도 4에 따른 측정 시스템(50)의 일 실시예를 도시한다. 광학 경로 길이(68)는 예컨대, 측정 아암(53-1)에 의해 묘사된다. 각각의 측정 아암(53-1 내지 53-5)은 개별적으로 측정 모듈(52-1, 52-2, 52-3, 52-4 및 52-5) 및 개별적으로 지정된 반사 요소(58-1, 58-2, 58-3, 58-4 및 58-5)를 각각 포함한다. 측정 아암(53-1 내지 53-5) 각각은 측정 아암의 나머지와는 다른 배향을 갖는다. 즉, 각각의 측정 모듈(52-1 내지 52-5)에 의해 방출되는 측정 방사(62)는 각각 상이한 입사 방향(64-1, 64-2, 64-3, 64-4 및 64-5)을 갖는다. 첨언하자면, 입사 방향(64-1 내지 64-5)은 쌍으로 서로에 대해 다르지만, 이들 모두는 광학 요소(20)의 광학축(21)에 대해 수직하게 배향된다. 도 5에 도시된 실시예에서, 측정 아암(53-1 내지 53-5)의 각각의 측정 방사(62)는 광학 요소(20)의 중심을 통과한다.
개별적인 측정 방사(62)를 발생시키기 위해, 측정 모듈(52-1 내지 52-5)은 개별적인 조사 유닛(54-1 내지 54-5)을 포함한다. 조사 유닛(54-1 내지 54-5)은 함께 소위 조사 장치를 형성한다. 개별적인 요소(58-1, 58-2, 58-3, 58-4 및 58-5)에서의 측정 방사(62)의 각각의 반사 후에, 측정 방사는 개별적인 검출 유닛(56-1, 56-2, 56-3, 56-4 및 56-5)에 의해 검출된다. 검출 유닛(56-1 내지 56-5)은 함께 소위 검출 장치를 형성한다.
이미 상술된 바와 같이, 광학 요소(20) 내에서 측정 방사(62)에 의해 커버되는 각각의 경로 길이(68)는 측정 아암(53-1 내지 53-5)의 각각에 의해 측정된다. 그 후, 경로 길이 측정은 도 5에 도시된 평가 장치(60)에 의해 평가되어, 광학 요소(20) 내의 굴절률(n)의 3차원의 공간적으로 분해된 분포를 설정하는데, 즉 굴절률의 대응 값은 광학 요소(20)의 각 체적 요소에 대해 결정된다. 평가는 컴퓨터-단층촬영 도량형학에 공지된 방식에 의해 수행된다. 개별적으로 측정된 광학 경로 길이는 각각의 검출 유닛(56) 상으로의 광학 요소 내의 대응하는 입사 방향에 대해 측정 방사(62)에 의해 커버되는 경로를 따르는 광학 요소(20)의 굴절률의 투영으로부터 기인한다. 평가 도중, 광학 요소(20) 내의 굴절률의 공간적으로 분해된 분포가 개별적인 입사 방향을 고려하여 측정된 경로 길이의 컴퓨터-단층촬영식으로 필터링 역 투영에 의해 결정된다. 예컨대, 의료 컴퓨터 단층촬영의 분야로부터 적절한 알고리즘이 대체로 본 기술 분야의 통상의 기술자에게 공지되어 있다. 일 구성 요소에 따르면, 컴퓨터-단층촬영 역 투영은 본 기술 분야의 통상의 기술자에게 공지된 라돈 변형을 기초로 한다.
도 2에 도시된 바와 같이, 측정 결과는 평가 장치(60)로부터 투영 노광 장치(10)의 제어 장치(38)로 전달된다. 제어 장치는 상기 측정 결과를 더 이른 시점에서 기록되는 적어도 하나의 측정 결과와 비교한다. 즉, 제어 장치(38)는 굴절률의 공간적으로 분해된 분포의 변화를 결정한다.
굴절률의 공간적으로 분해된 분포 내의 확인된 변화를 기초로, 제어 장치(38)는 투영 노광 장치(10)의 조작 장치(40)를 위한 작동 신호를 계산하는데, 신호는 굴절률의 공간적으로 분해된 분포의 변화에 의해 유발되는 측정된 광학 요소(20)의 광학적 특성의 변화를 보상하는데 사용된다. 조작 장치(40)는 투영 렌즈(32)의 하나의 또는 복수의 광학 요소(20)의 병진이동(translation), 회전 및/또는 기울임을 위한 요소와 같은 본 기술 분야의 통상의 기술자에게 공지된 다양한 조작기를 포함할 수 있다.
일 실시예에 따르면, 투영 렌즈(32)의 복수의 광학 요소(20), 특히 모든 광학 요소(20)는 투영 노광 장치(10)의 노광 공정 도중 개별 측정 시스템(50)에 의해 단층촬영식으로 모니터링된다. 단층촬영 측정 결과로부터, 투영 렌즈(32)의 결상 특성의 변화가 특정 시간 간격에서 계산된 후 조작 장치(40)에 의해 보정된다. 측정 시스템(50)은 따라서 지연 없이, 특히 실시간으로 노광 공정 도중 발생하는 렌즈 요소 수차를 보정할 수 있게 한다.
도 6은 도 1 내지 도 5에 도시된 측정 모듈(52)의 일 실시예를 도시한다. 이미 상술된 바와 같이, 측정 모듈(52)은 조사 유닛(54) 및 검출 유닛(56)을 포함한다. 조사 유닛(54)은 입사 방향(64)으로 광학 요소(20) 상에 측정 방사(62)를 조사하는데 사용된다. 이를 위해, 조사 유닛(54)은 측정 방사 소스(70) 및 비임 스플리터(72)를 포함한다. 측정 방사 소스(70)에 의해 발생된 측정 방사(62)의 일부는 비임 스플리터(72)에 의해 반사되고 입사 방향(64)으로 측정 방사(63)가 진입함에 따라 광학 요소(20)를 향해 통과한다. 측정 방사(62)의 반사되지 않은 부분은 비임 스플리터(72)를 통과하여 기준 방사(74)로 사용된다. 검출 유닛(56)은 비임 스플리터(72), 복수의 편향 미러(76) 및 예컨대, CCD 카메라 형태의 검출기 카메라(80)를 포함한다. 편향 미러(76)는 기준 경로를 따라 기준 방사(74)를 비임 스플리터(72)로 다시 안내하도록 배열된다. 따라서, 기준 경로는 반사되지 않은 측정 방사(62)의 통과와 함께 비임 스플리터(72)에서 시작하여 다시 비임 스플리터(72)에서 종료되는데, 이 비임 스플리터에서 도착하는 기준 방사(74)의 일부가 검출기 카메라(80)를 향해 반사된다.
비임 스플리터(72)에서 반사되는 측정 방사(63)는 이미 상술된 바와 같이 광학 요소(20)를 통과하고, 반사 광학 요소(58)에서 반사되고, 다시 한번 광학 요소(20)를 통과한 후에 복귀하는 측정 방사(65)로서 다시 측정 모듈(52)에 진입한다. 이 경우, 복귀하는 측정 방사(65)는 비임 스플리터(72) 상에 도달한다. 비임 스플리터(72)를 통과하는 측정 방사(65)의 그 부분은 검출기 카메라(80)의 표면상에서 비임 스플리터(72)에 반사되는 기준 방사(74)를 간섭한다. 기준 경로의 광학 경로 길이는 측정 방사(62)의 광학 경로 길이와 대등하게 된다. 측정 방사(62)의 광학 경로 길이는 측정 방사의 경로의 광학 길이에 의해 결정되는데, 이는 비임 스플리터(72)에서 측정 방사(62)의 반사와 함께 시작하여 광학 요소(20)를 두 번 통과한 후에 다시 한번 비임 스플리터(72)에서 종료한다. 이러한 방식으로 형성된 측정 방사의 광학 경로 길이는 도 5를 참조하여 상술된 바와 같이 광학 요소(20) 내에서 2회의 광학 경로 길이(68) 및 광학 요소(20) 외부의 나머지 경로 거리를 포함한다. 예컨대, 렌즈 가열로 인해 측정 방사(64)의 광학 경로 길이가 변하는 경우, 이는 검출기 카메라(80)에 의해 기록되는 간섭 패턴에서 명확해진다. 광학 요소(20) 외부의 경로 길이는 일정한 것으로 가정되며 이는 공지된다. 또한, 광학 요소 내에서의 대략적인 경로 길이는 공지된다. 광학 요소 내에서의 광학 경로 길이(68)의 정확한 값은 기록된 간섭 패턴으로부터 결정된다. 편향 미러(76)와 함께 비임 스플리터(72)는 간섭계(78)를 형성한다.
도 7은 본원 발명에 따른 측정 시스템(50)의 다른 실시예를 도시한다. 이는 측정 아암(53-1 내지 53-5)의 각각에서 측정 방사(62)가 단지 한번 광학 요소(20)를 통과한다는 점에서 도 5에 따른 측정 시스템(50)과 다르다. 측정 아암(53-1 내지 53-5)의 각각은 조사 유닛(54-1 내지 54-5) 중 하나 및 검출 유닛(56-1 내지 56-5) 중 개별적인 하나를 포함한다. 검출 유닛(56-1 내지 56-5)은 그들에게 개별적으로 지정되는 조사 유닛(54-1 내지 54-5)과 관련하여 광학 요소(20)의 양측 상에 개별적으로 배열된다.
도 7에 도시된 바와 같이, 조사 유닛(54-1 내지 54-5)으로부터 개별적으로 나오는 측정 방사(62)가 상이한 입사 방향(64-1 내지 64-5)으로 광학 요소(20)를 통과하는 방식으로 배열이 이루어진다. 조사 유닛(54-1 내지 54-5)의 각각은 광섬유(82-1 내지 82-5)를 거쳐 개별적으로 지정된 검출 유닛(56-1 내지 56-5)에 연결된다. 개별적인 광섬유(82-1, 82-2, 82-3, 82-4 및 82-5)는 각각의 경우에 도 6에서 도시된 배열과 유사한 측정 방사(62)로부터 분기되는 기준 방사(74)를 개별적인 검출 유닛(56-1, 56-2, 56-3, 56-4 및 56-5)을 향해 안내한다. 개별적인 검출 유닛(56-1, 56-2, 56-3, 56-4 및 56-5) 내에서, 측정 방사(62)가 광학 요소(20)를 한번 통과한 후에 기준 방사(74)는 측정 방사(62)와 중첩된다. 광섬유(82)를 통과하는 경로 길이로부터 광학 요소(20)를 통과하는 광학 경로 길이의 편차는 중첩의 결과로서 발생하는 인터페로그램(interferogram)으로부터 결정된다. 도 5에 따른 일 실시예와 같이, 개별 검출 유닛(56-1 내지 56-5)에 의해 결정되는 광학 경로 길이는 평가 장치(60)에 의해 평가된다.
도 8은 도 3에 따른 실시예와 다른 렌즈 요소 장착부(126)의 일 실시예를 도시한다. 이 렌즈 요소 장착부(126)는 접착식 장착부로 구현된다. 이를 위해, 렌즈 요소 장착부(126)는 광학 요소(20)가 관련되는 복수의 장착 지지부(129)를 갖는다. 광학 요소(20)의 에지는 렌즈 요소 장착부(126)의 측벽(127)에 의해 둘러싸인다. 더욱 양호한 고정을 위해, 광학 요소(20)는 접착식 지지부(133)에 의해 개별 장착 지지부(129) 및 측벽(127)의 영역 내에서 렌즈 요소 장착부(126) 내에 접착식으로 접합된다. 측벽 (127)은 다수의 절결부(131)를 가지며, 이 절결부(131)들은 광학 요소(20)에 대해 쌍으로 각각 반대되는 방식으로 배열된다. 측정 아암(53-1 내지 53-5) 중 개별적인 하나의 아암의 조사 유닛(54)이 첫 번째로 그리고 검출 유닛(56)이 두 번째로 각각 상호 반대되는 절결부(131)에 배열된다.
도 9는 광학 요소(20)를 측정하기 위한 측정 시스템(50)의 다른 실시예를 도시한다. 이 실시예에서, 측정 시스템(50)은 단지 하나의 측정 아암(53)을 포함하는데, 이 아암은 도시된 실시예 내에서 반사 요소(58) 및 통합식 측정 모듈(52)을 포함한다. 대안적으로, 측정 아암(53)은 도 7에 도시된 측정 아암(53-1 내지 53-5)과 유사하게 구성될 수도 있는데, 즉 개별 조사 유닛(54) 및 개별 검출 유닛(56)을 갖는다.
도 5에 도시된 실시예와 유사하게, 도 9에 도시된 통합식 측정 모듈(52)은 조사 유닛(54) 및 검출 유닛(56)을 포함한다. 측정 모듈(52) 및 검출 요소(58)는 회전 가능 링 형태의 회전식 지지 구조(84) 상에 고정된다. 이 경우, 회전식 지지 구조(84)는 광학 요소(20)의 광학축(21)에 대해 회전 가능하게 장착된다. 광학 요소(20)를 측정하기 위해, 회전식 지지 구조(84)는 상이한 회전 위치에서 배열되고, 그 결과 측정 모듈(52)에 의해 방출되는 측정 방사(64)는 다른 입사 방향(64)들로 광학 요소(20) 상에 조사된다. 입사 방향(64) 각각에 대해, 측정 방사(64)의 광학 경로 길이가 도 6을 참조하여 이미 상술된 바와 같이 측정된다. 이때, 광학 요소(20)의 굴절률의 3차원의 공간적으로 분해된 분포가 상이한 입사 방향(64)들과 함께 얻어진 측정 결과의 단층촬영 평가에 의해 결정된다.
도 10 및 도 11은 도 9에 따른 회전식 지지 구조(84)를 장착하기 위한 다른 가능성을 단면도로 도시한다. 도 10에 따르면 이 실시예에서, 회전 지지 구조(84)는 드라이브 베어링(83a)에 의해 도 1에 따른 투영 렌즈(32)의 프레임(85) 상에 장착된다. 광학 요소(20)의 장착을 위한 렌즈 요소 장착부(26)는 프레임(85)에 고정된다. 드라이브 베어링(83a)은 자성 베어링으로 구현된다. 자성 베어링은 프레임(85) 상에 회전 지지 구조의 비접촉식 장착을 위해 사용된다. 또한, 구동 베어링(83a)은 압전 모터(piezoelectric motor)로도 알려진 초음파 모터(ultrasonic motor)를 포함한다. 초음파 모터는 회전식 지지 구조(84)가 광학축(21)을 중심으로 회전될 수 있게 한다.
도 11에 도시된 실시예에서, 회전 지지 구조(84)는 톱니형 기어장비(83c, toothed gearing)에 의해 투영 렌즈(32)의 프레임(85)에 고정된다. 회전 지지 구조(84)는 공기 베어링(83b)에 의해 렌즈 요소 장착부(26)에 대해 회전 가능하게 장착된다.
도 12는 광학 요소(20)를 측정하기 위한 본원 발명에 따른 다른 측정 시스템(250)의 일 실시예를 도시한다. 광학 요소(20)는 도 12에 도시된 바와 같이 미러 요소일 수 있다. 이러한 미러 요소는 도 4에 이미 도시된 바와 같이 미러 기판(22) 및 반사 코팅(24)을 포함한다. 하지만, 도 1에 따른 광학 렌즈 요소도 광학 요소로 적합하다. 측정 시스템(250)은 광학 요소(20)의 주연부를 따라 배열되는 다수의 적외 센서(286)를 포함한다. 적외 센서(286)는 적외 방사에 대해 불투명한 원통형 차폐 플레이트 형태의 차폐물(288)에 의해 둘러싸인다.
도 13에 도시된 바와 같이, 광학 요소(20)의 각 체적 요소(292)는 모든 공간적 방향으로 적외 방사(290)를 방출한다. 각각의 체적 요소(292)로부터 방출되는 적외 방사(290)의 세기는 대응하는 체적 요소(292) 내의 온도의 4제곱에 비례한다. 광학 요소(20)의 주연부를 따라 배열되는 적외 센서(286)는 그들의 검출 표면에 개별적으로 도착하는 적외 방사의 세기를 측정한다. 다양한 적외 센서(286)에 의해 측정되는 모든 세기 값의 평가에 의해, 광학 요소(20)의 적어도 하나의 섹션 내의 온도의 3차원의 공간적으로 분해된 분포가 단층촬영 평가 방법, 특히 라돈 변형을 이용하여 결정된다. 결정된 온도 분포로부터, 등방성 온도 분포와 비교하여 광학 요소(20) 내의 굴절률의 변화가 결정된다. 따라서, 이들로부터 더 이른 측정에 대한 투영 렌즈의 광학적 결상 특성의 편차가 결정된다. 그 후, 이러한 측정들은 도 2를 참조하여 이미 상술된 바와 같이 조작 장치(40)에 의해 보정된다.
10: 마이크로리소그래피용 투영 노광 장치
12: 방사선 소스
14: 노광 방사
16: 조명 광학 유닛
18: 마스크
20: 광학 요소
21: 광학축
22: 미러 기판
23: 에지 영역
24: 반사 코팅
25: 간극
26: 렌즈 요소 장착부
27: 측벽
28: 조절 가능한 클랭핑 조오
29: 고정식 클랭핑 조오
30: 베어링 볼
31: 절결부
32: 투영 렌즈
34: 기판
36: 기판 스테이지
38: 제어 장치
40: 조작 장치
50: 측정 시스템
52: 통합식 측정 모듈
53: 측정 아암
54: 조사 유닛
56: 검출 유닛
58: 반사 요소
60: 평가 장치
62: 측정 방사
63: 유입 측정 방사
64: 입사 방향
65: 복귀 측정 방사
66: 복귀 방향
68: 광학 경로 길이
70: 측정 방사 소스
72: 비임 스플리터
74: 기준 방사
76: 편향 거울
78: 간섭계
80: 검출기 카메라
82: 광섬유
83a: 드라이브 베어링
83b: 공기 베어링
83c: 톱니형 기어장비
84: 회전 지지 구조
85: 투영 렌즈의 프레임
126: 렌즈 요소 장착부
127: 측벽
129: 장착 지지부
131: 절결부
133: 접착 지지부
250: 측정 시스템
286: 적외 센서
288: 차폐물
290: 적외 방사
292: 체적 요소

Claims (15)

  1. 마이크로리소그래피용 투영 노광 장치로서, 투영 노광 장치의 광학 요소를 측정하기 위한 측정 시스템을 포함하는, 마이크로리소그래피용 투영 노광 장치이며, 상기 측정 시스템은
    - 광학 요소 상으로 상이한 방향들로 측정 방사를 조사하도록 구성되는 조사 장치로서, 측정 방사가 상이한 입사 방향들에 대해 광학 요소 내에서 개별적인 광학 경로 길이를 커버하게 되는, 조사 장치와,
    - 개별적인 입사 방향에 대해 광학 요소 내에서 측정 방사에 의해 커버되는 대응하는 광학 경로 길이를 측정하도록 구성되는 검출 장치와,
    - 개별적인 입사 방향을 고려하여 상기 측정된 경로 길이의 컴퓨터-단층촬영 역 투영에 의해 광학 요소 내의 굴절률의 공간적으로 분해된 분포를 결정하도록 구성되는 평가 장치를 포함하는
    마이크로리소그래피용 투영 노광 장치.
  2. 제1항에 있어서,
    평가 장치는 측정 방사가 통과하는 광학 요소의 체적 영역 상으로 상기 측정된 경로 길이를 다시 투영하여, 광학 요소 내의 굴절률의 3차원의 공간적으로 분해된 분포를 결정하도록 구성되는
    마이크로리소그래피용 투영 노광 장치.
  3. 마이크로리소그래피용 투영 노광 장치로서, 투영 노광 장치의 광학 요소를 측정하기 위한 측정 시스템을 포함하는, 마이크로리소그래피용 투영 노광 장치이며, 상기 측정 시스템은
    - 광학 요소 상으로 상이한 방향들로 측정 방사를 조사하도록 구성되는 조사 장치로서, 측정 방사가 상이한 입사 방향들에 대해 광학 요소의 적어도 하나의 섹션을 통해 개별적인 광학 경로 길이를 커버하게 되는, 조사 장치와,
    - 개별적인 입사 방향에 대해 광학 요소 내에서 측정 방사에 의해 커버되는 대응하는 광학 경로 길이를 측정하도록 구성되는 검출 장치와,
    - 개별적인 입사 방향을 고려하여 상기 측정된 경로 길이로부터 광학 요소의 특성의 3차원의 공간적으로 분해된 분포를 결정하도록 구성되는 평가 장치를 포함하는
    마이크로리소그래피용 투영 노광 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    측정되는 광학 요소는 렌즈 요소인
    마이크로리소그래피용 투영 노광 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    측정 시스템은 광학 요소의 광학축에 대해 횡단방향으로 연장하는 적어도 두 개의 다른 방향에서 광학 요소를 측정하도록 구성되는
    마이크로리소그래피용 투영 노광 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    측정 시스템은 상기 측정으로부터 광학 요소의 적어도 하나의 섹션에서 온도의 공간적으로 분해된 분포를 결정하도록 구성되는
    마이크로리소그래피용 투영 노광 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    검출 장치는 광학 경로 길이 측정을 위해 광학 요소 내에서 광학 경로 길이들 중 하나를 횡단한 후의 측정 복사를 기준 복사와 중첩하도록 구성되는 간섭계를 포함하는
    마이크로리소그래피용 투영 노광 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    조사 장치는 상이한 입사 방향들 중 하나의 방향으로 측정 복사를 방출하도록 각각 구성 및 배열되는 복수의 조사 유닛을 포함하고, 상이한 조사 유닛들의 입사의 방향들은 쌍으로 서로 다른
    마이크로리소그래피용 투영 노광 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    검출 장치는 상이한 입사 방향들 중 개별적인 한 방향에 대해 광학 경로 길이를 측정하도록 각각 구성되는 복수의 검출 유닛을 포함하고, 상이한 검출 유닛들에 지정되는 입사 방향들은 쌍으로 서로 다른
    마이크로리소그래피용 투영 노광 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 상이한 방향들 중 하나의 방향으로 광학 요소 상에 측정 방사를 조사하고 입사 방향에 반대인 방향으로 복귀하는 측정 방사를 측정하도록 구성되는 적어도 하나의 통합식 측정 모듈을 포함하는
    마이크로리소그래피용 투영 노광 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    광학 요소 상으로 측정 방사를 조사하기 위한 적어도 하나의 조사 유닛과, 광학 요소 내에서 측정 방사에 의해 커버되는 광학 경로 길이를 측정하기 위한 검출 유닛을 포함하고,
    상기 조사 유닛 및 검출 유닛은 광학 요소의 양측에 배열되는
    마이크로리소그래피용 투영 노광 장치.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    조사 장치는 측정 방사를 방출하기 위한 조사 유닛을 포함하고, 검출 장치는, 조사 유닛에 지정되고 광학 요소 내에서 측정 방사에 의해 커버되는 상기 경로 길이를 측정하는데 사용되는 검출 유닛을 포함하고,
    측정 시스템은 조사 유닛 및 검출 유닛이 고정되는 로터리 베어링을 더 구비하고, 로터리 베어링은 로터리 베어링의 상이한 회전 위치들에서 조사 유닛에 의해 방출되는 측정 방사가 상이한 방향들로 광학 요소 상에 조사되는 방식으로 구성되고, 검출 유닛은 각각의 회전 위치에서 조사 유닛에 의해 방출되는 측정 방사를 측정하도록 배열되는
    마이크로리소그래피용 투영 노광 장치.
  13. 측정 시스템을 포함하는 마이크로리소그래피용 투영 노광 장치이며,
    측정 시스템은 상이한 방향들로부터 광학 요소에서 나오는 적외 방사의 각각의 세기를 측정하도록 구성된 적어도 하나의 적외 센서를 포함하고, 측정 시스템은 상기 측정으로부터 광학 요소의 특성의 공간적으로 분해된 분포를 결정하도록 구성되는
    마이크로리소그래피용 투영 노광 장치.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    투영 노광 장치의 광학적 특성을 변화시키기 위한 조작 장치 및 제어 장치를 더 포함하고, 상기 제어 장치는 광학 요소의 측정된 특성의 공간적으로 분해된 분포를 기초로 조작 장치에 의해 광학적 특성을 변화시키도록 구성되는
    마이크로리소그래피용 투영 노광 장치.
  15. 마이크로리소그래피용 투영 노광 장치의 광학 요소를 측정하는 방법이며,
    측정 방사가 상이한 방향들로 광학 요소 상에 조사되어, 측정 방사는 상이한 입사 방향들에 대해 광학 요소의 적어도 하나의 섹션을 통해 개별적인 광학 경로 길이를 커버하고,
    개별적인 입사 방향에 대해, 광학 요소 내의 측정 방사에 의해 커버되는 대응하는 광학 경로 길이가 측정되고,
    광학 요소 내의 굴절률의 공간적으로 분해된 분포가 개별적인 입사 방향을 고려하여 측정된 경로 길이의 컴퓨터-단층촬영 역 투영에 의해 결정되는
    마이크로리소그래피용 투영 노광 장치.
KR1020147021284A 2012-02-01 2013-01-23 광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치 KR101707722B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261593349P 2012-02-01 2012-02-01
DE102012201410A DE102012201410B4 (de) 2012-02-01 2012-02-01 Projektionsbelichtungsanlage mit einer Messvorrichtung zum Vermessen eines optischen Elements
US61/593,349 2012-02-01
DE102012201410.1 2012-02-01
PCT/EP2013/000200 WO2013113480A1 (en) 2012-02-01 2013-01-23 Projection exposure apparatus comprising a measuring system for measuring an optical element

Publications (2)

Publication Number Publication Date
KR20140111683A true KR20140111683A (ko) 2014-09-19
KR101707722B1 KR101707722B1 (ko) 2017-02-27

Family

ID=48783782

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147021284A KR101707722B1 (ko) 2012-02-01 2013-01-23 광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치

Country Status (6)

Country Link
US (1) US10162270B2 (ko)
JP (1) JP6061953B2 (ko)
KR (1) KR101707722B1 (ko)
CN (1) CN104145205B (ko)
DE (1) DE102012201410B4 (ko)
WO (1) WO2013113480A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082445A (ko) * 2015-11-12 2018-07-18 프리스매틱 센서즈 에이비 시간 오프셋된 심도 구획부를 구비한 에지-온 검출기를 사용하는 고해상도 전산화 단층촬영(high-resolution computed tomography using edge-on detectors with temporally offset depth-segments)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223750A1 (de) * 2014-11-20 2016-05-25 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit mindestens einem Manipulator
DE102015209051B4 (de) * 2015-05-18 2018-08-30 Carl Zeiss Smt Gmbh Projektionsobjektiv mit Wellenfrontmanipulator sowie Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage
GB201515143D0 (en) * 2015-08-26 2015-10-07 Univ Surrey Dosimeter
JP7017239B2 (ja) * 2018-06-25 2022-02-08 株式会社ブイ・テクノロジー 露光装置および高さ調整方法
KR20210040134A (ko) * 2018-09-04 2021-04-12 에이에스엠엘 네델란즈 비.브이. 계측 장치
DE102022210245A1 (de) 2022-09-28 2024-03-28 Carl Zeiss Smt Gmbh Spiegelvorrichtung, insbesondere für eine mikro-lithographische Projektionsbelichtungsanlage, und Verfahren zum Messen der Temperatur eines Spiegels
DE102022213810A1 (de) 2022-12-16 2023-02-23 Carl Zeiss Smt Gmbh Verfahren zur Überwachung einer Linse eines Lithografiesystems, Optikvorrichtung für ein Lithografiesystem und Lithografiesystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021448A (ja) * 1999-07-09 2001-01-26 Ricoh Co Ltd 屈折率分布の測定装置及び方法
JP2005109158A (ja) * 2003-09-30 2005-04-21 Canon Inc 冷却装置及び方法、それを有する露光装置、デバイスの製造方法
US20100135356A1 (en) * 2007-06-29 2010-06-03 Trumpf Laser- Und Systemtechnik Gmbh Monitoring a temperature and/or temperature related parameters of an optical element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779978A (en) * 1986-09-08 1988-10-25 Sumitomo Electric Research Triangle, Inc. Method of measuring the refractive index profile of optical fibers
JPH09232213A (ja) * 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
DE10000191B8 (de) * 2000-01-05 2005-10-06 Carl Zeiss Smt Ag Projektbelichtungsanlage der Mikrolithographie
JPWO2005022614A1 (ja) 2003-08-28 2007-11-01 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
DE102006003375A1 (de) * 2006-01-24 2007-08-09 Carl Zeiss Smt Ag Gruppenweise korrigiertes Objektiv
KR101379096B1 (ko) * 2006-06-16 2014-03-28 칼 짜이스 에스엠티 게엠베하 마이크로 리소그라피 투사 노광 장치의 투사 대물렌즈
WO2009039883A1 (en) * 2007-09-26 2009-04-02 Carl Zeiss Smt Ag Optical imaging device with thermal stabilization
JP5168168B2 (ja) 2009-01-22 2013-03-21 パナソニック株式会社 屈折率測定装置
DE102010006326A1 (de) 2010-01-29 2011-08-04 Asml Netherlands B.V. Anordnung zur Verwendung in einer Projektionsbelichtungsanlage für die Mikrolithographie mit einem reflektiven optischen Element
DE102010061950A1 (de) 2010-11-25 2012-05-31 Carl Zeiss Smt Gmbh Verfahren sowie Anordnung zum Bestimmen des Erwärmungszustandes eines Spiegels in einem optischen System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021448A (ja) * 1999-07-09 2001-01-26 Ricoh Co Ltd 屈折率分布の測定装置及び方法
JP2005109158A (ja) * 2003-09-30 2005-04-21 Canon Inc 冷却装置及び方法、それを有する露光装置、デバイスの製造方法
US20100135356A1 (en) * 2007-06-29 2010-06-03 Trumpf Laser- Und Systemtechnik Gmbh Monitoring a temperature and/or temperature related parameters of an optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082445A (ko) * 2015-11-12 2018-07-18 프리스매틱 센서즈 에이비 시간 오프셋된 심도 구획부를 구비한 에지-온 검출기를 사용하는 고해상도 전산화 단층촬영(high-resolution computed tomography using edge-on detectors with temporally offset depth-segments)

Also Published As

Publication number Publication date
CN104145205B (zh) 2016-09-28
US20140340664A1 (en) 2014-11-20
KR101707722B1 (ko) 2017-02-27
JP6061953B2 (ja) 2017-01-18
DE102012201410B4 (de) 2013-08-14
US10162270B2 (en) 2018-12-25
WO2013113480A1 (en) 2013-08-08
JP2015512145A (ja) 2015-04-23
DE102012201410A1 (de) 2013-08-01
CN104145205A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
KR101707722B1 (ko) 광학 요소를 측정하기 위한 측정 시스템을 포함하는 투영 노광 장치
JP5134732B2 (ja) Euvマイクロリソグラフィ用の照明光学系
AU2006293071B2 (en) Optical measuring system
US8908192B2 (en) Method and apparatus for qualifying optics of a projection exposure tool for microlithography
US9939730B2 (en) Optical assembly
US11441970B2 (en) Measurement apparatus for measuring a wavefront aberration of an imaging optical system
US20070103696A1 (en) Apparatus for measuring the position of an object with a laser interferometer system
US20130182264A1 (en) Projection Exposure Tool for Microlithography and Method for Microlithographic Exposure
WO2013002290A1 (ja) 薬剤検出装置及び薬剤検出方法
KR20140114447A (ko) 분광 특성 측정 장치 및 분광 특성 측정 방법
JP6360051B2 (ja) 光学距離測定システムを備えるマイクロリソグラフィー用の投影露光装置
CA2957004A1 (en) Microscope
US10041836B2 (en) Polarization measuring device, lithography apparatus, measuring arrangement, and method for polarization measurement
US20140023835A1 (en) Optical device
WO2013143666A1 (en) Measuring device for measuring an illumination property
US20050184247A1 (en) Device for measuring angular distribution of EUV light intensity, and method for measuring angular distribution of EUV light intensity
US20180196350A1 (en) Projection exposure apparatus and method for measuring an imaging aberration
WO2022169674A1 (en) Three-dimensional imaging with enhanced resolution
WO2015029144A1 (ja) X線撮像装置およびx線撮像方法
JP2003066195A (ja) 多層膜除去加工装置、多層膜反射鏡、その製造方法、軟x線光学系及び露光装置
TWI769545B (zh) 用於測量光的物體之反射率的測量方法以及用於執行該方法的計量系統
JP7134509B2 (ja) 光干渉断層撮影システム
JP6283476B2 (ja) Euvリソグラフィ用の光学アセンブリ
JP2018054449A (ja) 反射スペクトルの測定方法
WO2022268793A1 (de) Messanordnung zur optischen vermessung eines testobjekts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant