KR20140064802A - 중질 탄화수소의 안정화 방법 - Google Patents

중질 탄화수소의 안정화 방법 Download PDF

Info

Publication number
KR20140064802A
KR20140064802A KR1020147005135A KR20147005135A KR20140064802A KR 20140064802 A KR20140064802 A KR 20140064802A KR 1020147005135 A KR1020147005135 A KR 1020147005135A KR 20147005135 A KR20147005135 A KR 20147005135A KR 20140064802 A KR20140064802 A KR 20140064802A
Authority
KR
South Korea
Prior art keywords
solvent
feedstock
hydrocarbon
precipitate
oil
Prior art date
Application number
KR1020147005135A
Other languages
English (en)
Other versions
KR101886858B1 (ko
Inventor
오메르 레파 코셔그루
아드난 알-하찌
Original Assignee
사우디 아라비안 오일 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사우디 아라비안 오일 컴퍼니 filed Critical 사우디 아라비안 오일 컴퍼니
Publication of KR20140064802A publication Critical patent/KR20140064802A/ko
Application granted granted Critical
Publication of KR101886858B1 publication Critical patent/KR101886858B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

저장 탱크 및/또는 운송 라인에서의 슬러지 형성을 저감하고 탄화수소 수율을 증대시키기 위한 중질 탄화수소의 안정화 방법은, 탄소수가 10∼20 범위인 중질 나프타 용매 또는 파라핀계 용매와 공급원료를 혼합하여 공급원료 중에 존재하는 비교적 소량의 소정 부분의 아스팔텐을 용매로 응집시키는 단계, 침전물을 분리하고 플래싱 처리하여 경질 탄화수소 유분을 회수하는 단계, 중질 탄화수소/용매 상을 플래싱 처리하는 단계 및 용매를 회수하여 가치 있는 생성물 수율에 현저한 영향을 주지 않으면서 중질 탄화수소를 안정화시키는 단계를 포함한다.

Description

중질 탄화수소의 안정화 방법{PROCESS FOR STABILIZATION OF HEAVY HYDROCARBONS}
관련 출원
본 출원은 2011년 7월 29일자 출원된 미국 가특허출원 USSN 61/513,457호를 우선권으로 주장하며, 이의 내용은 본 명세서에 참고로 포함된다.
기술 분야
본 발명은 저장 탱크 및/또는 운송 라인에서 슬러지 형성을 효율적으로 방지하는 것에 의한 중질 탄화수소의 안정화 방법에 관한 것이다.
원유 및 이의 중질 탄화수소 유분의 조성은 그 지리적 원산지 및 유형에 따라 크게 달라진다. 각종 원유로부터 유도되는 몇몇 시료 진공 잔류물의 특성을 표 1에 나타낸다. 표 1로부터 알 수 있는 바와 같이, 진공 잔류물은 0.2∼7.7 중량% 범위의 황 함량 및 3800∼7800 중량ppm(ppmw)의 질소 함량을 가질 수 있다. 진공 잔류물은, 탈활성화되거나 사용 촉매를 오염시키기 때문에 처리가 곤란한 니켈 및 바나듐과 같은 금속을 또한 함유할 수 있다.
Figure pct00001
또한, 표 1에 나타낸 진공 잔류물은 원유 공급원에 따라 0.3∼35 중량% 범위일 수 있는 아스팔텐을 함유한다. 아스팔텐은 노르말 펜탄과 같은 저비점 파라핀 용매의 첨가에 의하여 석출되는 입자로 정의된다. 아스팔텐은 천연적으로 고체이며 다핵 방향족 탄화수소를 포함한다.
아스팔텐의 화학적 성질은 복잡하다. 사용되는 용매 유형, 운전 조건 및 오일 공급원에 따라 아스팔텐 분자 조성이 아스팔텐마다 상이하다는 것은 공지이다. 아스팔텐의 분리에 사용되는 용매의 탄소수가 증가함에 따라 아스팔텐의 양은 감소하지만 처리된 오일의 품질이 손상된다는 것도 공지이다. 고탄소수 용매를 이용하여 회수된 아스팔텐은 고도로 축합된 구조이며 처리시 또는 저장시 조건의 변화가 있을 경우 침전물을 형성하기 쉽다.
오일상의 구조는 도 1에 개략적으로 도시된 바와 같은 석유의 콜로이드 모델을 제안한 Pfeiffer 및 Saal에 의해 잘 설명되어 있다. 이 모델에 따르면, 아스팔텐-수지 분산액용 용매로서 작용하는 방향족과 같은 소분자 및 수지 분자에 의하여 아스팔텐이 분산되며, 탄화수소는 비(非)용매로서 존재한다. 탄화수소 포화물을 더 첨가하거나 또는 반응 또는 물리적 분리에 의하여 수지를 제거함으로써 오일 조성이 변경되는 경우, 오일 성분간 평형이 변화되며, 이 경우 아스팔텐이 용매로부터 응집되어 나오기 시작하여 유착 및 침전될 수 있다.
일단 아스팔텐이 용매로부터 응집되어 나오면 저장 탱크 및/또는 운송 라인에서 아스팔텐이 침전되기 시작한다. 아스팔텐 침전물의 축적은 "슬러지"로도 불리는 단단한 침전물을 형성한다. 슬러지 형성에 의하여 야기되는 기술적 문제는 파이프라인 및 버너 노즐의 막힘, 저장 용량 감소, 펌프 오작동, 부식, 측정 오류 및 플러깅을 포함한다. 슬러지 형성을 제어하는 인자는 통상 조건 변경으로 일어나는 왁스 및 고체 성분의 산화, 정전 대전, 응고, 휘발 및 침전이다. 저장 탱크의 일상적인 공업적 보수는 불가피하게 장비의 일시적 운전 중단을 의미한다. 또한, 슬러지의 제거에 종래의 처리 방법을 이용하는 경우, 현저한 부정적인 환경적 영향의 가능성이 있다.
용매 탈아스팔트는 잔유로부터 가치 있는 성분을 추출하기 위하여 정유에서 이용되는 공정이다. 추출되는 성분은 정유 공장에서 더 처리될 수 있는데, 정유 공장에서 가솔린 및 디젤과 같은 더 경질의 유분으로 분해 및 전환된다. 용매 탈아스팔트 공정에서 사용될 수 있는 적당한 잔유 공급원료는 예컨대 대기 증류 탑저물, 진공 증류 탑저물, 원유, 토핑 원유(topped crude oil), 석유 추출물, 혈암유(shale oil) 및 역청사(tar sand)로부터 회수되는 오일을 포함한다. 용매 탈아스팔트 공정은 널리 공지이며 예컨대 본 명세서에 그 전체 내용이 참고로 포함된 USP 3,968,023호, USP 4,017,383호 및 USP 4,125,458호에 개시되어 있다.
일반적인 용매 탈아스팔트 공정에서는, 하나 이상의 파라핀계 화합물의 조합일 수 있는 경질 탄화수소 용매를 잔유 공급물과 혼합하여 상기 잔유로부터 형성된 고체를 응집하고 분리시킨다. 탈아스팔트 공정에 사용되는 통상적인 용매 및 용매 혼합물은 탄소수 범위가 1∼7, 바람직하게는 3∼7인 노르말 및/또는 이소 파라핀을 포함하며, 가장 바람직하게는 프로판, 노르말 및/또는 이소 부탄, 펜탄, 헥산 및 헵탄을 포함한다. 일반적으로 용매의 임계 온도 미만의 승온 및 승압 하에, 상기 혼합물은 (1) 실질적으로 아스팔텐을 포함하지 않는 탈아스팔트유 스트림 및 (2) 일부 용해된 탈아스팔트유를 포함하는 아스팔텐과 용매의 혼합물을 포함하는 두 액체 스트림으로 분리된다.
용매 탈아스팔트 공정은 공급원료로부터 아스팔텐을 거의 모두 제거하는 데 효과적일 수 있어 슬러지 형성이 감소되지만, 사용되는 저탄소수 파라핀계 용매의 성질로 인하여 대부분의 공급원료는 아스팔트로서 불량하여 수율 손실이 커진다.
본 발명이 해결하고자 하는 과제는, 중질 탄화수소 공급물을 효율적으로 처리하여 저장 탱크 및/또는 운송 라인에서의 슬러지 형성을 방지하면서 처리되는 탄화수소 스트림의 수율 손실 및 품질에 대한 임의의 부정적 효과를 최소화하는 방법이다.
발명의 요약
본 발명은 침전물 전구체인 아스팔텐 부분을 제거하고 추가의 침전물 형성을 방지함으로써 저장 탱크 및/또는 운송 라인에서의 슬러지 형성을 방지하는 중질 탄화수소의 안정화 방법을 광범위하게 포괄하며, 이 방법은
a. 아스팔텐을 함유하는 중질 탄화수소 공급원료와 용매를 혼합하여, 공급원료 내에 존재하는 침전물 전구체인 아스팔텐 부분을 용매로 응집시키는 단계;
b. 공급원료와 용매의 통합 스트림을 가열하여 용매로 응집된 아스팔텐을 함유하는 공급원료를 생성하는 단계;
c. 접촉 용기 내의 용매로 응집된 아스팔텐을 함유하는 공급원료를 용매/탄화수소상 및 침전물상으로 분리하는 단계;
d. 용매/탄화수소상을 플래싱(flash) 처리하여 침전물이 없는 탄화수소 유분 및 용매 분획을 생성하는 단계;
e. 침전물상을 플래싱 처리하여 침전물 찌꺼기 분획 및 경질 탄화수소 유분을 생성하는 단계;
f. 경질 탄화수소 유분을 플래싱 처리하여 침전물이 없는 탄화수소 유분 및 용매 분획을 생성하는 단계;
g. 단계 (d) 및 (f)에서 생성된 용매 분획을 단계 (a)로 재순환하는 단계; 및
h. 단계 (d) 및 (f)에서 생성된 침전물이 없는 탄화수소 유분을 회수하는 단계
를 포함한다.
본 명세서에서 사용될 때, "침전물이 없는" 유분은 편의상 사용되며 본 발명의 방법에 따라 처리된 유분을 의미하는데, 이 유분은 실질적으로 침전물을 포함하지 않지만 적은 비율의 침전물은 함유할 수 있다.
본 방법에 사용하기 적당한 용매는 화학식 CnH2n+2(여기서, n = 10∼20)을 갖는 파라핀계 용매 및 탄소수 10∼20 범위의 중질 나프타 용매 및 이들 용매의 혼합물을 포함한다.
중질 탄화수소 공급물은 본 발명의 용매-응집 및 처리 공정에 의하여 0.1 중량% 내지 10 중량%까지 적게 제거함으로써 안정화될 수 있다.
본 명세서에 개시된 방법 및 시스템은 이하의 이점을 제공한다:
1. 제조, 보관, 운송 및 정유 공정에서 중질 탄화수소가 안정화된다.
2. 예컨대 C10-C20과 같은 고탄소수 파라핀계 또는 중질 나프타 용매는 침전물 전구체인 아스팔텐을 제거하고 추가의 침전물 형성을 방지하는 데만 사용된다. 슬러지 형성이 감소되면서 수율 손실이 최소화된다.
3. 접촉 용기 내 온도 및 압력 운전 조건이 비교적 낮아, 비교적 적은 비용으로 공정의 실시에 필요한 장비의 부가가 가능하다. 이용되는 본 공정에 사용하기 적당한 접촉 용기의 유형의 선택이 매우 폭넓다.
4. 본 방법은 중질 탄화수소, 특히 전원유(whole crude oil) 및 이의 중질 유분에 폭넓게 적용된다.
본 발명 방법의 다른 양태, 실시형태 및 이점을 이하에서 상세히 논한다. 또한, 상기 정보 및 이하의 상세한 설명은 모두 다양한 양태 및 실시형태의 예시적 실시예일 뿐이며 청구되는 특징 및 실시형태의 성질 및 특성을 이해하기 위한 개요 또는 골격을 제공하는 의도임을 이해하여야 한다. 다양한 양태 및 실시형태의 도시 및 추가의 이해를 위하여 첨부 도면이 제공된다. 본 명세서의 나머지와 더불어 도면은 개시 및 청구되는 본 발명의 양태 및 실시형태의 원리 및 운용을 설명하는 역할을 한다.
상기 요약 및 이하의 상세한 설명은 첨부 도면과 관련하여 읽으면 가장 잘 이해될 것이다.
도 1은 석유 혼합물의 콜로이드 분산액의 성질을 나타내는 모식도이다.
도 2는 본 발명에 따른 중질 탄화수소 공급원료 안정화 시스템 및 공정의 개략적인 흐름도이다.
발명의 상세한 설명
이제 도 2를 참조하면, 중질 탄화수소 안전화 공정 및 장치(10)가 개략적으로 도시되어 있다. 장치(10)는 가열 용기(20), 접촉 용기(30), 제1 플래시 용기(40), 제2 플래시 용기(50), 제3 플래시 용기(60) 및 용매 탱크(70)를 포함한다. 다른 실시형태에서, 장치(10)는 임의로 침전물이 없는 탄화수소 저장 탱크(80) 및 침전물 찌꺼기 저장 탱크(90)를 포함한다.
가열 용기(20)는 중질 탄화수소 공급원료를 받기 위한 입구(21)를 포함한다. 입구(21)는 도관(73)과 유체 연통되며, 상기 도관은 용매를 전달하기 위한 용매 탱크(70)의 출구(72)와 유체 연통된다. 가열 용기(20)는 또한 용매로 응집된 아스팔텐을 함유하는 가열된 공급원료를 배출하기 위한 출구(22)를 포함한다.
접촉 용기(30)는 가열 용기(20)의 출구(22)와 유체 연통되는 입구(31), 용매/탄화수소 상을 배출하기 위한 출구(32) 및 침전물 상을 배출하기 위한 출구(34)를 포함한다.
제1 플래시 용기(40)는 접촉 용기(30)의 출구(32)와 유체 연통되는 입구(41), 추가의 다운스트림 처리 또는 임의의 탱크(80)에서의 보관을 위해 침전물 없는 탄화수소를 배출하기 위한 출구(42) 및 용매 스트림을 저장 탱크(70)로 배출하기 위한 출구(44)를 포함한다.
제2 플래시 용기(50)는 접촉 용기(30)의 출구(34)와 유체 연통되는 입구(51), 경질 탄화수소 유분을 배출하기 위한 출구(52) 및 침전물 찌꺼기를 임의의 저장 탱크(90)로 배출하기 위한 출구(54)를 포함한다.
제3 플래시 용기(60)는 제2 플래시 용기(50)의 출구(52)와 유체 연통되는 입구(61), 침전물이 없는 탄화수소를 임의의 저장 탱크(80)로 배출하기 위한 출구(62) 및 용매 스트림을 탱크(70)로 배출하기 위한 출구(64)를 포함한다.
용매 탱크(70)는 새로운 용매를 받기 위한 입구(74) 그리고 제1 플래시 용기(40)의 출구(44) 및 회수된 용매를 받기 위한 제3 플래시 용기(60)의 출구(64)와 유체 연통되는 입구(71)를 포함한다. 용매 탱크(70)는 또한 과량의 용매를 배출하기 위한 출구(75) 및 가열 용기(20)에 용매를 운반하기 위한 도관(73)과 유체 연통되는 출구(72)를 포함한다.
본 발명 방법의 실시에서, 아스팔텐을 함유하는 중질 탄화수소 공급원료는 부피로 1:1 내지 10:1의 용매 대 공급원료의 비율로 용매와 혼합된다. 이 비율은 공급원료의 분석 및 IP-390 시험법에 따라 처리된 안정화된 공급원료의 목표로 하는 안정성에 기초한다. 중질 탄화수소 공급물은 본 발명의 용매-응집 및 처리 공정에 의하여 0.1 중량% 및 10 중량% 이하로 적게 제거되어 안정화될 수 있다. 통합 스트림은 가열 용기(20)의 입구(21)로 도입되고 100℃∼300℃로 가열되어 공급원료 내에 용매로 응집된 아스팔텐을 형성한다. 용매로 응집된 아스팔텐을 함유하는 가열된 공급원료는 접촉 용기(30)로 이송되어 여기서 용매/탄화수소 상 및 침전물 상을 형성한다.
용매/탄화수소 상은 용매 스트림의 회수를 위해 제1 플래시 용기(40)로 이송되며, 상기 용매 스트림은 출구(44)를 거쳐 회수되어 탱크(70)에 저장되고, 침전물이 없는 탄화수소 스트림은 출구(42)를 거쳐 배출되어 탱크(80)에 저장되거나 또는 추가의 다운스트림 처리를 거친다. 침전물 상은, 출구(52)를 거쳐 배출되는 경질 탄화수소 유분 및 출구(54)를 거쳐 배출되고 탱크(90)에 저장되거나 또는 제거되어 적절히 처분되는 침전물 찌꺼기의 회수를 위해, 제2 플래시 용기(50)로 이송된다. 경질 탄화수소 유분은 침전물이 없는 탄화수소 스트림의 회수를 위해 제3 플래시 용기(60)로 이송되며, 상기 스트림은 출구(62)를 거쳐 배출되어 임의로 탱크(80)에 저장되고, 용매 스트림은 탱크(70)로 배출된다.
어떤 실시형태에서는, 용매를 첨가하여 경질 나프타 및 다른 경질 성분을 제거하기 전에 전원유와 같은 공급원료를 플래시 처리한다. 실질적으로 경질 나프타를 포함하지 않는 나머지 부분은 원유 안정화 장치(10)로 이송되어 상기 개시된 방법에 따라 처리된다.
어떤 실시형태에서는, 침전물 찌꺼기를 회수하여 탱크(90)에 저장하기 전에, 부피로 5:1의 헥사데칸 대 공급원료 비율에서 헥사데칸으로 및/또는 부피로 약 1:1 범위의 용매 대 공급원료 비율에서 펜탄과 같은 C5-C7 경질 용매로 세정하여, 잔존 탄화수소 공급원료 및 임의의 다른 오염물을 제거한다. 용매는 플래시 용기에 회수되어 재사용될 수 있다.
본 명세서에 개시된 중질 탄화수소 안정화 방법의 공급원료는, 전원유, 혈암유, 석탄액, 역청 및 역청사를 포함하는 천연 공급원, 또는 진공 가스유, 대기 또는 진공 잔류물, 코우킹, 비스브레이커 및 유체 접촉 분해 운전으로부터의 생성물을 포함하는 정유 공정으로부터의 공급원에서 유래하는 탄화수소이다. 탄화수소 공급원료는 36℃ 초과의 비점을 가진다.
적당한 용매는 파라핀계 용매 및 중질 나프타 용매를 포함한다. 파라핀계 용매는 일반식 CnH2n+2(여기서, n = 10∼20)을 가진다. 적당한 파라핀계 용매는 n-데칸, n-운데칸, n-도데칸, n-트리데칸, n-테트라데칸, n-펜타데칸, n-헥사데칸, n-헵타데칸, n-옥타데칸, n-노나데칸 및 n-에이코산을 포함한다. 중질 나프타 용매는 10∼20 범위의 탄소수를 가질 수 있으며, 원유 또는 수소화분해와 같은 중간 정유 공정에서 유래할 수 있다.
접촉 용기는 임펠러를 구비한 배치식 용기, 추출 용기, 즉, 원심분리식 접촉기, 또는 접촉 칼럼, 예컨대 트레이 칼럼, 스프레이 칼럼, 충전탑, 회전 디스크 접촉기 및 펄스 칼럼일 수 있다. 일반적으로, 접촉 용기의 운전 조건은 80∼300℃, 어떤 실시형태에서는 100∼200℃의 온도, 1∼40 bar의 압력, 15∼180분, 어떤 실시형태에서는 35∼90분, 다른 실시형태에서는 약 60분의 체류 시간을 포함한다.
본 발명 방법은 10∼20 범위의 탄소수를 갖는 하나 이상의 파라핀계 또는 중질 나프타 용매와 공급원료를 혼합하여 공급원료 중의 소정의 비교적 작은 비율의 아스팔텐을 응집함으로써 중질 탄화수소와 관련된 슬러지 형성을 저감하는 것에 의해 달성되는 선행 기술의 슬러지 처리 공정에 대한 개선을 제공한다. 본 방법에 따르면, 중질 탄화수소가 안정화되고 처리된 탄화수소 공급물의 수율 및 품질이 첨가되는 용매에 의하여 크게 영향을 받지 않는다.
실시예
실시예 1
초기 비점이 560℃인 탄화수소 시료(이의 특성은 표 2에 나타냄)를 부피비 1:1로 헥사데칸과 혼합하고 1 시간 동안 100℃ 및 대기압에서 유지하였다. 수거한 생성물을 공극 크기가 145∼175 마이크론인 소결 유리 필터를 통해 여과하여 0.1 중량%의 아스팔텐을 회수하였다.
1.3 중량%
수소 10.0 중량%
질소 4,000 ppmw
콘래드슨 탄소 잔류물 29 중량%
펜탄 아스팔텐 6 중량%
방향족 60 중량%
실시예 2
초기 비점이 290℃인 탄화수소 시료(이의 특성은 표 3에 나타냄)를 부피비 1:1로 헥사데칸과 혼합하고 1 시간 동안 100℃ 및 대기압에서 유지하였다. 수거한 생성물을 공극 크기가 145∼175 마이크론인 소결 유리 필터를 통해 여과하여 0.4 중량%의 아스팔텐을 회수하였다.
1.5 중량%
수소 11.2 중량%
질소 2,200 ppmw
콘래드슨 탄소 잔류물 15 중량%
펜탄 아스팔텐 3 중량%
방향족 48 중량%
실시예 3
초기 비점이 210℃인 탄화수소 시료(이의 특성은 표 4에 나타냄)를 부피비 1:1로 헥사데칸과 혼합하고 1 시간 동안 100℃ 및 대기압에서 유지하였다. 수거한 생성물을 공극 크기가 145∼175 마이크론인 소결 유리 필터를 통해 여과하여 0.5 중량%의 아스팔텐을 회수하였다.
1.0 중량%
수소 10.7 중량%
질소 2,000 ppmw
콘래드슨 탄소 잔류물 15 중량%
펜탄 아스팔텐 3 중량%
방향족 44 중량%
실시예 4
초기 비점이 36℃이고 API 비중이 27.2도인 원유 시료(이의 특성은 표 5에 나타냄)를 부피로 1:1의 헥사데칸 대 원유 비율에서 헥사데칸과 혼합하고 1 시간 동안 100℃ 및 대기압에서 유지하였다. 수거한 생성물을 공극 크기가 145∼175 마이크론인 소결 유리 필터를 통해 여과하였다. 잔류물을 부피로 5:1의 헥사데칸 대 원유 비율에서 헥사데칸으로 세정한 다음 부피로 1:1의 펜탄 대 원유 비율에서 펜탄으로 세정하여 1.4 중량%의 아스팔텐을 수득하였다.
3.0 중량%
질소 1,430 ppmw
콘래드슨 탄소 잔류물 15 중량%
실시예 5
실시예 4에서 사용한 것과 동일한 원유 시료를 부피로 1:5의 헥사데칸 대 원유 비율에서 헥사데칸과 혼합하고 1 시간 동안 100℃ 및 대기압에서 유지하였다. 합한 스트림을 공극 크기가 145∼175 마이크론인 소결 유리 필터를 통해 여과하였다. 잔류물을 부피로 5:1의 펜탄 대 원유 비율에서 펜탄으로 세정하였다. 2.9 중량%의 아스팔텐이 수득되었다.
본 발명의 방법 및 시스템을 상기와 첨부 도면에 개시하였으나, 이 개시 내용으로부터 여러가지 변경이 당업에게 명백할 것이며 본 발명의 보호 범위는 이하의 특허청구범위에 의하여 결정된다.

Claims (13)

  1. 공급원료 중에 존재하는 침전물 전구체인 아스팔텐 부분을 제거하여 침전물 형성을 저감함으로써 저장 탱크 및/또는 운송 라인에서의 슬러지 형성을 방지 또는 저감하기 위한, 아스팔텐을 함유하는 중질 탄화수소 공급원료의 안정화 방법으로서,
    a. 아스팔텐을 함유하는 중질 탄화수소 공급원료와 소정량의 용매를 혼합하여, 공급원료 내에 존재하는 아스팔텐 부분을 용매로 응집시키는 단계;
    b. 공급원료와 용매의 혼합물을 가열하여 공급원료 중에 용매로 응집된 아스팔텐을 생성하는 단계;
    c. 접촉 용기 내의 용매로 응집된 아스팔텐을 함유하는 공급원료를 용매/탄화수소상 및 침전물상으로 분리하는 단계;
    d. 용매/탄화수소상을 플래싱(flashing) 처리하여 침전물이 없는 탄화수소 유분 및 용매 분획을 생성하는 단계;
    e. 침전물상을 플래싱 처리하여 침전물 찌꺼기 분획 및 경질 탄화수소 유분을 생성하는 단계;
    f. 경질 탄화수소 유분을 플래싱 처리하여 침전물이 없는 탄화수소 유분 및 용매 분획을 생성하는 단계;
    g. 단계 (d) 및 (f)에서 생성된 용매 분획을 단계 (a)로 재순환하는 단계; 및
    h. 단계 (d) 및 (f)에서 생성된 침전물이 없는 탄화수소 유분을 회수하는 단계
    를 포함하는, 아스팔텐을 함유하는 중질 탄화수소 공급원료의 안정화 방법.
  2. 제1항에 있어서, 용매는 화학식 CnH2n+2(여기서, n = 10∼20)을 갖는 파라핀계 용매인 방법.
  3. 제1항에 있어서, 용매는 탄소수 10∼20 범위의 중질 나프타 용매인 방법.
  4. 제1항에 있어서, 용매 대 공급원료의 비는 부피로 1:1 내지 10:1 범위 내인 방법.
  5. 제1항에 있어서, 접촉 용기의 운전 온도는 80∼300℃의 범위 내인 방법.
  6. 제1항에 있어서, 접촉 용기의 운전 압력은 1∼40 bar의 범위 내인 방법.
  7. 제1항에 있어서, 접촉 용기에서 혼합물의 체류 시간은 15∼180분의 범위 내인 방법.
  8. 제1항에 있어서, 안정화 공정을 거치게 될 공급원료의 시료를 분석하여 소정의 아스팔텐 부분을 용매로 응집하는 데 필요한 용매 대 공급원료 비를 결정하는 것을 포함하는 것인 방법.
  9. 제8항에 있어서, 처리된 중질 탄화수소 공급원료로부터 회수되는 용매로 응집된 아스팔텐의 양은 0.01∼10.0 중량%인 방법.
  10. 제1항에 있어서, 공급원료는 전원유(whole crude oil), 역청, 역청사, 혈암유, 석탄 액화액 및 이들의 조합으로 이루어지는 군에서 선택되는 미정제 탄화수소 공급원에서 유래하는 것인 방법.
  11. 제1항에 있어서, 중질 탄화수소 공급원료는, 대기압 잔류물, 진공 잔류물, 비스브레이커 생성물, 유체 접촉 분해 생성물 또는 부산물 및 이들의 조합으로 이루어지는 군에서 선택되는 정제 탄화수소 공급원에서 유래하는 것이 방법.
  12. 제1항에 있어서, 중질 탄화수소 공급원료는 36℃ 초과에서 비등하는 혼합물인 방법.
  13. 제1항에 있어서, 중질 탄화수소 공급원료는 전원유이며, 공급원료를 플래싱 처리하고, 공급원료를 용매와 혼합하기 전에 경질 나프타 및 기타 경질 성분을 회수하는 단계를 포함하는 것인 방법.
KR1020147005135A 2011-07-29 2012-07-19 중질 탄화수소의 안정화 방법 KR101886858B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161513457P 2011-07-29 2011-07-29
US61/513,457 2011-07-29
PCT/US2012/047328 WO2013019418A2 (en) 2011-07-29 2012-07-19 Process for stabilization of heavy hydrocarbons

Publications (2)

Publication Number Publication Date
KR20140064802A true KR20140064802A (ko) 2014-05-28
KR101886858B1 KR101886858B1 (ko) 2018-08-09

Family

ID=46551963

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147005135A KR101886858B1 (ko) 2011-07-29 2012-07-19 중질 탄화수소의 안정화 방법

Country Status (6)

Country Link
US (1) US9493710B2 (ko)
EP (1) EP2737021A2 (ko)
JP (1) JP6073882B2 (ko)
KR (1) KR101886858B1 (ko)
CN (2) CN108165297A (ko)
WO (1) WO2013019418A2 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130264247A1 (en) * 2012-04-10 2013-10-10 Nano Dispersions Technology Inc. Process of reducing viscosity of heavy crude oil by removal of asphaltene using a precipitating agent
CN104178212B (zh) * 2013-05-20 2016-07-27 神华集团有限责任公司 一种煤焦油加氢提质方法
US9339785B2 (en) * 2013-12-18 2016-05-17 Battelle Memorial Institute Methods and systems for acoustically-assisted hydroprocessing at low pressure
FR3027911B1 (fr) * 2014-11-04 2018-04-27 IFP Energies Nouvelles Procede de conversion de charges petrolieres comprenant une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
FR3027913A1 (fr) * 2014-11-04 2016-05-06 Ifp Energies Now Procede de conversion de charges petrolieres comprenant une etape de viscoreduction, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
FR3027910B1 (fr) * 2014-11-04 2016-12-09 Ifp Energies Now Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments.
FR3036705B1 (fr) * 2015-06-01 2017-06-02 Ifp Energies Now Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
FR3036703B1 (fr) * 2015-06-01 2017-05-26 Ifp Energies Now Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
FR3036704B1 (fr) * 2015-06-01 2017-05-26 Ifp Energies Now Procede de conversion de charges comprenant une etape de viscoreduction, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
US10527536B2 (en) * 2016-02-05 2020-01-07 Baker Hughes, A Ge Company, Llc Method of determining the stability reserve and solubility parameters of a process stream containing asphaltenes by joint use of turbidimetric method and refractive index
EP3411707B1 (en) 2016-02-05 2022-08-31 Baker Hughes Holdings LLC Method of determining the stability reserve and solubility parameters of a process stream containing asphaltenes by joint use of turbidimetric method and refractive index
US10125318B2 (en) 2016-04-26 2018-11-13 Saudi Arabian Oil Company Process for producing high quality coke in delayed coker utilizing mixed solvent deasphalting
US10233394B2 (en) 2016-04-26 2019-03-19 Saudi Arabian Oil Company Integrated multi-stage solvent deasphalting and delayed coking process to produce high quality coke
FR3050735B1 (fr) * 2016-04-27 2020-11-06 Ifp Energies Now Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
FR3054453B1 (fr) * 2016-07-28 2020-11-20 Ifp Energies Now Procede de production d'une fraction hydrocarbonee lourde a basse teneur en soufre comportant une section de demettalation et d'hydrocraquage avec des reacteurs echangeables entre les deux sections.
WO2019051280A1 (en) 2017-09-07 2019-03-14 Mcfinney, Llc METHODS OF BIOLOGICAL TREATMENT OF SUBSTANCES CONTAINING HYDROCARBONS AND SYSTEM FOR THEIR IMPLEMENTATION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138787A (ja) * 1982-02-15 1983-08-17 Nippon Oil Co Ltd アスフアルテン含有炭化水素の溶剤脱れき法
EP0187947A1 (en) * 1984-12-12 1986-07-23 Lummus Crest, Inc. Solvent for refining of residues
WO1997021786A1 (en) * 1995-12-13 1997-06-19 Ormat Process Technologies, Inc. Method of and apparatus for producing power in solvent deasphalting units
WO1997034966A1 (en) * 1996-03-20 1997-09-25 Ormat Process Technologies, Inc. Solvent deasphalting unit and method for using the same
US5728291A (en) * 1994-08-04 1998-03-17 Ashland Inc. Demetallation - high carbon conversion process, apparatus and asphalt products
US20070295640A1 (en) * 2006-06-26 2007-12-27 Schlumberger Technology Corporation Compositions and Methods of Using Same in Producing Heavy Oil and Bitumen

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775292A (en) 1972-08-01 1973-11-27 Universal Oil Prod Co Combination process for the conversion of hydrocarbonaceous black oil
US3968023A (en) 1975-01-30 1976-07-06 Mobil Oil Corporation Production of lubricating oils
US4017383A (en) 1975-05-15 1977-04-12 Ralph M. Parsons Company Solvent deasphalting process by solvent recovery at staged pressures
US4101415A (en) 1977-03-14 1978-07-18 Phillips Petroleum Company Solvent deasphalting
US4125458A (en) 1977-10-31 1978-11-14 Exxon Research & Engineering Co. Simultaneous deasphalting-extraction process
US4239616A (en) 1979-07-23 1980-12-16 Kerr-Mcgee Refining Corporation Solvent deasphalting
FR2482975A1 (fr) 1980-05-22 1981-11-27 Commissariat Energie Atomique Procede de traitement par ultrafiltration a temperature elevee d'une charge hydrocarbonee
US4290880A (en) 1980-06-30 1981-09-22 Kerr-Mcgee Refining Corporation Supercritical process for producing deasphalted demetallized and deresined oils
US4305814A (en) 1980-06-30 1981-12-15 Kerr-Mcgee Refining Corporation Energy efficient process for separating hydrocarbonaceous materials into various fractions
US4279739A (en) * 1980-06-30 1981-07-21 Kerr-Mcgee Refining Corporation Process for separating bituminous materials
US4514287A (en) * 1982-01-08 1985-04-30 Nippon Oil Co., Ltd. Process for the solvent deasphalting of asphaltene-containing hydrocarbons
US4482453A (en) 1982-08-17 1984-11-13 Phillips Petroleum Company Supercritical extraction process
US4502944A (en) 1982-09-27 1985-03-05 Kerr-Mcgee Refining Corporation Fractionation of heavy hydrocarbon process material
JPS605214A (ja) 1983-06-22 1985-01-11 Hitachi Ltd 原油スラツジの除去方法及び装置
US4572781A (en) 1984-02-29 1986-02-25 Intevep S.A. Solvent deasphalting in solid phase
US4686028A (en) * 1985-04-05 1987-08-11 Driesen Roger P Van Upgrading of high boiling hydrocarbons
US4663028A (en) 1985-08-28 1987-05-05 Foster Wheeler Usa Corporation Process of preparing a donor solvent for coal liquefaction
FR2596766B1 (fr) 1986-04-02 1988-05-20 Inst Francais Du Petrole Procede de desasphaltage d'une huile d'hydrocarbures
FR2598716B1 (fr) 1986-05-15 1988-10-21 Total France Procede de desasphaltage d'une charge hydrocarbonee lourde
US4747936A (en) 1986-12-29 1988-05-31 Uop Inc. Deasphalting and demetallizing heavy oils
CN1076749C (zh) * 1998-04-24 2001-12-26 中国石油化工集团公司 缓和热转化——溶剂脱沥青组合工艺
US6106701A (en) * 1998-08-25 2000-08-22 Betzdearborn Inc. Deasphalting process
CN1227329C (zh) * 1998-12-23 2005-11-16 德士古发展公司 溶剂脱沥青和气化结合的物料过滤法
US7172686B1 (en) * 2002-11-14 2007-02-06 The Board Of Regents Of The University Of Oklahoma Method of increasing distillates yield in crude oil distillation
WO2006032286A1 (en) 2004-09-26 2006-03-30 Moataz Mohamed El-Saied Sherif Novel method to recovering the petroleum sludge to crude oil
US8277637B2 (en) * 2007-12-27 2012-10-02 Kellogg Brown & Root Llc System for upgrading of heavy hydrocarbons
US8357291B2 (en) * 2008-02-11 2013-01-22 Exxonmobil Upstream Research Company Upgrading bitumen in a paraffinic froth treatment process
CN101235280B (zh) * 2008-03-04 2010-06-23 西南石油大学 一种轻质油开采中沥青质沉积固体抑制剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138787A (ja) * 1982-02-15 1983-08-17 Nippon Oil Co Ltd アスフアルテン含有炭化水素の溶剤脱れき法
EP0187947A1 (en) * 1984-12-12 1986-07-23 Lummus Crest, Inc. Solvent for refining of residues
US5728291A (en) * 1994-08-04 1998-03-17 Ashland Inc. Demetallation - high carbon conversion process, apparatus and asphalt products
WO1997021786A1 (en) * 1995-12-13 1997-06-19 Ormat Process Technologies, Inc. Method of and apparatus for producing power in solvent deasphalting units
WO1997034966A1 (en) * 1996-03-20 1997-09-25 Ormat Process Technologies, Inc. Solvent deasphalting unit and method for using the same
US20070295640A1 (en) * 2006-06-26 2007-12-27 Schlumberger Technology Corporation Compositions and Methods of Using Same in Producing Heavy Oil and Bitumen

Also Published As

Publication number Publication date
WO2013019418A3 (en) 2013-10-10
CN108165297A (zh) 2018-06-15
WO2013019418A2 (en) 2013-02-07
US20130026074A1 (en) 2013-01-31
JP2014524483A (ja) 2014-09-22
EP2737021A2 (en) 2014-06-04
JP6073882B2 (ja) 2017-02-01
US9493710B2 (en) 2016-11-15
CN103827267A (zh) 2014-05-28
KR101886858B1 (ko) 2018-08-09

Similar Documents

Publication Publication Date Title
KR101886858B1 (ko) 중질 탄화수소의 안정화 방법
US10202552B2 (en) Method to remove metals from petroleum
CN101203586B (zh) 使用相同或不同溶剂制备-升级沥青
EP2084244B1 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
US20060272983A1 (en) Processing unconventional and opportunity crude oils using zeolites
RU2517186C2 (ru) Способ и устройство для получения углеводородного топлива и композиции
US8257579B2 (en) Method for the well-head treatment of heavy and extra-heavy crudes in order to improve the transport conditions thereof
TW201602331A (zh) 整合選擇性串聯脫瀝青及回收已脫瀝青餾份之用於重烴進料轉化的方法
JP2014524483A5 (ko)
CA3029015C (en) Supercritical water separation process
CN111655824B (zh) 用于回收加氢裂化软沥青的方法和设备
JPS61246285A (ja) アスフアルテン含有炭化水素仕込物の脱れき方法
US20150376513A1 (en) Methods and apparatuses for hydrocracking and hydrotreating hydrocarbon streams
US10030200B2 (en) Hydroprocessing oil sands-derived, bitumen compositions
US10041011B2 (en) Processes for recovering hydrocarbons from a drag stream from a slurry hydrocracker
CA2769412C (en) Deposit mitigation in gasoline fractionation, quench water system and product recovery section
CN114026204A (zh) 与蒸汽裂化器整合的脱盐器配置
US20150122703A1 (en) Fouling reduction in supercritical extraction units
US10544369B2 (en) Supercritical bitumen froth treatment from oil sand
CN116710537A (zh) 多级溶剂提取方法和装置

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)