KR20140005796A - 편광 위상차판 및 레이저 가공기 - Google Patents
편광 위상차판 및 레이저 가공기 Download PDFInfo
- Publication number
- KR20140005796A KR20140005796A KR1020130078233A KR20130078233A KR20140005796A KR 20140005796 A KR20140005796 A KR 20140005796A KR 1020130078233 A KR1020130078233 A KR 1020130078233A KR 20130078233 A KR20130078233 A KR 20130078233A KR 20140005796 A KR20140005796 A KR 20140005796A
- Authority
- KR
- South Korea
- Prior art keywords
- polarizing
- substrate
- diffraction grating
- phase difference
- retardation plate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1833—Diffraction gratings comprising birefringent materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Laser Beam Processing (AREA)
Abstract
제작이 용이하고, 원적외광의 투과 광량 손실이 적은 투과형의 편광 위상차판 및 이를 이용한 레이저 가공기를 제공한다.
편광 위상차판(100)은 기판(102)의 적어도 한쪽 주면에, 기판(102)과 동일 재료이며, 복수의 볼록부(103)가 정렬된 일정한 주기 P를 갖는 회절 격자가 형성되고, 회절 격자의 구조성 복굴절을 이용하고 있다. 회절 격자의 주기 P는 입사광의 파장 λ, 기판 재료의 굴절률 n을 이용해서, P<λ/n을 만족시킨다. 볼록부(103)의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서 테이퍼 형상(106)으로 형성된다. 기판 재료로서 ZnS를 이용한다.
편광 위상차판(100)은 기판(102)의 적어도 한쪽 주면에, 기판(102)과 동일 재료이며, 복수의 볼록부(103)가 정렬된 일정한 주기 P를 갖는 회절 격자가 형성되고, 회절 격자의 구조성 복굴절을 이용하고 있다. 회절 격자의 주기 P는 입사광의 파장 λ, 기판 재료의 굴절률 n을 이용해서, P<λ/n을 만족시킨다. 볼록부(103)의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서 테이퍼 형상(106)으로 형성된다. 기판 재료로서 ZnS를 이용한다.
Description
본 발명은 미세한 주기 구조로부터 발생하는 구조 복굴절을 이용한 원적외광용 편광 위상차판에 관한 것이다. 또한 본 발명은 이 편광 위상차판을 이용한 레이저(laser) 가공기에 관한 것이다.
프린트(print) 기판 등의 피가공물에, 구멍 뚫기 가공 등의 가공을 행하는 종래의 레이저 가공기로서, 이하의 구성을 구비한 것이 알려져 있다. 하나의 레이저 광을 제 1 편광 빔 스플리터(beam splitter)로 2개의 레이저 광으로 분기하고, 한쪽 레이저 광은 미러(mirror)를 경유하고, 다른쪽 레이저 광은 제 1 갈바노미터 스캐너(galvanometer scanner)로 YZ 2축 방향으로 주사하여, 2개의 레이저 광을 제 2 편광 빔 스플리터로 유도한 후, 제 2 갈바노미터 스캐너로 XY 2축 방향으로 주사하여, XY 스테이지(stage) 상의 피가공물을 가공하고 있다. 여기서, 제 1 편광 빔 스플리터를 투과한 레이저 광은 제 2 편광 빔 스플리터에서 반사되고, 한편, 제 1 편광 빔 스플리터에서 반사한 레이저 광은 제 2 편광 빔 스플리터를 투과하는 광로를 구성하고 있다. 이 레이저 가공기는, 2개의 레이저 광을 별개로 주사함으로써 동시에 2개소의 가공을 실시할 수 있다(예컨대, 특허문헌 1 참조). 한편, 이러한 레이저 가공기의 광원은 탄산 가스(gas) 레이저를 이용한 것이 주류로 되어 있다.
그러나, 상기 종래의 레이저 가공기에서는, 피가공물에 조사되는 2개의 레이저 광이, 서로 90° 편광 방향이 서로 다른 직선 편광이기 때문에, 피가공물의 재질에 따라서는, 레이저 광의 직선 편광 성분에 의해서 가공 구멍이 타원이 된다는 과제가 있다. 또한, 어떤 레이저 광으로 가공했는지에 따라서, 타원 가공 구멍의 장축 방향이 다르다는 과제가 있다. 이와 같이 가공 구멍이 타원이 되는 현상은 피가공물이 동박인 경우에 현저하다.
이러한 과제에 대처하기 위해서, 제 2 편광 빔 스플리터와 갈바노미터 사이의 광로에, 시판중인 반사형의 위상차판을 삽입하여, 원 편광화하는 것을 생각할 수 있지만, 복귀 광로만큼, Fθ 렌즈로부터 제 1 갈바노미터 스캐너가 이격되어 버리기 때문에, 제 1 갈바노미터 스캐너로 주사할 수 있는 범위가 좁아지고, 또한 렌즈 수차가 커져서, 가공 품질이 악화되게 된다.
이 때문에, 투과형의 편광 위상차판을 설치함으로써, 직선 편광의 레이저 광을, 원 편광화 또는 타원 편광화하는 것이 요구된다. 편광 위상차판으로서, 미세한 주기 구조로부터 발생하는 구조 복굴절을 이용한 것이 알려져 있다(예컨대, 특허문헌 2~4 등). 특히, 특허문헌 2, 3에서는, 볼록부를 테이퍼(taper) 형상으로 하여, 프레넬(Fresnel) 반사를 억제하고 있다. 특허문헌 4에서는, 기판 재료로서 원적외광을 투과할 수 있는 셀레늄화 아연(ZnSe)을 이용하고 있고, 표면에 YF3를 이용함으로써 프레넬 반사를 저감시키고 있다.
재료의 복굴절 특성을 이용한 편광 위상차판을 제조하는 경우, 원적외광을 투과할 수 있는 재료로서는, 황화 카드뮴(CdS)을 들 수 있다.
그러나, 황화 카드뮴은, 산의 혼입으로 유독한 황화 수소를 발생시키기 때문에, 제조 장소, 사용 장소에서의 환경 대책의 관점에서 취급이 어렵다.
또한, 특허문헌 2에서는 기판 재료로서 열가소성 수지를 이용하고, 특허문헌 3에서는 기판 재료로서 유리(glass)를 이용하고 있기 때문에, 어느 재료도 원적외광을 흡수해 버린다.
특허문헌 4에서는, ZnSe를 이용하고 있기 때문에, 가공시에 유독 가스가 발생한다. 이 때문에 특수한 폐기 설비가 필요하여 용이하게 가공할 수 없다. 또한, 표면에 적층된 YF3는, 흡수율이 높기 때문에, 고에너지(energy) 레이저 광을 투과시킨 경우에는, 흡수에 의한 온도 상승으로, 열 렌즈가 발생한다. 열 렌즈란 흡수에 의한 온도 상승으로, 광학 소자 내에 온도 분포가 발생하여, 렌즈 효과가 발생하는 현상이다. 레이저 가공기의 경우, 열 렌즈가 발생하면, 빔의 집광점이 피가공물 표면으로부터 이격되어서, 가공 품질이 악화되는 불량이 된다.
본 발명의 목적은 제작이 용이하고, 원적외광의 투과 광량 손실이 적은 투과형의 편광 위상차판을 제공하는 것이다.
또한 본 발명의 목적은 하나의 레이저 광을 2개의 레이저 광으로 분기해서 2개소의 동시 가공을 실시하는 방식에 있어서, 정원 형상의 가공 구멍을 형성할 수 있는 레이저 가공기를 제공하는 것이다.
상기 목적을 달성하기 위해서 본 발명의 1 측면은, 기판의 적어도 한쪽 주면에, 기판과 동일하고 또한 단일의 재료이며, 복수의 볼록부가 정렬된 일정한 주기 P를 가진 회절 격자가 형성되고, 상기 회절 격자의 구조성 복굴절을 이용한 편광 위상차판으로서,
상기 회절 격자의 주기 P는, 입사광의 파장 λ, 기판 재료의 굴절률 n을 이용해서, P<λ/n을 만족시키고,
상기 볼록부의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서 테이퍼 형상으로 형성되며,
기판 재료로서 ZnS를 이용한 것을 특징으로 한다.
본 발명에 있어서, 상기 볼록부의 꼭데기부에는, 기판의 주면에 대해 평행한 평탄부가 형성되어 있는 것이 바람직하다.
본 발명에 있어서, 기판의 양면에, 상기 회절 격자가 각각 형성되어 있는 것이 바람직하다.
본 발명에 있어서, 상기 편광 위상차판이 복수 적층되어 있는 것이 바람직하다.
본 발명에 있어서, 상기 편광 위상차판은 회절 격자의 볼록부가 마주 보도록 적층되어 있는 것이 바람직하다.
본 발명에 있어서, 회절 격자의 볼록부는, 드라이 에칭(dry etching)을 이용해서 가공되어 있는 것이 바람직하다.
또 본 발명의 다른 측면은 하나의 레이저 발진기로부터 출사된 레이저 광을 제 1 편광 빔 스플리터로 2개의 직선 편광 레이저 광으로 분기하고, 제 2 편광 빔 스플리터로 상기 2개의 직선 편광 레이저 광을 모아서 갈바노미터 스캐너의 미러에 입사시키며, 갈바노미터 스캐너로 주사해서 피가공물에 조사하여, 상기 피가공물의 소정 위치에 구멍 뚫기 가공을 행하는 레이저 가공기에 있어서,
제 2 편광 빔 스플리터와 갈바노미터 스캐너 사이에, 상기 편광 위상차판을 구비한 것을 특징으로 한다.
본 발명에 의하면, 원적외광의 투과 광량 손실이 적은 투과형의 편광 위상차판을 얻을 수 있다. 또한, 이러한 편광 위상차판을 이용한 레이저 가공기로는, 품질이 높은 레이저 가공을 실현할 수 있다.
도 1은 본 발명의 실시예 1에 따른 편광 위상차판을 나타내는 사시도,
도 2는 편광 위상차판의 가공 순서를 나타내는 단면도,
도 3은 본 발명의 실시예 2에 의한 편광 위상차판을 나타내는 단면도,
도 4는 본 발명의 실시예 3에 의한 편광 위상차판을 나타내는 단면도,
도 5는 본 발명에 따른 편광 위상차판을 탑재한 레이저 가공기의 일례를 나타내는 구성도이다.
도 2는 편광 위상차판의 가공 순서를 나타내는 단면도,
도 3은 본 발명의 실시예 2에 의한 편광 위상차판을 나타내는 단면도,
도 4는 본 발명의 실시예 3에 의한 편광 위상차판을 나타내는 단면도,
도 5는 본 발명에 따른 편광 위상차판을 탑재한 레이저 가공기의 일례를 나타내는 구성도이다.
(실시예 1)
도 1은 본 발명의 실시예 1에 의한 편광 위상차판을 나타내는 사시도이다. 편광 위상차판(100)은 기판(102)과, 기판(102)의 적어도 한쪽 주면에, 기판(102)과 동일하고 또한 단일의 재료로 형성된 회절 격자를 구비한다. 회절 격자는 x 방향과 평행하게 직선 형상으로 연장하는 복수의 볼록부(103)가, y 방향을 따라 일정한 주기 P로 정렬됨으로써 구성된다.
이러한 회절 격자를 향해서 광이 z 방향을 따라 입사한 경우, x 방향의 편광 성분(TE 편광)에 관한 유효 굴절률과, y 방향의 편광 성분(TM 편광)에 관한 유효 굴절률이 서로 다르게 되어, 이른바 구조성 복굴절이 발생한다. 그 결과, TE 편광과 TM 편광 사이에서 전파 속도차가 생기고, 이 전파 속도차에 대응한 위상차(리타데이션:retardation)에 따라 타원 편광이 발생한다. 이 위상차를 π/2로 설정한 경우, 회절 격자는 직선 편광을 원 편광으로 변환하거나, 원 편광을 직선 편광으로 변환하는 4분의 1 파장판과 동등한 기능을 나타낸다. 또한, 위상차를 π로 설정한 경우, 회절 격자는 TE 편광을 TM 편광으로 변환하거나, TM 편광을 TE 편광으로 변환하는 2분의 1 파장판과 동등한 기능을 나타낸다.
이러한 회절 격자의 정확한 리타데이션 및 투과율은 엄밀한 전자(電磁) 해석법 중 하나인 RCWA법(Rigorous Coupled-Wave Analysis법)(엄밀 결합파 해석법)으로 거의 정확하게 계산할 수 있다는 것이 알려져 있다.
이러한 미세 주기 구조에 있어서, 입사광이 회절하지 않고 '0차광'으로 그대로 투과하는 조건은 주기 P가 하기의 식 (1)을 만족시키는 경우이다.
단, λ는 사용하는 광의 파장이고, Φ는 편광 위상차판에 대한 광의 입사 각도이다. 또한, n은 편광 위상차판을 구성하는 기재(基材)의 굴절률이고, ni는 입사측의 매질(공기)의 굴절률이다. 식 (1)로부터 P<λ/n을 만족시키도록 해 두면, Φ=0°인 수직 입사광에서도, 고차 회절광의 손실을 방지할 수 있다는 것을 알 수 있다.
볼록부(103)의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서, 각도 θ의 테이퍼 형상(106)으로 형성되어 있다. 한편, θ=0°인 경우에는 테이퍼 없는 라멜라(lamellar) 형상이 된다. 볼록부(103)의 꼭데기부에는 기판(102)의 주면에 대해 평행한 상부 평탄부(104)가 형성되어 있다. 볼록부(103)의 바닥부에는, 이웃하는 볼록부(103)와의 사이에 개재하도록, 기판(102)의 주면에 대해 평행한 바닥 평탄부(105)가 형성되어 있다.
다음으로 기판 재료에 대해서 설명한다. 원적외광을 투과하는 대표적인 재료로, 가공해도 유독물이 발생하지 않는 비교적 취급이 용이한 재료로서, 게르마늄(Ge, 굴절률 n=4.004)이 있다. 하기 (표 1)에는, 기판 재료로서 Ge를 이용했을 때의 설계 데이터의 일례를 나타낸다. 계산 수법은 RCWA법(엄밀 결합파 해석법)을 사용했다. 사용 파장은 탄산 가스 레이저의 9.29㎛로 하고, 공기의 굴절률은 1로 했다.
볼록부(103)의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서 경사 각도 θ의 테이퍼 형상(106)으로 했다. 도 1에 나타내는 깊이 H는 0~15[㎛], 필링 팩터(filling factor) f는 0~1, 테이퍼부의 경사 각도 θ는 0°~90°의 범위 내이고, 이들 3개의 파라미터(parameter)의 조합을, 어느 하나를 선택해서 계산하여, 리타데이션이 목적하는 값이 되고, 또한 볼록부(103)의 상부 평탄부(104)의 치수 Lt가 0.3mm 이상, 또한 바닥 평탄부(105)의 치수 Lb가 0mm 이상인 조건을 만족시키는 중에서, Te 반사율 및 Tm 반사율이 높은 쪽이 가장 작게 되는 조건을 탐색한 결과를 (표 1)에 나타내고 있다.
필링 팩터 f는 볼록부(103)의 높이 H의 절반인 위치(H/2)에서의, 볼록부(103)의 폭 W의 주기 P에 대한 비율, 즉 f=W/P의 값이다. 주기 P는 P<λ/n의 범위에서, λ/n에 가까운 값으로서 2.31㎛로 했다.
(표 1)을 보면, 기판 재료로서 Ge를 이용한 경우, 리타데이션이 λ/2, λ/4, λ/8일 때, Te 반사율은 5%을 훨씬 넘어서, 매우 높다는 것을 알 수 있다. Tm 반사율은 리타데이션이 λ/8일 때 높아진다는 것을 알 수 있다.
볼록부(103)에 경사부를 마련함으로써 반사율이 저감된다는 것이 알려져 있지만, 원적외광에 있어서는, 충분히 반사율을 저감시킬 수 없다는 것을 알 수 있다. 특히, 비교적 어스펙트(aspect)비가 작아서 제조가 용이한 λ/8 등의 저 위상차의 경우에, Te 반사율은 20% 이상이 되어서, 실제 이용에는 적합하지 않다.
원적외용 재료는, 가시광용 재료(굴절률 1.5 정도)에 비해서 굴절률이 높고, 프레넬 반사가 크며, 에너지 이용율이 낮다. 특히 위상차가 작은 위상차판일수록, 격자 깊이 H가 작아지기 때문에, 두께 방향의 굴절률 변화가 급격하게 되어서 반사율이 높아지고, 그 영향은 크다.
다음으로 기판 재료로서, 굴절률 n이 2.2 이하인 재료, 예컨대 황화아연(ZnS)을 사용한 경우를 설명한다. (표 1)의 Ge의 경우와 같은 수법을 이용해서, ZnS에 대해 반사율이 가장 작아지는 조건을 탐색한 결과를 (표 2)에 나타낸다. 이 때 볼록부(103)의 상부 평탄부(104)의 치수 Lt는, 0.3mm 이상으로 했다. 주기 P는 P<λ/n의 범위에서, λ/n에 가까운 값으로서 4.22㎛으로 했다.
(표 2)를 보면, 기판 재료로서 ZnS를 이용한 경우, 리타데이션이 λ/2, λ/4, λ/8일 때, Te 반사율 및 Tm 반사율은 모두 1.4% 이하가 되어서, Ge를 이용한 경우보다, 훨씬 작게 억제할 수 있어, 에너지 이용 효율이 좋은 원적외광용 위상차판을 얻을 수 있다는 것을 알 수 있다. 특히, 비교적 어스펙트비가 작아서 제조가 용이한 λ/8 등의 저 위상차의 경우에, Te 반사율은 1.4%를 나타내어, 실제 이용에 적합한 위상차판을 얻을 수 있다.
이와 같이, 구조성 복굴절을 이용하는 위상차판에서 원적외광을 투과시키는 경우, 재료의 굴절률이 높은 것이 많기 때문에, 그 프레넬 반사를 억제하기 위해서는 굴절률의 선택이 중요하다.
또한, 주기 P에 대해서도, P<λ/n의 관계로부터, 굴절률이 2.2 이하인 ZnS를 이용한 경우, 주기 P는 4.22㎛ 정도까지 크게 할 수 있어서, 연삭 기계 가공 또는, i선 스테퍼(stepper)에 의한 포토리소그래피(photolithography)와 에칭 가공을 이용해서 비교적 용이하게 가공할 수 있다는 이점을 얻을 수 있다.
또한, ZnS는 가공해도 유독 가스는 발생시키지 않기 때문에, 특별한 폐기물 처리 설비가 불필요해서, 설비 투자가 억제된다.
또한, ZnS를 사용한 경우, 특허문헌 4와 같이 격자 표면에 YF3 등의 층이 불필요하기 때문에, 비용이 저렴해진다. 또한, ZnS의 흡수 계수는 10-5[1/cm]인 데 반해서, YF3의 흡수 계수는 10[1/cm] 정도로 매우 높기 때문에, YF3층을 사용하지 않음으로써, 레이저 광의 흡수에 의한 열 렌즈의 발생을 방지할 수 있다. 그 결과, 반사율이 높기 때문에 고에너지의 레이저 광이 필요하게 되는 동박 가공에서도, 고품질의 가공을 실현할 수 있다.
다음으로 편광 위상차판(100)의 제작법에 대해서 설명한다. 여기서는, 볼록부(103)의 꼭데기부에 평탄부(104)를 마련한 구조를 얻기 위해서, 에칭 프로세스(etching process)를 이용해서 가공한 경우를 예시한다. 볼록부(103)의 꼭데기부에 평탄부(104)를 마련하면, 계면에서의 굴절률 변화가 불연속으로 급격해지기 때문에, 프레넬 반사가 커질 염려가 있지만, ZnS의 경우, 원적외광을 투과하는 재료 중에서는, 굴절률이 비교적 작기 때문에, 평탄부(104)의 치수 Lt가 0.3㎛ 정도이더라도, 반사율은 1.4% 이하로 작아서, 충분히 사용에 적합하다는 것을 상기 해석 결과로부터 알 수 있다.
가공 순서는, 도 2(a)에 나타낸 바와 같이, ZnS로 이루어지는 기판(102)의 표면에, 리소그래피를 이용해서 포토레지스트(photoresist)를 패턴(pattern) 형성하여, 평탄부(104)의 평면 형상에 대응한 마스크(mask)(110)를 설치한다. 그리고, 도 2(b)에 도시한 바와 같이, 마스크(110)를 이용해서 기판(102)을 에칭하고, 마지막으로 마스크(110)를 제거한다.
드라이 에칭을 사용한 경우, 그 과제는 테이퍼의 각도를 목적하는 값으로 정밀도 좋게 가공하는 것이다. 이번에는, 거의 등방성 드라이 에칭이 되는 이온 밀링(ion milling) 장치를 이용해서, 이온 빔(ion beam)의 기판으로의 입사 각도를 조정함으로써, 테이퍼의 각도가 목적하는 값이 되도록 조정했다. 이 방법에 의해서, (표 2)의 λ/8의 위상차 격자의 단면 형상으로 가공할 수 있다는 것을 실험으로 확인했다.
또한, 이온 밀링 대신, 반응성 이온 에칭(ion etching)(RIE) 등의 이방성 드라이 에칭을 이용해서 가공해도 된다. 에칭 조건을, 가로 방향 에칭도 진행하도록, 바꿔말하면, 등방적 에칭이 행해지도록 선택하고, 상부로 갈수록 폭이 좁아지는 순 테이퍼 형상으로 가공해도 된다. 구체적으로는, 에칭 가스의 유량, 압력을 변경함으로써, 이방적 에칭 조건으로부터, 언더컷(undercut)이 큰 등방적 에칭 조건까지 선택할 수 있으며, 이로써 테이퍼 각 θ이 결정된다.
한편, 볼록부(103)의 꼭데기부에 평탄부가 없는 형상인 경우에는 테이퍼 형상(106)을 연삭 가공할 필요가 있지만, 레이저 가공기의 광학 소자는 직경 50mm 정도로 크기 때문에, 가공 시간이 길어서 고비용의 문제가 있다. 이에 반해서, 에칭 가공은 넓은 면을 한번에 가공할 수 있기 때문에 가공 시간이 짧아서, 비교적 저렴하다는 이점이 있다.
(실시예 2)
도 3은 본 발명의 실시예 2에 의한 편광 위상차판을 나타내는 단면도이다. 실시예 1에서는, 기판(102)의 한쪽 면에 회절 격자를 형성한 경우를 설명했지만, 본 실시예에서는, 편광 위상차판(100)은 기판(102)의 양면에, 기판(102)과 동일하고 또한 단일의 재료로 형성된 회절 격자를 구비한다.
기판(102)의 상면에 있는 회절 격자 및, 기판(102)의 하면에 있는 회절 격자는, 볼록부(103)의 위치, 주기 및 테이퍼 형상이 서로 일치하도록, 상하 대칭형이다. 이러한 회절 격자의 양면 설치에 의해, 한쪽면 설치에 비해서, 편광 위상차판(100)의 리타데이션를 2배로 증가시킬 수 있다.
또한, 기판 재료로서 황화아연(ZnS)을 사용함으로써 실시예 1과 같이, 반사율이 작고, 투과 광량 손실이 적은 투과형의 편광 위상차판을 얻을 수 있다.
그 제작법에 관해서, 실시예 1와 마찬가지로, 이온 밀링, 반응성 이온 에칭 등의 드라이 에칭을 사용할 수 있다.
(실시예 3)
도 4는, 본 발명의 실시예 3에 의한 편광 위상차판을 나타내는 단면도이다. 본 실시예에서는, 실시예 1에 따른 편광 위상차판(100)을 2장 이용해서, 볼록부(103)끼리가 마주 보도록 포갬으로써, 적층 타입(type)의 편광 위상차판을 구성하고 있다. 접합 방법은 접착, 융착, 기계적 압접 등이 사용할 수 있다.
실시예 1의 편광 위상차판(100)은 볼록부가 외기에 노출되고 있기 때문에, 공기 중에 부유하는 이물질 등이 볼록부와 볼록부의 골짜기 부분에 부착하는 경우가 있다. 일단 이물질이 부착하면 제거하기 어렵다. 이물질이 부착한 상태로 고에너지의 레이저 광을 통과시킨 경우, 이물질이 광을 흡수하여, 광학 소자에 온도 분포가 발생하여, 열 렌즈가 발생한다는 문제가 있다.
본 실시예에서는, 2장의 편광 위상차판(100)을, 볼록부(103)가 마주 보도록 포개고 있기 때문에, 볼록부(103)가 외기에 닿는 일이 없어서, 공기중에 부유하는 쓰레기 등의 이물질이 볼록부에 부착하는 것을 방지할 수 있다. 그 결과, 고에너지의 레이저 광이 통과한 경우에도, 열 렌즈의 발생을 방지할 수 있어, 레이저 가공에 있어서는, 고품질의 가공을 실현할 수 있다.
또한, 적층한 편광 위상차판을 레이저 광이 통과하는 경우, 같은 회절 격자를 2회 통과하게 되어서, 편광 위상차판(100)의 리타데이션를 2배로 증가시킬 수 있다. 반대로 말하면, 편광 위상차판의 1장 사용과 같은 리타데이션를 얻는 경우에는, 하나의 회절 격자의 리타데이션은 절반으로 충분하게 된다. (표 2)를 참조하면, 리타데이션이 작을수록, 볼록부의 어스펙트비는 작아지기 때문에, 회절 격자의 제조가 보다 용이하게 된다.
이상, 한쪽면 회절 격자의 편광 위상차판(도 1)을 2장 이용해서 적층한 예를 설명했지만, 한쪽면 회절 격자의 편광 위상차판(도 1)을 3장 이상 적층한 구성, 양쪽 회절 격자의 편광 위상차판(도 3)을 2장 이상 적층한 구성, 한쪽면 회절 격자의 편광 위상차판(도 1)과 양측 회절 격자의 편광 위상차판(도 3)을 조합시킨 구성, 등도 마찬가지로 사용할 수 있다.
(실시예 4)
도 5는 본 발명에 따른 편광 위상차판을 탑재한 레이저 가공기의 일례를 나타내는 구성도이다. 레이저 가공기는, 특허문헌 1과 마찬가지로, 프린트 기판 등의 피가공물에 구멍 뚫기 가공 등의 가공을 행하기 위해서, 하나의 레이저 광을 2개의 레이저 광으로 분기해서 2개소의 동시 가공을 실시하는 방식을 채용하고 있다.
CO2 레이저 발진기(1)로부터 출력된 직선 편광 레이저 광(2)이, 리타더(retarder)(3)에 의해서 원 편광으로 변환되고, 미러(5)를 경유한 후, 제 1 편광 빔 스플리터(6)에 의해서 2개의 레이저 광으로 분기된다. 한쪽 레이저 광(7)은 미러(5)를 경유하고, 다른쪽 레이저 광(8)은 제 1 갈바노미터 스캐너(11)에 의해서 YZ 2축 방향으로 주사된다. 2개의 레이저 광(7, 8)은 제 2 편광 빔 스플리터(9)에 도입되어 합류해서, 제 2 갈바노미터 스캐너(12)에 의해서 XY 2축 방향으로 주사되며, fθ 렌즈(10)에 의해 집광되어 XY 스테이지(14) 상의 피가공물(13)을 가공한다.
제 1 편광 빔 스플리터(6)를 투과한 레이저 광(7)은 제 2 편광 빔 스플리터에서 반사되고, 한편, 제 1 편광 빔 스플리터(6)에서 반사된 레이저 광(8)은 제 2 편광 빔 스플리터(9)를 투과하는 광로를 구성하고 있다. 이 레이저 가공기는, 2개의 레이저 광을 별개로 주사함으로써 동시에 2개소의 가공을 행할 수 있다.
이러한 레이저 가공기에 있어서, 제 2 편광 빔 스플리터(9)와 제 2 갈바노미터 스캐너(12) 사이를 지나는 레이저 광의 편광 방향(7a, 8a)은 직교하고 있으며, 이곳에, 실시예 1~3에 따른 1/4 파장의 편광 위상차판(100)을 설치함과 아울러, 볼록부(103)의 길이 방향(111)(도 1의 x 방향)이, 입사하는 2개의 레이저 광(7, 8)의 편광 방향(7a, 8a)에 대해 45°의 각도를 이루도록 위치 결정하고 있다.
1/4 파장의 편광 위상차판(100)은 제 2 편광 빔 스플리터(9)로부터 출사된 직선 편광의 레이저 광(7, 8)을 원 편광 레이저 광으로 각각 변환한다. 그 결과, 피가공물(13)에는 2개의 원 편광 레이저 광(7, 8)이 조사되어, 정원 형상의 구멍을 형성할 수 있다.
본 실시예에서는, 투과형의 편광 위상차판(100)을 사용하고 있기 때문에, 제 2 편광 빔 스플리터(9)와 제 2 갈바노미터 스캐너(12) 사이의 광로를 연장시킬 필요가 없어서, 수차로 가공 품질이 저하되는 일도 없다.
한편, 편광 위상차판(100)을 이용해서 직선 편광을 원 편광으로 변환하는 경우, λ/4의 위상차가 이상적이지만, λ/4 파장으로부터 어긋나서 원 편광도가 30% 정도로 되어도, 편광 의존성이 없는, 정원 형상의 구멍 가공이 가능하다는 것이 실험으로 판명되어 있어서, λ/4 근방으로 한정되는 것이 아니다. 물론, λ/8의 위상차판을 2장 이용해서, 1/4 파장판으로서 기능시켜도 되고, 도 3에 나타낸 바와 같이, λ/8의 회절 격자를 기판의 양면에 실시하여, 전체적으로 1/4 파장판으로서 기능시켜도 된다.
또한, 본 실시예서는, 제 1 편광 빔 스플리터(6)에 입사하는 레이저 광이 원 편광인 경우에 대해서 설명했지만, 편광 방향이 Y축에 대해 45 경사진 직선 편광이 제 1 편광 빔 스플리터(6)에 입사하도록 해도 된다.
1 : 레이저 발진기 2 : 레이저 광
3 : 리타더 5 : 미러
6 : 제 1 편광 빔 스플리터 7, 8 : 레이저 광
9 : 제 2 편광 빔 스플리터 10 : fθ 렌즈
11 : 제 1 갈바노미터 스캐너 12 : 제 2 갈바노미터 스캐너
13 : 피가공물 14 : XY 스테이지
100 : 편광 위상차판 102 : 기판
103 : 볼록부 104 : 상부 평탄부
105 : 바닥 평탄부 106 : 테이퍼 형상
110 : 마스크 111 : 볼록부의 길이 방향
3 : 리타더 5 : 미러
6 : 제 1 편광 빔 스플리터 7, 8 : 레이저 광
9 : 제 2 편광 빔 스플리터 10 : fθ 렌즈
11 : 제 1 갈바노미터 스캐너 12 : 제 2 갈바노미터 스캐너
13 : 피가공물 14 : XY 스테이지
100 : 편광 위상차판 102 : 기판
103 : 볼록부 104 : 상부 평탄부
105 : 바닥 평탄부 106 : 테이퍼 형상
110 : 마스크 111 : 볼록부의 길이 방향
Claims (7)
- 기판의 적어도 한쪽 주면에, 기판과 동일하고 또한 단일의 재료이며, 복수의 볼록부가 정렬된 일정한 주기 P를 갖는 회절 격자가 형성되고, 상기 회절 격자의 구조성 복굴절을 이용한 편광 위상차판으로서,
상기 회절 격자의 주기 P는, 입사광의 파장 λ, 기판 재료의 굴절률 n을 이용해서, P<λ/n을 만족시키고,
상기 볼록부의 단면 형상은 그 바닥부로부터 꼭데기부에 걸쳐서 테이퍼 형상으로 형성되며,
기판 재료로서, ZnS를 이용한
것을 특징으로 하는 편광 위상차판.
- 제 1 항에 있어서,
상기 볼록부의 꼭데기부에는, 기판의 주면에 대해 평행한 평탄부가 형성되어 있는 것을 특징으로 하는 편광 위상차판.
- 제 1 항 또는 제 2 항에 있어서,
기판의 양면에, 상기 회절 격자가 각각 형성되어 있는 것을 특징으로 하는 편광 위상차판.
- 청구항 1 또는 청구항 2에 기재된 편광 위상차판이 복수 적층되어 있는 것을 특징으로 하는 편광 위상차판 적층체.
- 제 4 항에 있어서,
회절 격자의 볼록부가 마주 보도록 적층되어 있는 것을 특징으로 하는 편광 위상차판 적층체.
- 제 1 항 또는 제 2 항에 있어서,
회절 격자의 볼록부는, 드라이 에칭을 이용해서 가공되어 있는 것을 특징으로 하는 편광 위상차판.
- 하나의 레이저 발진기로부터 출사된 레이저 광을 제 1 편광 빔 스플리터로 2개의 직선 편광 레이저 광으로 분기하고, 제 2 편광 빔 스플리터로 상기 2개의 직선 편광 레이저 광을 모아서 갈바노미터 스캐너의 미러에 입사시키며, 갈바노미터 스캐너로 주사해서 피가공물에 조사하여, 상기 피가공물의 소정 위치에 구멍 뚫기 가공을 행하는 레이저 가공기에 있어서,
제 2 편광 빔 스플리터와 갈바노미터 스캐너 사이에, 청구항 1 또는 청구항 2에 기재된 편광 위상차판을 구비한
것을 특징으로 하는 레이저 가공기.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012152143 | 2012-07-06 | ||
JPJP-P-2012-152143 | 2012-07-06 | ||
JP2013066202A JP5936574B2 (ja) | 2012-07-06 | 2013-03-27 | 偏光位相差板およびレーザ加工機 |
JPJP-P-2013-066202 | 2013-03-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140005796A true KR20140005796A (ko) | 2014-01-15 |
KR101518122B1 KR101518122B1 (ko) | 2015-05-06 |
Family
ID=49931656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130078233A KR101518122B1 (ko) | 2012-07-06 | 2013-07-04 | 편광 위상차판 및 레이저 가공기 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101518122B1 (ko) |
CN (1) | CN103529507B (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105892139A (zh) * | 2016-06-20 | 2016-08-24 | 深圳市华星光电技术有限公司 | 液晶显示装置 |
KR20180089509A (ko) * | 2016-01-18 | 2018-08-08 | 미쓰비시덴키 가부시키가이샤 | 레이저 광을 위한 파워 밸런스 장치, 레이저 가공 장치 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018155795A (ja) * | 2017-03-15 | 2018-10-04 | Jxtgエネルギー株式会社 | 光学位相差部材、偏光変換素子、テンプレート及び光学位相差部材の製造方法 |
US11325399B2 (en) * | 2017-12-20 | 2022-05-10 | Sony Corporation | Laser device and laser processing method |
JP6808077B2 (ja) * | 2018-01-26 | 2021-01-06 | 三菱電機株式会社 | ガルバノスキャナおよびレーザ加工機 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH658522A5 (de) * | 1982-03-01 | 1986-11-14 | Balzers Hochvakuum | Optisches element. |
US6128133A (en) * | 1998-12-22 | 2000-10-03 | Lucent Technologies Inc. | Optical beamsplitter |
JP3348283B2 (ja) * | 2000-01-28 | 2002-11-20 | 住友重機械工業株式会社 | レーザ加工装置及びレーザ加工用マスク並びにその製造方法 |
CN1232380C (zh) * | 2002-03-28 | 2005-12-21 | 三菱电机株式会社 | 激光加工装置 |
JP2005044429A (ja) * | 2003-07-28 | 2005-02-17 | Ricoh Co Ltd | 波長板、光ピックアップ装置及び光ディスク装置 |
CN1591045A (zh) * | 2003-08-28 | 2005-03-09 | 三洋电机株式会社 | 波长板及使用其的光学装置 |
JP2005177788A (ja) * | 2003-12-17 | 2005-07-07 | Hitachi Via Mechanics Ltd | レーザ加工装置 |
EP1741003A4 (en) * | 2004-04-15 | 2009-11-11 | Api Nanofabrication And Res Co | OPTICAL FILMS AND MANUFACTURING METHOD THEREFOR |
JP2006323059A (ja) * | 2005-05-18 | 2006-11-30 | Konica Minolta Holdings Inc | 構造性複屈折波長板及び波長板組合せ構造 |
JP3913765B1 (ja) * | 2005-12-28 | 2007-05-09 | 株式会社エンプラス | 偏光位相差板 |
JP2008008990A (ja) * | 2006-06-27 | 2008-01-17 | Ricoh Co Ltd | 波長板、画像投射装置、及び光ピックアップ装置 |
JP5424154B2 (ja) * | 2010-04-28 | 2014-02-26 | 公立大学法人大阪府立大学 | 光学部品 |
-
2013
- 2013-06-27 CN CN201310261976.XA patent/CN103529507B/zh active Active
- 2013-07-04 KR KR1020130078233A patent/KR101518122B1/ko active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180089509A (ko) * | 2016-01-18 | 2018-08-08 | 미쓰비시덴키 가부시키가이샤 | 레이저 광을 위한 파워 밸런스 장치, 레이저 가공 장치 |
CN105892139A (zh) * | 2016-06-20 | 2016-08-24 | 深圳市华星光电技术有限公司 | 液晶显示装置 |
CN105892139B (zh) * | 2016-06-20 | 2019-02-01 | 深圳市华星光电技术有限公司 | 液晶显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103529507B (zh) | 2016-05-25 |
KR101518122B1 (ko) | 2015-05-06 |
CN103529507A (zh) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140005796A (ko) | 편광 위상차판 및 레이저 가공기 | |
JP6132241B2 (ja) | 光取り込みシートを備える受光装置 | |
US9436012B2 (en) | Method and apparatus for laser cutting | |
JP6885184B2 (ja) | レーザ装置 | |
JP5649725B2 (ja) | 光取り込みシート、ならびに、それを用いた受光装置および発光装置 | |
JP2007061855A (ja) | レーザ照射装置 | |
JP2007057622A (ja) | 光学素子及びその製造方法、光学素子用形状転写型の製造方法及び光学素子用転写型 | |
EP2977816B1 (en) | Pupil shaping optical system for lithography machine and method for generating off-axis illumination modes | |
Arbabi et al. | Controlling the phase front of optical fiber beams using high contrast metastructures | |
TWI510319B (zh) | 偏光相位差板及雷射加工機 | |
US7230762B1 (en) | Polarization phase difference plate | |
KR102104782B1 (ko) | 레이저 광을 위한 파워 밸런스 장치, 레이저 가공 장치 | |
TWI459039B (zh) | 雷射光束轉換裝置及方法 | |
US7589895B2 (en) | Polarizing element and optical system including polarizing element | |
CN114077066B (zh) | 扩束准直器 | |
Gao et al. | Formation of 1× 3 splitting by embedded double-layer reflective grating under second Bragg illumination | |
JP5434911B2 (ja) | 構造体、構造体形成方法及びレーザ光照射装置 | |
JP6553477B2 (ja) | 光学機能素子の製造方法 | |
Wang et al. | Matched wavelength and incident angle for the diagnostic beam to achieve coherent grating tiling | |
JP2016099533A (ja) | 光学機能素子の製造装置およびこれを使用した光学機能素子の製造方法 | |
JP5057202B2 (ja) | 微細構造体の製造方法および製造装置 | |
JP2005074486A (ja) | レーザー加工方法及びレーザー加工装置 | |
KR20010043706A (ko) | 회절선택적인 편광빔 스플리터 및 이 스플리터에 의해제조된 빔 경로 선택 프리즘 | |
Toussaint | Development of a Planar Focusing Collector for CSP | |
Stoebenau et al. | Ultraprecision micromilling of freeform optical elements for planar microoptical systems integration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180418 Year of fee payment: 4 |