KR20130100734A - Composition for forming aluminum-containing film and method for forming aluminum-containing film - Google Patents

Composition for forming aluminum-containing film and method for forming aluminum-containing film Download PDF

Info

Publication number
KR20130100734A
KR20130100734A KR1020130022028A KR20130022028A KR20130100734A KR 20130100734 A KR20130100734 A KR 20130100734A KR 1020130022028 A KR1020130022028 A KR 1020130022028A KR 20130022028 A KR20130022028 A KR 20130022028A KR 20130100734 A KR20130100734 A KR 20130100734A
Authority
KR
South Korea
Prior art keywords
aluminum
film
forming
containing film
group
Prior art date
Application number
KR1020130022028A
Other languages
Korean (ko)
Inventor
히사시 나카가와
다츠야 사카이
Original Assignee
제이에스알 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에스알 가부시끼가이샤 filed Critical 제이에스알 가부시끼가이샤
Publication of KR20130100734A publication Critical patent/KR20130100734A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Geology (AREA)
  • Chemically Coating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: An aluminum containing film forming composite and a forming method thereof are provided to obtain an aluminum oxide film and an aluminum nitride film which have a higher purity than the conventional aluminum oxide film and aluminum nitride film. CONSTITUTION: A forming method of an aluminum containing film comprises the following steps. A coating layer is formed by coating an aluminum containing film formation composite, which is written in claim 1, on a gas. A film which contains carbon and aluminum is formed by heating the coating layer with one treatment which is selected from a group comprising electron irradiation, UV irradiation, and plasma. An oxide aluminum film is formed by performing hydrothermal treatment on the film which is obtained from the film forming process. The gas has the surface which is coated with a film containing aluminum or a transition metal.

Description

알루미늄 함유막 형성용 조성물 및 알루미늄 함유막의 형성 방법{COMPOSITION FOR FORMING ALUMINUM-CONTAINING FILM AND METHOD FOR FORMING ALUMINUM-CONTAINING FILM}COMPOSITION FOR FORMING ALUMINUM-CONTAINING FILM AND METHOD FOR FORMING ALUMINUM-CONTAINING FILM}

본 발명은 알루미늄 함유막 형성용 조성물 및 알루미늄 함유막의 형성 방법에 관한 것이다.The present invention relates to a composition for forming an aluminum containing film and a method for forming an aluminum containing film.

산화알루미늄(알루미나)은 높은 절연성과 치밀성을 갖는 점에서, DRAM(dynamic random access memory)으로 대표되는 반도체 디바이스에서 보호막, 절연막으로서 많이 이용되고 있다. 또한, 박막 자기 헤드의 갭 층이나 보호막, 금속 부품의 보호막 및 플라스틱 필름 상의 가스 배리어 막 등의 용도도 검토되고 있다.Aluminum oxide (alumina) is widely used as a protective film and an insulating film in a semiconductor device typified by DRAM (dynamic random access memory) because of its high insulation and compactness. Moreover, the use of the gap layer, the protective film of a thin film magnetic head, the protective film of a metal component, and the gas barrier film on a plastic film is also examined.

한편, 질화알루미늄은 높은 열전도율과 절연성을 갖는 점에서, 반도체 디바이스에 있어서 방열 기판으로서의 이용이 검토되고 있을 뿐 아니라, 광학 재료로서의 응용도 기대되고 있다.On the other hand, since aluminum nitride has high thermal conductivity and insulation property, not only the use as a heat radiation board | substrate is examined in semiconductor devices, but the application as an optical material is also expected.

종래부터, 산화알루미늄이나 질화알루미늄의 형성 방법으로는 스퍼터링법이나 화학 증착법이 폭넓게 이용되고 있다.Conventionally, the sputtering method and the chemical vapor deposition method are widely used as a formation method of aluminum oxide and aluminum nitride.

예를 들면, 특허문헌 1에는 불소 원자를 포함하는 가스 중에서 알루미늄 함유 타겟을 스퍼터링하는 산화알루미늄 막의 형성 방법이 제안되어 있다.For example, Patent Document 1 proposes a method of forming an aluminum oxide film for sputtering an aluminum-containing target in a gas containing a fluorine atom.

또한, 특허문헌 2에는 원자층 에피택셜(epitaxial) 성장법에 의해 산화알루미늄과 산화티탄이 교대로 적층된 절연막을 성막하는 성막 방법이 제안되어 있고, 상기 산화알루미늄 막은 염화알루미늄과 물을 원료 가스로 이용하여 생성되고 있다.In addition, Patent Document 2 proposes a film forming method for forming an insulating film in which aluminum oxide and titanium oxide are alternately laminated by atomic layer epitaxial growth, and the aluminum oxide film is formed of aluminum oxide and water as a source gas. It is generated using

또한, 특허문헌 3에는 기체 상에, 비자연성의 아미노알루미늄 전구체를 이용하여 CVD법에 의해 알루미늄 함유막(산화알루미늄 막, 질화알루미늄 막 또는 알루미늄 산질화물 막)을 형성하는 방법이 제안되어 있다.In addition, Patent Document 3 proposes a method of forming an aluminum-containing film (aluminum oxide film, aluminum nitride film or aluminum oxynitride film) by a CVD method using an unnatural amino aluminum precursor on a substrate.

그러나, 이러한 스퍼터링법이나 화학 증착법에 의한 알루미늄 함유막 형성 방법은 진공 챔버나 고압 전류 장치 등의 고가의 장치를 필요로 하기 때문에 비용이 크다. 또한, 대구경의 기체에 대한 적용이 곤란하다는 문제가 있었다. 또한, 최근의 반도체 디바이스의 미세화에 대하여, 좁은 트렌치 기체 상에 대한 성막 시, 막 중의 결함의 발생이나 단차 피복성의 저하가 생기는 등의 문제도 있었다.However, such an aluminum-containing film forming method by sputtering or chemical vapor deposition is expensive because it requires expensive devices such as vacuum chambers and high-voltage current devices. In addition, there has been a problem that application to a large diameter gas is difficult. In addition, with the recent miniaturization of semiconductor devices, there have been problems such as occurrence of defects in the film and deterioration in step coverage during film formation on the narrow trench substrate.

이에 반해, 원료가 되는 알루미늄 함유 화합물 또는 중합체의 용액을 기판에 도포하고, 열 처리 등을 실시하여 알루미늄 함유막을 얻는 도포법은, 상기 성막 수법과 비교하여 저렴한 장치로 간편히 목적으로 하는 막을 얻을 수 있다. 또한, 상기 도포법은 좁은 트렌치 기체 상에 대한 성막성, 매립성 및 단차 피복성이 우수하다고 생각되어, 향후 널리 이용되는 것이 기대되고 있다.On the other hand, the coating method of apply | coating the solution of the aluminum containing compound or polymer which becomes a raw material to a board | substrate, and heat-processing etc. and obtaining an aluminum containing film can obtain a target film easily with a cheap apparatus compared with the said film-forming method. . In addition, since the said coating method is considered to be excellent in the film-forming property, embedding property, and level | step difference coating property to a narrow trench gas phase, it is anticipated that it will be widely used in the future.

도포법의 예로서, 특허문헌 4에는 기재에, 골격에 Al-N 결합을 갖는 화합물, 또는 상기 화합물의 용액을 도포하고, 산소 함유 가스를 포함하는 분위기 중, 50 ℃ 내지 1000 ℃의 범위 내에서 가열하는 알루미나 막의 제조 방법이 제안되어 있고, 상기 골격에 Al-N 결합을 갖는 화합물의 용액으로서, 이미노알란을 유기 용제로 용해시킨 용액을 막 형성용 조성물로서 이용한 예가 기재되어 있다.As an example of the coating method, Patent Document 4 applies a compound having an Al-N bond to a skeleton, or a solution of the compound, to a base material within a range of 50 ° C to 1000 ° C in an atmosphere containing an oxygen-containing gas. A method for producing a heated alumina film has been proposed, and an example in which a solution obtained by dissolving iminoalan in an organic solvent as a solution of a compound having an Al—N bond in the skeleton is used as a film forming composition.

일본 특허 공개 (평)9-316631호 공보Japanese Patent Publication No. 9-316631 일본 특허 공개 제2001-220294호 공보Japanese Patent Laid-Open No. 2001-220294 일본 특허 공표 제2006-526705호 공보Japanese Patent Publication No. 2006-526705 일본 특허 공개 제2007-210825호 공보Japanese Patent Publication No. 2007-210825

그러나, 종래의 도포법에 이용되는 알란 또는 알킬알루미늄 등은 반응성이 낮고, 얻어진 산화알루미늄 막 또는 질화알루미늄 막의 일부에 금속 알루미늄, 질소, 탄소 성분 등이 남기 쉽다는 문제가 있었다. 예를 들면, 특허문헌 4에 기재된 이미노알란은 올리고머이기 때문에 열소성 시의 반응성이 낮아, 산소 분위기 하에서 700 ℃라는 고온에서 소성을 행하고 있음에도 불구하고, 얻어진 산화알루미늄 막 내에는 질소나 탄소의 함유가 확인되는 점에서, 상기 이미노알란을 이용하여 순수한 산화알루미늄 막을 얻기 위해서는 산소 분위기 하, 800 ℃에서 3시간 이상의 소성이 필요하다.However, alan or alkylaluminum or the like used in the conventional coating method has a low reactivity, and there is a problem that metal aluminum, nitrogen, carbon components, etc. are likely to remain in a part of the obtained aluminum oxide film or aluminum nitride film. For example, since iminoalan described in Patent Document 4 is an oligomer, the reactivity at the time of thermal firing is low, and although baking is performed at a high temperature of 700 degreeC under oxygen atmosphere, the obtained aluminum oxide film contains nitrogen and carbon. In the point that is confirmed, in order to obtain a pure aluminum oxide film using the said iminoalan, baking at 800 degreeC or more is required for 3 hours or more in oxygen atmosphere.

본 발명의 목적은 반응성이 높고, 종래의 방법에 비하여 보다 용이하게 고순도의 산화알루미늄 막 또는 질화알루미늄 막을 얻을 수 있는 알루미늄 함유 박막 형성용 조성물을 제공하는 것에 있다.It is an object of the present invention to provide a composition for forming an aluminum-containing thin film which is highly reactive and which can more easily obtain a high purity aluminum oxide film or an aluminum nitride film as compared with the conventional method.

본 발명자는, 상기 과제를 해결하기 위해서 예의 검토한 결과, 특정한 구조를 갖는 유기 알루미늄 화합물과 유기 용매를 함유하는 알루미늄 함유막 형성용 조성물에 따르면, 상기 과제를 해결할 수 있는 것을 발견하여 본 발명을 완성하였다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, according to the composition for aluminum containing film formation containing the organic aluminum compound and organic solvent which have a specific structure, it discovered that the said subject can be solved and completed this invention. It was.

즉, 본 발명은 이하의 [1] 내지 [10]을 제공하는 것이다.That is, this invention provides the following [1]-[10].

[1] 하기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물과 유기 용매를 함유하는 알루미늄 함유막 형성용 조성물.[1] An aluminum-containing film-forming composition containing an organoaluminum compound having a structure represented by the following formula (1) and an organic solvent.

Figure pat00001
Figure pat00001

(상기 화학식 (1) 중, R1 내지 R6은 수소 원자 또는 탄화수소기이고, 각각 동일하거나 상이할 수도 있으며, Rn(n은 1 내지 6의 정수임)끼리 서로 연결되어 있을 수도 있음)(In formula (1), R 1 to R 6 may be a hydrogen atom or a hydrocarbon group, may be the same or different, and R n (n is an integer of 1 to 6) may be connected to each other.

[2] 기체 상에, 상기 [1]에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과, 상기 도포층을 불활성 가스 또는 환원성 가스 분위기 하에서, 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 질화알루미늄 막을 형성하는 경화 공정을 포함하는 알루미늄 함유막의 형성 방법.[2] A coating step of applying the composition for forming an aluminum-containing film according to [1] to form a coating layer on the base, and heating the coating layer with an inert gas or a reducing gas atmosphere, and irradiating with ultraviolet rays. And a curing step of forming an aluminum nitride film by performing at least one treatment selected from the group consisting of plasma.

[3] 상기 [2]에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.[3] The method for forming an aluminum-containing film according to the above [2], wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.

[4] 기체 상에, 상기 [1]에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과, 상기 도포층을 산화성 분위기 하에서, 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 산화알루미늄 막을 형성하는 경화 공정을 포함하는 알루미늄 함유막의 형성 방법.[4] A coating step of applying the composition for forming an aluminum-containing film according to the above [1] to form a coating layer on the substrate, and heating the coating layer in an oxidizing atmosphere, electron beam irradiation, ultraviolet irradiation, and plasma. The formation method of the aluminum containing film containing the hardening process of forming an aluminum oxide film by performing at least 1 sort (s) of treatment chosen from the group.

[5] 상기 [4]에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.[5] The method for forming an aluminum-containing film according to the above [4], wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.

[6] 상기 [4]에 있어서, 상기 산화성 분위기가 산화성 가스 분위기인, 알루미늄 함유막의 형성 방법.[6] The method for forming an aluminum-containing film according to the above [4], wherein the oxidative atmosphere is an oxidizing gas atmosphere.

[7] 상기 [6]에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.[7] The method for forming an aluminum-containing film according to the above [6], wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.

[8] 상기 [4]에 있어서, 상기 산화성 분위기가 공기 분위기인, 알루미늄 함유막의 형성 방법.[8] The method for forming an aluminum-containing film according to the above [4], wherein the oxidative atmosphere is an air atmosphere.

[9] 상기 [8]에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.[9] The method for forming an aluminum-containing film according to [8], wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.

[10] 기체 상에, 상기 [1]에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과, 상기 도포층을 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써,탄소와 알루미늄을 포함하는 막을 형성하는 막 형성 공정과, 막 형성 공정에서 얻어진 막에 수열(水熱) 처리를 행함으로써, 산화알루미늄 막을 형성하는 후처리 공정을 포함하는 알루미늄 함유막의 형성 방법.[10] a coating step of applying the composition for forming an aluminum-containing film according to [1] to form a coating layer on a substrate; and the coating layer selected from the group consisting of heating, electron beam irradiation, ultraviolet irradiation, and plasma. A film forming step of forming a film containing carbon and aluminum by performing at least one kind of treatment, and a post-treatment step of forming an aluminum oxide film by performing hydrothermal treatment on the film obtained in the film forming step. A method of forming an aluminum containing film.

[11] 상기 [10]에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.[11] The method for forming an aluminum-containing film according to the above [10], wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.

본 발명의 알루미늄 함유막 형성용 조성물은 반응성이 높고, 종래의 방법에 비하여 보다 용이하게 고순도의 산화알루미늄 막 또는 질화알루미늄 막을 얻을 수 있다.The composition for forming an aluminum-containing film of the present invention is highly reactive, and an aluminum oxide film or an aluminum nitride film of high purity can be obtained more easily than in the conventional method.

본 발명의 알루미늄 함유막 형성용 조성물은, 하기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물과 유기 용매를 함유한다.The composition for aluminum containing film formation of this invention contains the organoaluminum compound which has a structure represented by following General formula (1), and an organic solvent.

Figure pat00002
Figure pat00002

(상기 화학식 (1) 중, R1 내지 R6은 수소 원자 또는 탄화수소기이고, 각각 동일하거나 상이할 수도 있으며, Rn(n은 1 내지 6의 정수임)끼리 서로 연결되어 있을 수도 있음)(In formula (1), R 1 to R 6 may be a hydrogen atom or a hydrocarbon group, may be the same or different, and R n (n is an integer of 1 to 6) may be connected to each other.

상기 화학식 (1) 중의 하나의 질소 원자와 결합하고 있는 Rn(n은 1 내지 6의 정수임)끼리 서로 연결됨으로써 질소 함유 환상기가 형성될 수도 있다.The nitrogen-containing cyclic group may be formed by connecting R n (n is an integer of 1 to 6) bonded to one nitrogen atom of the formula (1) with each other.

또한, 본 명세서에 있어서, 구조식 중의 원자 사이의 결합을 나타내는 선은 공유 결합으로 한정되지 않는다.In addition, in this specification, the line which shows the bond between atoms in a structural formula is not limited to a covalent bond.

상기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물의 구체예로서는, 예를 들면 하기 화학식 (2) 또는 하기 화학식 (3)으로 표시되는 유기 알루미늄 화합물을 들 수 있다.As an example of the organoaluminum compound which has a structure represented by the said General formula (1), the organoaluminum compound represented by following General formula (2) or following General formula (3) is mentioned, for example.

Figure pat00003
Figure pat00003

(상기 화학식 (2) 중, R7은 수소 원자 또는 탄화수소기이고, 각각 동일하거나 상이할 수도 있음)(In Formula (2), R 7 is a hydrogen atom or a hydrocarbon group, and may be the same or different.)

상기 화학식 (2) 중, R7은 바람직하게는 수소 원자, 또는 탄소수 1 내지 12의 1가의 탄화수소기이고, 보다 바람직하게는 탄소수 1 내지 4의 1가의 탄화수소기이다. 여기서, 탄소수 1 내지 12의 1가의 탄화수소기란, 예를 들면 탄소수 1 내지 12의 분지쇄 또는 비분지쇄의 알킬기, 알케닐기, 알키닐기, 아릴기이다.In said Formula (2), R <7> , Preferably it is a hydrogen atom or a C1-C12 monovalent hydrocarbon group, More preferably, it is a C1-C4 monovalent hydrocarbon group. Here, a C1-C12 monovalent hydrocarbon group is a C1-C12 branched or unbranched alkyl group, alkenyl group, alkynyl group, and aryl group, for example.

그 중에서도 가열, 전자선 조사, 자외선 조사, 플라즈마 등의 처리를 행할 때의 착체의 분해 용이성의 관점에서, 바람직하게는 메틸기, 에틸기, 프로필기, 이소프로필기이다.Among them, the methyl group, ethyl group, propyl group, and isopropyl group are preferably used from the viewpoint of ease of decomposition of the complex when the heating, electron beam irradiation, ultraviolet irradiation, plasma or the like is performed.

Figure pat00004
Figure pat00004

(상기 화학식 (3) 중, R8은 탄화수소기이고, 각각 동일하거나 상이할 수도 있음)(In said Formula (3), R <8> is a hydrocarbon group and may be same or different, respectively.)

상기 화학식 (3) 중, R8은 바람직하게는 탄소수 1 내지 12의 2가의 탄화수소기이고, 보다 바람직하게는 탄소수 1 내지 4의 2가의 탄화수소기이다. 여기서, 탄소수 1 내지 12의 2가의 탄화수소기란, 예를 들면 탄소수 1 내지 12의 분지쇄 또는 비분지쇄의 알킬렌기, 알케닐렌기, 아랄킬렌기, 아릴렌기를 들 수 있다.In said general formula (3), R <8> , Preferably it is a C1-C12 bivalent hydrocarbon group, More preferably, it is a C1-C4 bivalent hydrocarbon group. Here, with a C1-C12 bivalent hydrocarbon group, a C1-C12 branched or unbranched alkylene group, an alkenylene group, an aralkylene group, an arylene group is mentioned, for example.

그 중에서도 가열, 전자선 조사, 자외선 조사, 플라즈마 등의 처리를 행할 때의 착체의 분해 용이성의 관점에서, 바람직하게는 에틸렌기, 프로필렌기이다.Especially, from an easy viewpoint of the decomposition | disassembly of a complex at the time of processing, heating, electron beam irradiation, ultraviolet irradiation, a plasma, etc., Preferably, they are an ethylene group and a propylene group.

본 발명의 알루미늄 함유막 형성용 조성물에 함유되는 유기 용매는, 상기 유기 알루미늄 화합물을 용해시키며 이들과 반응하지 않는 것이면 특별히 한정되지 않는다. 예를 들면, 탄화수소 용매, 에테르 용매, 그 밖의 극성 용매 등을 사용할 수 있다.The organic solvent contained in the composition for forming an aluminum-containing film of the present invention is not particularly limited as long as it dissolves the organoaluminum compound and does not react with them. For example, a hydrocarbon solvent, an ether solvent, another polar solvent, etc. can be used.

상기 탄화수소 용매로는, 예를 들면 n-펜탄, 시클로펜탄, n-헥산, 시클로헥산, n-헵탄, 시클로헵탄, n-옥탄, 시클로옥탄, 데칸, 시클로데칸, 디시클로펜타디엔의 수소화물, 벤젠, 톨루엔, 크실렌, 듀렌, 인덴, 테트라히드로나프탈렌, 데카히드로나프탈렌, 스쿠알란 등을 들 수 있다.Examples of the hydrocarbon solvent include hydrides of n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane, dicyclopentadiene, Benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane and the like.

상기 에테르 용매로는, 예를 들면 디에틸에테르, 디프로필에테르, 디부틸에테르, 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜메틸에틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜메틸에틸에테르, 테트라히드로푸란, 테트라히드로피란, 비스(2-메톡시에틸)에테르, p-디옥산, 아니솔, 2-메틸아니솔, 3-메틸아니솔, 4-메틸아니솔, 펜톨, 2-메틸펜톨, 3-메틸펜톨, 4-메틸펜톨, 베라트롤, 2-에톡시아니솔, 1,4-디메톡시벤젠 등을 들 수 있다.As said ether solvent, for example, diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, bis (2-methoxyethyl) ether, p-dioxane, anisole, 2-methylanisole, 3-methylanisole, 4-methylaniline Sol, pentol, 2-methylpentol, 3-methylpentol, 4-methylpentol, veratrol, 2-ethoxyanisole, 1,4-dimethoxybenzene and the like.

상기 극성 용매로는, 예를 들면 염화메틸렌, 클로로포름 등을 들 수 있다.As said polar solvent, methylene chloride, chloroform, etc. are mentioned, for example.

이들 유기 용매는 단독으로도, 또는 2종 이상을 혼합하여 사용할 수도 있다.These organic solvents may be used alone or in combination of two or more thereof.

상기 유기 용매 중에서도 용해성 및 형성되는 용액의 안정성의 관점에서, 바람직한 것은 탄화수소 용매, 또는 탄화수소 용매와 에테르 용매의 혼합 용매이다. 탄화수소 용매로는, 바람직하게는 n-펜탄, 시클로펜탄, n-헥산, 시클로헥산, n-헵탄, 시클로헵탄, n-옥탄, n-데칸, 벤젠, 톨루엔 또는 크실렌이다. 에테르 용매로는, 바람직하게는 디에틸에테르, 디프로필에테르, 디부틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜메틸에틸에테르, 테트라히드로푸란, 테트라히드로피란, 아니솔, 2-메틸아니솔, 3-메틸아니솔, 4-메틸아니솔, 펜톨, 베라트롤, 2-에톡시아니솔, 1,4-디메톡시벤젠이다.Among the organic solvents, preferred are a hydrocarbon solvent or a mixed solvent of a hydrocarbon solvent and an ether solvent in view of solubility and stability of the solution to be formed. The hydrocarbon solvent is preferably n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, n-decane, benzene, toluene or xylene. As an ether solvent, Preferably, diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3 Methylanisole, 4-methylanisole, pentol, veratrol, 2-ethoxyanisole, 1,4-dimethoxybenzene.

<알루미늄 함유막의 형성 방법><Formation Method of Aluminum-Containing Film>

본 발명의 알루미늄 함유막의 형성 방법으로는, 기체 상에 상술한 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과, 상기 도포층을, 특정한 분위기 하에서 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써 알루미늄 함유막을 형성하는 경화 공정을 포함하는 알루미늄 함유막의 형성 방법을 들 수 있다.As a method for forming the aluminum-containing film of the present invention, a coating step of applying the composition for forming an aluminum-containing film on a substrate to form a coating layer, heating the coating layer under a specific atmosphere, electron beam irradiation, ultraviolet irradiation and The formation method of the aluminum containing film containing the hardening process of forming an aluminum containing film by performing at least 1 sort (s) of process chosen from the group which consists of plasma is mentioned.

상기 기체(후술하는 바탕막을 갖는 경우에는 기체 본체)를 구성하는 재료의 재질, 형상 등에 특별히 제한은 없다. 기체의 재질은 도포층의 알루미늄 함유막으로의 변환 공정에서 가열 처리를 채용하는 경우, 그 가열 처리에 견딜 수 있는 것이 바람직하다. 도포층이 형성되는 기체의 형상은 괴상, 판상, 필름상 등으로 특별히 제한되는 것이 아니다. 도막이 형성되는 기체의 표면은 평면일 수도 있고, 단차가 있는 비평면일 수도 있다. 또한, 기체는 표면에 오목부를 가질 수도 있다. 또한 「오목부」란, 기체 상에 형성된 배선 홈 또는 전극 홈(트렌치)과, 배선 접속 구멍(홀) 양쪽을 포함하는 개념을 갖는다. There is no restriction | limiting in particular in the material, shape, etc. of the material which comprises the said base | substrate (the base body, when having a base film mentioned later). When the material of a base | substrate employ | adopts heat processing in the conversion process to the aluminum containing film of a coating layer, it is preferable that it can endure the heat processing. The shape of the base on which the coating layer is formed is not particularly limited to blocks, plates, films, and the like. The surface of the base on which the coating film is formed may be flat or may be a stepped non-planar surface. The gas may also have recesses on its surface. In addition, the "concave part" has the concept of including both the wiring groove | channel or electrode groove (trench) formed on the base body, and wiring connection hole (hole).

기체의 재질로는, 예를 들면 유리, 금속, 플라스틱, 세라믹 등을 들 수 있다. 유리로는, 예를 들면 석영 유리, 붕규산 유리, 소다 유리, 납 유리 등을 들 수 있다. 금속으로는, 예를 들면 금, 은, 구리, 니켈, 규소, 알루미늄, 철 등 외에, 스테인리스강을 들 수 있다. 플라스틱으로는, 예를 들면 폴리이미드, 폴리에테르술폰 등을 들 수 있다.As a material of a base body, glass, a metal, a plastic, a ceramic etc. are mentioned, for example. As glass, quartz glass, borosilicate glass, soda glass, lead glass, etc. are mentioned, for example. As a metal, stainless steel is mentioned besides gold, silver, copper, nickel, silicon, aluminum, iron, etc., for example. As plastics, polyimide, polyether sulfone, etc. are mentioned, for example.

상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막(이하, 「바탕막」이라고도 함)으로 피복되어 있을 수도 있다. 기체가 상기 바탕막을 가짐으로써, 상기 기체 상으로의 알루미늄 함유막의 성막성을 보다 양호하게할 수 있다.The base may be coated with a film (hereinafter, also referred to as a "base film") whose surface of the base body contains aluminum or a transition metal. When the base has the base film, the film-forming property of the aluminum-containing film onto the base can be made better.

상기 바탕막은, 미리 기체 본체에, 알루미늄 및 전이 금속으로 이루어지는 군에서 선택되는 적어도 1종의 금속 원자를 포함하는 유기 금속 화합물(단, 상기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물을 제외함)을 함유하는 용액(이하, 「바탕막 형성용 조성물」이라고도 함)을 도포하고, 이어서 가열 처리하여 형성된다.The base film is an organometallic compound containing at least one metal atom selected from the group consisting of aluminum and a transition metal in advance in the body, except for an organoaluminum compound having a structure represented by the formula (1). It is formed by applying a solution (hereinafter also referred to as "composition for base film formation") containing a layer), followed by heat treatment.

상기 알루미늄 원자를 포함하는 유기 금속 화합물은 상기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물을 제외하는 것으로, 예를 들면 알루미늄알콕시드, 알루미늄알킬레이트, 알루미늄의 β-디케톤 착체 등을 들 수 있다.The organometallic compound containing the aluminum atom excludes an organoaluminum compound having a structure represented by the formula (1), and examples thereof include aluminum alkoxides, aluminum alkylates, and β-diketone complexes of aluminum. Can be.

상기 전이 금속으로는, 예를 들면 티타늄 원자, 팔라듐 원자 등을 들 수 있다.As said transition metal, a titanium atom, a palladium atom, etc. are mentioned, for example.

상기 티타늄 원자를 포함하는 유기 금속 화합물로는, 예를 들면 티타늄알콕시드, 아미노기를 갖는 티타늄 화합물, 티타늄의 β-디케톤 착체, 시클로펜타디에닐기를 갖는 티타늄 화합물, 할로겐 원자를 갖는 티타늄 화합물 등을 들 수 있다.As an organometallic compound containing the said titanium atom, titanium alkoxide, the titanium compound which has an amino group, the (beta) -diketone complex of titanium, the titanium compound which has a cyclopentadienyl group, the titanium compound which has a halogen atom, etc. are mentioned, for example. Can be mentioned.

상기 팔라듐 원자를 포함하는 유기 금속 화합물로는, 예를 들면 할로겐 원자를 갖는 팔라듐 착체, 팔라듐의 아세테이트, 팔라듐의 β-디케톤 착체, 팔라듐과 공액 카르보닐기를 갖는 화합물과의 착체, 팔라듐의 포스핀 착체 등을 들 수 있다.Examples of the organometallic compound containing the palladium atom include palladium complexes having halogen atoms, acetates of palladium, β-diketone complexes of palladium, complexes of palladium with compounds having conjugated carbonyl groups, and phosphine complexes of palladium. Etc. can be mentioned.

상기 알루미늄 원자를 포함하는 유기 금속 화합물로는, 알루미늄알콕시드로서, 예를 들면 알루미늄에톡시드, 알루미늄이소프로폭시드, 알루미늄-n-부톡시드, 알루미늄-s-부톡시드, 알루미늄-t-부톡시드, 알루미늄에톡시에톡시에톡시드, 알루미늄페녹시드 등;As an organometallic compound containing the said aluminum atom, it is an aluminum alkoxide, for example, aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-s-butoxide, aluminum-t-butoxide Seeds, aluminum ethoxyethoxyethoxide, aluminum phenoxide and the like;

알루미늄알킬레이트로서, 예를 들면 알루미늄아세테이트, 알루미늄아크릴레이트, 알루미늄메타크리레이트, 알루미늄시클로헥산부티레이트 등;As aluminum alkylate, For example, aluminum acetate, aluminum acrylate, aluminum methacrylate, aluminum cyclohexane butyrate, etc .;

알루미늄의 β-디케톤 착체로서, 예를 들면 펜탄-2,4-디케토알루미늄, 헥사플루오로펜탄-2,4-디케토알루미늄, 2,2,6,6-테트라메틸헵탄-3,5-디케토알루미늄, 비스(에톡시부탄-1,3-디케토)알루미늄s-부톡시드, (에톡시부탄-1,3-디케토)알루미늄디-s-부톡시드, (에톡시부탄-1,3-디케토)알루미늄디이소프로폭시드 등을 각각 들 수 있다.As β-diketone complex of aluminum, for example, pentane-2,4-diketoaluminum, hexafluoropentane-2,4-diketoaluminum, 2,2,6,6-tetramethylheptane-3,5 -Diketoaluminum, bis (ethoxybutane-1,3-diketo) aluminum s-butoxide, (ethoxybutane-1,3-diketo) aluminumdi-s-butoxide, (ethoxybutane-1 , 3-diketo) aluminum diisopropoxide, and the like.

상기 티타늄 원자를 포함하는 유기 금속 화합물로는, 예를 들면, 하기 화학식 4 내지 8로 표시되는 화합물을 들 수 있다.As an organometallic compound containing the said titanium atom, the compound represented by following formula (4)-8 is mentioned, for example.

<화학식 4>&Lt; Formula 4 >

Figure pat00005
Figure pat00005

(상기 화학식 4 중, R7은 탄소수 1 내지 10의 알킬기, 페닐기, 할로겐화 알킬기 또는 할로겐화 페닐기임)(In Formula 4, R 7 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, a halogenated alkyl group or a halogenated phenyl group.)

<화학식 5>&Lt; Formula 5 >

Figure pat00006
Figure pat00006

(상기 화학식 5 중, R8은 상기 화학식 4의 R7과 동일하고, L은 하기 화학식 9로 표시되는 기이며, R9 및 R10은 동일 또는 상이하고, 탄소수 1 내지 10의 알킬기, 페닐기, 알콕시기, 할로겐화 알킬기 또는 할로겐화 페닐기이며, x는 0 내지 3의 정수임)(In Formula 5, R 8 is the same as R 7 of Formula 4, L is a group represented by Formula 9, R 9 and R 10 are the same or different, an alkyl group having 1 to 10 carbon atoms, a phenyl group, Alkoxy group, halogenated alkyl group or halogenated phenyl group, x is an integer of 0 to 3)

<화학식 9>&Lt; Formula 9 >

Figure pat00007
Figure pat00007

<화학식 6>(6)

Figure pat00008
Figure pat00008

(상기 화학식 6 중, R11은 알킬기 또는 페닐기이고, X는 할로겐 원자이며, y는 0 내지 3의 정수임)(In Formula 6, R 11 is an alkyl group or a phenyl group, X is a halogen atom, y is an integer of 0 to 3)

<화학식 7>&Lt; Formula 7 >

Figure pat00009
Figure pat00009

(상기 화학식 7 중, R12는 알킬기 또는 페닐기임)(In Formula 7, R 12 is an alkyl group or a phenyl group.)

<화학식 8>(8)

Figure pat00010
Figure pat00010

(상기 화학식 8 중, Cp는 시클로펜타디에닐기이고, Y는 할로겐 원자 또는 알킬기이며, n은 1 내지 4의 정수임)(In Formula 8, Cp is a cyclopentadienyl group, Y is a halogen atom or an alkyl group, n is an integer of 1 to 4)

상기 화학식 4, 5 중, R7 및 R8은 바람직하게는 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, t-부틸기, 메톡시기, 에톡시기, n-프로폭시기, i-프로폭시기, n-부톡시기, t-부톡시기, 헥실기, 시클로헥실기, 페녹시기, 메틸페녹시기, 트리플루오로메틸기이고, 보다 바람직하게는 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, t-부틸기, 헥실기, 시클로헥실기, 페닐기이다.In Formulas 4 and 5, R 7 and R 8 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group, n-propoxy Time period, i-propoxy group, n-butoxy group, t-butoxy group, hexyl group, cyclohexyl group, phenoxy group, methylphenoxy group, trifluoromethyl group, more preferably methyl group, ethyl group, n-propyl group , i-propyl group, n-butyl group, t-butyl group, hexyl group, cyclohexyl group, and phenyl group.

또한, 상기 화학식 9 중, R9 및 R10은 바람직하게는 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, t-부틸기, 메톡시기, 에톡시기, n- 프로폭시기, i- 프로폭시기, n-부톡시기, t-부톡시기, 페녹시기, 메틸페녹시기, 토르플루오로메틸기이고, 보다 바람직하게는 메틸기, 에틸기, i-프로필기, t-부틸기, 메톡시기, 에톡시기, i- 프로폭시기, t-부톡시기, 트리플루오로메틸기이다.In Formula 9, R 9 and R 10 are preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, methoxy, ethoxy or n-propoxy. A time period, i-propoxy group, n-butoxy group, t-butoxy group, phenoxy group, methylphenoxy group, torofluoromethyl group, more preferably methyl group, ethyl group, i-propyl group, t-butyl group, methok It is a time period, an ethoxy group, i-propoxy group, t-butoxy group, and a trifluoromethyl group.

상기 화학식 4로 표시되는 티타늄 화합물로는, 예를 들면 티타늄메톡시드, 티타늄에톡시드, 티타늄-n-프로폭시드, 티타늄-n-노닐옥시드, 티타늄스테아릴옥시드, 티타늄이소프로폭시드, 티타늄-n-부톡시드, 티타늄이소부톡시드, 티타늄-t-부톡시드, 티타늄트리메틸실록시드, 티타늄-2-에틸헥소옥시드, 티타늄메톡시프로폭시드, 티타늄페녹시드, 티타늄메틸페녹시드, 티타늄플루오로메톡시드 및 티타늄클로로페녹시드 등을 들 수 있다.Examples of the titanium compound represented by Chemical Formula 4 include titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-n-nonyloxide, titanium stearyl oxide, and titanium isopropoxide. , Titanium-n-butoxide, titanium isobutoxide, titanium-t-butoxide, titanium trimethylsiloxide, titanium-2-ethylhexoxide, titanium methoxypropoxide, titanium phenoxide, titanium methylphenoxide, Titanium fluoromethoxide, titanium chlorophenoxide and the like.

상기 화학식 5로 표시되는 티타늄 화합물로는, 예를 들면 테트라키스(펜타-2,4-디케토)티타늄, 테트라키스(2,2,6,6-테트라메틸헵타-3,5-디케토)티타늄, 테트라키스(1-에톡시부탄-1,3-디케토)티타늄, 테트라키스(1,1,1,5,5,5-헥사플루오로펜타-2,4-디케토)티타늄, (2,2-디메틸헥사-3,5-디케토)티타늄, 비스(펜타-2,4-디케토)티타늄디메톡시드, 비스(2,2,6,6-테트라메틸헵타-3,5-디케토)티타늄디메톡시드, 비스(1-에톡시부탄-1,3-디케토)티타늄디메톡시드, 비스(1,1,1,5,5,5-헥사플루오로펜타-2,4-디케토)티타늄디메톡시드, (2,2-디메틸헥사-3,5-디케토)티타늄디메톡시드, 비스(펜타-2,4-디케토)티타늄디i-프로폭시드, 비스(2,2,6,6-테트라메틸헵타-3,5-디케토)티타늄디i-프로폭시드, 비스(1-에톡시부탄-1,3-디케토)티타늄디i-프로폭시드, 비스(1,1,1,5,5,5-헥사플루오로펜타-2,4-디케토)티타늄디i-프로폭시드, (2,2-디메틸헥사-3,5-디케토)티타늄디i-프로폭시드 등을 들 수 있다.Examples of the titanium compound represented by Formula 5 include tetrakis (penta-2,4-diketo) titanium and tetrakis (2,2,6,6-tetramethylhepta-3,5-diketo). Titanium, tetrakis (1-ethoxybutane-1,3-diketo) titanium, tetrakis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titanium, ( 2,2-dimethylhexa-3,5-diketo) titanium, bis (penta-2,4-diketo) titanium dimethoxide, bis (2,2,6,6-tetramethylhepta-3,5- Diketo) titanium dimethoxide, bis (1-ethoxybutane-1,3-diketo) titaniumdimethoxide, bis (1,1,1,5,5,5-hexafluoropenta-2,4 -Diketo) titanium dimethoxide, (2,2-dimethylhexa-3,5-diketo) titanium dimethoxide, bis (penta-2,4-diketo) titaniumdii-propoxide, bis ( 2,2,6,6-tetramethylhepta-3,5-diketo) titaniumdii-propoxide, bis (1-ethoxybutane-1,3-diketo) titaniumdii-propoxide, Bis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titaniumdi i-propoxide, (2,2-dimethylhexa-3,5-diketo) titaniumdii-propoxide, and the like.

상기 화학식 6으로 표시되는 티타늄 화합물로는, 예를 들면 트리메톡시티타늄클로라이드, 트리에톡시티타늄클로라이드, 트리-n-프로폭시티타늄클로라이드, 트리-i-프로폭시티타늄클로라이드, 트리-n-부톡시티타늄클로라이드, 트리-t-부톡시티타늄클로라이드, 트리이소스테아로일티타늄클로라이드, 디메톡시티타늄디클로라이드, 디에톡시티타늄디클로라이드, 디-n-프로폭시티타늄디클로라이드, 디-i-프로폭시티타늄디클로라이드, 디-n-부톡시티타늄디클로라이드, 디-t-부톡시티타늄디클로라이드, 디이소스테아로일티타늄디클로라이드, 메톡시티타늄트리클로라이드, 에톡시티타늄트리클로라이드, n-프로폭시티타늄트리클로라이드, i-프로폭시티타늄트리클로라이드, n-부톡시티타늄트리클로라이드, t-부톡시티타늄트리클로라이드, 이소스테아로일티타늄트리클로라이드, 티타늄테트라클로라이드 등을 들 수 있다.Examples of the titanium compound represented by Chemical Formula 6 include trimethoxy titanium chloride, triethoxy titanium chloride, tri-n-propoxytitanium chloride, tri-i-propoxytitanium chloride and tri-n-butoxy Titanium chloride, tri-t-butoxytitanium chloride, triisostearoyl titanium chloride, dimethoxytitanium dichloride, diethoxy titanium dichloride, di-n-propoxytitanium dichloride, di-i-propoxytitanium di Chloride, di-n-butoxytitanium dichloride, di-t-butoxytitanium dichloride, diisostearoyltitanium dichloride, methoxytitanium trichloride, ethoxytitanium trichloride, n-propoxytitanium trichloride , i-propoxytitanium trichloride, n-butoxytitanium trichloride, t-butoxytitanium trichloride, isostaroyl tita Nium trichloride, titanium tetrachloride, etc. are mentioned.

상기 화학식 7로 표시되는 티타늄 화합물로는, 예를 들면 테트라키스(디메틸아미노)티타늄, 테트라키스(디에틸아미노)티타늄, 테트라키스(디-t-부톡시아미노)티타늄, 테트라키스(디-i-프로폭시아미노)티타늄, 테트라키스(디페닐아미노)티타늄 등을 들 수 있다.Examples of the titanium compound represented by the formula (7) include tetrakis (dimethylamino) titanium, tetrakis (diethylamino) titanium, tetrakis (di-t-butoxyamino) titanium and tetrakis (di-i -Propoxyamino) titanium, tetrakis (diphenylamino) titanium, etc. are mentioned.

상기 화학식 8로 표시되는 티타늄 화합물로는, 예를 들면 디시클로펜타디에닐티타늄디클로라이드, 디시클로펜타디에닐티타늄디브로마이드, 시클로펜타디에닐티타늄트리클로라이드, 시클로펜타디에닐티타늄트리브로마이드, 디시클로펜타디에닐디메틸티타늄, 디시클로펜타디에닐디에틸티타늄, 디시클로펜타디에닐디-t-부틸티타늄, 디시클로펜타디에닐페닐티타늄클로라이드, 디시클로펜타디에닐메틸티타늄클로라이드 등을 들 수 있다.As the titanium compound represented by the formula (8), for example, dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium dibromide, cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tribromide, and dicyclo Pentadienyl dimethyl titanium, dicyclopentadienyl diethyl titanium, dicyclopentadienyl di-t-butyl titanium, dicyclopentadienylphenyl titanium chloride, dicyclopentadienyl methyl titanium chloride, and the like.

상기 팔라듐 원자를 포함하는 유기 금속 화합물로는, 할로겐 원자를 갖는 팔라듐 착체로서, 예를 들면 알릴팔라듐클로라이드, 디클로로비스(아세토니트릴)팔라듐, 디클로로비스(벤조니트릴)팔라듐 등;As an organometallic compound containing the said palladium atom, As a palladium complex which has a halogen atom, For example, allyl palladium chloride, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium etc .;

팔라듐의 아세테이트로서, 예를 들면 팔라듐아세테이트 등;As acetate of palladium, For example, palladium acetate etc .;

팔라듐의 β-디케톤 착체로서, 예를 들면 펜탄-2,4-디오네이트팔라듐, 헥사플루오로펜탄디오네이트팔라듐 등;As the β-diketone complex of palladium, for example, pentane-2,4-dionate palladium, hexafluoropentanedionate palladium and the like;

팔라듐과 공액 카르보닐기를 갖는 화합물과의 착체로서, 예를 들면 비스(디벤질리덴아세톤)팔라듐 등;As a complex of palladium and the compound which has a conjugated carbonyl group, For example, bis (dibenzylidene acetone) palladium etc .;

팔라듐의 포스핀 착체로서, 예를 들면 비스[1,2-비스(디페닐포스피노)에탄]팔라듐, 비스(트리페닐포스핀)팔라듐클로라이드, 비스(트리페닐포스핀)팔라듐아세테이트, 디아세테이트비스(트리페닐포스핀)팔라듐, 디클로로[1,2-비스(디페닐포스핀)에탄]팔라듐, 트랜스-디클로로비스(트리시클로헥실포스핀)팔라듐, 트랜스-디클로로비스(트리페닐포스핀)팔라듐, 트랜스-디클로로비스(트리-o-톨릴포스핀)팔라듐, 테트라키스(트리페닐포스핀)팔라듐 등을 각각 들 수 있다.As the phosphine complex of palladium, for example, bis [1,2-bis (diphenylphosphino) ethane] palladium, bis (triphenylphosphine) palladium chloride, bis (triphenylphosphine) palladium acetate, diacetatebis (Triphenylphosphine) palladium, dichloro [1,2-bis (diphenylphosphine) ethane] palladium, trans-dichlorobis (tricyclohexylphosphine) palladium, trans-dichlorobis (triphenylphosphine) palladium, Trans-dichlorobis (tri-o-tolylphosphine) palladium, tetrakis (triphenylphosphine) palladium, and the like.

상술한 유기 금속 화합물 중에서도, 바람직하게는 티타늄이소프로폭시드, 알루미늄이소프로폭시드, 비스(에톡시부탄-1,3-디케토)티타늄디이소프로폭시드, 테트라(펜탄-2,4-디케토)티타늄, 펜탄-2,4-디케토팔라듐, 헥사플루오로펜탄-2,4-디케토팔라듐, 펜탄-2,4-디케토알루미늄 또는 헥사플루오로펜탄-2,4-디케토알루미늄이다.Among the organometallic compounds described above, titanium isopropoxide, aluminum isopropoxide, bis (ethoxybutane-1,3-diketo) titanium diisopropoxide and tetra (pentane-2,4- Diketo) titanium, pentane-2,4-diketopalladium, hexafluoropentane-2,4-diketopalladium, pentane-2,4-diketoaluminum or hexafluoropentane-2,4-diketoaluminum to be.

이들 알루미늄 및 전이 금속으로 이루어지는 군에서 선택되는 적어도 1종의 금속 원자(예를 들면, 티타늄, 팔라듐 등)를 포함하는 유기 금속 화합물의 용액에 이용하는 용매로는, 상기 유기 금속 화합물을 용해시킬 수 있으면 어떠한 용매도 사용할 수 있다. 이들 용매로는, 예를 들면 에테르, 에테르기를 갖는 에스테르, 탄화수소, 알코올, 비양성자성 극성 용매 등, 및 이들의 혼합 용매를 들 수 있다.As a solvent used for the solution of the organometallic compound containing at least 1 sort (s) of metal atoms (for example, titanium, palladium, etc.) chosen from the group which consists of these aluminum and a transition metal, if the said organometallic compound can be melt | dissolved, Any solvent can be used. Examples of these solvents include ethers, esters having ether groups, hydrocarbons, alcohols, aprotic polar solvents, and mixed solvents thereof.

상기 에테르로는, 예를 들면 테트라히드로푸란, 디옥산, 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르 등;As said ether, For example, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc .;

상기 에테르기를 갖는 에스테르로는, 예를 들면 에틸렌글리콜모노메틸에테르 아세테이트, 에틸렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트, 2-아세톡시-1-메톡시프로판 등;Examples of the ester having an ether group include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-acetoxy-1-methoxypropane, and the like. ;

상기 탄화수소로는, 예를 들면 톨루엔, 크실렌, 헥산, 시클로헥산, 옥탄, 데칼린, 테트랄린, 듀렌 등;As said hydrocarbon, For example, toluene, xylene, hexane, cyclohexane, octane, decalin, tetralin, durene, etc .;

상기 알코올로는, 예를 들면 메탄올, 에탄올, 프로판올 등;As said alcohol, For example, methanol, ethanol, propanol, etc .;

상기 비양성자성 극성 용매로는, 예를 들면 N-메틸피롤리돈, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 헥사메틸포스포아미드, γ-부티로락톤 등을 각각 들 수 있다.Examples of the aprotic polar solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoramide, γ-butyrolactone, and the like. Can be.

상기 유기 금속 화합물의 용액 내 함유량은, 바람직하게는 0.1 내지 10 질량%이고, 보다 바람직하게는 0.1 내지 5질량%이다. 또한, 이 용매는 물이나 산소를 제거한 것을 이용하는 것이 바람직하다.Content in solution of the said organometallic compound becomes like this. Preferably it is 0.1-10 mass%, More preferably, it is 0.1-5 mass%. In addition, it is preferable to use what removed this water and oxygen as this solvent.

이들 바탕막 형성용 조성물의 기체 본체에 대한 도포는, 예를 들면 스핀 코팅법, 롤 코팅법, 커튼 코팅법, 침지 코팅법, 스프레이법, 액적 토출법 등의 적절한 방법에 의해 행할 수 있다.Application | coating to the base | substrate main body of these composition for base film formation can be performed by a suitable method, such as a spin coating method, a roll coating method, a curtain coating method, an immersion coating method, a spray method, a droplet discharge method, etc., for example.

기체 본체가 트렌치 구조를 갖는 경우 그 개구 폭이 300 ㎚ 이하이고, 또한 트렌치의 종횡비가 5 이상인 경우에는, 바탕막 형성용 조성물을 기체 본체에 도포한 후에, 기체를 잠시 동안 도포 시의 환경 압력보다 낮은 압력 하에 둠으로써, 트렌치 내부에 보다 균일하게 바탕막 형성용 조성물을 도포할 수 있다. 구체적인 수법으로는, 바탕막 형성용 조성물을 트렌치를 갖는 기체 본체 상에 도포할 때의 압력(이하, 「제1 압력」이라고 함) 보다 작은 압력(이하, 「제2 압력」이라고 함) 하에 기체를 유지시킨다. 제2 압력은 제1 압력에 대하여 바람직하게는 1 내지 70%이고, 보다 바람직하게는 10 내지 40%이다. 예를 들면, 도포할 때의 압력이 1.01×105 ㎩(상압)인 경우의 제2 압력으로는, 바람직하게는 1.01×103 내지 7.09×104 ㎩이고, 보다 바람직하게는 1.01×104 내지 4.05×104 ㎩이다. 기체를 제2 압력 하에 유지시키는 시간으로는, 바람직하게는 10초간 내지 10분간이고, 보다 바람직하게는 10초간 내지 1분간이다. 기체를 제2 압력에 유지시킨 후, 바람직하게는 불활성 기체를 이용하여 압력을 복귀시킨 후에 다음 가열 공정에 제공되지만, 이 압력을 감소시켜 동 압력으로 유지시킨 후, 압력을 복귀시키는 일련의 조작은 수회 반복할 수도 있다. 제2 압력에서 제1 압력으로 복귀시키기 위한 승압 시간으로는, 바람직하게는 3초간 내지 5분간이고, 보다 바람직하게는 5초간 내지 1분간이다. 또한, 반복 횟수로는 막의 균일성과 작업성의 쌍방의 관점에서, 바람직하게는 10회 이하, 작업성의 관점에서 보다 바람직하게는 5회 이하이다. 이렇게 해서 형성된 바탕막은 이어서 가열된다. 가열 온도는 바람직하게는 30 내지 350 ℃이고, 보다 바람직하게는 40 내지 300 ℃이다. 가열 시간은 바람직하게는 5 내지 90분간이고, 보다 바람직하게는 10 내지 60분간이다. 상기 도포 공정부터 가열 공정 종료까지의 막 주위의 분위기는, 바람직하게는 질소, 헬륨, 아르곤 등의 불활성 가스이다. 또한 필요에 따라서 수소 등의 환원성 가스나, 산소 등의 산화성 가스를 혼입한 분위기에서 실시할 수도 있다.When the base body has a trench structure, when the opening width is 300 nm or less, and when the aspect ratio of the trench is 5 or more, after applying the composition for forming a base film to the base body, the gas is applied for a while than the environmental pressure at the time of application. By putting it under low pressure, the composition for base film formation can be apply | coated more uniformly inside a trench. As a specific technique, the substrate is formed under a pressure (hereinafter, referred to as "second pressure") that is smaller than the pressure (hereinafter referred to as "first pressure") when the composition for forming a base film is applied onto a base body having a trench. Keep it. The second pressure is preferably 1 to 70%, more preferably 10 to 40% with respect to the first pressure. For example, as a 2nd pressure when the pressure at the time of application | coating is 1.01x10 <5> Pa (normal pressure), Preferably it is 1.01 * 10 <3> -7.09 * 10 <4> Pa, More preferably, 1.01 * 10 <4> To 4.05 × 10 4 mW. As time to keep a gas under 2nd pressure, Preferably it is for 10 second-10 minutes, More preferably, it is for 10 seconds-1 minute. After maintaining the gas at the second pressure, it is preferably provided to the next heating process after returning the pressure with an inert gas, but after reducing this pressure to maintain the same pressure, a series of operations to return the pressure You can repeat this several times. The pressure raising time for returning from the second pressure to the first pressure is preferably 3 seconds to 5 minutes, and more preferably 5 seconds to 1 minute. The number of repetitions is preferably 10 times or less from the viewpoint of both the uniformity of the film and workability, and more preferably 5 times or less from the viewpoint of workability. The base film thus formed is then heated. Heating temperature becomes like this. Preferably it is 30-350 degreeC, More preferably, it is 40-300 degreeC. The heating time is preferably 5 to 90 minutes, more preferably 10 to 60 minutes. The atmosphere around the film | membrane from the said application process to completion | finish of a heating process becomes like this. Preferably it is inert gas, such as nitrogen, helium, argon. Moreover, it can also be implemented in the atmosphere which mixed reducing gas, such as hydrogen, and oxidizing gas, such as oxygen, as needed.

이들 바탕막의 두께는 가열 후의 막 두께로서, 바람직하게는 0.001 내지 5 ㎛, 보다 바람직하게는 0.005 내지 0.5 ㎛이다.The thickness of these base films is a film thickness after heating, Preferably it is 0.001-5 micrometers, More preferably, it is 0.005-0.5 micrometer.

상술한 기체 상에, 본 발명의 알루미늄 함유막 형성용 조성물을 도포하는 방법으로는, 예를 들면 스핀 코팅법, 롤 코팅법, 커튼 코팅법, 침지 코팅법, 스프레이법, 액적 토출법 등의 적절한 방법을 사용할 수 있다. 이러한 도포 공정으로는, 기체 상의 형상, 크기 등에 따라, 기체의 구석구석까지 알루미늄막 형성용 조성물이 고루 미치도록 하는 도포 조건이 채용된다. 예를 들면, 도포법으로서 스핀 코팅법을 채용하는 경우, 스피너의 회전수를 바람직하게는 300 내지 2,500 rpm, 보다 바람직하게는 500 내지 2,000 rpm으로 한다. 또한, 기체가 오목부를 갖는 경우에는, 바탕막 형성용 조성물의 도포에 있어서 상술한 바와 같은 도포 후의 환경 압력의 변동을 채용할 수도 있다.As a method of apply | coating the composition for aluminum containing film formation of this invention on the base mentioned above, it is suitable, for example, spin coating method, roll coating method, curtain coating method, dip coating method, spray method, droplet ejection method, etc. Method can be used. As such an application | coating process, the application | coating conditions which make the composition for aluminum film formation even to every corner of a base | substrate are employ | adopted according to the shape, size, etc. of a base | substrate. For example, when the spin coating method is adopted as the coating method, the spin speed of the spinner is preferably 300 to 2,500 rpm, more preferably 500 to 2,000 rpm. Moreover, when a base has a recessed part, the variation of the environmental pressure after application | coating as mentioned above can also be employ | adopted in application | coating of the composition for base film formation.

상기 도포 공정 후, 도포한 알루미늄 함유막 형성용 조성물 중에 함유되는 용매 등의 저비점 성분을 제거하기 위해서, 가열 처리를 행할 수도 있다. 가열하는 온도 및 시간은 사용하는 용매의 종류, 비점(증기압)에 따라 다르지만, 예를 들면 100 내지 350 ℃에서 5 내지 90분간으로 할 수 있다. 이때, 계 전체를 감압시킴으로써 용매의 제거를 보다 저온에서 행할 수도 있다. 감압 하에 있어서의 가열 처리의 조건은, 바람직하게는 100 내지 250 ℃에서 10 내지 60분간이다.After the said coating process, in order to remove low boiling point components, such as a solvent contained in the apply | coated composition for aluminum containing film formation, you may heat-process. Although the temperature and time to heat differ with the kind of solvent to be used and boiling point (vapor pressure), it can be made into 5 to 90 minutes at 100-350 degreeC, for example. At this time, the solvent can be removed at a lower temperature by depressurizing the whole system. The conditions of heat processing under reduced pressure, Preferably it is 10 to 60 minutes at 100-250 degreeC.

이어서, 상술한 방법에 의해서 형성된 도포층에 대하여, 특정한 분위기 하에서 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 기체 상에 알루미늄 함유막을 형성할 수 있다.Subsequently, an aluminum-containing film can be formed on the substrate by performing at least one treatment selected from the group consisting of heating, electron beam irradiation, ultraviolet irradiation, and plasma under a specific atmosphere with respect to the coating layer formed by the above-described method. .

여기서, 기체 상에 형성되는 알루미늄 함유막은 산화알루미늄 막 또는 질화알루미늄 막이다. 또한, 상기 알루미늄 함유막은 금속 알루미늄이 포함되지 않는 것이다.Here, the aluminum containing film formed on a base is an aluminum oxide film or an aluminum nitride film. In addition, the aluminum containing film does not contain metal aluminum.

또한, 상기 가열, 전자선 조사, 자외선 조사 또는 플라즈마 처리를 행할 때의 분위기를 특정한 분위기로 함으로써, 기체 상에 임의의 알루미늄 함유막(산화알루미늄 막, 질화알루미늄 막)을 형성할 수 있다.Moreover, arbitrary aluminum containing films (aluminum oxide film, aluminum nitride film) can be formed on a base by making the atmosphere at the time of performing the said heating, electron beam irradiation, ultraviolet irradiation, or plasma processing into a specific atmosphere.

구체적으로는, 산화성 분위기 하에서 가열 처리 등을 행함으로써, 고순도의 산화알루미늄 막을 얻을 수 있다.Specifically, a high purity aluminum oxide film can be obtained by performing heat treatment or the like in an oxidizing atmosphere.

상기 산화성 분위기로는, 예를 들면 산화성 가스 분위기 또는 공기 분위기 등을 들 수 있다. 그 중에서도 작업의 용이성이나 경제성의 관점에서, 바람직하게는 공기이다.As said oxidizing atmosphere, an oxidizing gas atmosphere, an air atmosphere, etc. are mentioned, for example. Among them, from the viewpoint of ease of operation and economy, preferably air.

상기 산화성 가스로는, 예를 들면 산소, 오존, 산소 라디칼, 이산화탄소, 이산화질소, 수증기 등을 들 수 있다. 그 중에서도 경제성의 관점에서, 바람직하게는 수증기이다.As said oxidizing gas, oxygen, ozone, an oxygen radical, carbon dioxide, nitrogen dioxide, water vapor, etc. are mentioned, for example. Among them, from the viewpoint of economics, it is preferably water vapor.

또한, 불활성 가스 분위기 하 또는 환원성 가스 분위기 하에서 가열 처리 등을 행함으로써, 고순도의 질화알루미늄 막을 얻을 수 있다.In addition, a high purity aluminum nitride film can be obtained by performing heat treatment or the like under an inert gas atmosphere or a reducing gas atmosphere.

여기서 불활성 가스란, 예를 들면 질소, 헬륨, 아르곤 등을 들 수 있다. 환원성 가스란, 수소, 암모니아 등을 들 수 있다. 그 중에서도 고순도화의 관점에서, 바람직하게는 암모니아 분위기 하에서 가열 등을 한다.Here, with an inert gas, nitrogen, helium, argon etc. are mentioned, for example. Examples of the reducing gas include hydrogen and ammonia. Among them, from the viewpoint of high purity, heating is preferably performed in an ammonia atmosphere.

가열 처리를 행하는 경우의 온도는, 바람직하게는 60 ℃ 이상, 보다 바람직하게는 70 ℃ 내지 600 ℃, 특히 바람직하게는 100 ℃ 내지 500 ℃이다. 가열 시간은 바람직하게는 30초간 내지 120분간, 보다 바람직하게는 1 내지 90분간, 특히 바람직하게는 10 내지 60분간이다.The temperature at the time of performing heat processing becomes like this. Preferably it is 60 degreeC or more, More preferably, it is 70 degreeC-600 degreeC, Especially preferably, it is 100 degreeC-500 degreeC. The heating time is preferably 30 seconds to 120 minutes, more preferably 1 to 90 minutes, and particularly preferably 10 to 60 minutes.

또한, 경화 공정 전에 후술하는 막 형성 공정을 행하여, 도포층 대신에 탄소와 알루미늄을 포함하는 막에 대하여, 상술한 경화 공정을 행할 수도 있다.In addition, the film formation process mentioned later may be performed before a hardening process, and the hardening process mentioned above may be performed with respect to the film | membrane containing carbon and aluminum instead of an application layer.

또한, 본 발명의 알루미늄 함유막의 다른 형성 방법으로는, 상기 기체 상에 상기 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과, 상기 도포층을 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 탄소와 알루미늄을 포함하는 막을 형성하는 막 형성 공정과, 막 형성 공정으로 얻어진 막에 수열 처리를 행함으로써, 산화알루미늄 막을 형성하는 후처리 공정을 포함하는 알루미늄 함유막의 형성 방법을 들 수 있다.Moreover, as another formation method of the aluminum containing film of this invention, the coating process of apply | coating the said composition for aluminum containing film formation on the said base, and forming a coating layer, heating the said coating layer, electron beam irradiation, ultraviolet irradiation, and plasma A film forming step of forming a film containing carbon and aluminum by performing at least one treatment selected from the group consisting of a group, and a post-treatment step of forming an aluminum oxide film by performing a hydrothermal treatment on the film obtained by the film forming step. The formation method of the aluminum containing film containing these is mentioned.

막 형성 공정을 행함으로써, 기체 상에 소량의 탄소와 알루미늄을 포함하는 막이 형성된다.By performing a film formation process, the film | membrane containing a small amount of carbon and aluminum is formed on a base body.

막 형성 공정을 행할 때의 분위기는 특별히 한정되는 것은 아니고, 예를 들면 상술한 산화성 분위기 하, 불활성 가스 분위기 하, 또는 환원성 가스 분위기 하에서 행할 수 있다. 그 중에서도 바람직하게는 불활성 가스 분위기 하이다. 또한, 불활성 가스 중에서도 보다 바람직하게는 질소이다.The atmosphere at the time of performing a film formation process is not specifically limited, For example, it can carry out under the above-mentioned oxidizing atmosphere, inert gas atmosphere, or reducing gas atmosphere. Especially, it is inert gas atmosphere preferably. Moreover, in inert gas, More preferably, it is nitrogen.

막 형성 공정에서 가열 처리를 행하는 경우의 온도는, 바람직하게는 60 ℃ 이상, 보다 바람직하게는 70 ℃ 내지 600 ℃, 특히 바람직하게는 100 ℃ 내지 500 ℃이다. 가열 시간은, 바람직하게는 30초간 내지 120분간, 보다 바람직하게는 1 내지 90분간, 특히 바람직하게는 10 내지 60분간이다.The temperature at the time of performing heat processing in a film formation process becomes like this. Preferably it is 60 degreeC or more, More preferably, it is 70 degreeC-600 degreeC, Especially preferably, it is 100 degreeC-500 degreeC. The heating time is preferably 30 seconds to 120 minutes, more preferably 1 to 90 minutes, and particularly preferably 10 to 60 minutes.

막 형성 공정에 의해서 얻어진 막에 수열 처리를 행함으로써, 기체 상에 고순도의 산화알루미늄 막을 형성할 수 있다.By performing hydrothermal treatment on the film obtained by the film forming step, a high purity aluminum oxide film can be formed on the substrate.

여기서 수열 처리란, 고온 고압 하(100 ℃ 및 1기압을 초과하는 기압 하)에서 반응성이 높은 물의 존재 하에서 행해지는 처리이다.Here, the hydrothermal treatment is a treatment carried out in the presence of highly reactive water under high temperature and high pressure (under 100 ° C. and atmospheric pressure exceeding 1 atmosphere).

구체적으로는 소량의 탄소와 알루미늄을 포함하는 막이 형성된 기체를, 오토클레이브 등에 의해 100 ℃ 내지 300 ℃, 바람직하게는 130 ℃ 내지 250 ℃의 온도에서 2 내지 5시간 가열 처리한다. 압력 조건은 1기압을 초과하는 기압, 바람직하게는 2 내지 3기압이다. 상기 조건으로 수열 처리를 행함으로써, 기체 상에 산화알루미늄을 포함하는 알루미늄 함유막을 형성할 수 있다.Specifically, the gas in which the film | membrane containing a small amount of carbon and aluminum is formed is heat-processed by autoclave etc. at the temperature of 100 to 300 degreeC, Preferably it is 130 to 250 degreeC for 2 to 5 hours. The pressure condition is an atmospheric pressure exceeding 1 atmosphere, preferably 2-3 atmospheres. By performing the hydrothermal treatment under the above conditions, an aluminum containing film containing aluminum oxide can be formed on the substrate.

또한, 수열 처리를 행할 때 촉매로서 염기성 화합물을 첨가할 수도 있다. 염기성 화합물로는, 예를 들면 아민류, 암모니아, 수산화나트륨, 수산화칼륨 등을 들 수 있다. 그 중에서도 휘발성을 갖고, 제거가 용이하다는 관점에서, 바람직하게는 아민류, 암모니아이고, 보다 바람직하게는 암모니아이다.In addition, a basic compound can also be added as a catalyst when performing a hydrothermal treatment. As a basic compound, amines, ammonia, sodium hydroxide, potassium hydroxide, etc. are mentioned, for example. Among them, from the viewpoint of having volatility and easy removal, they are preferably amines and ammonia, and more preferably ammonia.

염기성 화합물로서 암모니아를 이용하는 경우, 암모니아의 함유량은 알루미늄 함유막 형성용 조성물 100 질량부에 대하여, 바람직하게는 0.0001 질량부 내지100 질량부, 보다 바람직하게는 0.1 질량부 내지 50 질량부이다.When using ammonia as a basic compound, content of ammonia is preferably 0.0001 mass part-100 mass parts, More preferably, it is 0.1 mass part-50 mass parts with respect to 100 mass parts of compositions for aluminum containing film formation.

[실시예][Example]

이하, 본 발명을 실시예에 의해 구체적으로 설명하는데, 본 발명은 이러한 실시예에 한정되는 것은 아니다. 또한, 이하의 조작은 특기한 경우를 제외하고 전부 건조 질소 분위기 하에서 실시하였다. 또한, 이용한 용매는 전부 사전에 분자체 4A(유니온쇼와(주) 제조)로 탈수시키고, 또한 질소 가스를 버블링함으로써 탈기하였다.Hereinafter, the present invention will be described concretely with reference to Examples, but the present invention is not limited to these Examples. In addition, all the following operations were performed in the dry nitrogen atmosphere except the case mentioned specially. In addition, all the used solvents were dehydrated previously by molecular sieve 4A (made by Union Showa Co., Ltd.), and also degassed by bubbling nitrogen gas.

또한, 이하의 문장 중의 「%」는 특별한 언급이 없는 한 질량 기준이다.In addition, "%" in the following sentences is a mass reference | standard unless there is particular notice.

[합성예 1]Synthesis Example 1

디메틸아민을 2.0 mol/L의 함유량으로 포함하는 THF 용액 100 ml(0.20 mol)를 3구 플라스크에 가하고, 여기에 THF를 200 ml 추가하여 희석하였다. 이 희석액을 -40 ℃로 냉각시킨 후, 여기에 n-부틸리튬을 1.6 mol/L의 함유량으로 포함하는 헥산 용액 125 ml(0.20 mol)를 30분간 첨가하여 리튬디메틸아미드 용액을 얻었다. 별도의 플라스크에 염화알루미늄 8.9 g(0.067 mol)을 가하고, 여기에 THF 60 ml와 디에틸에테르 60 ml를 차례로 가하여 염화알루미늄을 용해시켜, 염화알루미늄 용액을 얻었다. 상기 리튬디메틸아미드 용액을 빙욕에서 냉각시키면서, 먼저 제조한 염화알루미늄 용액을 30분에 걸쳐 첨가하였다. 이어서, 실온에서 3시간 교반을 행한 후, 감압 농축을 행하여 용제를 전부 제거하였다. 플라스크 내에 남은 고체를 헥산 200 ml로 추출하고 나서 여과하고, 여과액을 재차 감압 농축시킴으로써 10.4 g의 황백색의 고체 물질을 얻었다. NMR과 분석법에 의한 분석 결과, 이 물질은 이하의 구조를 갖는 화합물인 것이 확인되었다. 또한, 수율은 97%였다.100 ml (0.20 mol) of THF solution containing dimethylamine in a content of 2.0 mol / L was added to a three neck flask, and 200 ml of THF was added thereto and diluted. After cooling this dilution liquid at -40 degreeC, 125 ml (0.20 mol) of hexane solutions which contain n-butyllithium in content of 1.6 mol / L were added here for 30 minutes, and the lithium dimethylamide solution was obtained. 8.9 g (0.067 mol) of aluminum chloride was added to another flask, and 60 ml of THF and 60 ml of diethyl ether were sequentially added thereto to dissolve aluminum chloride to obtain an aluminum chloride solution. While the lithium dimethylamide solution was cooled in an ice bath, the prepared aluminum chloride solution was added over 30 minutes. Subsequently, after stirring at room temperature for 3 hours, the mixture was concentrated under reduced pressure to completely remove the solvent. The solid remaining in the flask was extracted with 200 ml of hexane and then filtered, and the filtrate was concentrated under reduced pressure again to obtain 10.4 g of an off-white solid material. As a result of analysis by NMR and analytical method, it was confirmed that this substance was a compound which has the following structure. In addition, the yield was 97%.

Figure pat00011
Figure pat00011

(상기 구조를 갖는 화합물 중, 「Me」는 메틸기를 의미함)(In the compound which has the said structure, "Me" means a methyl group.)

[합성예 2][Synthesis Example 2]

3구 플라스크에 수소화 리튬알루미늄 0.51 g(0.014 mol)과 디에틸에테르 130 ml를 가하여 현탁액을 얻었다. 이 현탁액에 피롤리딘 4.92 g(0.070 mol)과 디에틸에테르 50 ml을 혼합하여 이루어지는 용액을 실온에서 가하였다. 첨가 후 2시간 실온에서 교반한 후, 감압 농축을 행하여 용제를 일단 제거하였다. 그 후 플라스크에 THF 80 ml를 가하고 재용해시킨 후, 염화알루미늄 0.60 g(0.0046 mol)과 THF 16 ml와 디에틸에테르 8 ml를 혼합 용해시켜 이루어지는 액을 실온에서 가하였다. 첨가 후 6시간 실온에서 교반한 후, 감압 농축하여 용제를 제거하고, 다음으로 톨루엔 80 ml를 가하여 추출하였다. 여과로 불용분을 제거한 후, 여과액을 감압 농축시킴으로써 황백색의 고체 3.5 g을 얻었다. NMR과 원소 분석의 결과, 이 물질은 이하의 구조를 갖는 화합물인 것이 확인되었다. 또한, 수율은 80%였다.0.51 g (0.014 mol) of lithium aluminum hydride and 130 ml of diethyl ether were added to a three neck flask to obtain a suspension. A solution obtained by mixing 4.92 g (0.070 mol) of pyrrolidine and 50 ml of diethyl ether was added to this suspension at room temperature. After the addition, the mixture was stirred at room temperature for 2 hours, and then concentrated under reduced pressure to remove the solvent once. Then, 80 ml of THF was added to the flask and redissolved. Then, a solution obtained by mixing and dissolving 0.60 g (0.0046 mol) of aluminum chloride, 16 ml of THF and 8 ml of diethyl ether was added at room temperature. After the addition, the mixture was stirred at room temperature for 6 hours, concentrated under reduced pressure to remove the solvent, and then 80 ml of toluene was added and extracted. After insoluble matter was removed by filtration, the filtrate was concentrated under reduced pressure to obtain 3.5 g of an off-white solid. As a result of NMR and elemental analysis, it was confirmed that this substance was a compound having the following structure. In addition, the yield was 80%.

Figure pat00012
Figure pat00012

[합성예 3][Synthesis Example 3]

자기 교반자를 넣은 200 ml의 삼구 플라스크 중에 수소화 리튬알루미늄 3.80 g을 투입하였다. 3구 플라스크의 3개의 접속구에는 각각 100 ml의 분체 첨가용 깔때기, 질소 기류에 접속시킨 흡인 마개 3방 코크 및 유리 마개를 접속시켰다. 트리에틸아민의 염화수소산염 17.80 g을 분체 첨가용 깔때기에 투입한 후에, 3구 플라스크를 흡인 마개 3방 코크를 통해 질소 밀봉 하에 두었다.3.80 g of lithium aluminum hydride was charged into a 200 ml three-neck flask containing a magnetic stirrer. The three connection ports of the three-necked flask were connected to a 100 ml powder addition funnel, a suction stopper three-way cock and a glass stopper connected to a nitrogen stream, respectively. After 17.80 g of hydrochloric acid triethylamine was charged into the powder addition funnel, the three-necked flask was placed under nitrogen sealing through a suction stopper three-way coke.

상기한 3구 플라스크에 유리 제조 시린지를 이용하여 헥산 100 ml를 가하였다. 자기 교반 막대에 의해 회전수 1,000 rpm으로 교반하면서, 트리에틸아민의 염화수소산염을 10분에 걸쳐 3구 플라스크 중에 서서히 떨어뜨린 후, 2시간 더 교반을 계속하였다.100 ml of hexane was added to the three neck flask using a glass syringe. While the hydrochloric acid salt of triethylamine was slowly dropped in a three neck flask over 10 minutes while stirring at a rotational speed of 1,000 rpm with a magnetic stir bar, stirring was continued for 2 hours.

그 후, 폴리테트라플루오로에틸렌제 튜브의 선단에 탈지면(일본약국방 탈지면)을 채운 것을 이용하여, 반응 혼합물을 압송에 의해 별도 용기에 취출하고, 이어서 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc. 제조)에 의해 여과하였다. 여과액은 300 ml 가지형 플라스크로 받고, 여과 종료 후에 자기 교반자를 넣고 흡인 마개 3방 코크를 장착하였다.Thereafter, the reaction mixture was taken out in a separate container by pressure feeding using a cotton wool (Japanese Pharmacopoeia cotton wool cotton) stuffed at the front end of the polytetrafluoroethylene tube, followed by a membrane filter having a pore diameter of 0.1 µm made of polytetrafluoroethylene. It filtered by (Whatman Inc. make). The filtrate was received in a 300 ml eggplant flask, and after completion of the filtration, a magnetic stirrer was put in and a suction stopper three-way cock was attached.

이 흡인 마개 3방 코크를, 트랩을 통해 진공 펌프에 접속시키고, 자기 교반 막대에 의해서 회전수 300 rpm으로 교반하면서 감압에서 용매를 제거하였다. 용매를 제거한 후, 잔존물을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc. 제조)를 이용하여 여과함으로써, 트리에틸아민과 수소화알루미늄과의 착체 10.25 g을 무색 투명한 액체로서 얻었다. 또한, 수율은 55%였다.This suction stopper 3-way coke was connected to the vacuum pump through a trap, and the solvent was removed at reduced pressure, stirring at 300 rpm by the magnetic stirring rod. After the solvent was removed, the residue was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 μm made of polytetrafluoroethylene to obtain 10.25 g of a complex of triethylamine and aluminum hydride as a colorless transparent liquid. In addition, the yield was 55%.

[합성예 4][Synthesis Example 4]

수소화 리튬알루미늄 5 g을 벤젠(80 ml) 중에 현탁시키고, 5 ℃로 냉각시킨 후, 미리 2시간 감압 건조를 행한 메틸아민염산염 및 에틸아민염산염의 혼합물을 가하였다. 또한, 여기서 투입된 메틸아민염산염 및 에틸아민염산염의 몰비는 3:1로 하였다. 또한, 수소화 리튬알루미늄에 대한 메틸아민염산염 및 에틸아민염산염의 혼합물의 양은, 수소화 리튬알루미늄과의 몰비가 1:1이 되도록 하였다. 5 ℃에서 1시간 교반한 후, 이 현탁액을 80 ℃까지 서서히 승온시켰다. 그 때, 50 ℃ 부근에서 약 1시간 유지시켰다. 80 ℃에서 18시간 환류시킨 후, 염화리튬 및 불용성이 된 반응물을 포함하는 침전물을 여과로 제거하고, 여액으로부터 벤젠을 감압 제거함으로써, 메틸이미노알란과 에틸이미노알란의 혼합물인 백색 고체를 7.5 g 얻었다. 또한, 수율은 94 %였다.5 g of lithium aluminum hydride was suspended in benzene (80 ml), cooled to 5 ° C., and then a mixture of methylamine hydrochloride and ethylamine hydrochloride, which had been dried under reduced pressure for 2 hours in advance, was added. In addition, the molar ratio of methylamine hydrochloride and ethylamine hydrochloride added here was 3: 1. The amount of the mixture of methylamine hydrochloride and ethylamine hydrochloride to lithium aluminum hydride was such that the molar ratio with lithium aluminum hydride was 1: 1. After stirring at 5 ° C for 1 hour, the suspension was gradually heated up to 80 ° C. At that time, it was kept for about 1 hour at 50 degreeC. After refluxing at 80 DEG C for 18 hours, the precipitate containing lithium chloride and the insoluble reactant was removed by filtration, and benzene was removed under reduced pressure from the filtrate to obtain a white solid, which is a mixture of methyliminoalan and ethyliminoalan, 7.5. g was obtained. In addition, the yield was 94%.

[바탕막 형성용 조성물의 제조][Production of Composition for Base Film Formation]

비스(펜타-2,4-디케토)티타늄(IV)디이소프로폭시드 0.30 g 및 테트라키스(디메틸아미노)티타늄 64 μL를 20 ml 유리 용기에 넣고, 여기에 프로필렌글리콜모노메틸에테르아세테이트를 가하여, 혼합물 전체양을 18.00 g으로 하였다. 혼합물을 충분히 교반한 후, 실온에서 2시간 정치시켰다. 이어서 이것을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc. 제조)를 이용하여 여과함으로써, 바탕막 형성용 조성물을 얻었다.0.30 g of bis (penta-2,4-diketo) titanium (IV) diisopropoxide and 64 μL of tetrakis (dimethylamino) titanium are placed in a 20 ml glass jar, and propylene glycol monomethyl ether acetate is added thereto. The total amount of the mixture was 18.00 g. After the mixture was sufficiently stirred, the mixture was allowed to stand at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 μm made of polytetrafluoroethylene to obtain a composition for forming a base film.

[알루미늄 함유막 형성용 조성물의 제조][Production of Composition for Forming Aluminum-Containing Film]

(1) 알루미늄 함유막 형성용 조성물 A의 제조(1) Preparation of Composition A for Forming Aluminum-Containing Film

합성예 1에서 얻어진 알루미늄 착체 2.0 g에 데칸 8.0 g을 가하고, 혼합물을 충분히 교반한 후, 실온에서 2시간 정치시켰다. 이어서 이것을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc.제조)를 이용하여 여과함으로써, 알루미늄 함유막 형성용 조성물 A를 얻었다.8.0 g of decane was added to 2.0 g of the aluminum complex obtained in Synthesis Example 1, and the mixture was sufficiently stirred, followed by standing at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 µm made of polytetrafluoroethylene to obtain a composition A for forming an aluminum-containing film.

(2) 알루미늄 함유막 형성용 조성물 B의 제조(2) Preparation of Composition B for Forming Aluminum-Containing Film

합성예 2로 얻어진 알루미늄 착체 2.0 g에 4-메틸아니솔 8.0 g을 가하고, 혼합물을 충분히 교반한 후, 실온에서 2시간 정치시켰다. 이어서 이것을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc. 제조)를 이용하여 여과함으로써, 알루미늄 함유막 형성용 조성물 B를 얻었다.After 8.0 g of 4-methylanisole was added to 2.0 g of the aluminum complex obtained in Synthesis Example 2, the mixture was sufficiently stirred and then allowed to stand at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 μm made of polytetrafluoroethylene to obtain a composition B for forming an aluminum-containing film.

(3) 알루미늄 함유막 형성용 조성물 C의 제조(3) Preparation of Composition C for Forming Aluminum-Containing Film

합성예 3으로 얻어진 알루미늄 착체 1.0 g에 4-메틸아니솔 9.0 g을 가하고, 혼합물을 충분히 교반한 후, 실온에서 2시간 정치시켰다. 이어서 이것을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc. 제조)를 이용하여 여과함으로써, 알루미늄 함유막 형성용 조성물 C를 얻었다.9.0 g of 4-methylanisole was added to 1.0 g of the aluminum complex obtained in Synthesis Example 3, and the mixture was sufficiently stirred, followed by standing at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 μm made of polytetrafluoroethylene to obtain a composition C for forming an aluminum-containing film.

(4) 알루미늄 함유막 형성용 조성물 D의 제조(4) Preparation of Composition D for Forming Aluminum-Containing Film

합성예 4로 얻어진 이미노알란 혼합물 1.0 g에 톨루엔 9.0 g을 가하고, 혼합물을 충분히 교반한 후, 실온에서 2시간 정치시켰다. 이어서 이것을 폴리테트라플루오로에틸렌제 공경 0.1 ㎛의 멤브레인필터(Whatman Inc.제조)를 이용하여 여과함으로써, 알루미늄 함유막 형성용 조성물 D를 얻었다.9.0 g of toluene was added to 1.0 g of the iminoalan mixture obtained in the synthesis example 4, and after stirring the mixture sufficiently, it was left to stand at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) having a pore diameter of 0.1 μm made of polytetrafluoroethylene to obtain a composition D for forming an aluminum-containing film.

[알루미늄 함유막의 형성][Formation of Aluminum-containing Film]

[실시예 1]Example 1

(1) 4인치의 실리콘 기판을 스핀 코터에 장착하고, 질소 가스 분위기 하에서 상기 바탕막 형성용 조성물 1 ml를 적하하고, 회전수 3,000 rpm으로 10초간 스핀시켰다. 이 기판을 150 ℃로 설정한 핫플레이트에 올려 2분간 가열하였다. 바탕막의 두께는 5 ㎚였다.(1) A 4 inch silicon substrate was mounted in a spin coater, and 1 ml of the base film-forming composition was added dropwise under a nitrogen gas atmosphere, and spun at 10 rpm for 10 seconds. The substrate was placed on a hot plate set at 150 ° C and heated for 2 minutes. The thickness of the base film was 5 nm.

(2) 이어서 이 기판을 질소 분위기 하에서 스핀 코터에 다시 장착하고, 상기 알루미늄 함유막 형성용 조성물 A를 2.5 g 적하하여, 회전수 1400 rpm으로 10초간스핀시켰다. 이 기판을 150 ℃의 핫플레이트에서 5분간 가열하였다.(2) Subsequently, the substrate was mounted on the spin coater again under a nitrogen atmosphere, and 2.5 g of the composition A for forming an aluminum-containing film was added dropwise thereto, followed by spin for 10 seconds at a rotational speed of 1400 rpm. The substrate was heated on a 150 ° C. hotplate for 5 minutes.

(3) 그 후 기판을 질소 분위기의 로 내에서 500 ℃로 1시간 가열하였다.(3) Then, the board | substrate was heated at 500 degreeC in the furnace of nitrogen atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 2][Example 2]

실시예 1의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 암모니아 가스 분위기(760 torr)의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 1 was heated at 500 degreeC in the furnace of ammonia gas atmosphere (760 torr) for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 3][Example 3]

실시예 1의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 공기 분위기의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 1 was heated at 500 degreeC in the furnace of air atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 4]Example 4

실시예 1의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 수증기분위기(760 torr)의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 1 was heated at 500 degreeC in the furnace of the steam atmosphere (760 torr) for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 5][Example 5]

실시예 1의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 10% NH3 수용액 100 g이 들어간 밀폐 내압 용기 내에 넣고, 170 ℃의 분위기를 갖는 로에 도입함으로써, 용기 내에 발생한 암모니아 증기 및 수증기를 가압 하에서 3시간에 걸쳐 노출시켜, 수열 처리를 행하였다.By Example 1 (1) and (2) and into the substrate obtained by performing the procedures in the same way, in a closed pressure vessel containing a 10% NH 3 aqueous solution of 100 g, introducing the furnace having an atmosphere of 170 ℃, ammonia generated in the container Steam and water vapor were exposed over 3 hours under pressurization, and hydrothermal treatment was performed.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 6][Example 6]

(1) 4인치의 실리콘 기판을 150 ℃로 설정한 핫플레이트에 올리고, 2분간 가열하여 표면에 흡착된 수분을 제거하였다.(1) A 4-inch silicon substrate was placed on a hot plate set at 150 deg. C and heated for 2 minutes to remove moisture adsorbed on the surface.

(2) 이어서 이 기판을 질소 분위기 하에서 스핀 코터에 장착하고, 상기 알루미늄 함유막 형성용 조성물 B를 2.5 g 적하하여, 회전수 1400 rpm으로 10초간 스핀시켰다. 이 기판을 150 ℃의 핫플레이트에서 5분간 가열하였다.(2) Subsequently, this board | substrate was attached to the spin coater in nitrogen atmosphere, 2.5 g of the said aluminum containing film formation compositions B were dripped, and it spun for 10 second at 1400 rpm. The substrate was heated on a 150 ° C. hotplate for 5 minutes.

(3) 그 후 기판을 질소 분위기의 로 내에서 500 ℃로 1시간 가열하였다.(3) Then, the board | substrate was heated at 500 degreeC in the furnace of nitrogen atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 7][Example 7]

실시예 6의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 암모니아 가스 분위기(760 torr)의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 6 was heated at 500 degreeC in the furnace of ammonia gas atmosphere (760 torr) for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 8][Example 8]

실시예 6의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 공기 분위기의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 6 was heated at 500 degreeC in the furnace of air atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 9][Example 9]

실시예 6의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 수증기분위기(760 torr)의 로 내에서 500 ℃로 1시간 가열하였다.The board | substrate obtained by performing the procedure similar to (1) and (2) of Example 6 was heated at 500 degreeC in the furnace of the steam atmosphere (760 torr) for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[실시예 10][Example 10]

실시예 6의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 10% NH3 수용액 100 g이 들어간 밀폐 내압 용기 내에 넣고, 170 ℃의 분위기를 갖는 로에 도입함으로써, 용기 내에 발생한 암모니아 증기 및 수증기를 가압 하에서 3시간에 걸쳐 노출시켜, 수열 처리를 행하였다.By Example 6 (1) and (2) and into the substrate obtained by performing the procedures in the same way, in a closed pressure vessel containing a 10% NH 3 aqueous solution of 100 g of introducing a furnace having an atmosphere of 170 ℃, ammonia generated in the container Steam and water vapor were exposed over 3 hours under pressurization, and hydrothermal treatment was performed.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[비교예 1]Comparative Example 1

(1) 4인치의 실리콘 기판을 스핀 코터에 장착하고, 질소 가스 분위기 하에서 상기 바탕막 형성용 조성물 1 ml를 적하하고, 회전수 3,000 rpm으로 10초간 스핀시켰다. 이 기판을 150 ℃로 설정한 핫플레이트에 올려, 2분간 가열하였다. 바탕막의 두께는 5 ㎚였다.(1) A 4 inch silicon substrate was mounted in a spin coater, and 1 ml of the base film-forming composition was added dropwise under a nitrogen gas atmosphere, and spun at 10 rpm for 10 seconds. This board | substrate was put on the hotplate set to 150 degreeC, and it heated for 2 minutes. The thickness of the base film was 5 nm.

(2) 이어서 이 기판을 질소 분위기 하에서 스핀 코터에 장착하고, 상기 알루미늄 함유막 형성용 조성물 C 2.5 g을 적하하여, 회전수 1400 rpm으로 10초간 스핀시켰다. 이 기판을 150 ℃의 핫플레이트에서 5분간 가열하였다.(2) Subsequently, this board | substrate was attached to the spin coater in nitrogen atmosphere, 2.5 g of the said aluminum containing film formation compositions C were dripped, and it spun for 10 second at 1400 rpm. The substrate was heated on a 150 ° C. hotplate for 5 minutes.

(3) 그 후 기판을 공기 분위기의 로 내에서 500 ℃로 1시간 가열하였다.(3) Then, the board | substrate was heated at 500 degreeC in the furnace of air atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[비교예 2]Comparative Example 2

비교예 1의 (1) 및 (2)와 마찬가지의 절차를 행하여 얻어진 기판을, 10% NH3 수용액 100 g이 들어간 밀폐 내압 용기 내에 넣고, 170 ℃의 분위기를 갖는 로에 도입함으로써, 용기 내에 발생한 암모니아 증기 및 수증기를 가압 하에서 3시간에 걸쳐 노출시켜, 수열 처리를 행하였다.Comparative Example 1 (1) and (2) and into the substrate obtained by performing the procedures in the same way, in a closed pressure vessel containing a 10% NH 3 aqueous solution 100 g, the introduction of a furnace having an atmosphere of 170 ℃, ammonia generated in the container Steam and water vapor were exposed over 3 hours under pressurization, and hydrothermal treatment was performed.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

[비교예 3][Comparative Example 3]

(1) 4인치의 실리콘 기판을 150 ℃로 설정한 핫플레이트에 올리고, 2분간 가열하여 표면에 흡착된 수분을 제거하였다.(1) A 4-inch silicon substrate was placed on a hot plate set at 150 deg. C and heated for 2 minutes to remove moisture adsorbed on the surface.

(2) 이어서 이 기판을 질소 분위기 하에서 스핀 코터에 장착하고, 상기 알루미늄 함유막 형성용 조성물 D를 2.5 g 적하하여, 회전수 1400 rpm으로 10초간 스핀시켰다. 이 기판을 150 ℃의 핫플레이트로 5분간 가열하였다.(2) Subsequently, this substrate was mounted in a spin coater under a nitrogen atmosphere, and 2.5 g of the composition D for forming an aluminum-containing film was added dropwise thereto, followed by spin for 10 seconds at a rotational speed of 1400 rpm. This substrate was heated for 5 minutes with a 150 degreeC hotplate.

(3) 그 후 기판을 공기 분위기의 로 내에서 500 ℃로 1시간 가열하였다.(3) Then, the board | substrate was heated at 500 degreeC in the furnace of air atmosphere for 1 hour.

이렇게 해서 얻어진 막의 막 두께를 단면 SEM(주사형 전자현미경)을 이용하여 분석하고, 또한 상기 막의 조성을 RBS 분석(러더포드 후방 산란 분석)을 이용하여 분석하였다. 결과를 표 1에 나타내었다.The film thickness of the film thus obtained was analyzed using a cross-sectional SEM (scanning electron microscope), and the composition of the film was analyzed using RBS analysis (Rutherford backscattering analysis). The results are shown in Table 1.

Figure pat00013
Figure pat00013

표 1의 결과로부터, 본 발명의 알루미늄 함유막 형성용 조성물을 이용하여, 질소 분위기 또는 암모니아 분위기 하에서 가열 처리를 행한 경우에는 질화알루미늄 막을 얻을 수 있다. 한편, 본 발명의 알루미늄 함유막 형성용 조성물을 이용하여, 공기 또는 수증기 분위기 하에서 가열 처리를 행한 경우, 또는 수열 처리를 행한 경우에는 산화알루미늄 막을 얻을 수 있다.From the result of Table 1, when heat-processing in nitrogen atmosphere or ammonia atmosphere using the composition for aluminum containing film formation of this invention, an aluminum nitride film can be obtained. On the other hand, an aluminum oxide film can be obtained when the heat treatment is performed in an air or steam atmosphere using the composition for forming an aluminum-containing film of the present invention or when the hydrothermal treatment is performed.

특히, 실시예 3 및 8과, 비교예 1 및 3을 비교하면, 산화력이 비교적 약한 공기중에서 가열 처리를 행하더라도, 본 발명의 알루미늄 함유막 형성용 조성물을 이용한 경우에는 순도가 높은 산화알루미늄 막을 얻을 수 있다. 이것은 상기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물의 높은 반응성에서 기인하는 것이라고 생각된다.Particularly, when Examples 3 and 8 and Comparative Examples 1 and 3 are compared, even when heat treatment is performed in air having a relatively low oxidizing power, a high purity aluminum oxide film can be obtained when the composition for forming an aluminum-containing film of the present invention is used. Can be. This is considered to be due to the high reactivity of the organoaluminum compound which has a structure represented by the said General formula (1).

Claims (11)

하기 화학식 (1)로 표시되는 구조를 갖는 유기 알루미늄 화합물과 유기 용매를 함유하는 알루미늄 함유막 형성용 조성물.
Figure pat00014

(상기 화학식 (1) 중, R1 내지 R6은 수소 원자 또는 탄화수소기이고, 각각 동일하거나 상이할 수도 있으며, Rn(n은 1 내지 6의 정수임)끼리 서로 연결되어 있을 수도 있음)
An aluminum-containing film-forming composition containing an organoaluminum compound having a structure represented by the following formula (1) and an organic solvent.
Figure pat00014

(In formula (1), R 1 to R 6 may be a hydrogen atom or a hydrocarbon group, may be the same or different, and R n (n is an integer of 1 to 6) may be connected to each other.
기체 상에, 제1항에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과,
상기 도포층을 불활성 가스 또는 환원성 가스 분위기 하에서, 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 질화알루미늄 막을 형성하는 경화 공정을 포함하는 알루미늄 함유막의 형성 방법.
A coating step of applying the composition for forming an aluminum-containing film according to claim 1 to form a coating layer on the substrate;
Forming an aluminum-containing film comprising a curing step of forming an aluminum nitride film by subjecting the coating layer to at least one selected from the group consisting of heating, electron beam irradiation, ultraviolet irradiation and plasma under an inert gas or reducing gas atmosphere. Way.
제2항에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.The method for forming an aluminum-containing film according to claim 2, wherein the base is coated with a film containing aluminum or a transition metal on the surface of the base body. 기체 상에, 제1항에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과,
상기 도포층을 산화성 분위기 하에서, 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 산화알루미늄 막을 형성하는 경화 공정을 포함하는 알루미늄 함유막의 형성 방법.
A coating step of applying the composition for forming an aluminum-containing film according to claim 1 to form a coating layer on the substrate;
A method of forming an aluminum-containing film comprising a curing step of forming an aluminum oxide film by subjecting the coating layer to at least one selected from the group consisting of heating, electron beam irradiation, ultraviolet irradiation and plasma under an oxidizing atmosphere.
제4항에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.The method for forming an aluminum-containing film according to claim 4, wherein the base is coated with a film containing aluminum or a transition metal on the surface of the base body. 제4항에 있어서, 상기 산화성 분위기가 산화성 가스 분위기인 알루미늄 함유막의 형성 방법.The method for forming an aluminum containing film according to claim 4, wherein the oxidative atmosphere is an oxidizing gas atmosphere. 제6항에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.The method for forming an aluminum-containing film according to claim 6, wherein the base is coated with a film containing aluminum or a transition metal on the surface of the base body. 제4항에 있어서, 상기 산화성 분위기가 공기 분위기인 알루미늄 함유막의 형성 방법.The method for forming an aluminum containing film according to claim 4, wherein the oxidative atmosphere is an air atmosphere. 제8항에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.The method for forming an aluminum-containing film according to claim 8, wherein the base is coated with a film containing aluminum or a transition metal on the surface of the base body. 기체 상에, 제1항에 기재된 알루미늄 함유막 형성용 조성물을 도포하여 도포층을 형성하는 도포 공정과,
상기 도포층을 가열, 전자선 조사, 자외선 조사 및 플라즈마로 이루어지는 군에서 선택되는 적어도 1종의 처리를 행함으로써, 탄소와 알루미늄을 포함하는 막을 형성하는 막 형성 공정과,
막 형성 공정에서 얻어진 막에 수열(水熱) 처리를 행함으로써, 산화알루미늄 막을 형성하는 후처리 공정을 포함하는 알루미늄 함유막의 형성 방법.
A coating step of applying the composition for forming an aluminum-containing film according to claim 1 to form a coating layer on the substrate;
A film forming step of forming a film containing carbon and aluminum by subjecting the coating layer to at least one treatment selected from the group consisting of heating, electron beam irradiation, ultraviolet irradiation and plasma;
A method of forming an aluminum-containing film comprising a post-treatment step of forming an aluminum oxide film by subjecting the film obtained in the film forming step to a hydrothermal treatment.
제10항에 있어서, 상기 기체는, 기체 본체의 표면이 알루미늄 또는 전이 금속을 함유하는 막으로 피복되어 있는 것인 알루미늄 함유막의 형성 방법.The method for forming an aluminum-containing film according to claim 10, wherein the base is covered with a film containing aluminum or a transition metal on the surface of the base body.
KR1020130022028A 2012-03-02 2013-02-28 Composition for forming aluminum-containing film and method for forming aluminum-containing film KR20130100734A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-046577 2012-03-02
JP2012046577A JP5799856B2 (en) 2012-03-02 2012-03-02 Method for forming aluminum-containing film

Publications (1)

Publication Number Publication Date
KR20130100734A true KR20130100734A (en) 2013-09-11

Family

ID=49042985

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130022028A KR20130100734A (en) 2012-03-02 2013-02-28 Composition for forming aluminum-containing film and method for forming aluminum-containing film

Country Status (4)

Country Link
US (1) US9080065B2 (en)
JP (1) JP5799856B2 (en)
KR (1) KR20130100734A (en)
TW (1) TW201348242A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108930029A (en) * 2018-06-22 2018-12-04 江苏和兴汽车科技有限公司 A kind of process of surface treatment promoting aluminium alloy endurance quality

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251407A (en) * 1988-08-15 1990-02-21 Murata Mfg Co Ltd Production of thin aluminum nitride film
JP3689524B2 (en) 1996-03-22 2005-08-31 キヤノン株式会社 Aluminum oxide film and method for forming the same
JP4362919B2 (en) 2000-02-04 2009-11-11 株式会社デンソー Deposition method by atomic layer epitaxial growth method
CN1590457A (en) * 2000-07-25 2005-03-09 三井化学株式会社 Curable composition and its use
US7141500B2 (en) 2003-06-05 2006-11-28 American Air Liquide, Inc. Methods for forming aluminum containing films utilizing amino aluminum precursors
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
JP5062507B2 (en) * 2006-02-08 2012-10-31 学校法人早稲田大学 Alumina film, method for producing the same, and optical apparatus
JP4706544B2 (en) * 2006-04-14 2011-06-22 Jsr株式会社 Alumina film forming method

Also Published As

Publication number Publication date
TW201348242A (en) 2013-12-01
JP2013181119A (en) 2013-09-12
US9080065B2 (en) 2015-07-14
US20130230666A1 (en) 2013-09-05
JP5799856B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP4706544B2 (en) Alumina film forming method
TWI525047B (en) Process for producing indium oxide-containing layers
KR101725573B1 (en) Method for the production of metal oxide-containing layers
TW201217389A (en) Indium oxo alkoxides for the production of indium oxide-containing layers
TW201137170A (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and use thereof
TW201031673A (en) Formulations comprising a mixture of ZnO cubanes and process using them to produce semiconductive ZnO layers
KR20110131180A (en) Method for producing semiconducting indium oxide layers, indium oxide layers produced according to said method and their use
JP5071668B2 (en) Aluminum film forming composition and aluminum film forming method
WO2012053433A1 (en) Method for forming alumina film
JP4892839B2 (en) Method for forming an aluminum film
WO2012053436A1 (en) Composition for forming alumina film and method for forming alumina film
KR20130100734A (en) Composition for forming aluminum-containing film and method for forming aluminum-containing film
JP5093448B2 (en) Trench filling method
US9150962B2 (en) Method for producing substrate with metal body
WO2004065659A1 (en) Composition for forming silicon·aluminum film, silicon·aluminum film and method for forming the same
KR101569224B1 (en) Composition for forming aluminum film and method for forming aluminum film
TW200848543A (en) Composition for forming aluminum film and method for forming aluminum film
JP4930681B2 (en) Method for forming aluminum film on the inner surface of the tube
JP5817593B2 (en) Aluminum body forming composition and aluminum body forming method
CN105503928B (en) Aluminium presoma for thin film deposition and preparation method thereof
JP2013021068A (en) Manufacturing method of substrate including aluminum body
JP2013124374A (en) Method of manufacturing laminate of substrate and aluminum body
KR20150133329A (en) Method for manufacturing pedot film having ultra-high conductivity prepared by using weak base (dudo) and electronic device including the same

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid