JPH0251407A - Production of thin aluminum nitride film - Google Patents

Production of thin aluminum nitride film

Info

Publication number
JPH0251407A
JPH0251407A JP20289088A JP20289088A JPH0251407A JP H0251407 A JPH0251407 A JP H0251407A JP 20289088 A JP20289088 A JP 20289088A JP 20289088 A JP20289088 A JP 20289088A JP H0251407 A JPH0251407 A JP H0251407A
Authority
JP
Japan
Prior art keywords
substrate
org
aluminum
aluminum nitride
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20289088A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Okabe
岡部 参省
Yukio Sakabe
行雄 坂部
Yasunobu Yoneda
康信 米田
Yutaka Takeshima
裕 竹島
Hiroshi Tamura
博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20289088A priority Critical patent/JPH0251407A/en
Publication of JPH0251407A publication Critical patent/JPH0251407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a thin AlN film having high purity by coating a substrate with a soln. contg. an org. compd. of Al and an org. compd. of a rare earth element and by calcining the coated substrate in a nitrogen atmosphere. CONSTITUTION:An org. compd. of Al such as aluminum ethoxide and an org. compd. of at least one kind of rare earth element such as Y(OC3H7)3 are dissolved in an org. solvent. A substrate is coated with the resulting soln. and this coated substrate is calcined at 1,400-1,600 deg.C in a nitrogen atmosphere to form a thin AlN film having <=10mum thickness and high heat conductivity on the substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化アルミニウム薄膜の製造方法、特に、IC
その他の半導体デバイス、光デバイスおよび電子回路の
基板として有用な高熱伝導性窒化アルミニウム薄膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of manufacturing an aluminum nitride thin film, particularly to an IC
The present invention relates to a method for producing a highly thermally conductive aluminum nitride thin film useful as a substrate for other semiconductor devices, optical devices, and electronic circuits.

(従来の技術) 最近、半導体デバイスの高集積化、高速化あるいはデバ
イスの実装の高密度化に伴い、そのパッケージやヒート
シンクの熱放散性が大きな問題となり、一般に使用され
ている酸化アルミニウム基板では対応できなくなってき
ている。このため高熱伝導性のへりリアや炭化ケイ素が
一部採用されてはいるが、経済性や毒性などの問題があ
ることから、これらに代わる高熱伝導性で高絶縁性材料
が要求されるようになってきている。
(Conventional technology) Recently, as semiconductor devices become more highly integrated and faster, and the density of device packaging increases, the heat dissipation of their packages and heat sinks has become a major issue, and the generally used aluminum oxide substrates have not been able to solve this problem. It's becoming impossible. For this reason, highly thermally conductive heliaria and silicon carbide have been used in some cases, but due to problems such as economic efficiency and toxicity, there is a need for high thermally conductive and highly insulating materials to replace them. It has become to.

このため、ベリリヤに匹敵ずろ熱伝導率を有する窒素化
アルミニウム(以下、A12Nと記す。)が開発され、
一部実用に供されてきている。このAQNは、通常、ア
ルミナに酸化イツトリウムおよび炭素を加え、これらの
混合粉末を窒素雰囲気中で焼成してAaN粉末を生成さ
せ、このARN粉末を粉砕して微粉化したのち、有機バ
インダを加えて混練し、生成したスラリーをドクターブ
レード法等によりシート化し、そのシートを1800℃
前後で焼成する方法により製造されている。
For this reason, aluminum nitride (hereinafter referred to as A12N), which has a thermal conductivity comparable to Berilya, was developed.
Some of them have been put into practical use. This AQN is usually produced by adding yttrium oxide and carbon to alumina, firing the mixed powder in a nitrogen atmosphere to produce AaN powder, pulverizing this ARN powder into a fine powder, and then adding an organic binder. The resulting slurry is made into a sheet by a doctor blade method, etc., and the sheet is heated to 1800℃.
It is manufactured using a method of firing before and after.

(発明か解決しようとする課題) しかしながら、前記方法では、A&N膜を形成するには
多数の工程を必要とし、しかも、乾式粉砕にしても湿式
粉砕にしても機械的粉砕により微粉化するため粉体粒径
が大きいことは否めず、必熱的にAgN膜の厚くなって
、108m以下の薄膜を製造することは不可能であった
(Problems to be Solved by the Invention) However, the method described above requires a large number of steps to form the A&N film, and furthermore, whether it is dry grinding or wet grinding, the powder is pulverized by mechanical grinding. It is undeniable that the grain size is large, and the thickness of the AgN film inevitably increases, making it impossible to manufacture a thin film of 108 m or less.

他方、薄膜技術として公知のスパッタリング法や蒸着法
をA(!N薄膜の製造に適用することが考えられるが、
これらの方法は、薄膜形成のための装置が高価であり、
しかも、生産効率か低く原料の損失が大きいため経済的
に満足し得るものではない。
On the other hand, it is conceivable to apply known thin film techniques such as sputtering and vapor deposition methods to the production of A(!N thin films.
These methods require expensive equipment for thin film formation;
Moreover, the production efficiency is low and the loss of raw materials is large, so it is not economically satisfactory.

従って、本発明は、簡単な操作で効率よ<10μm以下
の厚さの高熱伝導性AaN薄膜を製造できろようにする
ことを技術的課題とするしのである。
Therefore, the technical object of the present invention is to enable efficient production of a highly thermally conductive AaN thin film with a thickness of <10 μm or less using simple operations.

(課題を解決するための手段) 本発明は、前記課題を解決するための手段として、アル
ミニウムの有機化合物と少なくとも一種の希土類元素の
有機化合物を含む溶液を基体上に塗布し、該塗膜を窒素
雰囲気中1400〜1600℃の温度で焼成することを
特徴とする窒化アルミニウム薄膜の製造方法を提供する
ものである。
(Means for Solving the Problems) As a means for solving the above problems, the present invention applies a solution containing an organic compound of aluminum and an organic compound of at least one rare earth element onto a substrate, and forms the coating film. The present invention provides a method for producing an aluminum nitride thin film, which is characterized by firing at a temperature of 1400 to 1600°C in a nitrogen atmosphere.

本発明においては、必要に応じて、前記溶液にアルカリ
土類金属の有機化合物らしくはその溶液を添加し、その
溶液を用いて窒化アルミニウムを製造することらできる
In the present invention, if necessary, a solution of an organic compound of an alkaline earth metal may be added to the solution, and aluminum nitride can be produced using the solution.

本発明において使用するアルミニウムの有機化合物とし
ては、アルミニウムエトキシド、アルミニウムイソプロ
ボキンド、アルミニウムエトキシドなどのアルミニウム
アルコキシド; アルミニウムの脂肪酸塩、樹脂酸塩、
ナフテン酸塩などのアルミニウム石鹸: アセチルアセ
トナドアルミニウム; およびアミノアルコキシドなど
任意のものを使用できるが、いづれの場合ら、比較的炭
素数の少ない有機化合物、例えば、炭素数8以下のアル
キル基を有する化合物を用いるのが好適である。これは
、塗膜を焼成することによってアルミニウムの有機化合
物が分解し、炭素を生成するため、何機化合物の炭素数
か多くなるほとAaN薄膜中に析出する炭素mが多くな
り、この炭素を除去するため空気中で焼成するのに要す
る時間が長くなるからである。
The organic compounds of aluminum used in the present invention include aluminum alkoxides such as aluminum ethoxide, aluminum isoproboquine, and aluminum ethoxide; aluminum fatty acid salts, resinates,
Aluminum soaps such as naphthenates: aluminum acetylacetonado; and aminoalkoxides can be used, but in either case, organic compounds with a relatively small number of carbon atoms, e.g. Preference is given to using compounds. This is because when the coating film is fired, the organic compounds of aluminum decompose and generate carbon, so as the number of carbon atoms in the organic compound increases, the amount of carbon m precipitated in the AaN thin film increases. This is because it takes a long time to bake in the air to remove the particles.

前記アミノアルコキシドには、例えば、ジプロポキシ 
ノ(2−ヒドロキシエチルアミノ)エトキノ)アルミニ
ウム[AC(OC3I47)2[N(C2H,OH:L
−C21r、0]]?;どが含まれる。
The amino alkoxide includes, for example, dipropoxy
(2-Hydroxyethylamino)ethquino)aluminum [AC(OC3I47)2[N(C2H,OH:L
-C21r, 0]]? ; Contains.

また、希土類元素およびアルカリ土類金属の有機化合物
としては、アルミニウムの有機化合物と同様、それらの
金属のアルコキッド、石鹸、アセデルアセトネート、ア
ミノアルコキシドなどを使用すれば良い。
Further, as organic compounds of rare earth elements and alkaline earth metals, alkoxides, soaps, acedelacetonates, aminoalkoxides, etc. of these metals may be used, similar to the organic compounds of aluminum.

なお、基板の材料としては、塗膜を焼成する際、Ai!
N構成元素と反応したり、熔融したりしない乙のであれ
ば任意のものを使用できるか、代表的なしのとしては、
アルミナ、ジルコニアなどが挙げられる。
In addition, as the material of the substrate, when baking the coating film, Ai!
Any material can be used as long as it does not react with or melt the N constituent elements.
Examples include alumina and zirconia.

(イ乍用) 本発明方法においては、少なくともアルミニラl、のY
l−機化合物と希土類元素の何機化合物を含む溶液をデ
ィッピングあるいはスピンコーティング法など適当な手
段により基板上に塗布し、その塗膜を、窒素雰囲気中、
所定の温度で焼成すると、萌記宵機化合物が分解してア
ルミニウムか窒素と直接反応し、それと同時に焼結助剤
として機能する希土類元素およびアルカリ土類金属の作
用により焼結し、基板上にAσN薄膜が形成されろ。
(For use) In the method of the present invention, at least Y of alumina l,
A solution containing an l-organic compound and a rare-earth element compound is applied onto a substrate by an appropriate method such as dipping or spin coating, and the coating film is coated in a nitrogen atmosphere.
When fired at a predetermined temperature, the Moekishiki compound decomposes and reacts directly with aluminum or nitrogen, and at the same time sinters due to the action of rare earth elements and alkaline earth metals that act as sintering aids, forming a sintered material on the substrate. An AσN thin film is formed.

(実施例I) Aり(OC3l−17)298 、1重量部とY(OC
3H?)319重量部をイソプロピルアルコール500
m&に溶解して、溶液を調製する。この溶液をアルミナ
基板上にディッピング法により塗布し、所望のj7さの
塗膜を形成したのち、これを窒素雰囲気中で1400〜
1600℃で焼成したところ、Al2N薄膜が得られた
(Example I) A (OC3l-17) 298, 1 part by weight and Y(OC3l-17)298, 1 part by weight
3H? ) 319 parts by weight and 500 parts by weight of isopropyl alcohol.
Prepare a solution by dissolving in m&. This solution was applied onto an alumina substrate by a dipping method to form a coating film with a desired thickness of J7, and then this was heated to a temperature of 1400 to
When fired at 1600°C, an Al2N thin film was obtained.

このAQN薄膜の熱伝導率を測定したところ、0.30
cal/cm−sec−’Cであった。
When the thermal conductivity of this AQN thin film was measured, it was found to be 0.30.
cal/cm-sec-'C.

(実施例2) AQ(OC3H?)2[N (C2H401−V)2・
C、f−1、0]983重量部と、Y(OC31(7)
2「N(C7[1−0[−1)2・C,H40]1,7
重量部とをメヂルセロソルブ500mgに溶解させて塗
膜形成用溶液を調製する。
(Example 2) AQ(OC3H?)2[N (C2H401-V)2・
C, f-1, 0]983 parts by weight, Y(OC31(7)
2 "N(C7[1-0[-1)2・C,H40]1,7
A solution for forming a coating film is prepared by dissolving parts by weight in 500 mg of Medil Cellosolve.

この溶液をアルミナ基板上にスピンコーティング法によ
り塗布し、所望の厚さの塗膜を形成したのち、これを窒
素雰囲気中で1400〜1600℃で焼成したところ、
AQN薄膜か得られた。
This solution was applied onto an alumina substrate by spin coating to form a coating film of the desired thickness, and then baked at 1400 to 1600°C in a nitrogen atmosphere.
An AQN thin film was obtained.

このAσN薄膜の熱伝導率を測定したところ、0 、3
 cal/cm−sec・℃であった。
When the thermal conductivity of this AσN thin film was measured, it was 0.3
cal/cm-sec·°C.

(実施例3) Aρ(OCaH7)、[N(C2H40H)2  ・ 
C2H,O]97.3重世部と、オクチル酸イツトリウ
ム2.7重量部とをメチルセロソルブ500m&に溶解
させて塗膜形成用溶液を調製する。この溶液をアルミナ
基板上にスピンコーティング法により塗布し、所望の厚
さの塗膜を形成したのち、これを窒素雰囲気中で140
0〜1600℃で焼成したところ、A(N薄膜か得られ
た。
(Example 3) Aρ(OCaH7), [N(C2H40H)2 ・
A solution for forming a coating film is prepared by dissolving 97.3 parts by weight of C2H,O] and 2.7 parts by weight of yttrium octylate in 500 m& of methyl cellosolve. This solution was applied onto an alumina substrate by spin coating to form a coating film of the desired thickness, and then coated at 140° C. in a nitrogen atmosphere.
When fired at 0 to 1600°C, an A(N thin film was obtained).

このAQN薄膜の熱伝導率を測定したところ、0 、3
 cal/cm−sec ・’Cであった。
When the thermal conductivity of this AQN thin film was measured, it was found to be 0,3
cal/cm-sec ·'C.

(発明の効果) 以上の説明から明らかなように、本発明によれば、塗膜
の焼成によりA[Nが直接生成されるため、従来のよう
に面段階としてA(Nを合成しておく必要がなく、簡単
な操作で生成できる。また、結晶粒が0.1μm前後と
極めて小さいため、成膜用原料液の濃度を変えることに
より、あるいは、塗膜の形成と焼成との反復回数を適宜
設定することにより1μmという超薄膜でも製造するこ
とができ、しかも、高価な装置を必要としないので安価
に製造でき、量産化することができる。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, A[N is directly generated by firing the coating film, so A[N is synthesized as a surface step as in the conventional method. It is not necessary and can be produced with a simple operation.Also, since the crystal grains are extremely small at around 0.1 μm, it is possible to change the concentration of the raw material solution for film formation or to reduce the number of repetitions of film formation and firing. With appropriate settings, even ultra-thin films of 1 μm can be manufactured, and since no expensive equipment is required, it can be manufactured at low cost and can be mass-produced.

さらに、従来法に比べ、焼成温度か低く、工程数ら少な
いためコストダウンを図ることができ、製造過程で不純
物が混入することがないため高純度のACN薄膜を製造
できろ、など優れた効果が得られる。
Furthermore, compared to conventional methods, the firing temperature is lower and the number of steps is smaller, which reduces costs, and there are no impurities mixed in during the manufacturing process, making it possible to manufacture high-purity ACN thin films. is obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムの有機化合物と少なくとも一種の希
土類元素の有機化合物を含む溶液を基体上に塗布し、生
成した塗膜を窒素雰囲気中1400〜1600℃の温度
で焼成することを特徴とする窒化アルミニウム薄膜の製
造方法。
(1) Aluminum nitride, characterized in that a solution containing an organic compound of aluminum and at least one organic compound of a rare earth element is applied onto a substrate, and the resulting coating film is fired at a temperature of 1400 to 1600°C in a nitrogen atmosphere. Method for manufacturing thin films.
JP20289088A 1988-08-15 1988-08-15 Production of thin aluminum nitride film Pending JPH0251407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20289088A JPH0251407A (en) 1988-08-15 1988-08-15 Production of thin aluminum nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20289088A JPH0251407A (en) 1988-08-15 1988-08-15 Production of thin aluminum nitride film

Publications (1)

Publication Number Publication Date
JPH0251407A true JPH0251407A (en) 1990-02-21

Family

ID=16464898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20289088A Pending JPH0251407A (en) 1988-08-15 1988-08-15 Production of thin aluminum nitride film

Country Status (1)

Country Link
JP (1) JPH0251407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181119A (en) * 2012-03-02 2013-09-12 Jsr Corp Composition for forming aluminum-containing film, and method for forming aluminum-containing film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181119A (en) * 2012-03-02 2013-09-12 Jsr Corp Composition for forming aluminum-containing film, and method for forming aluminum-containing film

Similar Documents

Publication Publication Date Title
JP5121268B2 (en) Aluminum nitride sintered body and member for semiconductor manufacturing apparatus
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
CN110451936B (en) Complex phase ceramic and preparation method and application thereof
US7122490B2 (en) Aluminum nitride materials and members for use in the production of semiconductors
JP3433063B2 (en) Aluminum nitride sintered body, electronic functional material and electrostatic chuck
JP3670444B2 (en) Aluminum nitride matrix composite, electronic functional material, electrostatic chuck, and aluminum nitride matrix composite manufacturing method
JP2004175656A (en) Aluminum nitride-based ceramic, semiconductor producing member and method for producing aluminum nitride sintered compact
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
JPH0251407A (en) Production of thin aluminum nitride film
JPS63285175A (en) Production of ceramic sintered material
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP7201734B2 (en) Silicon nitride sintered body
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
JP7278325B2 (en) Silicon nitride sintered body
JP7339980B2 (en) Manufacturing method of silicon nitride sintered body
JP2982447B2 (en) Method for manufacturing mullite ceramic substrate
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JPH03146471A (en) Production of aluminum nitride sintered body
JPH01230481A (en) Production of sintered aluminum nitride
JPH0977558A (en) Production of aluminum nitride sintered compact
JPH0234566A (en) Aluminum nitride-based powder and production thereof
JP2002128583A (en) Tool for calcinating electronic part
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPH07277829A (en) Production of aluminum nitride sintered compact