JPH03146471A - Production of aluminum nitride sintered body - Google Patents

Production of aluminum nitride sintered body

Info

Publication number
JPH03146471A
JPH03146471A JP1281965A JP28196589A JPH03146471A JP H03146471 A JPH03146471 A JP H03146471A JP 1281965 A JP1281965 A JP 1281965A JP 28196589 A JP28196589 A JP 28196589A JP H03146471 A JPH03146471 A JP H03146471A
Authority
JP
Japan
Prior art keywords
substrate
thermal conductivity
sintered body
aluminum nitride
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1281965A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Tadashi Nakano
正 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1281965A priority Critical patent/JPH03146471A/en
Publication of JPH03146471A publication Critical patent/JPH03146471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered body having high heat conductivity by preparing and molding aluminum nitride powder mixed with a specified sintering aid and sintering the molded body within a specified temp. range in a nonoxidizing atmosphere. CONSTITUTION:Aluminum nitride powder mixed with 0.5-6wt.% one or more kinds of oxides selected among the oxides of Y, Sc and lanthanoids as sintering aids and 0.01-3wt.% one or more among LaB6, MgB6 and CaB6 is prepd. and molded. This molded body is sintered within the temp. range of 1,600-2,000 deg.C in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は窒化アルミニウム焼結体の製造方法に関し、特
に産業上の要求の高い高熱伝導率窒化アルミニウム焼結
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for producing an aluminum nitride sintered body, and particularly to a method for producing a high thermal conductivity aluminum nitride sintered body, which is highly demanded in industry.

〔従来の技術] 高熱伝導率AfiN焼結体の用途は、具体的には半導体
用基板材料を代表例とする絶縁材料である。半導体の高
集積化、高速化、高出力化等の動向に伴って、以下のよ
うな問題がクローズアップされてきた。すなわち、 ■ 半導体チップの発熱をいかに効率よく系外へ逃がす
か。
[Prior Art] High thermal conductivity AfiN sintered bodies are specifically used as insulating materials, typically semiconductor substrate materials. With the trend toward higher integration, higher speed, and higher output of semiconductors, the following problems have come into focus. In other words, ■ How to efficiently release the heat generated by the semiconductor chip to the outside of the system.

■ 動作精度の向上につれて基板又はパッケージ部分の
信号の遅延が問題となる。
■ As operational precision improves, signal delays in the substrate or package become a problem.

■ チップサイズの増大により、チップとの熱膨張率差
が大きくなり、信号の信頼性が低下する。
■ As the chip size increases, the difference in thermal expansion coefficient between the chip and the chip increases, reducing signal reliability.

■ 高電力チップでは使用電圧がますます増大しており
、基板の絶縁破壊が問題となりつつある。
■ As the voltages used in high-power chips continue to increase, dielectric breakdown of substrates is becoming a problem.

半導体が抱えるこのような問題を解決しつる従来のアル
ミナにかわる基板又はパッケージ用セラミックスとして
は、 (イ)熱伝導率が高い。
Ceramics for substrates or packages that can replace conventional alumina and solve these problems faced by semiconductors include (a) high thermal conductivity;

(ロ)電気絶縁性が優れる。(b) Excellent electrical insulation.

(ハ)高周波特性がよい(低誘電率、低誘電損失) (ニ)熱膨張率がSi、またはGaAsに近い。(c) Good high frequency characteristics (low dielectric constant, low dielectric loss) (d) The coefficient of thermal expansion is close to that of Si or GaAs.

(ホ)化学的に安定である。(e) Chemically stable.

(へ)機械的な強度が大きい。(f) High mechanical strength.

(ト)回路形成が容易である。(g) Circuit formation is easy.

(チ)気密封止ができる。(h) Can be airtightly sealed.

などの特性を有することが望ましい。このような特性を
基本的に有するものとしてAl2Nが有望視されている
It is desirable to have the following characteristics. Al2N is considered to be promising as a material basically having such characteristics.

しかし、具体的にAl2Nセラミックスを適用しようと
すると、次に示す最低限の特性項目を満たす必要がある
。すなわち (1)焼結体が均一で緻密である。機械的強度が大きい
、相対密度が95%以上であることが望ましい。
However, when attempting to specifically apply Al2N ceramics, it is necessary to satisfy the following minimum characteristics. That is, (1) the sintered body is uniform and dense. It is desirable that the mechanical strength is high and the relative density is 95% or more.

(2)熱伝導率が高い。(2) High thermal conductivity.

(3)体積抵抗が高い(≧1Q12Ω・cm)(4)焼
き上がりの焼結体表面が平滑平坦である。
(3) Volume resistance is high (≧1Q12Ω·cm) (4) The surface of the sintered body after firing is smooth and flat.

(5)焼結体の外観は、色むら、着色等がなく、均一な
色調をもつこと。
(5) The appearance of the sintered body shall be uniform in color and without unevenness or coloring.

上記のうち(4)の項目は必須ではないといいながら、
焼き上がりの焼結体の表面粗度が0.5μmより大きけ
れば、表面の加工が必要となる。
Although item (4) above is not required,
If the surface roughness of the fired sintered body is greater than 0.5 μm, surface processing is required.

このため大量に基板を製造する際には、製造コストを低
減する観点から(4)の項目は重要となってくる。また
、(5)の項目についても(4)と同様である。すなわ
ちAgN基板に回路を形成した後、回路の検査が必要で
ある。Al2N基板の表面の一部の部分に着色等の異常
があると商品イメージを損なうだけでなく、回路検査が
困難となり事実上商品価値がなくなる。また、網目状の
模様が基板の表面に発生することもある。網目状の模様
は小さな気孔の集合体であり基板強度の低下も同時に招
く。
Therefore, when manufacturing substrates in large quantities, item (4) becomes important from the viewpoint of reducing manufacturing costs. Further, item (5) is also the same as (4). That is, after forming a circuit on an AgN substrate, it is necessary to inspect the circuit. If there is an abnormality such as coloring on a part of the surface of the Al2N substrate, it not only spoils the product image but also makes circuit inspection difficult and effectively eliminates the product value. In addition, a mesh pattern may occur on the surface of the substrate. The mesh pattern is an aggregation of small pores, which also reduces the strength of the substrate.

したがって、Al2N基板には高熱伝導率はもちろんの
こと、焼き上がりの表面粗度が小さく、基板の表面に着
色や網目状の模様といった外観の異常のない、−様な色
調であることが求められている。
Therefore, the Al2N substrate is required not only to have high thermal conductivity, but also to have a low surface roughness after baking, and to have a -like color tone without any abnormalities in appearance such as coloring or mesh patterns on the surface of the substrate. ing.

従来の技術では上記(1)、(2)の特性を満足させる
ため、特公昭46−41003号公報に示されるように
、Y2 oaを焼結助剤として用いたり、または特公昭
58−49510号公報に示されるように、Cab、B
aO%SrOなどを焼結助剤として用い、熱伝導率が1
00W/m−に程度のセラミックスが用いられている。
In conventional techniques, in order to satisfy the above characteristics (1) and (2), Y2 oa is used as a sintering aid as shown in Japanese Patent Publication No. 46-41003, or As shown in the publication, Cab, B
Using aO%SrO etc. as a sintering aid, the thermal conductivity is 1.
Ceramics with a power rating of about 00 W/m- are used.

また、窯業協会誌、第25回窯業基礎討論会、IDO3
,3HO3(昭和62年1月)では/MAN成形体を還
元雰囲気中、1850〜1950℃で2〜96時間焼結
するこ・とにより、高熱伝導率のAl2N焼結体を得る
方法を示している。この方法では一旦焼成した基板を黒
鉛ルツボに再充填し再焼成するため製造コストが高い問
題点があった。
In addition, the journal of the Ceramics Industry Association, the 25th Ceramics Industry Basics Forum, IDO3
, 3HO3 (January 1985) shows a method for obtaining an Al2N sintered body with high thermal conductivity by sintering a /MAN compact at 1850 to 1950°C for 2 to 96 hours in a reducing atmosphere. There is. This method has a problem in that the manufacturing cost is high because the once fired substrate is refilled in a graphite crucible and fired again.

一方、特開昭62−52181号公報に、AβNに焼結
助剤として炭素換算で0.2〜3.4重量部の炭素、酸
化イツトリウム0.1−10重量部を含有させた成形体
を1600〜2100℃で焼結することを特徴とするA
βN焼結体の製造方法が開示されている。これとて最高
140W/m−に程度の熱伝導率しか得られていない。
On the other hand, Japanese Patent Application Laid-Open No. 62-52181 discloses a molded body containing 0.2 to 3.4 parts by weight of carbon and 0.1 to 10 parts by weight of yttrium oxide as sintering aids in AβN. A characterized by sintering at 1600-2100°C
A method for manufacturing a βN sintered body is disclosed. However, the maximum thermal conductivity is only about 140 W/m-.

Al2Nの単結晶の熱伝導率は32ow/m−にといわ
れており、この熱伝導率は満足できるものではない、ま
た、これらの先行技術においては基板を商品として取扱
う上で重要な、表面粗度、基板の外観等についてはほと
んど言及されていない。
The thermal conductivity of a single crystal of Al2N is said to be 32 ow/m-, and this thermal conductivity is not satisfactory.In addition, these prior art techniques have problems with surface roughness, which is important when handling the substrate as a product. There is almost no mention of the appearance of the board, etc.

〔発明が解決しようとする課題1 従来のY2 osを焼結助剤として用いた技術には (a)十分な熱伝導率が得られない(特公昭46−41
003号公報、特開昭62−52181号公報) (b)十分な熱伝導率を得るためには、−度焼成した基
板を黒鉛ルツボに詰め直して再焼成を行うため製造コス
トが高い(第25回窯業基礎討論会I DO3,3HO
3) (c)AI2N基板の商品価値や製造コストを決定する
焼き上がりの基板の表面粗度、基板表面の外観について
ほとんど検討されていない といった問題点がある。
[Problem to be solved by the invention 1 The conventional technology using Y2 os as a sintering aid (a) cannot obtain sufficient thermal conductivity (Japanese Patent Publication No. 46-41
(b) In order to obtain sufficient thermal conductivity, the manufacturing cost is high because the fired substrate must be packed back into the graphite crucible and fired again. 25th Ceramics Basics Debate I DO3,3HO
3) (c) There is a problem in that the surface roughness of the baked substrate and the appearance of the substrate surface, which determine the commercial value and manufacturing cost of the AI2N substrate, have hardly been studied.

これらの問題点を解決するため、新たな高熱伝導率Af
lN基板が求められていた。
In order to solve these problems, a new high thermal conductivity Af
An IN substrate was needed.

本発明では上記(a)〜(c)の問題点を全て解決する
高熱伝導率基板を提供することを目的とする。すなわち (i)170W/m−に以上の熱伝導率をもつ。
An object of the present invention is to provide a high thermal conductivity substrate that solves all of the problems (a) to (c) above. That is, (i) it has a thermal conductivity of 170 W/m- or more.

(ii)量産性に優れる常圧焼成を採用し、−度の熱処
理で高熱伝導化を達成する。
(ii) Adopt atmospheric pressure firing, which is excellent in mass production, and achieve high thermal conductivity through -degree heat treatment.

(iii)Al2N焼結体を基板として利用する時に、
商品と重要な意味をもつ焼き上がりの表面粗度(Ra)
が0.5μm以下である。
(iii) When using the Al2N sintered body as a substrate,
Surface roughness (Ra) of baked goods has important meaning
is 0.5 μm or less.

(ivlAJ2N基板の一部に着色が生じたり、網目状
の色むらといった異常がない。
(There is no abnormality such as coloring on a part of the ivlAJ2N board or mesh-like color unevenness.

といった4項目を全て満たした商品価値の高い、IN基
板を一度の熱処理で製造する技術を提供するものである
。本発明では得られた基板の表面を研磨するといった新
たな工程を設けることは必要がない技術を提供する。
The present invention provides a technology for manufacturing IN substrates with high commercial value that meet all four criteria through a single heat treatment. The present invention provides a technique that does not require a new process such as polishing the surface of the obtained substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、以上述べた従来技術の問題点に鑑み、窒
化アルミニウム焼結体の熱伝導率を向上し、基板として
必要な特性を具備させるべく研究を重ねた結果、以下に
示す新規事項を発見し本発明に至ったものである。
In view of the problems of the prior art described above, the inventors of the present invention have conducted repeated research to improve the thermal conductivity of aluminum nitride sintered bodies and provide the necessary characteristics as a substrate, and as a result, the following new matters have been discovered. This discovery led to the present invention.

すなわち本発明は、焼結助剤としてイツトリウム、スカ
ンジウム及びランタノイドの酸化物の群から選ばれた1
種又は2種以上を0.5〜6重量%並びに、LaB5、
MgB6及びCa13.の中から選ばれた1種または2
種以上を0.02〜3重量%を含む窒化アルミニウム混
合粉末を調製し、これを成形し、非酸化性雰囲気中で1
600〜2000℃の温度範囲において焼成する窒化ア
ルミニウム焼結体の製造方法である。
That is, the present invention provides a sintering aid using one selected from the group of oxides of yttrium, scandium and lanthanoids.
0.5 to 6% by weight of the species or two or more species, and LaB5,
MgB6 and Ca13. 1 or 2 selected from
A mixed powder of aluminum nitride containing 0.02 to 3% by weight of acetic acid or more is prepared, molded, and heated to 1% in a non-oxidizing atmosphere.
This is a method for producing an aluminum nitride sintered body, which is fired in a temperature range of 600 to 2000°C.

ランタノイドは、原子番号57のLaから原子番号71
のLuに至る15個の希土類元素の総称である。
Lanthanoids range from La with atomic number 57 to 71 with atomic number
It is a general term for 15 rare earth elements leading to Lu.

本発明により緻密で、熱伝導率、電気絶縁性に優れた焼
結体を得ることができる。また基板状に焼成した場合、
基板の表面に網目状の色むらや一部の部分に着色等とい
った外観の異常がなく、焼き上がりの表面粗度Raが0
.5μm以下のAl2N焼結体が得られる。
According to the present invention, a dense sintered body with excellent thermal conductivity and electrical insulation can be obtained. Also, when fired in the form of a substrate,
There are no abnormalities in appearance such as mesh color unevenness or coloring in some parts on the surface of the substrate, and the surface roughness Ra after baking is 0.
.. An Al2N sintered body with a thickness of 5 μm or less can be obtained.

〔作用〕[Effect]

本発明によって製造される焼結体は絶縁基板として要求
される(i)〜(iv )の項目を全て満たすものであ
った。
The sintered body manufactured according to the present invention satisfied all of the items (i) to (iv) required for an insulating substrate.

この事実に基づき、上記要求の最適添加範囲、他の粉末
、及び化合物について広範囲な検討を行った結果、本発
明を完成した。添加元素、又はその化合物及びその添加
範囲を限定して選択すれば相対密度が95%以上、熱伝
導率が170W/m−に以上、焼き上がりの表面粗度が
0.5μm以下、網目状の色むら、基板の一部の部分の
着色等の基板表面外観の異常の全くないAl2N高熱伝
導性、電気絶縁性基板が得られる。
Based on this fact, the present invention was completed as a result of extensive studies regarding the optimum addition range, other powders, and compounds that meet the above requirements. If the additive element or its compound and its addition range are limited and selected, the relative density will be 95% or more, the thermal conductivity will be 170 W/m or more, the baked surface roughness will be 0.5 μm or less, and the mesh-like An Al2N highly thermally conductive and electrically insulating substrate without any abnormalities in the surface appearance of the substrate such as color unevenness or discoloration of some parts of the substrate can be obtained.

本発明に係る焼結助剤の複合添加が有効であるメカニズ
ムについては充分解明されてはいないが、以下のように
考えられる。
Although the mechanism by which the combined addition of sintering aids according to the present invention is effective has not been fully elucidated, it is thought to be as follows.

Al2Nの表層には、完全な/l!203にはなってい
なくともある種のAI2酸化物が存在している。この酸
化物を仮にAl2203とすると、加えた上記焼結助剤
成分、例えばY203との間に液相xAff203 ・
3’Y2O3を生成する。
The surface layer of Al2N has a complete /l! Even if it is not 203, some kind of AI2 oxide is present. Assuming that this oxide is Al2203, there will be a liquid phase xAff203 between the added sintering aid component, for example Y203.
Generate 3'Y2O3.

一方、全LaB6 、MgB6 、CaB6は極めて酸
化され易い化合物であり、換言すれば強い還元作用を有
する。このためAl2N中の不純物と反応しこれを除去
する0例えばY2 oaにLaB6を添加した系におい
て、幾分液相が粒界に残存する1850℃×2時間の焼
成条件で焼成を行った。粉末X線回折の結果、焼結体の
粒界相はAl22 Y4 osが主成分であり、わずか
にY2 oaが共存した。Y203単独添加の場合、粒
界層はYAG (Ya Al25012)とYAI20
3がほぼ同じX線回折強度を有した。このことから焼結
途中の液相組成は、Y203−LaB6系の方がY2 
oa系に比べY2 oaに冨む組成であることが分かる
。これはLaB6がAfiN粉末の表面のAff2 o
a層に還元剤として有効に働き、液相中のAff203
層が少なくなった結果と思われる。
On the other hand, all LaB6, MgB6, and CaB6 are compounds that are extremely easily oxidized, in other words, they have a strong reducing effect. For this reason, in a system in which LaB6 is added to Y2 oa, which reacts with and removes impurities in Al2N, firing was performed at 1850° C. for 2 hours so that some liquid phase remained at the grain boundaries. As a result of powder X-ray diffraction, the grain boundary phase of the sintered body was mainly composed of Al22 Y4 os, with a small amount of Y2 oa coexisting. When Y203 is added alone, the grain boundary layer consists of YAG (Ya Al25012) and YAI20.
3 had almost the same X-ray diffraction intensity. From this, the liquid phase composition during sintering is higher in the Y203-LaB6 system than in the Y2
It can be seen that the composition is rich in Y2 oa compared to the oa type. This means that LaB6 is Aff2 o on the surface of AfiN powder.
It acts effectively as a reducing agent in the a-layer, and Aff203 in the liquid phase
This seems to be the result of fewer layers.

このようなLaB6 、MgH2、CaBsの焼結中に
おける還元作用により、液相の生成から粒成長に至る段
階で、Al2N表面の酸素は還元され減量しながらAf
fN粉末を浄化していく。この結果として得られた焼結
体は、高熱伝導、電気絶縁性基板として理想的なものに
なる。
Due to the reduction action of LaB6, MgH2, and CaBs during sintering, oxygen on the Al2N surface is reduced and reduced in size during the stages from liquid phase generation to grain growth.
Purify the fN powder. The resulting sintered body is ideal as a highly thermally conductive, electrically insulating substrate.

LaB6 、MgH2、CaB6添加による効果として
は、それ自身の還元力が焼結に有効に作用し高熱伝導率
化をもたらすと共に、電気絶縁性に優れ、色むら着色の
ない基板を得ることができる。
The effects of adding LaB6, MgH2, and CaB6 are that their own reducing power effectively acts on sintering, resulting in high thermal conductivity, and it is also possible to obtain a substrate with excellent electrical insulation and no uneven coloring.

この作用については詳しくは明らかでない。The details of this effect are not clear.

LaB6 、MgH2、CaBsの添加はAflN粉末
表層のAβ203に還元剤として有効に働いた結果、B
203になると考えられる。このB2 oaは液相の粘
性を下げるため、液相が焼結体中に均一に拡散する。こ
の結果基板中の液相の分布が均一となり、Al2Nの焼
結そのものを均質にすると考えられる。このため基板内
部表面とも均一に焼結が進行し、色むら、着色等がなく
なると思われる。
The addition of LaB6, MgH2, and CaBs effectively acted as reducing agents for Aβ203 on the surface layer of AflN powder, resulting in
It is thought that it will be 203. Since this B2 oa lowers the viscosity of the liquid phase, the liquid phase is uniformly diffused into the sintered body. As a result, the distribution of the liquid phase in the substrate becomes uniform, and it is thought that the sintering of Al2N itself becomes homogeneous. Therefore, sintering progresses uniformly on the inner surface of the substrate, and color unevenness, coloring, etc. are thought to be eliminated.

上記イツトリウム、スカンジウム及びランタノイドの酸
化物の群から選ばれた1種または2種以上の添加量が0
.5重量%に満たないと熱伝導率が小さく、基板に求め
られる特性を満たさない。
The amount of one or more selected from the group of oxides of yttrium, scandium and lanthanoids is 0.
.. If it is less than 5% by weight, the thermal conductivity will be low and the properties required for the substrate will not be met.

方、6重量%を越えると、逆に粒界相の量が多すぎるた
め、熱伝導率は低下する。
On the other hand, if it exceeds 6% by weight, the amount of grain boundary phase will be too large and the thermal conductivity will decrease.

また上記LaB6 、MgH2及びCaB6から選ばれ
る1種または2種以上の添加量が0.01重量%に満た
ないと170W/m−に以上の高い熱伝導率は得られな
い。また基板の一部に網目状に色むらや着色等が発生し
易い、また焼き上がりの表面粗度が0.5μm以上とな
ることが多い。逆に添加量が3重量%を越えると粒界相
としてYNが残存し、基板の一部の部分が黄色く着色が
認められる。又、焼結中の収縮速度が小さく、95%以
上の相対密度を得られないこともある。
Further, if the amount of one or more selected from LaB6, MgH2 and CaB6 is less than 0.01% by weight, a high thermal conductivity of 170 W/m- or more cannot be obtained. In addition, mesh-like color unevenness or coloring tends to occur in a part of the substrate, and the surface roughness after baking is often 0.5 μm or more. On the other hand, if the amount added exceeds 3% by weight, YN remains as a grain boundary phase, and some parts of the substrate are observed to be colored yellow. Furthermore, the shrinkage rate during sintering is so low that it may not be possible to obtain a relative density of 95% or more.

〔実施例J 実施例−■ 平均粒径1μmのAj2N粉末に、第1表に示す量の平
均粒径1μmのY2O3粉末と平均粒径2gmのLaB
6、MgH2、CaB6とをトルエン−エタノール混合
溶媒と共に添加し、ボールミルにて十分混合、解砕した
後、バインダとしてポリビニルブチラール樹脂を添加し
、/INスラリーを調製した。
[Example J Example-■ Aj2N powder with an average particle size of 1 μm, Y2O3 powder with an average particle size of 1 μm and LaB with an average particle size of 2 gm in the amounts shown in Table 1
6. MgH2 and CaB6 were added together with a toluene-ethanol mixed solvent, thoroughly mixed and crushed in a ball mill, and then a polyvinyl butyral resin was added as a binder to prepare a /IN slurry.

これを用い、ドクターブレード法にてグリーンシートを
作成し65X65mm角に打抜き加工し、グリーン成形
体を得た。
Using this, a green sheet was created by a doctor blade method and punched into a 65 x 65 mm square to obtain a green molded body.

これらをN2中にて700℃で脱脂した後、N2雰囲気
中常圧下で1900℃で3時間焼成しAβN基板を得た
After degreasing these in N2 at 700°C, they were fired at 1900°C for 3 hours under normal pressure in N2 atmosphere to obtain an AβN substrate.

得られたA4N板について、外観、相対密度。Appearance and relative density of the obtained A4N board.

熱伝導率、絶縁抵抗、表面粗度等の特性を測定した。そ
の結果を第1表に示す、特に基板の外観で網目状の着色
むらは「網目」、基板の一部の部分に着色が生じた場合
は「着色」と表示した。
Properties such as thermal conductivity, insulation resistance, and surface roughness were measured. The results are shown in Table 1. In particular, when the appearance of the substrate had a mesh-like color unevenness, it was indicated as "mesh", and when coloration occurred in some parts of the substrate, it was indicated as "colored".

実施例1〜14によりy2oaを0.5〜6重量%、L
aB6を0.O1〜3重量%配合することにより、熱伝
導率が170w/m−に以上、絶縁抵抗が1Q14Ω’
cm以上、表面粗度Ra < 0.5μm、相対密度9
5%以上の緻密な焼結体が得られた。また基板とした場
合、網目状の着色むら、基板の一部の部分の着色といっ
た異常は認められなかった。
According to Examples 1 to 14, 0.5 to 6% by weight of y2oa, L
aB6 to 0. By blending 1 to 3% by weight of O, the thermal conductivity is 170w/m or more, and the insulation resistance is 1Q14Ω'
cm or more, surface roughness Ra < 0.5 μm, relative density 9
A dense sintered body with a density of 5% or more was obtained. Further, when used as a substrate, no abnormalities such as mesh-like uneven coloring or discoloration of some parts of the substrate were observed.

比較例!ではY2O3の配合量が0.5重量%より少な
いと熱伝導率は135w/m−にと低かった。比較例2
ではY2O3の配合量が6重量%より多い時には熱伝導
率が低く、網目状の着色むらが認められるものがあった
Comparative example! However, when the amount of Y2O3 was less than 0.5% by weight, the thermal conductivity was as low as 135 w/m-. Comparative example 2
When the amount of Y2O3 was more than 6% by weight, the thermal conductivity was low, and in some cases, mesh-like uneven coloring was observed.

比較例3.4.5ではLaB6の配合量が0.01重量
%より少ないと熱伝導率は170W/m−に以下となり
、網目状の着色むらが現われた。また表面粗度は0.5
μm以上となり、基板として用いるには研磨加工が必要
となった。
In Comparative Example 3.4.5, when the blending amount of LaB6 was less than 0.01% by weight, the thermal conductivity decreased to 170 W/m- or less, and mesh-like coloring unevenness appeared. Also, the surface roughness is 0.5
The thickness was larger than μm, and polishing was required to use it as a substrate.

比較例6〜11ではLaB6の配合量が3重量%を越え
ると、基板外観に着色・基板の一部の部分に黄色い着色
が生じた。
In Comparative Examples 6 to 11, when the amount of LaB6 exceeded 3% by weight, the appearance of the substrate was colored and some parts of the substrate were colored yellow.

実施例15〜23、比較例12〜17ではLaB6の代
りにMgBsを用いたがLaB6と全く同じ効果を持つ
ことを示した。
In Examples 15 to 23 and Comparative Examples 12 to 17, MgBs was used instead of LaB6, but it was shown to have exactly the same effect as LaB6.

実施例24〜32比較例18・〜23ではLaB5の代
りにCaB6を用いた例を示した。
In Examples 24 to 32 and Comparative Examples 18 to 23, examples were shown in which CaB6 was used instead of LaB5.

これらもLaBeと全く同じ効果を持つことを示した。These were also shown to have exactly the same effect as LaBe.

実施例33〜35ではLaBe、MgH2、CaB6の
うち2種又は3種を加えた例を示した。これらもすぐれ
た特性を示した。
Examples 33 to 35 show examples in which two or three of LaBe, MgH2, and CaB6 were added. These also showed excellent properties.

実施例−■ 実施例−■のY2O3粉末に代えて平均粒径1μmの5
c203を用いて実施例−■と同様に処理し、Al2N
基板を得た。
Example-■ In place of the Y2O3 powder in Example-■, 5 with an average particle size of 1 μm was used.
c203 was treated in the same manner as in Example-■, and Al2N
I got the board.

得られたAffN板について、外観、相対密度、熱伝導
率、絶縁抵抗1表面粗度等の特性を測定した。その結果
を第2表に示す、特に基板の外観で網目状の着色むらは
「網目」、基板の一部の部分に着色が生じた場合は「着
色」と表示した。実施例1〜32は熱伝導率、相対密度
、表面粗度、外観にすぐれ、比較例1〜23はこれらが
劣る。
Properties such as appearance, relative density, thermal conductivity, insulation resistance 1 and surface roughness of the obtained AffN board were measured. The results are shown in Table 2. In particular, when the appearance of the substrate had a mesh-like color unevenness, it was indicated as "mesh", and when coloration occurred in some parts of the substrate, it was indicated as "colored". Examples 1 to 32 are excellent in thermal conductivity, relative density, surface roughness, and appearance, while Comparative Examples 1 to 23 are inferior in these.

すなわち、5c203を用いた場合も、Y2O3と同様
の効果がある。
That is, the use of 5c203 also has the same effect as Y2O3.

実施例−■ 実施例−工のY2O3粉末に代えてCeO2粉末を用い
、実施例−■と同様に処理し、Al2N基板を得た。
Example-■ Using CeO2 powder in place of the Y2O3 powder in Example-4, the same process as in Example-■ was carried out to obtain an Al2N substrate.

得られたAl2N板について、外観、相対密度、熱伝導
率、絶縁抵抗、表面粗度等の特性を測定した。その結果
を第3表に示す、「網目J、「着色」は実施例−■と同
様である。実施例−IIIの実施例1〜32、比較例1
〜23は実施例−■とほぼ同様の数値を示していること
がわかる。
Properties such as appearance, relative density, thermal conductivity, insulation resistance, and surface roughness of the obtained Al2N plate were measured. The results are shown in Table 3. "Mesh J" and "Coloring" are the same as in Example-■. Examples 1 to 32 of Example-III, Comparative Example 1
It can be seen that Samples 23 to 23 show almost the same numerical values as Example-2.

実施例−■ 実施例−IのY2O3扮末の代りに平均粒径1μmのN
d2O3を用いて実施例−■と同様に処理したAβN板
について、外観、相対密度、熱伝導率、絶縁抵抗、表面
粗度等の特性を測定し第4表に示す、第4表からNd2
03を用いた場合も、優れた効果を奏することが明らか
である。
Example-■ In place of the Y2O3 powder in Example-I, N with an average particle size of 1 μm was used.
Properties such as appearance, relative density, thermal conductivity, insulation resistance, and surface roughness were measured for the AβN plate treated in the same manner as in Example-■ using d2O3, and the results are shown in Table 4.
It is clear that the use of 03 also produces excellent effects.

実施例−V 他の焼結助剤として、他のランタノイドの酸化物である
D3’203、Yb2O3について、及び2種以上の焼
結助剤を組合わせた場合の相互作用を見るためにこれら
の2種〜3種の混合粉末について、実施例−■と同様に
処理し、Al2N基板を得た。
Example-V As other sintering aids, D3'203 and Yb2O3, which are oxides of other lanthanoids, were investigated to see the interaction when two or more sintering aids are combined. Two to three kinds of mixed powders were treated in the same manner as in Example-■ to obtain an Al2N substrate.

得られたAl2N板について、外観、相対密度。Appearance and relative density of the obtained Al2N plate.

熱伝導率、絶縁抵抗、表面粗度等の特性を測定し、その
結果を第5表に示した。
Properties such as thermal conductivity, insulation resistance, and surface roughness were measured, and the results are shown in Table 5.

これらの、IN板の諸特性はいずれも優れた性能を示し
た。
All of these characteristics of the IN board showed excellent performance.

〔発明の効果】〔Effect of the invention】

本発明により、量産性の優れた常圧焼結法を採用し、1
回の焼成により170W/m−に以上の高熱伝導率、1
014Ω・cm以上の高絶縁性を両立し、かつ緻密で外
観に網目状の色むらや、着色等の以上のない商品価値の
高いAIN基板を安価に製造することができるようにな
った。本発明方法によればホーニング以外全く基板研磨
加工等の別工程を設ける必要がなくなった。
According to the present invention, the pressureless sintering method with excellent mass productivity is adopted, and 1
High thermal conductivity of more than 170W/m- after firing twice, 1
It is now possible to inexpensively produce an AIN board with high commercial value, which has both high insulation properties of 0.14 Ω·cm or more, is dense, and has no mesh-like color unevenness or coloring in its appearance. According to the method of the present invention, there is no need to provide any other process such as substrate polishing other than honing.

Claims (1)

【特許請求の範囲】 1 焼結助剤として、イットリウム、スカンジウム及び
ランタノイドの酸化物の群から選ばれた1種又は2種以
上を0.5〜6重量%並びにLaB_6、MgB_6及
びCaB_6の中から選ばれた1種又は2種以上を0.
01〜3重量%を含む窒化アルミニウム混合粉末を調 製し、これを成形し、非酸化性雰囲気中で 1600〜2000℃の温度範囲において焼成すること
を特徴とする窒化アルミニウム焼結体の製造方法。
[Claims] 1. As a sintering aid, 0.5 to 6% by weight of one or more selected from the group of oxides of yttrium, scandium, and lanthanoids, and from among LaB_6, MgB_6, and CaB_6. 0.0% of the selected one or more types.
1. A method for producing an aluminum nitride sintered body, which comprises preparing an aluminum nitride mixed powder containing 0.01 to 3% by weight, molding the powder, and firing it in a non-oxidizing atmosphere in a temperature range of 1600 to 2000°C.
JP1281965A 1989-10-31 1989-10-31 Production of aluminum nitride sintered body Pending JPH03146471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281965A JPH03146471A (en) 1989-10-31 1989-10-31 Production of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281965A JPH03146471A (en) 1989-10-31 1989-10-31 Production of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPH03146471A true JPH03146471A (en) 1991-06-21

Family

ID=17646367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281965A Pending JPH03146471A (en) 1989-10-31 1989-10-31 Production of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH03146471A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330692A (en) * 1992-12-22 1994-07-19 Matsushita Electric Works, Ltd. Process for producing an aluminum nitride sintered product
WO1995002563A1 (en) * 1993-07-12 1995-01-26 The Dow Chemical Company Aluminum nitride sintered body with high thermal conductivity and its preparation
JP2001122666A (en) * 1999-10-26 2001-05-08 Toshiba Corp Aluminum nitride sintered compact, and semiconductor device and heating device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195175A (en) * 1987-02-09 1988-08-12 川崎製鉄株式会社 Composition for sintering aluminum nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195175A (en) * 1987-02-09 1988-08-12 川崎製鉄株式会社 Composition for sintering aluminum nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330692A (en) * 1992-12-22 1994-07-19 Matsushita Electric Works, Ltd. Process for producing an aluminum nitride sintered product
WO1995002563A1 (en) * 1993-07-12 1995-01-26 The Dow Chemical Company Aluminum nitride sintered body with high thermal conductivity and its preparation
JP2001122666A (en) * 1999-10-26 2001-05-08 Toshiba Corp Aluminum nitride sintered compact, and semiconductor device and heating device using the same

Similar Documents

Publication Publication Date Title
US6086990A (en) High thermal conductivity silicon nitride circuit substrate and semiconductor device using the same
CN110451936B (en) Complex phase ceramic and preparation method and application thereof
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
KR100270149B1 (en) Silicon nitride circuit board and its manufacturing method
JP3433063B2 (en) Aluminum nitride sintered body, electronic functional material and electrostatic chuck
CN115028461A (en) Method for preparing high-thermal-conductivity silicon nitride ceramic substrate through silicon powder tape casting
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
JPH03146471A (en) Production of aluminum nitride sintered body
JPH02275765A (en) Production of sintered aluminum nitride
JPS6184037A (en) Aluminium nitride base ceramics substrate
CN110734290A (en) silicon nitride ceramic materials and preparation method thereof
KR20130095112A (en) Sintered body of aluminium nitride using yttria nitrate as sintering aid and preparation method of the same
CN113698201A (en) Composite zirconia powder, aluminum nitride ceramic substrate, and preparation method and application thereof
JP2021169380A (en) Solid composition and method for producing functional ceramic molded body
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP3271342B2 (en) Manufacturing method of aluminum nitride sintered body
JP4221006B2 (en) Silicon nitride ceramic circuit board
JPS63166765A (en) Aluminum nitride base sintered body and manufacture
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board
JPH07187789A (en) Sintered aluminum nitride and aluminum nitride multilayer circuit board
JPH0725663A (en) Sintered aluminum nitride and production thereof
JPH035376A (en) Production of aluminum nitride sintered compact
JPH0790413A (en) Composite material