TW200848543A - Composition for forming aluminum film and method for forming aluminum film - Google Patents

Composition for forming aluminum film and method for forming aluminum film Download PDF

Info

Publication number
TW200848543A
TW200848543A TW097106830A TW97106830A TW200848543A TW 200848543 A TW200848543 A TW 200848543A TW 097106830 A TW097106830 A TW 097106830A TW 97106830 A TW97106830 A TW 97106830A TW 200848543 A TW200848543 A TW 200848543A
Authority
TW
Taiwan
Prior art keywords
forming
aluminum film
compound
group
composition
Prior art date
Application number
TW097106830A
Other languages
Chinese (zh)
Inventor
Tatsuya Sakai
Yasuo Matsuki
Kentarou Tamaki
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200848543A publication Critical patent/TW200848543A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • C23C18/10Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemically Coating (AREA)

Abstract

Disclosed is a composition for forming an aluminum film, which is excellent in storage stability and enables to form a good aluminum film by a simply and low-cost coating method. Also disclosed is a method for forming an aluminum film using such a composition. The composition for forming an aluminum film contains (A) a complex of an amine compound and aluminum hydride, (B) an amine compound and (C) an organic solvent. In the method for forming an aluminum film, the composition is coated over a base and at least one process selected from the group consisting of heating and light irradiation is performed, thereby forming an aluminum film on the base.

Description

200848543 九、發明說明 【發明所屬之技術領域】 本發明係關於一種鋁膜形成用組成物及鋁膜形成方法 。更詳而言之,係關於一種可藉由簡單且廉價之塗佈法以 形成鋁膜之鋁膜形成用組成物及從此組成物藉塗佈法以形 成鋁膜的方法。 【先前技術】 金屬鋁係因其高的導電性及高的光學特性,而被廣泛 使用於以DRAM爲代表之半導體裝置的電極配線用途或 光學裝置的反射膜用途等。一般鋁膜形成方法係濺鍍法、 蒸鍍法或化學氣相成長方法爲至今的主流(起始之半導體 製程、前田和夫著,工業調查會,pp2 3 2-23 9及特開 2000-8 66 73號公報)。但,於此等之方法中,係必須有 真空室或高壓電流裝置等昂貴之裝置,耗費成本;又,於 大面積之基板的適用乃很困難,爲了工業上實用化,有很 難解決之問題。進一步,近年,半導體裝置進行微細化, 或光學裝置形狀進行複雜化的傾向漸顯著,在上述習知之 方法中,所形成之鋁膜中產生缺陷,並造成階梯覆蓋性不 足之事態,成爲應解決之課題。 然而,以塗佈法進行之成膜方法,係不須昂貴的裝置 ,而成膜成本比較廉價,具有利用液體材料之浸透力而亦 可期待於狹溝槽基體上良好成膜之優點。至今依本發明人 等報告使用含氫化鋁化合物之塗佈型組成物之鋁膜成膜法 -5- 200848543 ,可實現良好之階梯覆蓋性(特開2 0 0 2 - 3 3 8 8 9 1號公報及 特開2006-23 73 92號公報)。 但,此等所使用之氫化鋁化合物乃至胺化合物與氫化 鋁化合物之錯合物係非常不安定,於加熱條件下或長時間 之保管易產生材料之變質,例如若使用長期間保管後之組 成物,有時很難得到良好膜質之鋁膜,適於工業上實用化 ,期望保存安定性之提昇。 【發明內容】 (發明之揭示) 本發明係有鑑於上述事情而成者,其目的係提供一種 保存安定性優,且可藉由簡單且廉價之塗佈法以形成鋁膜 之組成物及使用此組成物而藉塗佈法以形成鋁膜的方法。 若依本發明,上述目的第1係藉由含有(A )胺化合 物與氫化鋁之錯合物、(B )胺化合物及(C )有機溶劑 之鋁膜形成用組成物來達成。 本發明之上述目的第2係藉 於基體上塗布上述鋁膜形成用組成物,然後藉由實施 選自由加熱處理及光照射處理所構成之群的至少一個之處 理以於前述基體上形成鋁膜形成方法。 藉本發明可提供一種有利於工業化之貯存安定性之鋁 膜形成用組成物,與以使用該組成物之簡單塗佈法之鋁膜 形成方法。本發明之鋁膜形成方法係亦容易適用於大面積 之基體,且亦有助於成本之降低。 -6- 200848543 (用以實施發明之最佳形態) 本發明之鋁膜形成用組成物,至少含有(A )胺化合 物與氫化鋁之錯合物、(B )胺化合物及(C )有機溶劑 。以下說明有關本發明之鋁膜形成用組成物含有的各成分 (A )胺化合物與氫化鋁之錯合物 本發明之鋁膜形成用組成物所含有的(A )胺化合物 與氫化鋁之錯合物係可依據例如 K. Ruff等人,J. Amer. Chem. Soc.,82 卷,2141 頁,1 960 年,G. W· Fraser 等人,J. Chem. Soc. » 3 742 頁,1 963 年及 J · L. Atwood 等人,J. Amer. Chem. Soc.,1 1 3 卷,8 1 33 頁, 1 99 1年等記載之方法而合成。(A )胺化合物與氫化鋁之 錯合物係例如於氫化鋰鋁之二乙基醚懸濁液中添加胺化合 物之氯化氫酸鹽,例如於N2氣體中室溫下一邊攪拌一邊 反應而合成。反應溫度、反應溶劑等係依所希望之胺化合 物與氫化鋁之錯合物的種類而適當地選擇。 (A )胺化合物與氫化鋁之錯合物之合成所使用的胺 組成物係可爲單胺化合物或聚胺化合物。上述聚胺化合物 係可舉例如二胺化合物、三胺化合物、四胺化合物等。 上述單胺化合物係可舉例如以下述式(1 ) rWn.·· ( 1 ) 200848543 (此處,R1、R2及R3係分別獨立地爲氫原子、烷基、烯 基、炔基 '芳基或芳烷基。) 所代表之單胺化合物、其以外之單胺化合物。作爲式 (1)之R1、R2及R3的烷基、烯基或炔基係可爲直鏈狀 ’亦可爲分枝,或亦可含有環狀構造者。 上述烷基係可舉例如碳數1〜12,宜爲碳數1〜8之 烷基。其具體例可舉例如甲基、乙基、丙基、環丙基、丁 基、戊基、己基、庚基、辛基、壬基、癸基、十一碳基、 十二碳基、環己基、2—甲基丁基、2 -乙基己基等。 上述烯基係可舉例如碳數2〜12、宜爲碳數2〜4之 炔基,其具體例可舉例如乙烯基、烯丙基、丁烯基、乙炔 基等。 上述炔基係可舉例如碳數2〜12、宜爲碳數2〜8之 炔基,其具體例可舉例如苯基乙炔基等。 上述芳基係可舉例如碳數6〜30、宜爲碳數6〜12之 芳基,其具體例可舉例如苯基等。 上述芳烷基係可舉例如碳數7〜30、宜爲碳數7〜13 之芳基,其具體例可舉例如苯甲基等° 上述式(Π所示之化合物的具體例可舉例如氨、三 甲胺、三乙胺、二甲乙胺、甲基二乙基胺、三正丙胺、三 異丙胺、三環丙胺、三正丁胺、二異丁胺、二第二丁基胺 、三一 2-甲基丁基胺、三一正3基胺、三環己基胺、三 (2—乙基己基)胺、三辛基胺、三苯基胺、三苯甲基胺 、二甲基苯基胺、二乙基苯基胺、二異丁基苯基胺、甲基 -8- 200848543 二苯基胺、乙基二苯基胺、異丁基二苯基胺、二甲基胺、 二乙基胺、二正丙基胺、二異丙基胺、二環丙基胺、二正 丁基胺、二異丁基胺、二第三丁基胺、甲基乙基胺、甲基 丁基胺、二正己基胺、二環己基胺、二(2—乙基己基) 胺、二辛基胺、二苯基胺、二苯甲基胺、甲基苯基胺、乙 基苯基胺、異丁基苯基胺、甲基烯丙基胺、甲基乙烯基胺 、甲基(苯基乙炔基)胺、苯基(苯基乙炔基)胺、甲基 胺、乙基胺、正丙基胺、異丙基胺、環丙基胺、正丁基胺 、異丁基胺、第三丁基胺、2-甲基丁基胺、正己基胺、 環己基胺、2-乙基己基胺、辛基胺、苯基胺、苯甲基胺 等。 ’ 上述二胺化合物係可舉例如乙二胺、N,N’ —二甲基乙 二胺、N,N’ —二乙基乙二胺、N,N’ —二異丙基乙二胺、 N,N,一二第三丁基乙二胺、N,N,—二苯基乙二胺、 N,N,N’,N’一四甲基乙二胺、N,N,N’,N’一四乙基乙二胺苯 二胺等。 上述三胺化合物可舉例如二乙三胺、1,7 —二甲基-1,4,7 —三氮雜庚烷、1,7 -二乙基—1,4,7 —三氮雜庚烷、 N,N,N’,N” —三甲基—1,3,5 -三氮雜已烷等。 上述四胺化合物可舉例如三亞甲基四胺、三亞乙基四 胺等。 此等之胺化合物係可單獨或混合2種以上而使用。 此等胺化合物之中,宜使用以式(1)所示之單胺化 合物,更宜使用選自由三甲胺、三乙胺、三異丙胺、三異 -9- 200848543 丁胺、三第三丁基胺、二甲基胺、二乙基胺、二異丙基胺 、二異丁基胺、二第三丁基胺、甲基乙基胺、甲基丁基胺 、甲基苯基胺、乙基苯基胺、異丁基苯基胺、甲基胺、乙 基胺、異丙基胺、環丙基胺、正丁基胺、異丁基胺、第三 丁基胺、2-甲基丁基胺、正己基胺、及苯基胺所構成之 群的一種或2種以上的胺化合物,尤其宜使用選自由三甲 胺、三乙胺、三異丙胺、三異丁胺及三第三丁基胺所構成 之群的一種或2種以上的胺化合物。 (B )胺化合物 本發明之鋁膜形成用組成物含有的(B )胺化合物係 可爲單胺化合物或聚胺化合物。上述聚胺化合物係可舉例 如二胺化合物、三胺化合物、四胺化合物等。 上述單胺化合物係可舉例如以下述式(2 ) R4R5r6n·" ( 2 ) (此處,R4、R5及R6係分別獨立地爲氫原子、烷基、烯 基、炔基、芳基或芳院基。) 所代表之單胺化合物、其以外之單胺化合物。作爲式 (2 )中之R4、R5及R6的烷基、烯基或炔基的內容係可 有關上述式(1 )中之R1、R2及R3的烷基、烯基或炔基 係分別與上述說明及所例示之處同樣。 上述式(1 )所示之化合物、上述二胺化合物、上述 三胺化合物及上述四胺化合物之具體例係可分別舉例如與 -10- 200848543 上述所例示者相同之胺化合物作爲(A )胺化合物與氫化 鋁之錯合物之合成所使用的胺化合物。(B )胺化合物係 可單獨或混合2種以上之化合物使用。 (B )胺化合物係此等之中,宜使用選自由三甲胺、 三乙胺、甲基二乙基胺、二甲基乙基胺、二甲基胺、二乙 基胺、二異丙基胺、第三丁基胺、甲基乙基胺、甲基胺、 乙基胺、乙二胺及二乙三胺所構成之群的一種或2種以上 的胺化合物,尤其宜使用選自由三甲胺、三乙胺、甲基二 乙基胺、二甲基乙基胺、二甲基胺、二乙基胺及乙二胺所 構成之群的一種或2種以上的胺化合物。 本發明之鋁膜形成用組成物係藉含有如此之(B )胺 化合物,成爲在保存安定性及高溫下之材料安定性優者。 (C )有機溶劑 本發明之鋁膜形成用組成物所含有的(C )有機溶劑 係使上述之(A )胺化合物與氫化鋁化合物之錯合物及( B )胺化合物以及任意地含有之後述的任意添加成分溶解 ,且不與此等反應者即可,並無別限定。(C )有機溶劑 可舉例如例如烴溶劑、醚溶劑、其他之極性溶劑等。 上述烴溶劑可舉例如正戊烷、環戊烷、正己烷、環己 烷、正庚烷、環庚烷、正辛烷、環辛烷、癸烷、環癸烷、 二環戊二烯之氫化物、苯、甲苯、二甲苯、苯丁胺、茚、 四氫萘、十氫萘、角鯊烯等,此等之中,宜使用選自由正 戊烷、環戊烷、正己烷、環己烷、正庚烷、環庚烷、正辛 -11 - 200848543 烷、苯、甲苯、二甲苯所構成之群的1種或2種以上。 上述醚溶解可舉例如二乙基醚、二丙基醚、二丁基醚 、乙二醇二甲基醚、乙二醇,二乙基醚、乙二醇甲基乙基醚 、二乙二醚二甲基醚、二乙二醇二乙基醚、二乙二醇甲基 乙基醚、四氫呋喃、四氫吡喃、雙(2 一甲氧基乙基)醚 、對一二U惡院、茴香醚、2 —甲基茴香醚、3—甲基茴香醚 、4一甲基茴香醚、酚醇、2—甲基酚醇、3—甲基酚醇、4 —甲基酚醇、鄰二甲氧基苯、2 一乙氧基茴香醚、丨,4 一二 甲氧基苯等,此等之中,宜使用選自由二乙基醚、二丙基 醚、二丁基醚、乙二醇二二乙基醚、乙二醇甲基乙基醚、 四氫呋喃、四氫吡喃、茴香醚、2 一甲基茴香醚、3—甲基 茴香醚、4 一甲基茴香醚、酚醇、鄰二甲氧基苯、2—乙氧 基茴香醚及1,4-二甲氧基苯等所構成之群中的1種或2 種以上。 上述極性溶劑可舉例如二氯甲烷、氯仿等。 (C )有機溶劑係可從溶解性及所得到之溶液的安定 性觀點適當選擇,可單獨使用上述者或混合2種以上而使 用。 任意之添加成分 本發明之鋁膜形成用組成物係含有上述(A )胺化合 物與氫化鋁化合物之錯合物及(B )胺化合物及(C )有 機溶劑作爲必要成分,但其他依需要亦可含有其他之任意 添加成分。如此之任意的添加成分可舉例如(D )鈦化合 -12- 200848543 (D )鈦化合物 本發明之鋁膜形成用組成物之可含有的(D )鈦彳匕合 物係可舉例如以下述式(3 )乃至(7 )之任一者所示的化 合物。200848543 IX. Description of the Invention [Technical Field] The present invention relates to a composition for forming an aluminum film and a method for forming an aluminum film. More specifically, it relates to a method for forming an aluminum film which can form an aluminum film by a simple and inexpensive coating method, and a method for forming an aluminum film by a coating method from the composition. [Prior Art] Metal aluminum is widely used for electrode wiring applications of semiconductor devices such as DRAMs, reflection film applications of optical devices, and the like because of its high electrical conductivity and high optical characteristics. Generally, the aluminum film forming method is the mainstream of sputtering, vapor deposition or chemical vapor growth (the initial semiconductor process, Maeda Kazuo, Industrial Research Association, pp2 3 2-23 9 and special opening 2000-8) 66 73 Bulletin). However, in such methods, expensive devices such as vacuum chambers or high-voltage current devices are required, which is costly; and the application of a large-area substrate is difficult, and it is difficult to solve for industrial application. problem. Further, in recent years, the semiconductor device has been miniaturized, and the shape of the optical device has become more and more complicated. In the above-described conventional method, defects are generated in the formed aluminum film, and a situation in which the step coverage is insufficient is solved. The subject. However, the film forming method by the coating method does not require an expensive apparatus, and the film forming cost is relatively inexpensive, and it is advantageous in that it can be expected to form a film on a narrow groove substrate by utilizing the penetration force of the liquid material. According to the present inventors, the aluminum film forming method-5-200848543 using a coating composition containing an aluminum hydride compound is reported to achieve good step coverage (Special opening 2 0 0 2 - 3 3 8 8 9 1 Bulletin and Special Publication 2006-23 73 92). However, the aluminum hydride compound used and the complex compound of the amine compound and the aluminum hydride compound are extremely unstable, and are easily deteriorated under heating or storage for a long period of time, for example, after storage for a long period of time. However, it is sometimes difficult to obtain an aluminum film having a good film quality, which is suitable for industrial application, and it is desired to improve the stability of storage. DISCLOSURE OF INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a composition which is excellent in storage stability and can be formed into a film by a simple and inexpensive coating method. This composition is a method of forming an aluminum film by a coating method. According to the present invention, the first object is achieved by a composition for forming an aluminum film containing (A) an amine compound and an aluminum hydride complex, (B) an amine compound, and (C) an organic solvent. In the second aspect of the present invention, the aluminum film forming composition is applied onto a substrate, and then at least one selected from the group consisting of heat treatment and light irradiation treatment is performed to form an aluminum film on the substrate. Forming method. According to the present invention, it is possible to provide a composition for forming an aluminum film which is advantageous for industrial storage stability, and a method for forming an aluminum film by a simple coating method using the composition. The aluminum film forming method of the present invention is also easy to apply to a large-area substrate and contributes to cost reduction. -6- 200848543 (Best Mode for Carrying Out the Invention) The composition for forming an aluminum film of the present invention contains at least (A) a complex of an amine compound and aluminum hydride, (B) an amine compound, and (C) an organic solvent. . In the following, the component (A) of the component (A) and the aluminum hydride which are contained in the composition for forming an aluminum film of the present invention, the (A) amine compound and the aluminum hydride contained in the composition for forming an aluminum film of the present invention are described. The compound may be based, for example, in K. Ruff et al, J. Amer. Chem. Soc., Vol. 82, p. 2141, 1960, G. W. Fraser et al., J. Chem. Soc. » 3 742 pages, Synthesized in 1963 and by J. L. Atwood et al., J. Amer. Chem. Soc., Vol. 1 1 3, 8 1 33, 1 99 1 et al. (A) A complex of an amine compound and aluminum hydride is added, for example, to a diethyl ether suspension of lithium aluminum hydride, to which an amine compound is added, for example, by reacting with N2 gas at room temperature while stirring. The reaction temperature, the reaction solvent and the like are appropriately selected depending on the type of the desired amine compound and aluminum hydride complex. The amine composition used in the synthesis of the (A) complex of the amine compound and aluminum hydride may be a monoamine compound or a polyamine compound. The polyamine compound may, for example, be a diamine compound, a triamine compound or a tetraamine compound. The monoamine compound may, for example, be represented by the following formula (1): rWn. (1) 200848543 (here, R1, R2 and R3 are each independently a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group). Or a monoalkyl compound represented by an aralkyl group.), and a monoamine compound other than the monoamine compound. The alkyl group, the alkenyl group or the alkynyl group of R1, R2 and R3 in the formula (1) may be linear or may be branched or may have a cyclic structure. The alkyl group may, for example, be an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a cyclopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group, an undecyl group, a dodecyl group, and a ring. Hexyl, 2-methylbutyl, 2-ethylhexyl and the like. The above-mentioned alkenyl group may, for example, be an alkynyl group having 2 to 12 carbon atoms, preferably 2 to 4 carbon atoms, and specific examples thereof include a vinyl group, an allyl group, a butenyl group, and an ethynyl group. The alkynyl group may, for example, be an alkynyl group having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, and specific examples thereof include a phenylethynyl group. The aryl group may, for example, be an aryl group having 6 to 30 carbon atoms, preferably 6 to 12 carbon atoms, and specific examples thereof include a phenyl group and the like. The aralkyl group may, for example, be an aryl group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, and specific examples thereof include a benzyl group or the like. The above formula (for example, a specific example of the compound represented by Π) Ammonia, trimethylamine, triethylamine, diethylamine, methyldiethylamine, tri-n-propylamine, triisopropylamine, tricyclopropylamine, tri-n-butylamine, diisobutylamine, di-tert-butylamine, three 2-Methylbutylamine, Tri-n-3-amine, Tricyclohexylamine, Tris(2-ethylhexyl)amine, Trioctylamine, Triphenylamine, Tritylamine, Dimethyl Phenylamine, diethylphenylamine, diisobutylphenylamine, methyl-8- 200848543 diphenylamine, ethyldiphenylamine, isobutyldiphenylamine, dimethylamine, Diethylamine, di-n-propylamine, diisopropylamine, dicyclopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, methylethylamine, methyl Butylamine, di-n-hexylamine, dicyclohexylamine, bis(2-ethylhexyl)amine, dioctylamine, diphenylamine, benzhydrylamine, methylphenylamine, ethylphenyl Amine, isobutylphenylamine, methylallylamine Methyl vinylamine, methyl (phenylethynyl)amine, phenyl(phenylethynyl)amine, methylamine, ethylamine, n-propylamine, isopropylamine, cyclopropylamine, positive Butylamine, isobutylamine, tert-butylamine, 2-methylbutylamine, n-hexylamine, cyclohexylamine, 2-ethylhexylamine, octylamine, phenylamine, benzylamine Etc. The above diamine compound may, for example, be ethylenediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-diisopropylethylene. Amine, N, N, 1-2 tert-butylethylenediamine, N,N,-diphenylethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N,N ', N'-tetraethylethylenediamine phenylenediamine, etc. The above triamine compound may, for example, be diethylenetriamine or 1,7-dimethyl-1,4,7-triazaheptane, 1. 7-Diethyl-1,4,7-triazaheptane, N,N,N',N"-trimethyl-1,3,5-triazahexane, etc. The above tetraamine compound can be For example, trimethylenetetramine, triethylenetetramine, etc. These amine compounds can be used individually or in mixture of 2 or more types. Among these amine compounds, a monoamine compound represented by the formula (1) is preferably used, and it is more preferably used selected from the group consisting of trimethylamine, triethylamine, triisopropylamine, triiso-9-200848543 butylamine, and third tertidine. Amine, dimethylamine, diethylamine, diisopropylamine, diisobutylamine, di-tert-butylamine, methylethylamine, methylbutylamine, methylphenylamine, Ethylphenylamine, isobutylphenylamine, methylamine, ethylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, tert-butylamine, 2-methyl One or two or more kinds of amine compounds of a group consisting of butylamine, n-hexylamine, and phenylamine are particularly preferably selected from the group consisting of trimethylamine, triethylamine, triisopropylamine, triisobutylamine, and tris. One or two or more kinds of amine compounds of a group consisting of tributylamine. (B) Amine compound The (B) amine compound contained in the composition for forming an aluminum film of the present invention may be a monoamine compound or a polyamine compound. The polyamine compound may, for example, be a diamine compound, a triamine compound, a tetraamine compound or the like. The monoamine compound may, for example, be represented by the following formula (2): R4R5r6n·" (2) (wherein R4, R5 and R6 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or Fangyuan base.) The monoamine compound represented by it, and the monoamine compound other than it. The content of the alkyl group, the alkenyl group or the alkynyl group of R4, R5 and R6 in the formula (2) may be related to the alkyl group, the alkenyl group or the alkynyl group of R1, R2 and R3 in the above formula (1), respectively. The above description and the examples are the same. Specific examples of the compound represented by the above formula (1), the above diamine compound, the above triamine compound and the above tetraamine compound may, for example, be the same as the above-exemplified amine compound of -10-200848543 as (A) amine. An amine compound used in the synthesis of a compound of the compound and aluminum hydride. (B) The amine compound may be used singly or in combination of two or more compounds. (B) an amine compound among these, preferably selected from the group consisting of trimethylamine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine, diisopropyl One or two or more amine compounds of a group consisting of an amine, a tributylamine, a methylethylamine, a methylamine, an ethylamine, an ethylenediamine, and a diethylenetriamine, and it is particularly preferable to use one selected from the group consisting of One or two or more kinds of amine compounds of a group consisting of an amine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine and ethylenediamine. The composition for forming an aluminum film of the present invention contains such an (B) amine compound, and is excellent in material stability in storage stability and high temperature. (C) Organic solvent (C) The organic solvent contained in the composition for forming an aluminum film of the present invention is a complex of the above-mentioned (A) amine compound and an aluminum hydride compound, and (B) an amine compound, and optionally contained therein. Any optional component to be described later is dissolved and is not reactive with these, and is not limited. The organic solvent (C) may, for example, be a hydrocarbon solvent, an ether solvent or another polar solvent. The hydrocarbon solvent may, for example, be n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane or dicyclopentadiene. Hydride, benzene, toluene, xylene, phentermine, hydrazine, tetrahydronaphthalene, decalin, squalene, etc., among which, it is preferred to use a group selected from n-pentane, cyclopentane, n-hexane, and ring. One or two or more of the group consisting of hexane, n-heptane, cycloheptane, and n-octyl-11 - 200848543 alkane, benzene, toluene, and xylene. The ether can be dissolved, for example, as diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol, diethyl ether, ethylene glycol methyl ethyl ether, and diethylene glycol. Ether dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, bis(2-methoxyethyl) ether, and one or two U , anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, phenolol, 2-methylphenol, 3-methylphenol, 4-methylphenol, neighbor Dimethoxybenzene, 2-ethoxyanisole, anthracene, 4-dimethoxybenzene, etc., among which, it is preferred to use a solvent selected from the group consisting of diethyl ether, dipropyl ether, dibutyl ether, and Glycol diethylene ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methyl anisole, 3-methyl anisole, 4-methyl anisole, phenol And one or more selected from the group consisting of o-dimethoxybenzene, 2-ethoxyanisole, and 1,4-dimethoxybenzene. The polar solvent may, for example, be dichloromethane or chloroform. (C) The organic solvent is appropriately selected from the viewpoints of solubility and stability of the obtained solution, and the above may be used alone or in combination of two or more. The component for forming an aluminum film of the present invention contains the above-mentioned (A) complex of an amine compound and an aluminum hydride compound, (B) an amine compound, and (C) an organic solvent as essential components, but other additives are also required. It may contain any other optional ingredients. (D) Titanium compound (D) Titanium compound which can be contained in the composition for forming an aluminum film of the present invention, for example, may be, for example, the following A compound represented by any one of the formulas (3) to (7).

Ti(OR7)4.·· ( 3 ) 此處R7爲烷基、或鹵化烷基、芳基或鹵化芳基。 Ti(〇R8)xL4.x …(4 ) 此處,R8之定義係相同於上述式(3 )之R7,L係Ti(OR7)4. (3) Here, R7 is an alkyl group, or an alkyl group, an aryl group or a halogenated aryl group. Ti(〇R8)xL4.x (4) Here, R8 is defined as R7, L system of the above formula (3)

此處’ R9及R1G係同一或相異,爲院基、或鹵化院基 、太兀氧基、方基或鹵化芳基表示之基,X爲〇〜3之整數 〇Here, 'R9 and R1G are the same or different, and are a group represented by a hospital base, or a halogenated compound, a tolyloxy group, a aryl group or a halogenated aryl group, and X is an integer of 〇~3 〇

Ti(ORM)y(X)4.y …(5 ) 此處,R11係院基或芳基,X爲鹵原子、y爲0〜3之 整數。Ti(ORM)y(X)4.y (5) Here, R11 is a group or an aryl group, X is a halogen atom, and y is an integer of 0 to 3.

Ti(NR12)4 …(6 ) •13- 200848543 此處,R12爲烷基或芳基。Ti(NR12)4 (6) • 13- 200848543 Here, R12 is an alkyl group or an aryl group.

Ti(Cp)n(Y)4-n …(7 ) 此處,Cp係環戊二烯基,Y係鹵原子,烷基 ,繼而,η爲1〜4之整數。 上述式中之 R7、R8、R9、Rl〇、Rll、R12 及 Υ 係可爲直鏈狀,亦可爲分枝,或亦可含有環狀構造 烷基宜爲碳數1〜20之烷基,其具體例可舉例如甲 基、正丙基、異丙基、正丁基、第三丁基、己基、 、環己基等。此烷基更宜爲碳數1〜1〇之烷基。 上述式中之 R7、R8、R9、R10、Rll、R12 及 γ 係碳數6〜30,更宜爲碳數6〜12之芳基,其具體 例如苯基、甲基苯基等。 上述式中之R7及R8的鹵化芳基宜爲碳數6〜 宜爲碳數6〜12之鹵化芳基。 上述式中之R7、R8、R9、及R1G之鹵化烷基係 鏈狀,亦可爲分枝,或亦可含有環狀構造者。此鹵 宜爲碳數1〜1 0之鹵化烷基,其具體例可舉例如三 等。 上述式中之R9及R1()之烷氧基係可爲直鏈狀 爲分枝,或亦可含有環狀構造者。此院氧基宜爲碳 10之烷氧基,其具體例可舉例如甲氧基、乙氧基 氧基、第三丁氧基等。 或芳基 之院基 者。此 基、乙 硬脂基 之烷基 例可舉 30,更 可爲直 化烷基 氟甲基 ,亦可 數1〜 、異丙 -14- 200848543 R7及R8分別宜爲甲基、乙基、正丙基、異丙基、正 丁基、第三丁基、己基、環己基、或苯基。 R9及R1G分別宜爲甲基、乙基、異丙基、第三丁基、 甲氧基、乙氧基、異丙氧基、第三丁氧基或三氟甲基。 R11宜爲甲基、乙基、正丙基、異丙基、正丁基、第 三丁基或異硬脂基。 R12宜爲甲基、乙基、異丙基、第三丁基或苯基。 Y宜爲氯原子、溴原子、甲基、乙基、第三丁基、或 苯基。 上述式(3 )所示之鈦化合物的具體例可舉例如甲氧 基鈦、乙氧基鈦、正丙氧基鈦、正壬氧基鈦、硬脂氧基鈦 、異丙氧基鈦、正丁氧基鈦、異丁氧基鈦、第三丁氧基鈦 、三甲基甲矽氧基鈦、2 -乙基苯甲氧基鈦、甲氧基丙氧 基鈦、苯氧基鈦、甲基苯氧基鈦、氟甲氧基鈦、氯苯氧基 鈦等。 上述式(4 )所示之鈦化合物的具體例可舉例如四( 戊一 2,4 —二酮)欽、四(2,2,6,6—四甲基庚一 3,5—二酮 )鈦、四(1—乙氧基丁烷一 1,3 —二酮)鈦、四( 1,1,1,5,5,5 —六氟戊一2,4一 二酮)鈦、2,2 — 二甲基己一 3,5—二酮)鈦、二甲氧化雙(戊一 2,4 一二酮)鈦、二甲 氧化雙(2,2,6,6—四甲基庚一 3,5 —二酮)鈦、二甲氧化 雙(1 一乙氧基丁烷一 1,3 —二酮)鈦、二甲氧化雙( 1,1,1,5,5,5 — 六氟戊一 2,4 一二酮)鈦、二甲氧化(2,2 — 二甲基己一 3,5 —二酮)鈦、異丙氧基化雙(戊一 2,4 一二 -15- 200848543 酮)鈦、異丙氧基化雙(2,2,6,6-四甲基庚一 3,5 -二酮 )鈦、異丙氧基化雙(1 一乙氧基丁烷一 1,3 —二酮)鈦、 異丙氧基化雙(1,1,1,5,5,5—六氟戊一2,4一二酮)鈦、異 丙氧基化(2,2 —二甲基己一 3,5—二酮)鈦等。 上述式(5 )所示之鈦化合物的具體例可舉例如氯化 三甲氧基鈦、氯化三乙氧基鈦、氯化三正丙氧基鈦、氯化 三異丙氧基鈦、氯化三正丁氧基鈦、氯化三第三丁氧基鈦 、氯化三異硬脂醯基鈦、二氯化二甲氧基鈦、二氯化二乙 氧基鈦、二氯化二正丙氧基鈦、二氯化二異丙氧基鈦、二 氯化二正丁氧基鈦、二氯化二第三丁氧基鈦、二氯化二異 硬脂醯基鈦、三氯化甲氧基鈦、三氯化乙氧基鈦、三氯化 正丙氧基鈦、三氯化異丙氧基鈦、三氯化正丁氧基鈦、三 氯化第三丁氧基鈦、三氯化異硬脂醯基鈦、四氯化鈦等。 上述式(6 )所示之鈦化合物的具體例可舉例如四( 二甲基胺基)鈦、四(二乙基胺基)鈦、四(二第三丁氧 基胺基)鈦、四(二異丙氧基胺基)鈦、四(二苯基胺基 )鈦。 上述式(7 )所示之鈦化合物的具體例可舉例如二氯 二環戊二烯基鈦、二溴二環戊二烯基鈦、三氯環戊二烯基 鈦、三溴環戊二烯基鈦、二環戊二烯基二甲基鈦、二環戊 二烯基二乙基鈦、二環戊二烯基二第三丁基鈦、氯化二環 戊二烯基苯基鈦、溴化二環戊二烯基苯基鈦。 鋁膜形成用組成物 -16- 200848543 本發明之鋁膜形成用組成物係如上述,含有(A )胺 化合物與氫化鋁之錯合物、(B )胺化合物及(C )有機 溶劑作爲必要成分,其他依需要而可含有其他之添加劑例 如可含有上述(D )鈦化合物等。 本發明之鋁膜形成用組成物所含有之(B )胺化合物 的使用比率,係相對於(A )胺化合物與氫化鋁化合物之 錯合物與(B)胺化合物之合計,宜爲0」〜70質量%, 更宜爲1〜50質量%,最宜爲1〜30質量%,尤宜爲1〜 25質量%,其中,宜爲3〜20質量%。 本發明之鋁膜形成用組成物含有(D )鈦化合物時, (D )鈦化合物之使用比率,相對於(a )胺化合物與氫 化鋁化合物之錯合物與(B )胺化合物(D )鈦化合物之 合計100質量份,宜爲0.0005〜1質量份,更宜爲0.0005 〜〇·5質量份,最宜爲0.001〜0.2質量份。藉由使(D) 鈦化合物的使用比率爲此範圍,可得到良好的膜質之鋁膜 ’進一步含有此之組成物係可發揮更良好的埋入性。 本發明之鋁膜形成用組成物中的除去(B )胺化合物 及(C )溶劑之質量占有組成物之全質量的比率(以下, 稱爲「非揮發成分含有率」)係宜依照應成膜之鋁膜的膜 厚而設定。例如,鋁膜之膜厚爲100〜25 Onm時,鋁膜形 成用組成物之非揮發成分含有比率宜爲5〜80質量%,更 宜爲10〜70質量%,最宜爲20〜60質量%。 本發明之鋁膜形成用組成物係其製造方法無特別限定 。例如,如上述般在溶劑之存在下合成(A )胺化合物與 -17- 200848543 氫化鋁化合物之錯合物後,可使用以過濾器等除 物等之不溶物的溶液直接作爲鋁膜形成用組成物 溶液中添加所希望之溶劑後,在減壓下除去用於 劑例如二乙基醚,俾亦可形成鋁膜形成用組成物 本發明之鋁膜形成用組成物含有(D )鈦化 當其製造時,例如一邊攪拌含有如上述般做法所 A )胺化合物與氫化鋁化合物之錯合物之溶液, 中添加特定量之(D )欽化合物的溶液來調製。 )鈦化合物時之溫度,宜爲0〜150 °C,更宜爲 。添加(D )鈦化合物後,更宜繼續攪拌一定時 繼續時間宜爲0.1〜120分,更宜爲0.2〜60分 之條件混合(D )鈦化合物,可得到保存安定性 組成物。 鋁膜之形成方法 本發明之鋁膜形成方法係於基體上塗佈如上 形成用組成物,然後實施由加熱處理及光照射處 之群的至少一個之處理,於前述基體上形成鋁膜 構成上述基體之材料的材質、形狀等無特別 進行加熱時,基體之材質宜爲可承受該加熱處理 組成物之基體的面係可爲平面,亦可爲具有階差 ,基體之形狀係無特別限定。 可使用於本發明之方法的基體之材質的具體 舉例如玻璃、金屬、塑膠、陶瓷等。玻璃例如可 去副生成 ,或於此 反應之溶 〇 合物時, 製造之( 一邊於其 添加(D 5 〜100〇C 間。攪拌 。以如此 更良好之 述之鋁膜 理所構成 〇 限制,但 者。塗佈 之非平面 例,係可 使用石英 -18- 200848543 玻璃、硼矽酸玻璃、鈉玻璃、鉛玻璃等,金屬係例如可使 用金、銀、銅、鎳、矽、鋁及鐵以及此等之合金以及不銹 鋼等。塑膠可舉例如聚醯亞胺、聚醚礪等。 基體之形狀例如爲塊狀、板狀、薄膜形狀等,並無特 別限制。於塗佈面使用具有溝槽之基體時,本發明之方法 的優點爲可發揮最大限。 提供至本發明之方法的基體,係預先塗布含有有機金 屬化合物之基底膜形成用組成物,然後加熱處理者,而該 有機金屬化合物係含有選自由鈦、鈀及鋁所構成之群的至 少一種之原子(但除了胺化合物與氫化鋁之錯合物外)。 使用此基底膜,可更進一步提昇鋁膜之成膜性。 含有上述鈦原子之有機金屬化合物可舉例如烷氧基鈦 、具有胺基之鈦化合物與θ -二酮之鈦化合物,具有環戊 二烯基之鈦化合物,具有鹵素基之鈦化合物等。 含有上述鈀原子之有機金屬化合物可舉例如具有鹵原 子之鈀錯合物、鈀之乙酸酯化合物、鈀之/3 -二酮錯合物 、具有鈀與共軛羰基之化合物的錯合物、磷系鈀錯合物等 〇 除了含有上述鋁原子之有機金屬化合物,除了胺化合 物與氫化鋁之錯合物外,尙可舉例如烷氧基鋁、烷酸酯鋁 、鋁之Θ -二酮錯合物等。 如此之有機金屬化合物的具體例’就含有鈦原子之有 機金屬化合物而言,例如前述本發明之鋁膜形成用組成物 可含有的(D )欽化合物,可舉例與所例不者相同之鈦化 -19- 200848543 合物。 含有鈀原子之有機金屬化合物中,就具有鹵原子之鈀 錯合物而言,可分別可舉例如氯化烯丙基鈀、二氯雙(乙 醯腈)鈀、二氯雙(苯甲腈)鈀等; 就鈀之乙酸酯化合物而言,可舉例如鈀乙酸酯等; 就鈀之Θ -二酮錯合物而言,可舉例如戊一 2,4 -二 酮基鈀、六氟戊二酮基鈀等; 具有鈀與共軛羰基之化合物的錯合物,可舉例如雙( 二苯亞甲基丙酮)鈀等; 就磷系鈀錯合物而言,可舉例如雙[1,2-雙(二苯基 磷)乙烷]鈀、氯化雙(三苯基磷)鈀、雙(三苯基磷) 鈀乙酸酯、二乙酸酯雙(三苯基磷)鈀、二氯雙[1,2—雙 (二苯基磷)乙烷]鈀、反式一二氯雙(三環己基磷)鈀 、反式一二氯雙(三環己基磷)鈀、反式—二氯雙(三一 鄰一甲苯基磷)鈀、四(三苯基磷)鈀等。 含有上述鋁原子之有機金屬化合物中,烷氧基鋁可舉 例如,乙氧基鋁、異丙氧基鋁、正丁氧基鋁、第二丁氧基 鋁、第三丁氧基鋁、乙氧基乙氧基乙氧基鋁、苯氧基鋁等 〇 鋁烷酸酯可舉例如鋁乙酸酯、鋁丙烯酸酯、鋁甲基丙 烯酸酯、鋁環己烷丁酸酯等; 就鋁之Θ -二酮錯合物而言,可舉例如戊烷一 2,4 一 二酮基鋁、六氟戊烷一 2,4 一二酮基鋁、2,2,6,6 —四甲基 庚烷一 3,5 -二酮基鋁、第二丁氧基化雙(乙氧基丁烷一 -20- 200848543 1,3—二酮)鋁、二第二丁氧基化(乙氧基丁烷—1,3 —二 酮基)鋁、二異丙氧基化(乙氧基丁烷一 1,3 -二酮基) 鋁等。 此等之中,宜使用異丙氧基鈦、異丙氧基鋁、二異丙 氧基化雙(乙氧基丁烷一 1,3 -二酮基)鋁、四(戊烷一 2,4 一二酮基)鈦、戊烷—2,4 一二酮基鈀、六氟戊烷一 2,4 —二酮基銷、戊院一 2,4 一 一酮基銘或六氟戊院—2,4 一二 酮基銘。 含有至少一種選自鈦、鈀及鋁所構成之群之原子的有 機化合物之溶液所使用的溶劑係只要可溶解該有機金屬化 合物,亦可使用任一者之溶劑。此等之溶劑而言,可舉例 如醚、具有醚基之酯、烴、醇、非質子性極性溶劑等及此 等之混合溶劑。 上述醚可舉例如四氫呋喃、二噁烷、乙二醇二甲基醚 、乙二醇二乙基醚、二乙二醇二甲基醚、二乙二醇二乙基 醚等; 上述具有醚基之酯可舉例如乙二醇單甲基醚乙酸酯、 乙二醇單乙基醚乙酸酯、丙二醇單甲基醚乙酸酯、丙二醇 單乙基醚乙酸酯、2—乙醯基一 1 一甲氧基丙烷等; 就上述烴而言,可舉例如甲苯、二甲苯、己烷、環己 院、辛院、十氫萘、萘滿、暗媒(d u r a i η )等; 就上述醇而言,可舉例如甲醇、乙醇、丙醇等; 就上述非質子性極性溶劑而言,可舉例如Ν -甲基吡 咯烷酮、Ν,Ν —二甲基甲醯胺、Ν,Ν —二甲基乙醯胺、六 -21 - 200848543 甲基磷醯胺、r 一丁內酯等。 有機金屬化合物之溶液中的有機金屬化合物之含 爲ο·ι〜ίο質量%,更宜爲〇·ι〜5質量%。 此等有機金屬化合物之溶液於基材之塗佈係可藉 如旋塗法、輥塗法、簾式塗佈法、浸漬塗佈法、噴塗 液滴吐出法等之適當方法來實施。又,基體具有溝槽 其開口寬爲3 00nm以下,且溝槽之長寬比爲5以上 係使有機金屬化合物之溶液塗佈於基體後,使基體短 間置於減壓下,俾可藉溝槽內部均一地塗佈有機金屬 物。具體之方法係較使有機金屬化合物之溶液塗佈於 基體上時之壓力(以下,稱爲「第一壓力」)小的壓 (以下稱爲「第二壓力」)保持基體。第二壓力係相 第一壓力而宜爲1〜70%,更宜爲10〜40%。例如, 時之壓力爲1.01xl05Pa (常壓)時之第二壓力,宜爲 xlO3〜7.09xl04Pa,更宜爲 ι.〇1χ1〇4〜4〇5xl〇4pa。 板保持於第二壓力下之時間,宜爲1 0秒〜1 0分鐘, 爲1 0秒〜1分鐘。使基板保持於第二壓力下之後, 係使用隋性氣體而返回壓力後,供給至如下之加熱步 但減少此壓力’以同壓力保持之後,返回壓力之連串 作’亦可反覆數次。返回至第一壓力之時間宜爲3毛 分鐘’更宜爲5秒〜1分鐘。又,反覆次數係就膜之 性與作業性之雙方的觀點,宜爲1 〇次以下,使作業 先而更宜爲5次以下。如此所形成之基底塗膜係進一 加熱。加熱溫度貪爲3〇〜35〇它,更宜爲40〜300 1: 量宜 由例 法、 時, 時, 暫之 化合 溝槽 力下 對於 塗佈 1.0 1 使基 更宜 較佳 驟, 的操 厂、〜5 均一 性優 步被 。加 -22- 200848543 熱時間宜爲5〜90分鐘,更宜爲10〜60分鐘。此塗佈步 驟及加熱步驟中之環境係宜爲由氮、氨、氬等之隋性氣體 所構成者。進一步依需要而亦可在混入有氫氣等之還原氣 體、或氧等之氧化性氣體的環境下實施。此等基底膜之厚 度就溶劑除去後之膜厚而言宜爲0.001〜5 // m,更宜爲 0.005 〜0.5// m〇 如此做法所形成之有機金屬化合物的塗膜係然後被加 熱。加熱溫度宜爲30〜3 50 °C,更宜爲40〜3 00 °C。加熱 時間宜爲5〜90分鐘,更宜爲10〜60分鐘。 於如上述之基體上塗佈上述鋁膜形成用組成物時,係 可使用例如旋塗法、輥塗法、簾式塗佈法、浸漬塗佈法、 噴塗法、液滴吐出法等之適當方法來實施。在此等之塗佈 步驟中係依基體上之形狀、大小等,可採用至基底之各角 落遍及鋁膜形成用組成物之塗佈條件。例如可採用旋塗法 作爲塗佈法時,可使旋塗器之旋轉數爲3 00〜2,5 00rpm, 更宜爲500〜2,000rpm。 上述塗佈步驟後,爲除去所塗佈之鋁膜形成用組成物 中所含有的溶劑等之低沸點成分,亦可進行加熱處理。加 熱之溫度及時間係依所使用之溶劑的種類、沸點(蒸氣壓 )而異,但例如在100〜3 5 0 °c中,爲5〜90分鐘。此時 ,使系全體形成減壓,亦可以更低溫進行溶劑之除去。較 佳係在100〜250 °C中,爲10〜60分鐘。 然後,對如上述做法而於基體上所形成之塗膜,實施 選自由加熱處理及光照射處理所構成之群的至少一個之處 -23- 200848543 理以於基體上形成鋁膜。上述熱處理溫度宜爲60 °C以上 ,更宜爲70〜600°C,最宜爲1〇〇〜400°C。加熱時間宜爲 30秒〜120分鐘,更宜爲1〜90分鐘,最宜爲1〇〜60分 鐘。 用於上述光照射處理之光源可舉例如水銀燈、重氫燈 、稀有氣體之放電光、YAG雷射、氬雷射、二氧化碳氣 體雷射、稀有氣體鹵素準分子雷射等。上述水銀燈可舉例 如低壓水銀燈或高壓水銀燈。使用於上述稀有氣體之放電 光的稀有氣體,可舉例如氬、氪、氙等。使用於上述稀有 氣體鹵素準分子雷射之稀有氣體鹵素可舉例如XeF、XeCl 、XeBr、KrF、KrCl、ArF、ArCl等。此等之光源的輸出 宜爲10〜5,000W,更宜爲100〜1,000W。此等之光源的 波長並無特別限定,但宜爲1 7 0 n m〜6 0 0 n m。又,在所形 成之鋁膜的膜質而言,尤宜爲雷射光之使用。 上述,實施塗佈鋁膜形成用組成物之步驟、被任意地 實施之溶劑除去步驟以及選自由加熱處理及光照射處理所 構成之群的至少一個之處理之步驟時的環境,係就形成良 好之胺的觀點,宜爲隋性環境下或還原性環境下。上述隋 性環境係可藉由以氮、氦、氬等之隋性氣體取代作業環境 來實施。上述還原性環境係可藉由於隋性環境中混合適當 量還原性氣體例如氫、氨等。此時,還原性氣體之混合比 率對隋性氣體及還元性氣體的合計係宜爲3〜40莫耳%。 上述熱處理及光照射處理係亦可只進行任一者,亦可 進行熱處理及光照射處理之兩者。進行熱處理及光照射處 -24- 200848543 理之兩者時係亦可依序進行此等,或’亦可同時進行。依 序進行熱處理及光照射處理之時,其順序亦可使任一者先 實施。此等之中,宜只進行熱進行,或進行熱處理與光照 射處理之兩者。 【實施方式】 實施例 以下,依實施例具體地說明本發明。又,以下之操作 係除了特別記載之情形外,全部在乾燥氮環境下實施。又 ,所使用之溶劑係全部在事前以分子篩4A ( Union昭和 (股)製)進行脫水,且使氮氣起泡來進行脫氣。 又,下述之調製例係依需要而以下述之規模反覆同樣 之操作,俾確保以後之實施例及比較例中之必需量的生成 物。 調製例1 (鋁膜形成用組成物之調製) 1 ·( A )胺化合物與氫化鋁之錯合物的合成 於置入有磁氣攪拌子之200ml的三口燒瓶中饋入氫化 鋰鋁3.80g。於三口燒瓶的3個連續接口分別裝載100ml 之粉體添加用漏斗、連接於氮氣流之吸引栓三向閥及玻璃 栓。使三乙基胺之氯化氫酸鹽17.80g饋入於粉體添加用 漏斗之後,使三口燒瓶介由吸引栓三向閥而置於氮密封下 〇 於上述之三口燒瓶中使用玻璃裝唧筒而加入己烷 -25- 200848543 10 0ml。再藉磁攪拌子以旋轉數l,〇〇〇rpm —邊攪拌一邊使 三乙胺之氯化氫酸鹽花1 0分鐘而徐緩地落入於三口燒瓶 中之後,進一步繼續攪拌2小時。 其後,使用於聚四氟乙烯製之管子的前端塞入脫脂綿 (曰本藥局方脫脂綿)者,而使反應混合物藉壓送取出至 另一容器,然後,藉聚四氟乙烯製之孔烴的過濾 膜(Whatman Inc·製)進行過濾。濾液係以3 00ml茄子型 燒瓶接受,過濾終了後於茄子型燒瓶置入磁氣攪拌子,裝 載吸引栓三向閥。 使此吸引栓三向閥介由捕捉器而連接於真空泵,藉磁 攪拌子而以旋轉數3 00rpm —邊攪拌一邊以減壓除去溶劑 。除去溶劑後,使用聚四氟乙烯製之孔徑0 ·1 # m的過濾 膜(Whatman Inc·製)進行過濾殘存物,俾得到三乙胺與 氫化鋁之錯合物10.2 5g作爲無色透明的液體(收率55% 2. ( A )胺化合物與氫化鋁之錯合物與(B )胺化合物之混 合溶液的調製 於上述1·所得到之三乙胺與氫化鋁之錯合物4.00g中 加入三乙胺l.〇lg後,加入4 —甲基茴香醚而使全量爲 8.00g,俾調製含有三乙胺與氫化鋁之錯合物50質量%之 溶液。 3 .含有鈦化合物之溶液的調製 -26- 200848543 使三氯化環戊二烯基鈦0.1 ig饋入於30ml玻璃容器 中,再加入4一甲基茴香醚而使全量爲25.00g。充分攪拌 後,於室溫下靜置4小時,然後,藉由使用聚四氟乙烯製 之孔烴0.1 // m的過濾膜(Whatman Inc.製)進行過濾, 得到含有三氯化環戊二烯基鈦20 # moΙ/g之溶液。 4.鋁膜形成用組成物之調製 於含有上述2 ·所調製之三乙胺與氫化鋁之錯合物5 0 質量%的溶液〇.50ml中,於室溫攪拌下加入於上述3.所 調製之三氯化環戊二烯基鈦20// mol/g之溶液27ml,然 後,繼續攪拌1分鐘,俾調製鋁膜形成用組成物。 調製例2 (比較調製例:不添加(B )胺化合物之鋁膜形成 用組成物的調製) 於上述調製例1所得到之三乙胺與氫化鋁之錯合物 4.00g中,加入4 —甲基茴香醚而使全量爲8.〇〇g,以調製 含有不添加(B )胺化合物之三乙胺與氫化鋁之錯合物5 0 質量%的溶液。 調製例3 (基底膜形成用組成物之調製) 使二異丙氧基化雙(戊一 2,4 一二酮基)鈦(IV) 0.3(^及四(二甲基胺基)鈦64//1取至2〇1111玻璃容器中 ,再加入2 —乙醯基—1—甲氧基丙烷而使全量爲l8.〇〇g 。充分攪拌混合物後,於室溫下靜置2小時,然後,再藉 -27- 200848543 由使用聚四氟乙烯製之孔烴0.1// m的過濾膜(Whatman Inc.製)進行過濾,得到基底膜形成用組成物。 &lt;保存安定性之試驗&gt; 實施例1 在氮氣環境下,使上述調製例1所調製之鋁膜形成用 組成物(添加(B )胺化合物者)各4ml分取至5根的玻 璃製玻璃瓶(內容量l〇ml)。 於此等5根的試料,分別使用加熱板而以第1表所記 載之加熱條件加熱後,觀察在氮氣環境下以室溫靜置24 小時後之外觀。將結果Tpc於第1表中。 比較例1 除使用上述調製例2所調製之鋁膜形成用組成物(未 添加(B )胺化合物者)作爲鋁膜形成用組成物外,其餘 係與實施例1同樣做法而硏究保存安定性。將結果示於第 1表中。 實施例1〜4 -28- 200848543 第1表 實施例1 (B)添加胺化合物 比較例1 (B)未添加胺化合物 溫度rc ) 時間 50 1 2小時 無色透明。 無外觀上變化。 生成黑色沈澱。 50 24小時 無色透明。 無外觀上變化。 生成黑色沈澱。 40 1 2小時 無色透明。 無外觀上變化。 無色透明。 無外觀上變化。 40 24小時 無色透明。 無外觀上變化。 生成黑色沈澱。 30 60天 無色透明。 無外觀上變化。 生成黑色沈澱。 實施例2〜4 在上述調製例1之2中,除使用第2表記載之種類及 量作爲(B )胺化合物外,其餘係與調製例1之2同樣做 法,而分別調製(A )胺化合物與氫化鋁之錯合物與(B )胺化合物之混合溶液。 第2表 (B)胺化合物 種類 量(g) 實施例2 三乙胺 0.101 實施例3 二甲基乙胺 0.73 實施例4 二甲基乙胺 0.073 除使用上述調製之混合溶液外,其餘係與實施例1同 樣做法而分別硏究保存安定性後,任一者均可得到與實施 -29- 200848543 例1同樣之結果。 從上述實施例1〜4及比較例1之結果,可知依本發 明所調製之實施例1的鋁膜形成用組成物係與習知技術之 組成物(比較例1 )相比較,在高溫中之保存安定性及長 期保存安定性極優。 &lt;鋁膜之成膜試驗&gt; 在以下之實施例中,所形成之膜的分析係分別依以下 機器而進行。 比電阻:Napson公司製、探針電阻率測定器、型式 「RT-80/RG-80」 膜厚及膜密度:Philip公司製、斜入射X線分析裝置 、型式「X’Pert MRD」 ESCA光譜:日本電子(股)製、型式「JPS80」 反射率:(股)日立High Technologies製、分光光 度計、型式「U-4100」 實施例5 使矽基板裝載於旋塗器上,滴下於上述調製例3所調 製之基底膜形成用組成物lml,以旋轉數3,000rPm旋轉 1 〇秒。使此基板載置於設定至1 5 0 °C之加熱板上,加熱 2 5分鐘。 然後使此基板再裝載於旋塗器上,滴下於上述調製例 1所調製之鋁膜形成用組成物4ml,以旋轉數800rpm旋轉 -30- 200848543 1 0秒。使此基板以1 5 0 °c之加熱板加熱1 0分鐘。其後, 進一步以2 5 (TC加熱3 0分鐘後,基板表面係以具有金屬 光澤之膜被覆。觀察此膜之 ESCA光譜後,觀察到於 7 3.5eV歸屬於Α12ρ之譜峰,可知此膜爲鋁膜。 此膜之膜厚爲160nm,比電阻値爲3.9 // Ω ·οιη,繼而 ,對於540nm波長之光的反射率爲85%。 實施例6 使矽基板裝載於旋塗器上,滴下於上述調製例3所調 製之基底膜形成用組成物1ml,以旋轉數3,000rpm旋轉 1 〇秒。使此基板載置於設定至1 5 0 °C之加熱板上,加熱 2 5分鐘。 然後使此基板再裝載於旋塗器上,滴下於上述調製例 1所調製之鋁膜形成用組成物4ml,以旋轉數8 00rpm旋轉 1 〇秒。使此基板以1 50°C之加熱板加熱1 〇分鐘。其後’ 進一步以200 °C加熱30分鐘後,基板表面係以具有金屬 光澤之膜被覆。觀察此膜之ESCA光譜後,觀察到於 7 3. 5 eV歸屬於Α12ρ之譜峰,可知此膜爲鋁膜。此膜之膜 厚爲160nm,比電阻値爲4.0 // Ω ·〇ιη,繼而,對於540nm 波長之光的反射率爲83%。 實施例7 使矽基板裝載於旋塗器上,滴下於上述調製例3所調 製之基底膜形成用組成物lml,以旋轉數3,000rpm旋轉 -31 - 200848543 10秒。使此基板載置於設定至150°C之加熱板上,加熱 2 5分鐘。 然後使此基板再裝載於旋塗器上,滴下於上述調製例 1所調製之鋁膜形成用組成物4ml,以旋轉數8 00rpm旋轉 1 〇秒。使此基板以1 50°C之加熱板加熱1 0分鐘。其後, 進一步以3 00°C加熱30分鐘後,基板表面係以具有金屬 光澤之膜被覆。觀察此膜之ESCA光譜後,觀察到於 73.5eV歸屬於Α12ρ之譜峰,可知此膜爲鋁膜。此膜之膜 厚爲158nm,比電阻値爲3.7 // Ω ·οιη,繼而,對於540nm 波長之光的反射率爲8 5 %。 實施例8 除使用於上述實施例1進行4 0 °C 1 2小時之保存安 定性試驗後的鋁膜形成用組成物作爲鋁膜形成用組成物外 ,其餘係與上述實施例5同樣做法而實施。 其結果,基板表面係以具有金屬光澤之膜被覆。觀察 此膜之ESCA光譜後,觀察到於73.5eV歸屬於Α12ρ之譜 峰,可知此膜爲鋁膜。此膜之膜厚爲1 5 8nm,比電阻値爲 3.7 # Ω ·〇πι,繼而,對於540nm波長之光的反射率爲85 %。 使用4 0 °C 1 2小時之保存後的組成物時,亦無損所 形成之鋁膜的膜質。 比較例2 -32- 200848543 除使用於上述比較例1進行4(TC 12小時之保 定性試驗後的鋁膜形成用組成物作爲鋁膜形成用組成 ,其餘係與上述實施例5同樣做法而實施。 其結果,基板表面係以具有霧光澤之白濁的膜被 觀察此膜之ESCA光譜後,觀察到於73.5eV歸屬於 之譜峰,可知此膜爲鋁膜。此膜之膜厚爲175nm,比 値爲7.8 // Ω αηι,繼而,對於540nm波長之光的反 爲 45% 〇 習知技術之鋁膜形成用組成物中係若使用40 °C 小時之保存後的組成物’所形成之鋁膜的膜質會降低 存安 物外 覆。 A12p 電阻 射率 12 -33-Ti(Cp)n(Y)4-n (7) Here, Cp is a cyclopentadienyl group, a Y-based halogen atom, an alkyl group, and then, η is an integer of 1 to 4. In the above formula, R7, R8, R9, Rl〇, R11, R12 and lanthanide may be linear or branched, or may also contain a cyclic structural alkyl group preferably having an alkyl group of 1 to 20 carbon atoms. Specific examples thereof include a methyl group, a n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a hexyl group, and a cyclohexyl group. The alkyl group is more preferably an alkyl group having 1 to 1 carbon number. In the above formula, R7, R8, R9, R10, R11, R12 and γ are 6 to 30 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group and a methylphenyl group. The halogenated aryl group of R7 and R8 in the above formula is preferably a halogenated aryl group having a carbon number of 6 to preferably 6 to 12 carbon atoms. The halogenated alkyl group of R7, R8, R9 and R1G in the above formula may be branched or may have a cyclic structure. The halogen is preferably a halogenated alkyl group having 1 to 10 carbon atoms, and specific examples thereof include, for example, three. The alkoxy group of R9 and R1() in the above formula may be a linear chain or may have a cyclic structure. The alkoxy group of this embodiment is preferably a carbon alkoxy group, and specific examples thereof include a methoxy group, an ethoxy group group, and a third butoxy group. Or the base of the aryl base. The alkyl group of the base and the ethyl stearyl group may, for example, be 30, or may be a straight alkyl fluoromethyl group, or may be a number of 1 to isopropyl-14-200848543 R7 and R8 are preferably a methyl group or an ethyl group. N-propyl, isopropyl, n-butyl, tert-butyl, hexyl, cyclohexyl, or phenyl. R9 and R1G are each preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group or a trifluoromethyl group. R11 is preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a tributyl group or an isostearyl group. R12 is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group or a phenyl group. Y is preferably a chlorine atom, a bromine atom, a methyl group, an ethyl group, a tert-butyl group, or a phenyl group. Specific examples of the titanium compound represented by the above formula (3) include, for example, titanium methoxide, titanium ethoxide, titanium n-propoxide, titanium n-decoxide, titanium stearyloxide, and titanium isopropoxide. Titanium butoxide, titanium isobutoxide, titanium third butoxide, titanium trimethylmethoxide, titanium 2-ethylbenzyloxide, titanium methoxypropoxide, titanium phenoxide , methyl phenoxy titanium, fluoromethoxy titanium, chlorophenoxy titanium, and the like. Specific examples of the titanium compound represented by the above formula (4) include, for example, tetrakis(2,4,2-dione) and tetrakis(2,2,6,6-tetramethylheptan-3,5-dione. Titanium, tetrakis(1-ethoxybutane-1,3-dione) titanium, tetrakis(1,1,1,5,5,5-hexafluoropenta-2,4-dione) titanium, 2 , 2 - Dimethylhexa-3,5-dione) Titanium, Dimethyl bis(penta-2,4-dione) Titanium, Dimethyl bis(2,2,6,6-tetramethylglycol a 3,5-dione) titanium, bis(1-ethoxybutane-1,3-dione) titanium, dimethicone (1,1,1,5,5,5-6 Fluorine 2,4 didone) titanium, dimethoxy (2,2-dimethylhexyl 3,5-dione) titanium, isopropoxylated bis(penta-2,4-12) - 200848543 ketone) titanium, isopropoxylated bis(2,2,6,6-tetramethylhepta-3,5-dione) titanium, isopropoxylated bis(1-ethoxybutane- 1,3 -dione) titanium, isopropoxylated bis(1,1,1,5,5,5-hexafluoropenta-2,4-dione) titanium, isopropoxylated (2,2 - Dimethylhexa-3,5-dione) Titanium and the like. Specific examples of the titanium compound represented by the above formula (5) include, for example, titanium triethoxide chloride, titanium triethoxychloride, titanium tri-n-propoxide chloride, titanium triisopropoxide chloride, and chlorine. Tri-n-butoxytitanium, tri-n-butoxytitanium chloride, triiso-stearate-based titanium, dimethoxytitanium dichloride, diethoxytitanium dichloride, dichloride Titanium n-propoxide, titanium diisopropoxide dichloride, titanium di-n-butoxide dichloride, titanium di-butoxide dichloride, diiso-stearate di-titanium dichloride, trichloro Titanium methoxide, titanium ethoxide trichloride, titanium n-propoxide trichloride, titanium isopropoxide trichloride, titanium n-butoxide trichloride, titanium tributoxide trichloride , Isostearyl trichloride, titanium tetrachloride, and the like. Specific examples of the titanium compound represented by the above formula (6) include, for example, tetrakis(dimethylamino)titanium, tetrakis(diethylamino)titanium, tetrakis(di-t-butoxyamino)titanium, and tetra. (Diisopropoxyamino) titanium, tetrakis(diphenylamino) titanium. Specific examples of the titanium compound represented by the above formula (7) include, for example, dichlorodicyclopentadienyl titanium, dibromodicyclopentadienyl titanium, trichlorocyclopentadienyl titanium, and tribromocyclopentane. Alkenyl titanium, dicyclopentadienyl dimethyl titanium, dicyclopentadienyl diethyl titanium, dicyclopentadienyl ditributyl titanium, dicyclopentadienyl phenyl titanium chloride , dicyclopentadienylphenyl titanium bromide. Composition for forming an aluminum film-16-200848543 The composition for forming an aluminum film of the present invention is as described above, and contains (A) an amine compound and a complex of aluminum hydride, (B) an amine compound, and (C) an organic solvent as necessary. The component may contain other additives as needed, for example, the above-mentioned (D) titanium compound or the like. The ratio of use of the (B) amine compound contained in the composition for forming an aluminum film of the present invention is preferably 0 in terms of the total of the complex of the (A) amine compound and the aluminum hydride compound and the (B) amine compound. It is preferably 70% by mass, more preferably 1 to 50% by mass, most preferably 1 to 30% by mass, particularly preferably 1 to 25% by mass, and preferably 3 to 20% by mass. When the composition for forming an aluminum film of the present invention contains (D) a titanium compound, (D) a ratio of use of the titanium compound to (b) a complex of the amine compound with the aluminum hydride compound and (B) an amine compound (D) The total amount of the titanium compound is preferably 0.0005 to 1 part by mass, more preferably 0.0005 to 5% by mass, most preferably 0.001 to 0.2 part by mass. By using the ratio of the (D) titanium compound to this range, a favorable film quality aluminum film can be obtained. Further, the composition system can exhibit better embedding property. The ratio of the mass of the (B) amine compound and the solvent (C) of the composition for forming an aluminum film of the present invention to the total mass of the composition (hereinafter referred to as "nonvolatile content") is preferably in accordance with The film thickness of the aluminum film of the film was set. For example, when the film thickness of the aluminum film is 100 to 25 Onm, the content of the non-volatile component of the composition for forming an aluminum film is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, most preferably 20 to 60% by mass. %. The method for producing the composition for forming an aluminum film of the present invention is not particularly limited. For example, after synthesizing a complex of the (A) amine compound and the -17-200848543 aluminum hydride compound in the presence of a solvent as described above, a solution containing an insoluble matter such as a filter or the like can be directly used as the aluminum film. After adding a desired solvent to the composition solution, the component for forming an aluminum film is formed by removing the agent for example, such as diethyl ether under reduced pressure, and the composition for forming an aluminum film of the present invention contains (D) titanation. When it is produced, for example, a solution containing a complex of the (A) compound of the amine compound and the aluminum hydride compound as described above is stirred, and a solution of a specific amount of the (D) compound is added thereto. The temperature of the titanium compound is preferably 0 to 150 ° C, more preferably. After the addition of the (D) titanium compound, it is more preferable to continue the stirring for a certain period of time. The duration is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes, and the (D) titanium compound is mixed to obtain a storage stability composition. The aluminum film forming method of the present invention is characterized in that the above-mentioned composition for forming is applied onto a substrate, and then at least one of a group of heat treatment and light irradiation is applied, and an aluminum film is formed on the substrate to constitute the above. When the material and shape of the material of the base material are not particularly heated, the material of the base material is preferably a flat surface that can withstand the base of the heat treatment composition, or may have a step, and the shape of the base body is not particularly limited. Specific examples of the material of the substrate which can be used in the method of the present invention are glass, metal, plastic, ceramics and the like. The glass can be produced, for example, by sub-formation or by the reaction of the lysate, and is added thereto (addition between D 5 and 100 〇C. Stirring, which is constituted by the aluminum film which is better described) However, for non-planar applications, quartz -18-200848543 glass, borosilicate glass, soda glass, lead glass, etc. can be used. For metal, for example, gold, silver, copper, nickel, bismuth, aluminum and Iron, such an alloy, stainless steel, etc. The plastic may, for example, be a polyimide or a polyether oxime. The shape of the substrate is, for example, a block shape, a plate shape, or a film shape, and is not particularly limited. In the case of the substrate of the trench, the method of the present invention has the advantage that it can be maximized. The substrate provided to the method of the present invention is a composition for forming a base film containing an organometallic compound, and then heat-treating the organic substrate. The metal compound contains at least one atom selected from the group consisting of titanium, palladium, and aluminum (except for the complex of the amine compound and aluminum hydride). The film forming property of the aluminum film. The organometallic compound containing the above titanium atom may, for example, be a titanium alkoxide, a titanium compound having an amine group and a titanium compound of θ-diketone, a titanium compound having a cyclopentadienyl group, and having a halogen. The titanium compound or the like. The organometallic compound containing the above palladium atom may, for example, be a palladium complex having a halogen atom, an acetate compound of palladium, a palladium/3-dione complex, having palladium and a conjugated carbonyl group. The complex of the compound, the phosphorus-palladium complex, etc., in addition to the organometallic compound containing the above aluminum atom, in addition to the complex of the amine compound and aluminum hydride, the ruthenium may, for example, be an alkoxy aluminum or an aluminum alkinate. In the case of the organometallic compound containing a titanium atom, for example, the aluminum ruthenium-diketone complex, etc., may be contained in the composition for forming an aluminum film of the present invention. The compound may be exemplified by the same as the above-mentioned titaniumation -19-200848543. Among the organometallic compounds containing a palladium atom, for the palladium complex having a halogen atom, for example, a chlorinated olefin may be mentioned. Palladium, dichlorobis(acetonitrile)palladium, dichlorobis(benzonitrile)palladium, etc.; as the palladium acetate compound, for example, palladium acetate or the like; The complex compound may, for example, be pentyl 2,4-dione palladium or hexafluoropentanedione palladium; or a complex having a compound of palladium and a conjugated carbonyl group, for example, bis(diphenylene) Methyl acetonide) palladium or the like; examples of the phosphorus palladium complex compound include bis[1,2-bis(diphenylphosphino)ethane]palladium, bis(triphenylphosphine)palladium chloride, and bis. (triphenylphosphine) palladium acetate, diacetate bis(triphenylphosphine)palladium, dichlorobis[1,2-bis(diphenylphosphino)ethane]palladium, trans-dichlorobis (tricyclohexylphosphine) palladium, trans-dichlorobis(tricyclohexylphosphine)palladium, trans-dichlorobis(tri-o-tolylphosphoryl)palladium, tetrakis(triphenylphosphine)palladium or the like. Among the organometallic compounds containing the above aluminum atom, the aluminum alkoxide may, for example, be aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum second butoxide, aluminum tributoxide, and Examples of the yttrium aluminum alkanoate such as oxyethoxyethoxyaluminum or phenoxyaluminum include aluminum acetate, aluminum acrylate, aluminum methacrylate, aluminum cyclohexane butyrate, and the like; The fluorene-diketone complex may, for example, be pentane-2,4-dione aluminum, hexafluoropentane-2,4-dione aluminum, 2,2,6,6-tetramethyl Heptane-3,5-dione aluminum, second butoxylated bis(ethoxybutane-20-200848543 1,3-diketone) aluminum, two second butoxylated (ethoxyl) Butane-1,3-dione) aluminum, diisopropoxylated (ethoxybutane-1,3-dione) aluminum, and the like. Among these, titanium isopropoxide, aluminum isopropoxide, di(ethoxybutane-1,3-dione) aluminum, and tetrakis(pentane-2) are preferably used. 4-dione) titanium, pentane-2,4-dione palladium, hexafluoropentane-2,4-dione-based pin, pentylene-2,4-one ketone or hexafluoropentan —2,4-dione. The solvent used for the solution of the organic compound containing at least one atom selected from the group consisting of titanium, palladium and aluminum may be any solvent as long as it can dissolve the organometallic compound. Examples of the solvent include ether, an ester having an ether group, a hydrocarbon, an alcohol, an aprotic polar solvent, and the like, and a mixed solvent thereof. The ether may, for example, be tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether or the like; The ester may, for example, be ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-ethyl fluorenyl group. Examples of the hydrocarbon include, for example, toluene, xylene, hexane, cyclohexyl, xinyuan, decahydronaphthalene, tetralin, durai η, etc.; The alcohol may, for example, be methanol, ethanol or propanol; and the aprotic polar solvent may, for example, be Ν-methylpyrrolidone, hydrazine, hydrazine-dimethylformamide, hydrazine or hydrazine-two. Methylacetamide, hexa-21-200848543 methylphosphoniumamine, r-butyrolactone, and the like. The content of the organometallic compound in the solution of the organometallic compound is ο·ι〜ίο% by mass, more preferably 〇·ι 5 mass%. The application of the solution of the organometallic compound to the substrate can be carried out by a suitable method such as a spin coating method, a roll coating method, a curtain coating method, a dip coating method, or a spray droplet discharge method. Further, the substrate has a groove having an opening width of 300 nm or less, and the aspect ratio of the groove is 5 or more. After the solution of the organometallic compound is applied to the substrate, the substrate is placed under a reduced pressure, and the substrate can be borrowed. The inside of the trench is uniformly coated with an organometallic substance. Specifically, the pressure is maintained at a lower pressure (hereinafter referred to as "second pressure") when the solution of the organometallic compound is applied to the substrate (hereinafter referred to as "second pressure"). The second pressure system phase is preferably from 1 to 70%, more preferably from 10 to 40%. For example, the second pressure at a pressure of 1.01 x 105 Pa (atmospheric pressure) is preferably xlO3 to 7.09 x 1024 Pa, more preferably ι.〇1χ1〇4~4〇5xl〇4pa. The time during which the plate is maintained at the second pressure is preferably from 10 seconds to 10 minutes, and is from 10 seconds to 1 minute. After the substrate is held at the second pressure, the pressure is returned to the following heating step using an inert gas, but the pressure is reduced. After the pressure is maintained at the same pressure, the series of return pressures can be repeated several times. The time to return to the first pressure is preferably 3 mm min', more preferably 5 seconds to 1 minute. Further, the number of times of repetition is preferably 1 or less in terms of both the properties of the film and the workability, and the operation is preferably 5 or less times. The base coating film thus formed is heated. Heating temperature is greedy 3 〇 ~ 35 〇 it, more preferably 40 ~ 300 1: Measured by the method, time, when the temporary groove force is suitable for coating 1.0 1 to make the base better The factory, ~5 uniformity Uber. Add -22- 200848543 Hot time should be 5~90 minutes, more preferably 10~60 minutes. The environment in the coating step and the heating step is preferably composed of an inert gas such as nitrogen, ammonia or argon. Further, if necessary, it may be carried out in an environment in which a reducing gas such as hydrogen or an oxidizing gas such as oxygen is mixed. The thickness of the base film is preferably 0.001 to 5 // m, more preferably 0.005 to 0.5 / / m 膜 after the solvent is removed. The coating film of the organometallic compound thus formed is then heated. The heating temperature is preferably 30 to 3 50 ° C, more preferably 40 to 300 ° C. The heating time is preferably from 5 to 90 minutes, more preferably from 10 to 60 minutes. When the composition for forming an aluminum film is applied to the substrate as described above, for example, a spin coating method, a roll coating method, a curtain coating method, a dip coating method, a spray coating method, a droplet discharge method, or the like can be used. The method is implemented. In the coating step, the coating conditions for the composition for forming an aluminum film can be applied to the respective corners of the substrate depending on the shape, size, and the like on the substrate. For example, when the spin coating method can be employed as the coating method, the number of rotations of the spinner can be 300 to 2, 500 rpm, more preferably 500 to 2,000 rpm. After the coating step, the low boiling point component such as the solvent contained in the applied composition for forming an aluminum film may be removed, and heat treatment may be performed. The temperature and time of heating vary depending on the type and boiling point (vapor pressure) of the solvent to be used, but are, for example, from 100 to 30 ° C for 5 to 90 minutes. At this time, the entire system is decompressed, and the solvent can be removed at a lower temperature. The preferred system is in the range of 100 to 250 ° C for 10 to 60 minutes. Then, at least one of the group consisting of the heat treatment and the light irradiation treatment is applied to the coating film formed on the substrate as described above. -23- 200848543 The aluminum film is formed on the substrate. The heat treatment temperature is preferably 60 ° C or higher, more preferably 70 to 600 ° C, and most preferably 1 to 400 ° C. The heating time should be from 30 seconds to 120 minutes, more preferably from 1 to 90 minutes, and most preferably from 1 to 60 minutes. The light source used for the above light irradiation treatment may, for example, be a mercury lamp, a deuterium lamp, a discharge light of a rare gas, a YAG laser, an argon laser, a carbon dioxide gas laser, a rare gas halogen excimer laser or the like. The above mercury lamp can be exemplified by a low pressure mercury lamp or a high pressure mercury lamp. Examples of the rare gas used for the discharge light of the above rare gas include argon, helium, neon, and the like. The rare gas halogen used in the above-mentioned rare gas halogen excimer laser may, for example, be XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl or the like. The output of such a light source should preferably be 10 to 5,000 W, more preferably 100 to 1,000 W. The wavelength of these light sources is not particularly limited, but is preferably 1 70 n m to 600 nm. Further, in terms of the film quality of the formed aluminum film, it is particularly preferable to use it as laser light. The environment in which the step of applying the composition for forming an aluminum film, the step of removing the solvent arbitrarily performed, and the step of treating at least one of the group consisting of the heat treatment and the light irradiation treatment are well formed. The viewpoint of the amine should be in an inert environment or a reducing environment. The above-mentioned inert environment can be implemented by replacing the working environment with an inert gas such as nitrogen, helium or argon. The above reducing environment can be obtained by mixing an appropriate amount of a reducing gas such as hydrogen, ammonia or the like in an inert environment. In this case, the mixing ratio of the reducing gas is preferably 3 to 40 mol% for the total of the inert gas and the reducing gas. The heat treatment and the light irradiation treatment may be performed by either heat treatment or light irradiation treatment. Heat treatment and light irradiation -24- 200848543 Both of these can be carried out in sequence, or can be carried out simultaneously. When the heat treatment and the light irradiation treatment are sequentially performed, the order may be either performed first. Among these, it is preferable to carry out only heat or both heat treatment and light irradiation treatment. [Embodiment] Hereinafter, the present invention will be specifically described by way of examples. Further, the following operations were carried out in a dry nitrogen atmosphere except for the case where it was specifically described. Further, all of the solvents used were dehydrated by molecular sieve 4A (manufactured by Union Showa Co., Ltd.) beforehand, and nitrogen gas was bubbled to degas. Further, the following modulation examples are repeated in the same manner as described below, and the necessary amounts of the products in the following examples and comparative examples are ensured. Preparation Example 1 (Preparation of composition for forming an aluminum film) 1 (A) Synthesis of a complex of an amine compound and an aluminum hydride A 3.75 g of lithium aluminum hydride was fed into a 200 ml three-necked flask equipped with a magnetic stir bar. . Each of the three continuous ports of the three-necked flask was charged with a 100 ml powder addition funnel, a suction plug three-way valve connected to a nitrogen stream, and a glass plug. After feeding 17.80 g of triethylamine hydrochloride to the powder addition funnel, the three-necked flask was placed under a nitrogen seal through a suction plug three-way valve, and the glass was mounted in the above-mentioned three-necked flask. Hexane-25- 200848543 10 0ml. Further, the magnetic stirrer was stirred for several hours while stirring, and the triethylamine hydrochloride was allowed to float for 10 minutes while stirring, and the mixture was further stirred for 2 hours. Thereafter, the front end of the tube made of polytetrafluoroethylene is inserted into the degreased cotton (the degreased cotton), and the reaction mixture is taken out to another container by pressure, and then made of polytetrafluoroethylene. The pore-hydrocarbon filter membrane (manufactured by Whatman Inc.) was filtered. The filtrate was taken in a 300 ml eggplant type flask, and after the filtration was completed, a magnetic gas stirrer was placed in an eggplant type flask to load a suction plug three-way valve. The suction plug three-way valve was connected to the vacuum pump via a trap, and the solvent was removed under reduced pressure by a magnetic stirrer at a number of revolutions of 300 rpm. After the solvent was removed, the residue was filtered through a filtration membrane (manufactured by Whatman Inc.) having a pore size of 0·1 # m made of polytetrafluoroethylene, and 10.5 g of a complex of triethylamine and aluminum hydride was obtained as a colorless transparent liquid. (Yield 55% 2. (A) A mixed solution of an amine compound and an aluminum hydride complex and (B) an amine compound was prepared in the above-mentioned compound of triethylamine and aluminum hydride obtained in a solution of 4.00 g. After adding triethylamine 1. lg, 4-methylanisole was added to make a total amount of 8.00 g, and a solution containing 50% by mass of a complex of triethylamine and aluminum hydride was prepared. 3. A solution containing a titanium compound Modulation -26- 200848543 Feed 0.1 ig of cyclopentadienyltrichloride in a 30 ml glass vessel, and then add 4-methylanisole to make the total amount 25.00 g. Stir thoroughly and then cool at room temperature. After being allowed to stand for 4 hours, filtration was carried out by using a 0.1* m filter membrane (manufactured by Whatman Inc.) of polytetrafluoroethylene to obtain a cyclopentadienyl titanium trichloride 20 # moΙ/g. 4. The composition for forming an aluminum film is prepared by containing the above-mentioned 2-ethylamine and aluminum hydride. To a solution of 50% by mass of a solution of 50% by mass, 27 ml of a solution of the above-mentioned 3. The prepared cyclopentadienyltitanium dichloride 20//mol/g was stirred at room temperature, and then stirring was continued. Preparation Example 2: Preparation of a film for forming an aluminum film. Preparation Example 2 (Comparative Preparation Example: Preparation of a composition for forming an aluminum film without adding a (B) amine compound) Triethylamine and aluminum hydride obtained in the above Preparation Example 1 In the 4.00 g of the complex, 4-methylanisole was added to give a total amount of 8.〇〇g to prepare a 50% by mass of a complex of triethylamine and aluminum hydride containing no (B) amine compound. Preparation Example 3 (Preparation of a composition for forming a base film) Diisopropoxylated bis(penta-2,4-dione)titanium(IV) 0.3 (^ and tetrakis(dimethylamino) Titanium 64//1 is taken into a 2〇1111 glass container, and then 2-ethylidene-1-methoxypropane is added to make the total amount of l8.〇〇g. After thoroughly stirring the mixture, it is allowed to stand at room temperature. 2 hours, and then, by -27-200848543, a filter film (manufactured by Whatman Inc.) using a polytetrafluoroethylene hole hydrocarbon of 0.1/m was used to obtain a substrate. The composition for forming. <Test for preserving stability> Example 1 4 ml of each of the aluminum film-forming composition (addition of (B) amine compound) prepared in the above Preparation Example 1 was dispensed to a nitrogen atmosphere. Five glass bottles (contents l〇ml). The five samples were heated by the heating conditions described in the first table using a heating plate, and then observed to stand at room temperature under a nitrogen atmosphere. Appearance after 24 hours. The result Tpc is in the first table. Comparative Example 1 In the same manner as in Example 1, except that the composition for forming an aluminum film prepared by the above Preparation Example 2 (the one in which the (B) amine compound was not added) was used as the composition for forming an aluminum film, the stability was determined in the same manner as in Example 1. Sex. The results are shown in Table 1. Example 1 to 4-28-200848543 Table 1 Example 1 (B) Addition of an amine compound Comparative Example 1 (B) No amine compound added Temperature rc) Time 50 1 2 hours Colorless and transparent. No change in appearance. A black precipitate is formed. 50 24 hours Colorless and transparent. No change in appearance. A black precipitate is formed. 40 1 2 hours Colorless and transparent. No change in appearance. Colorless and transparent. No change in appearance. 40 24 hours Colorless and transparent. No change in appearance. A black precipitate is formed. 30 60 days Colorless and transparent. No change in appearance. A black precipitate is formed. [Examples 2 to 4] In the second preparation example 2, except that the type and amount described in the second table were used as the (B) amine compound, the (A) amine was prepared in the same manner as in Preparation Example 2, respectively. A mixed solution of a compound and an aluminum hydride complex and (B) an amine compound. Table 2 (B) Amine compound type (g) Example 2 Triethylamine 0.101 Example 3 Dimethylethylamine 0.73 Example 4 Dimethylethylamine 0.073 In addition to the mixed solution prepared above, In the same manner as in Example 1, after the preservation stability was examined, either of them can obtain the same results as in Example 1 of the implementation of -29-200848543. From the results of the above Examples 1 to 4 and Comparative Example 1, it is understood that the composition for forming an aluminum film of Example 1 prepared according to the present invention is higher in temperature than the composition of the prior art (Comparative Example 1). It has excellent preservation stability and long-term preservation stability. &lt;Film formation test of aluminum film&gt; In the following examples, the analysis of the formed film was carried out according to the following apparatus. Specific resistance: Napson company, probe resistivity meter, type "RT-80/RG-80" Film thickness and film density: Philip, Inc., oblique incident X-ray analyzer, type "X'Pert MRD" ESCA spectrum : Japan Electronics Co., Ltd., type "JPS80" Reflectance: (Hybrid) Hitachi High Technologies, spectrophotometer, type "U-4100" Example 5 The ruthenium substrate was placed on a spin coater and dropped on the above-mentioned modulation. 1 ml of the base film-forming composition prepared in Example 3 was rotated at a rotation number of 3,000 rPm for 1 sec. The substrate was placed on a hot plate set to 150 ° C and heated for 25 minutes. Then, the substrate was further loaded on a spinner, and 4 ml of the aluminum film-forming composition prepared in the above Preparation Example 1 was dropped, and rotated at a number of revolutions of 800 rpm for -30 to 200848543 for 10 seconds. The substrate was heated with a hot plate at 150 ° C for 10 minutes. Thereafter, after further heating at 25 ° for 30 minutes, the surface of the substrate was coated with a film having a metallic luster. After observing the ESCA spectrum of the film, a peak of 7 3.5 eV attributable to Α12ρ was observed, and the film was observed. The film thickness of the film is 160 nm, the specific resistance 値 is 3.9 // Ω · οιη, and then the reflectance for light of 540 nm wavelength is 85%. Example 6 The ruthenium substrate is loaded on a spin coater, 1 ml of the base film-forming composition prepared in the above Preparation Example 3 was dropped, and rotated at 3,000 rpm for 1 sec. The substrate was placed on a hot plate set to 150 ° C and heated for 25 minutes. Then, the substrate was placed on a spinner, and 4 ml of the aluminum film-forming composition prepared in the above Preparation Example 1 was dropped, and rotated at a number of revolutions of 800 rpm for 1 sec. The substrate was heated at 150 ° C. After heating for 1 。 min. After that, after further heating at 200 ° C for 30 minutes, the surface of the substrate was coated with a film having a metallic luster. After observing the ESCA spectrum of the film, it was observed that the spectrum of 7 3. 5 eV was attributed to Α12ρ. Peak, it is known that the film is an aluminum film. The film thickness of this film is 160nm, specific electricity値 is 4.0 // Ω · 〇ιη, and then the reflectance for light of 540 nm wavelength is 83%. Example 7 The ruthenium substrate was placed on a spin coater, and the base film prepared by the above Preparation Example 3 was dropped. The composition 1 ml was rotated at 3,000 rpm for -31 - 200848543 for 10 seconds. The substrate was placed on a hot plate set to 150 ° C and heated for 25 minutes. Then the substrate was reloaded on the spin coater. 4 ml of the aluminum film-forming composition prepared in the above Preparation Example 1 was dropped, and rotated at a number of revolutions of 800 rpm for 1 sec. The substrate was heated by a hot plate at 150 ° C for 10 minutes. Thereafter, further 300 Å. After heating at ° C for 30 minutes, the surface of the substrate was coated with a film having a metallic luster. After observing the ESCA spectrum of the film, it was observed that the peak at 73.5 eV was assigned to Α12ρ, and the film was found to be an aluminum film. 158 nm, the specific resistance 値 is 3.7 // Ω · οιη, and then, the reflectance for light of 540 nm wavelength is 85 %. Example 8 Except for the above Example 1 for 40 ° C for 12 hours storage stability A composition for forming an aluminum film after the property test as a composition for forming an aluminum film The rest of the substrate was applied in the same manner as in Example 5. As a result, the surface of the substrate was coated with a film having a metallic luster. After observing the ESCA spectrum of the film, it was observed that the film was assigned to the peak of Α12ρ at 73.5 eV. It is an aluminum film. The film thickness of this film is 158 nm, the specific resistance 値 is 3.7 # Ω · 〇 πι, and then, the reflectance for light of 540 nm wavelength is 85%. When the composition after storage at 40 ° C for 12 hours was used, the film quality of the formed aluminum film was also not impaired. Comparative Example 2 -32-200848543 The composition for forming an aluminum film after the 4 (TC 12-hour retention test) was used as the composition for forming an aluminum film, and the same procedure as in the above-described Example 5 was carried out. As a result, after observing the ESCA spectrum of the film on the surface of the substrate with a hazy turbid film, it was observed that the film was an aluminum film at 73.5 eV. The film thickness of the film was 175 nm. The ratio is 7.8 // Ω αηι, and then the inverse of the light of 540 nm wavelength is 45%. The composition for forming an aluminum film of the prior art is formed by using the composition after storage at 40 ° C for hours. The film quality of the aluminum film will reduce the external coverage of the material. A12p resistance rate 12 -33-

Claims (1)

200848543 十、申請專利範圍 1 · 一種鋁膜形成用組成物,其特徵在於:含有(A ) 胺化合物與氫化鋁之錯合物、(B )胺化合物及(c )有機 溶劑。 2 ·如申請專利範圍第1項之鋁膜形成用組成物,其 中(B )胺化合物之含量相對於(A )胺化合物與氫化纟呂化 合物之錯合物及(B )胺化合物之合計量爲0.1〜70質量 %。 3 ·如申請專利範圍第1或2項之鋁膜形成用組成物 ,進一步含有(D )鈦化合物。 4 · 一種鋁膜之形成方法,其特徵在於:於基體上塗 布如申請專利範圍第1或2項之鋁膜形成用組成物,然後 藉由實施選自由加熱處理及光照射處理所構成之群的至少 一個之處理以於前述基體上形成鋁膜。 5 ·如申請專利範圍第4項之鋁膜之形成方法,其中 鋁膜形成用組成物進一步含有(D )鈦化合物。 6 ·如申請專利範圍第4項之鋁膜之形成方法,其中 基體係預先塗布含有有機金屬化合物之基底膜形成用組成 物,然後加熱者,而該有機金屬化合物係含有選自鈦、鈀 及鋁所構成之群的至少一種之原子(但除了胺化合物與氫 化鋁之錯合物以外)。 7·如申請專利範圍第6項之鋁膜之形成方法,其中 鋁膜形成用組成物進一步含有(D )鈦化合物。 - 34- 200848543 七 指定代表圖: (一) 、本案指定代表圖為:無 (二) 、本代表圖之元件代表符號簡單說明··無 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無200848543 X. Patent application scope 1 A composition for forming an aluminum film, comprising: (A) a complex of an amine compound and aluminum hydride, (B) an amine compound, and (c) an organic solvent. 2. The composition for forming an aluminum film according to item 1 of the patent application, wherein the content of the (B) amine compound is compared with the total amount of the (A) amine compound and the hydrogenated compound and the (B) amine compound. It is 0.1 to 70% by mass. 3. The composition for forming an aluminum film according to claim 1 or 2, further comprising (D) a titanium compound. 4. A method of forming an aluminum film, comprising: coating a composition for forming an aluminum film according to claim 1 or 2 on a substrate, and then performing a group selected from the group consisting of heat treatment and light irradiation treatment; At least one of the processes is such that an aluminum film is formed on the aforementioned substrate. 5. The method for forming an aluminum film according to the fourth aspect of the invention, wherein the composition for forming an aluminum film further contains (D) a titanium compound. 6. The method for forming an aluminum film according to claim 4, wherein the base system is previously coated with a composition for forming a base film containing an organometallic compound, and then heated, and the organometallic compound contains titanium, palladium and At least one atom of the group of aluminum (except for the complex of the amine compound and aluminum hydride). 7. The method of forming an aluminum film according to item 6 of the patent application, wherein the composition for forming an aluminum film further contains (D) a titanium compound. - 34- 200848543 Seven designated representatives: (1) The representative representative of the case is: No (2), the representative symbol of the representative figure is a simple explanation ··No eight. If there is a chemical formula in this case, please reveal the best display invention. Chemical formula of the feature: none
TW097106830A 2007-02-28 2008-02-27 Composition for forming aluminum film and method for forming aluminum film TW200848543A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050042 2007-02-28

Publications (1)

Publication Number Publication Date
TW200848543A true TW200848543A (en) 2008-12-16

Family

ID=39721377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106830A TW200848543A (en) 2007-02-28 2008-02-27 Composition for forming aluminum film and method for forming aluminum film

Country Status (2)

Country Link
TW (1) TW200848543A (en)
WO (1) WO2008105557A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050058A1 (en) * 2010-10-15 2012-04-19 Jsr株式会社 Method for formation of aluminum film
JP2013044002A (en) * 2011-08-23 2013-03-04 Jsr Corp Aluminum film forming method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093448B2 (en) * 2005-01-19 2012-12-12 Jsr株式会社 Trench filling method
JP4892839B2 (en) * 2005-02-25 2012-03-07 Jsr株式会社 Method for forming an aluminum film

Also Published As

Publication number Publication date
WO2008105557A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4706544B2 (en) Alumina film forming method
US8362220B2 (en) Metal complex compositions and methods for making metal-containing films
TW200811191A (en) Organometallic compounds
JP5071668B2 (en) Aluminum film forming composition and aluminum film forming method
JP2017513213A (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using the same
JP4892839B2 (en) Method for forming an aluminum film
TW200848543A (en) Composition for forming aluminum film and method for forming aluminum film
TWI405767B (en) Organometallic compounds having sterically hindered amides
TWI588151B (en) Chemical vapor deposition raw material containing organoruthenium compound and chemical vapor deposition method using the chemical vapor deposition raw material
TW201219408A (en) Composition for forming alumina film and method for forming alumina film
TWI377622B (en)
TWI314590B (en) Composition for forming silicon.aluminum film, and method for forming silicon.aluminum film
TWI444357B (en) A method for forming an aluminum film, and a method for forming an aluminum film
TW201318835A (en) Manufacturing method of substrate having metal body
US9080065B2 (en) Composition for forming aluminum-containing film, and method for forming aluminum-containing film
JP5817593B2 (en) Aluminum body forming composition and aluminum body forming method
JP4930681B2 (en) Method for forming aluminum film on the inner surface of the tube
TW201224200A (en) Method for formation of aluminum film
JP2013044002A (en) Aluminum film forming method
TW201736261A (en) Doped compositions, processes for production thereof and use thereof
JP2013021068A (en) Manufacturing method of substrate including aluminum body