KR20130024740A - 고체 촬상 장치 - Google Patents
고체 촬상 장치 Download PDFInfo
- Publication number
- KR20130024740A KR20130024740A KR1020120075784A KR20120075784A KR20130024740A KR 20130024740 A KR20130024740 A KR 20130024740A KR 1020120075784 A KR1020120075784 A KR 1020120075784A KR 20120075784 A KR20120075784 A KR 20120075784A KR 20130024740 A KR20130024740 A KR 20130024740A
- Authority
- KR
- South Korea
- Prior art keywords
- region
- pixel
- photodiode
- semiconductor
- semiconductor region
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 78
- 238000002955 isolation Methods 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000012535 impurity Substances 0.000 abstract description 43
- 239000000758 substrate Substances 0.000 abstract description 16
- 206010034972 Photosensitivity reaction Diseases 0.000 abstract description 5
- 230000036211 photosensitivity Effects 0.000 abstract description 5
- 230000001939 inductive effect Effects 0.000 abstract 1
- 239000011810 insulating material Substances 0.000 abstract 1
- 238000005375 photometry Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 60
- 230000002265 prevention Effects 0.000 description 29
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 8
- 206010034960 Photophobia Diseases 0.000 description 7
- 208000013469 light sensitivity Diseases 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 241000080590 Niso Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005685 electric field effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14689—MOS based technologies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
- H01L27/14607—Geometry of the photosensitive area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
- H01L27/1461—Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14645—Colour imagers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Element Separation (AREA)
Abstract
내부 전계가 약한 영역에서는, 포토다이오드 PD보다 깊은 영역에서 발생한 광전하는 횡방향으로 확산해버려, 인접 화소 등으로의 광전자 유입(크로스토크)에 의해 감도 저하가 발생하고 있었다. 크로스토크 방지층 DNW(9)을 포토다이오드 PD 형성부 및 화소-주변 회로간에 설치한다. 이로 인해, 화소-화소간 또는 화소 영역-주변 회로 영역간의 크로스토크를 저감하여, 광감도를 향상시킨다.
Description
본 발명은 광전 변환 효과를 이용해서 화상 정보, 위치 정보를 얻는 CMOS 센서나 CCD 센서 등의 고체 촬상 장치에 관한 것으로, 특히 웰 구조의 개량에 의한 광의 크로스토크 저감을 도모한 고체 촬상 장치에 관한 것이다.
CMOS 센서, CCD 센서로 대표되는 고체 촬상 장치는 비디오 카메라나 디지털 스틸 카메라 등에 널리 응용되고 있다. CMOS 센서를 사용한 고체 촬상 장치는 광전 변환 소자(PD)의 선택을 행하는 스위칭 소자나 신호 전하를 판독하는 스위칭 소자에 CMOS 트랜지스터가 사용되고 있다. 또한, 제어 회로, 신호 처리 회로 등의 주변 회로에 MOS 트랜지스터 또는 CMOS 트랜지스터가 사용되고, 광전 변환 소자(PD)와 상기 스위칭 소자, 주변 회로를 일련의 구성으로 동일 칩상에 제조할 수 있는 이점을 갖고 있다.
이 고체 촬상 장치는, 광전 변환 소자(포토다이오드 PD)를 설치한 복수의 화소를 반도체 기판 상에 배치한 것으로, 각 화소에 입사한 광을 포토다이오드에 의해 광전 변환해서 전하를 생성, 수집하고, 이 전하를 플로팅 디퓨전 FD부로 전송하고, 이 FD부의 전위 변동을 MOS 트랜지스터에 의해 검출하고, 이것을 전기 신호로 변환, 증폭함으로써 영상 신호로서 출력하는 것이다.
여기서, 광전 변환 소자(PD)는 PN 접합으로 형성되고, 전압을 인가함으로써 발생하는 공핍층 중의 전계를 이용함으로써 전하 수집을 행하는 것이 일반적이다. 이 전하 수집 방식은, 가시광 영역의 입사광(380㎚ 내지 830㎚)에 대응하는 고체 촬상 장치의 경우, 입사광의 대부분은 Si 표면으로부터 5㎛ 정도의 깊이로 광이 흡수되고, 광전하를 발생시킨다. 따라서, 고효율로 발생한 광전하를 수집하기 위해서는 공핍층 폭을 5㎛ 정도로 충분히 확보할 필요가 있다. 그로 인해, PN 접합의 깊은(深) 접합화와 고전압화가 필요하다. 이와 같은 구성의 일 예로서 특허문헌 1이 있다.
광감도의 향상을 위해서는, 광전 변환된 5㎛ 영역까지의 광전하를 효율적으로 PD에 유도하고, 판독하는 것이 필요하다.
특허문헌 1과 같은 PN 접합의 깊은 접합화는 광전 변환 소자(PD)내의 전하 전송을 ON/OFF하기 위한 MOS 트랜지스터의 미세화에 불리하고, 또한 PN 접합의 깊은 접합화에 의한 MOS 트랜지스터 사이즈의 확대는 PD의 개구율이 감소하고, 광감도가 저하하는 것이 과제이다. 또한, 고전압화는 소비 전력을 증대시키는 과제가 있었다.
한편, 포토다이오드 PD와 반대 도전형의 기판 불순물 농도차에 의한 내부 전계를 이용해서 전하를 수집하고, PN 접합의 깊은 접합화를 행하지 않고, 고감도화와 저소비 전력화를 도모하는 구성의 일 예로서 특허문헌 2가 있다. 그러나, 불순물 농도차에 의한 내부 전계를 이용해서 전하를 수집할 경우, 포토다이오드 PD보다 깊은 영역에서 발생한 광전자는 농도 구배가 충분히 확보되지 않아, 내부 전계가 약한 영역에서는 광전자가 횡방향으로 확산해버려, 인접 화소로의 광전자 유입(크로스토크)에 의해 감도가 저하한다.
본 발명에서는, 농도 구배가 충분히 확보되지 않는 영역에서, 전하를 흡수하고, PD에 광전하를 유도하는 구조를 설치함으로써, 크로스토크를 저감하여, 감도를 향상시킨다.
화소 영역과 상기 화소 영역에 인접하고, 논리 회로가 형성되는 논리 회로 영역을 갖는 고체 촬상 장치로서, 화소 영역과 논리 회로 영역이 형성되는 제1 도전형의 반도체층과, 반도체층 상에 형성되고, 반도체층보다 고농도의 제1 도전형의 제1 반도체 영역과, 화소 영역의 소자와 논리 회로 영역의 소자를 분리하는 소자 분리 영역을 갖고, 화소 영역에는 제1 반도체 영역 상에 제2 도전형의 포토다이오드가 형성되고, 제2 도전형의 포토다이오드의 영역에 있어서, 포토다이오드로부터 제1 반도체 영역을 넘어 반도체층으로 연장되는 제2 도전형의 제2 반도체 영역이 형성되도록 구성한다.
또한, 소자 분리 영역에 있어서, 소자 분리 영역을 형성하는 산화막으로부터 제1 반도체 영역을 넘어 반도체층으로 연장되는 제2 도전형의 제3 반도체 영역이 형성되도록 구성한다.
농도 구배가 충분히 확보되지 않아 내부 전계가 약한 영역에서 전하를 흡수하고, 포토다이오드 PD에 광전하를 유도하는 구조를 포토다이오드 PD와는 별도로 설치함으로써, 크로스토크를 저감해 감도를 향상시킬 수 있다.
MOS 트랜지스터와 포토다이오드 PD의 구조에 관계없이 구조를 형성할 수 있기 때문에, 고감도화와 저소비 전력화를 동시에 실현할 수 있는 이점이 있다.
도 1은 본 발명의 고체 촬상 장치의 주요부 단면도이다.
도 2는 본 발명을 적용한 CMOS 센서를 사용한 오토 포커스 센서의 구성도이다.
도 3은 오토 포커스 센서의 원리도이다.
도 4는 크로스토크 방지층을 갖지 않는 고체 촬상 장치의 주요부 단면도로, 광전하 전송 경로를 도시한 비교예이다.
도 5는 도 4에 있어서의 Y-Y' 방향의 불순물 프로파일이다.
도 6은 도 5의 불순물 프로파일에 있어서의 포텐셜 도면이다.
도 7은 제1 실시예의 고체 촬상 장치의 주요부 단면도로, 광전하 전송 경로를 도시한 도면이다.
도 8은 도 7에 있어서의 Z-Z' 방향의 불순물 프로파일이다.
도 9는 도 8의 불순물 프로파일(크로스토크 방지층(DNW))에 있어서의 포텐셜 도면이다.
도 10은 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제1 구성예)이다.
도 11은 도 10에 있어서의 A-A'의 위치에서의 단면 구조이다.
도 12는 측거 화소-측거 화소간 크로스토크 효과를 도시하는 도면이다.
도 13은 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제2 구성예)이다.
도 14는 도 13에 있어서의 A-A'의 위치에서의 단면 구조이다.
도 15는 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제3 구성예)이다.
도 16은 도 16의 구성예의 변형예이다.
도 17은 본 발명의 고체 촬상 장치의 다른 주요부 단면 구조를 도시하는 도면이다.
도 2는 본 발명을 적용한 CMOS 센서를 사용한 오토 포커스 센서의 구성도이다.
도 3은 오토 포커스 센서의 원리도이다.
도 4는 크로스토크 방지층을 갖지 않는 고체 촬상 장치의 주요부 단면도로, 광전하 전송 경로를 도시한 비교예이다.
도 5는 도 4에 있어서의 Y-Y' 방향의 불순물 프로파일이다.
도 6은 도 5의 불순물 프로파일에 있어서의 포텐셜 도면이다.
도 7은 제1 실시예의 고체 촬상 장치의 주요부 단면도로, 광전하 전송 경로를 도시한 도면이다.
도 8은 도 7에 있어서의 Z-Z' 방향의 불순물 프로파일이다.
도 9는 도 8의 불순물 프로파일(크로스토크 방지층(DNW))에 있어서의 포텐셜 도면이다.
도 10은 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제1 구성예)이다.
도 11은 도 10에 있어서의 A-A'의 위치에서의 단면 구조이다.
도 12는 측거 화소-측거 화소간 크로스토크 효과를 도시하는 도면이다.
도 13은 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제2 구성예)이다.
도 14는 도 13에 있어서의 A-A'의 위치에서의 단면 구조이다.
도 15는 도 2의 영역(A)의 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(제3 구성예)이다.
도 16은 도 16의 구성예의 변형예이다.
도 17은 본 발명의 고체 촬상 장치의 다른 주요부 단면 구조를 도시하는 도면이다.
이하, 본 발명의 실시형태를 CMOS 센서를 사용한 오토 포커스 센서를 예로 들어 상세하게 설명한다. 우선, 도 3을 사용해서 오토 포커스 센서의 원리를 설명한다. 촬영 렌즈(27)를 통해서 들어온 광속을 2차 결상 광학계(28)에 의해 오토 포커스 센서(29)의 기준 센서 어레이(25) 상과 참조 센서 어레이(26) 상의 2개의 위치에 피사체상을 재결상시킨다. 기준 센서 어레이(25) 상의 피사체상으로부터 얻어지는 센서 출력(250)과 참조 센서 어레이(26) 상의 피사체상으로부터 얻어지는 센서 출력(260)으로부터 위상차 검출을 행해서 디포커스량을 구하는 것이다. 이러한 오토 포커스 센서의 원리는 예를 들어 특허문헌 3에 설명되어 있다.
도 2는 본 발명을 CMOS 센서를 사용한 오토 포커스 센서에 적용한 경우의 전체 구성도이다. 도 2에서는 센서 디바이스(200)와 그 주변 회로를 모식적으로 도시하고 있다. 또한, 도 2에 도시한 각 화소 영역은, 그 포토다이오드의 평면 형상을 대표로 도시하고 있다. 센서 디바이스(200)에는, 피사체의 밝기를 측정하는 측광 화소 영역(18)과, 핀트 위치를 측정하는 측거 화소 영역(19)이 2차원으로 배치되어 있다. 측광 화소 영역(18) 및 측거 화소 영역(19)의 포토다이오드에는 크로스토크 방지층(9)이 설치되어 있다. 상세한 것은 도 1을 사용해서 설명하지만, 이것이 본 실시예의 특징이다. 또한, 측거 화소로 이루어지는 2개의 어레이, 즉 기준 센서 어레이(25)와 참조 센서 어레이(26)가 있다. 도 3에서 설명한 바와 같이, 기준 센서 어레이(25)와 참조 센서 어레이(26)의 출력으로부터 위상차 검출을 행하기 위해, 각각의 센서 어레이를 주사하는 시프트 레지스터 회로(20a, 20b), 각각의 센서 어레이로부터의 신호를 증폭하는 칼럼 신호 처리 회로(23a, 23b) 및 칼럼 신호 처리 회로(23)로부터의 출력을 증폭해서 외부로 출력하는 출력 회로(24)를 갖고 있다. 또한, 주변 회로로서 그 밖에도, 측광 화소 영역(18)의 신호를 처리하는 측광 신호 처리 회로(21), 오토 포커스 센서를 제어하는 제어 회로(22)를 갖고 있다.
도 1에 고체 촬상 장치의 주요부 단면 구조를 도시한다. 도 2에 예시한 구성이면, 도 2의 X-X'의 위치에서의 단면에 상당한다. 이 예에서는 3층의 배선층을 갖고 있다. P+ Si 반도체 기판(1)에, 에피택셜 성장 기술을 사용해서 P- Si층(2)을 형성한다. 그 후, 절연체(일반적으로는, 산화막으로 형성한다)로 이루어지는 소자 분리 영역(14)을 형성하고, P형 불순물 및 N형 불순물을 첨가함으로써 P웰(12) 및 N웰(3)을 형성한다. P웰(12)은 P- Si층(2)보다도 불순물 농도가 높게 형성되어 있다. 또한, 다른 전위의 P웰 간을 전기적으로 분리하기 위해서, N형 아이솔레이션 NISO(16)을 형성한다. 그 후, P웰(12) 및 P- Si층(2) 상에 N형 불순물을 첨가해 크로스토크 방지층(딥 N웰층 DNW)(9)을 형성한다. 이 크로스토크 방지층 DNW(9)는 N웰(3) 또는 포토다이오드(10)에 단락됨으로써, 후술하는 바와 같이 광전자를 흡수하도록 기능한다. 또한, 본 실시예와 같이, 화소 영역(18, 19)과 주변 회로 영역(20) 경계와의 크로스토크 방지층 DNW(9b)를 N웰(3)과 단락하도록 배치함으로써, 크로스토크 방지층 DNW(9b)의 급전 영역의 간략화 및 배치 면적을 축소할 수 있는 이점이 있다. 또한, 도 1에는 도시되어 있지 않지만, 화소 영역(18, 19) 사이의 크로스토크 방지층 DNW(9b)은, 예를 들어 화소 영역(18)과 주변 회로 영역(20) 경계와의 크로스토크 방지층 DNW(9b)과 연결되어 있고, 광전자는 크로스토크 방지층 DNW(9b)를 경유해서 N웰(3)에 흡수된다. 또한, Si 표면으로부터 깊이 방향으로 5㎛ 정도의 위치에 약 P+ Si 반도체 기판(1)과 P- Si층(2)과의 경계가 있다.
그 후의 공정으로서, 게이트 전극(15) 및 불순물 영역(10, 11, 13, 17)을 형성한다. 불순물 영역(10)이 N형 포토다이오드 PD, 불순물 영역(11)이 포토다이오드 PD 표면 P형 보호층이다. 또한, 불순물 영역(13)이 N+ 확산층, 불순물 영역(17)이 P+ 확산층이며, 화소 영역(18, 19)에서는 이들 불순물 영역과 게이트 전극에 의해 화소를 구성하는 트랜지스터가, 회로 영역(20)에서는 이들 불순물 영역과 게이트 전극에 의해 주변 회로를 구성하는 트랜지스터가 형성된다. 주변 회로는 예를 들어 CMOS 논리 회로로서 실현된다.
포토다이오드 PD 및 게이트 전극(15) 위에는, 배선 층간 절연막(8)을 통해서 제1 배선층(5)이 형성되어 있다. 그 위에는, 제2 층간층(6), 제3 층간 배선층(7)이 순차 형성되어 있다. 이들은 콘택트 홀(4)에 의해 서로 전기적으로 접속되어 있다.
본 구성은 일 예이며, 설명한 형성 방법으로 한정되는 것이 아니다. 또한, 본 예에서는 포토다이오드 PD는 N형, 기판(1)은 P형, 광 수집 영역을 구성하는 깊은 불순물층(9)은 N형이지만, 각각의 도전형을 교체해서 구성하는 것도 가능하다. 즉, 포토다이오드 PD는 P형, 기판(1)은 N형, 광 수집 영역을 구성하는 깊은 불순물층(9)은 P형으로 해도 마찬가지로 형성 가능하다.
본 발명에서는, 크로스토크 방지층 DNW(9)를 포토다이오드 PD 및 화소-주변 회로(도 1의 예에서는 시프트 레지스터 회로) 사이에 설치함으로써, 화소 영역-화소 영역간 및 화소 영역-주변 회로 영역간의 크로스토크를 저감하고, 광감도를 향상시키는 것이다. 크로스토크를 대폭 저감하고, 광감도를 향상시키는 효과에 대해서 측광 화소 영역(18)에 광이 입사했을 경우를 예로들어 상세하게 설명한다.
도 4에 비교예로서, 크로스토크 방지층 DNW(9)가 없을 경우의 단면 구조(도 1 상당, 또 도 1과 동일한 부호를 부여한 구성은 도 1과 같은 구성인 것을 나타낸다)와 측광 화소 영역(18)에 광(50)이 입사했을 경우의 광전하 전송 경로를 도시한다. 도 5에, 도 4의 포토다이오드 PD에 있어서의 Y-Y' 방향의 불순물 프로파일을 도시하고, 도 6에 도 5의 불순물 프로파일에 있어서의 포텐셜 도면을 도시한다.
도 5에 도시된 바와 같이, 포토다이오드 PD에 있어서, P+ Si 반도체 기판(1) 위의 영역이 광전하 수집 영역(36)으로서 기능한다. 참조부호 30이 표면 P형 보호층(11)의 불순물 프로파일, 참조부호 31이 N형 포토다이오드(10)의 불순물 프로파일, 참조부호 32가 P웰(12)의 불순물 프로파일, 참조부호 33이 P- Si층(2)의 불순물 프로파일, 참조부호 34가 P+ Si 반도체 기판(1)의 불순물 프로파일이다. 이때, P웰(12), P- Si층(2), P+ Si 반도체 기판(1)에서 형성되는 내부 전계가 약한 영역(35)이 발생한다. 도 7에 그 모양을 도시한다. 포토다이오드를 형성하는 N형 불순물 영역에서 포텐셜(60)이 최소가 되지만, 내부 전계가 약한 영역(35)에서는 포텐셜 구배를 충분히 확보할 수 없다. 그 결과, 센서 디바이스의 깊은 영역에 도달한 광전하를 포토다이오드 PD 영역(60)에 효율적으로 전송할 수 없다. 즉, 디바이스의 종방향의 포텐셜 구배가 약하기 때문에, 포토다이오드 PD에 도달하기 전에 횡방향으로 확산해 버린다. 그 결과, 측광 화소 영역에 입사한 광(50)은, 도 4의 경로(1)와 같이 측거 화소 영역(19)으로 크로스토크하여, 측광 화소(18)의 광감도가 저하함과 함께, 측거 화소(19)에서는 가짜 신호로서 관측된다. 또한, 입사광(50)에 의해 발생한 광전하의 일부는, 도 4의 경로(2)와 같이 시프트 레지스터 회로 영역(20)으로 크로스토크함으로써 마찬가지로 측광 화소(18)의 광감도는 저하한다.
이에 대해, 도 1의 측광 화소(18)에 광(50)이 입사하는 경우의 광전하 전송 경로를 도 7에 도시한다. 도 8에, 도 7의 포토다이오드 PD에 설치된 크로스토크 방지층 DNW(9a)에 있어서의 Z-Z' 방향의 불순물 프로파일을 도시하고, 도 9에 도 8의 불순물 프로파일에 있어서의 포텐셜 도면을 도시한다.
도 8에 도시한 바와 같이, 포토다이오드 PD에 있어서, P+ Si 반도체 기판(1) 상의 영역이 광전하 수집 영역(85)으로서 기능한다. 참조부호 80이 표면 P형 보호층(11)의 불순물 프로파일, 참조부호 81이 N형 포토다이오드(10)의 불순물 프로파일, 참조부호 82가 P웰(12)의 불순물 프로파일, 참조부호 83이 P- Si층(2)의 불순물 프로파일, 참조부호 84가 P+ Si 반도체 기판(1)의 불순물 프로파일, 참조부호 87이 크로스토크 방지층 DNW(9)의 불순물 프로파일이다. 포토다이오드 PD와 동일 도전형의 N형 불순물을 첨가해 크로스토크 방지층 DNW(9)를 형성함으로써, 도 9에 도시한 바와 같은 광전하 수집 영역(85)의 거의 전체를 통해서 기울기를 갖는 포텐셜 구배를 형성하는 것이 가능하다. 그 결과, P웰(12), P- Si층(2), P+ Si 반도체 기판(1)에서 형성되는 내부 전계가 약한 영역에 있어서, 횡방향으로 확산된 광전하는 크로스토크 방지층 DNW(9)를 통해서 종방향으로 전송되게 된다. 측광 화소(18)에 입사한 광(50)은, 도 7의 경로 b, 경로 c와 같이 측거 화소 영역(19)이나 시프트 레지스터 회로 영역(20)으로 크로스토크하는 일이 없어, 포토다이오드 PD(10)에 전하를 수집할 수 있다. 그 결과, 측광 화소(18)의 광감도는 향상된다. 측거 화소 영역(19)에서는, 도 7의 경로 a와 같이 크로스토크 방지층 DNW(9b)에 의해 전하가 흡수되기 때문에, 가짜 신호로서 관측되는 일은 없다. 또한, 입사된 광에 의해 발생한 광전하의 일부는, 도 7의 경로 d와 같이 측광 화소(18)-시프트 레지스터 회로 영역(20) 사이에 배치된 크로스토크 방지층 DNW(9b)에 의해 흡수되어, 시프트 레지스터 회로 영역(20)으로 흘러들어 오는 일은 없다.
또한, 측광 화소(18)에 관해서 크로스토크 방지층 DNW의 효과에 대해서 설명해 왔지만, 측거 화소(19)에 광이 입사되었을 경우도, 동일한 이유에 의해, 크로스토크가 저감되고, 광감도를 향상시키는 것이 가능한 것은 말할 필요도 없다.
다음에, 광감도를 향상시키는 크로스토크 방지층 DNW의 제1 구성예를 적용한 화소 구조에 대해서 설명한다. 도 10은 도 2의 영역 A로 도시된 영역에 상당하는 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(단, 도 11에 도시하는 K-K' 단면), 도 11은 도 10에 있어서의 A-A'의 위치에서의 단면 구조이다. 본 예에서는, 기둥 형상의 크로스토크 방지층 DNW(9)로서, 깊은 영역의 N웰 DNWa(101)과 얕은 영역의 N웰 DNWb(102)을 각각 다른 마스크와 이온 주입을 적용함으로써 도 8에 도시하는 불순물 프로파일을 형성한다. 깊은 영역의 N웰 DNWa(101)은 화소 경계 영역 및 각 화소 내에 링 형상으로 배치된다. 이 예에서는, 화소 경계(100)의 깊은 영역의 N웰 DNWa(101b) 상에는, N웰(103)이 배치되어 크로스토크를 야기하는 광전하를 흡수하는 전위가 인가되도록 구성된다. 화소 경계 영역이 깊은 영역의 N웰 DNWa(101b)은 도시되어 있지 않지만 서로 연결되고 있어, 급전 영역이 되는 불순물 영역(13), N웰(103)을 통해서 플러스 전압이 주어진다. 예를 들어 전원 전압과 같은 플러스 전압이 급전 영역을 통해서 화소 경계 영역의 깊은 영역의 N웰 DNWa(101b)에 인가되고, 마이너스 전위를 가지는 광전하가 흡수된다.
한편, 측광 화소(18), 측거 화소(19)에 링 형상으로 배치되는 깊은 영역의 N웰 DNWa(101a) 상에는, 얕은 영역의 N웰 DNWb(102)가 도트 형상으로 형성되어 있다. 얕은 영역의 N웰 DNWb(102a)는 포토다이오드 PD(10)에 접속되고, 화소 내에서 발생한 광전하를 포토다이오드 PD에 전송한다. 여기서, 화소 내에서 발생한 광전하를 효율적으로 포토다이오드에 전송하기 위해서는, 포텐셜 구배를 크로스토크 방지층(9)의 심부(深部)로부터 포토다이오드(10)를 향해서 형성하는 것이 필요하다. 즉, 포토다이오드(10), 얕은 영역의 N웰 DNWb(102), 깊은 영역의 N웰 DNWa(101a)의 순서대로 포텐셜을 낮게 설계할 필요가 있다.
깊은 영역의 N웰 DNW(a101a)의 포텐셜은, P+ Si 반도체 기판(1), P웰(12)에 의해 끼워져 있는 위치에 형성되고, 도 11에 있어서의 깊이 방향을 이용해서 포텐셜 설계를 행할 수 있다. 즉, 깊은 영역의 N웰 DNWa(101a)는 P+ Si 반도체 기판(1)과 P웰(12) 사이에 끼워지는 것으로, 종방향(Z방향)으로 PNP 접합이 형성되기 때문에, 깊은 영역의 N웰 DNWa(101a)의 포텐셜을 제어하고, 포텐셜 구배를 깊은 영역의 N웰 DNWa(101a)의 심부로부터 포토다이오드(10)를 향해서 낮게 설계하는 것이 가능하게 된다. 또한, 깊은 영역의 N웰 DNWa(101a)를 링 형상으로 배치하면, 도 11에 있어서의 X, Y 방향으로부터의 전계 효과를 이용할 수 있기(즉, 링 형상으로 형성함으로써 X 방향 또는 Y 방향으로도 PNP 접합이 형성된다) 때문에, 깊은 영역의 N웰 DNWa(101a)를 높은 전위에서 공핍화할 수 있어, 포텐셜 설계가 용이하게 된다. 또한, 얕은 영역의 N웰 DNWb(102)은 P웰(12)의 깊이 위치 근방에 형성되고, P웰(12)과 얕은 영역의 N웰 DNWb(102)와의 PN 접합을 사용해서 공핍화시키는 포텐셜 설계를 행한다. 예를 들어, 얕은 영역의 N웰 DNWb(102)는 P웰(12)의 불순물 분포에 따라, 조금씩 고농도화하도록 형성한다. 이때, 얕은 영역의 N웰 DNWb(102)를 도트 형상으로 배치하면, 도 11에 있어서의 X, Y 방향으로부터의 전계 효과를 이용함으로써 공핍화를 실현할 수 있어, 포텐셜 설계가 용이하게 된다.
또한, 도 10 및 도 11의 예에서는, 깊은 영역의 N웰 DNWa(101) 및 얕은 영역의 N웰 DNWb(102)를 각 화소의 최외주 위치에 배치하고 있다. 이렇게 배치함으로써, 화소 내로 입사된 광에 의해 발생하는 광전하를 광범위하게 수집하고, 감도를 향상시키는 것이 가능하게 된다.
크로스토크 방지층 DNW의 제1 구성예를 적용했을 경우, 광감도를 1.7배, 측광 화소-측거 화소간 크로스토크 및 측거 화소간-측거 화소간 크로스토크를 -20dB 개선했다. 도 12에 본 구조를 적용했을 경우의 측거 화소간-측거 화소간 크로스토크 효과를 나타낸다. 가시광에 해당하는 파장 500㎚ 내지 800㎚의 영역에서, -20dB 이상의 개선이 얻어졌다.
다음에, 크로스토크 방지층 DNW의 제2 구성예를 적용한 화소 구조에 대해서 설명한다. 도 13은 도 2의 영역 A로 도시한 영역에 상당하는 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(단, 도 14에 도시하는 K-K' 단면), 도 14는 도 13에 있어서의 A-A'의 위치에서의 단면 구조이다. 제1 구성예와 비교하면, 측광 화소(18) 및 측거 화소(19) 내의 깊은 영역의 N웰 DNWa(101)를 각각의 화소 내 전체 영역에 평면으로 배치하고, 도트 형상의 얕은 영역의 N웰 DNWb(102)를 화소 내 전체 영역에 배치하고 있는 것을 특징으로 한다.
본 구성예에서는, 제1 구성예와 마찬가지로 화소 내의 깊은 영역에서 발생한 광전하를 깊은 영역의 N웰 DNWa(101), 얕은 영역의 N웰 DNWb(102)를 경유해서 포토다이오드(10)에 전송한다. 제1 구성예에 비해, 깊은 영역의 N웰 DNWa(101), 얕은 영역의 N웰 DNWb(102)를 경유해서 포토다이오드 PD에 전송하는 경로수를 증대시킬 수 있고, 전하 전송의 고속화, 고효율화가 가능하다. 또한, 제1 구성예에 비해, 깊은 영역의 N웰 DNWa(101), 얕은 영역의 N웰(102), 포토다이오드(10)의 전하 축적 영역(N형)을 크게 할 수 있기 때문에, 축적할 수 있는 신호 전하량을 증대시킬 수 있다.
또한, 크로스토크 방지층 DNW의 제3 구성예를 적용한 화소 구조에 대해서 설명한다. 도 15는 도 2의 영역 A로서 도시한 영역에 상당하는 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(단, 도 11에 도시하는 K-K' 단면에 상당)이다. 제1 구성예와 비교하면, 얕은 영역의 N웰 DNWb(102)를 화소 내 외주부에 라인 형상으로 형성하고 있는 것을 특징으로 한다.
본 구성예에서는, 제1 구성예와 마찬가지로 화소 내의 깊은 영역에서 발생한 광전하를 깊은 영역의 N웰 DNWa(101), 얕은 영역의 N웰 DNWb(102)를 경유해서 포토다이오드(10)에 전송한다. 제1 구성예에 비해, 얕은 영역의 N웰 DNWb(102)가 라인 형상으로 형성되어 있기 때문에, 화소 내에서 발생한 광전하를 화소 영역 외로 빠져나가는 일이 없이 N웰 DNW에 흡수시킬 수 있어, 광감도가 향상한다.
또한, 이 변형예로서, 제2 구성예와 마찬가지로 깊은 영역의 N웰 DNWa(101)를 화소 내 전체 영역에 평면에 배치하고, 라인 형상의 얕은 영역의 N웰 DNWb(102)를 화소 내 전체 영역에 배치하면, 제2 구성예와 마찬가지로 전하 전송의 고속화, 고효율화 및 축적할 수 있는 신호 전하량을 증대시키는 것이 가능하다. 도 16은 이 변형예에 대응하는 도 2의 영역 A로서 도시한 영역에 상당하는 측광 화소 영역(18) 및 측거 화소 영역(19)의 주요부 상면도(단, 도 11에 도시하는 K-K' 단면에 상당)이다.
도 17은 본 발명의 고체 촬상 장치의 다른 주요부 단면 구조를 도시하는 도면이다. 제1 구성예에 추가해서, 측광 화소 및 측거 화소를 구성하는 트랜지스터 아래에, 크로스토크 방지층 DNW(110)(깊은 영역의 N웰)가 배치되어 있는 것을 특징으로 한다.
본 구조에서는, 제1 구성예와 마찬가지로, 측광 화소(18)에 입사한 광은 측거 화소 영역(19)으로 크로스토크하는 일이 없이, 포토다이오드 PD(10)에서 전하를 흡수할 수 있다. 따라서, 측광 화소의 광감도는 향상된다. 측거 화소(19)에서는 크로스토크 방지층 DNW(9)에 의해 전하가 흡수되기 때문에, 가짜 신호로서 관측되는 일은 없다.
도 17과 같이 측거 화소 영역(19)에 광이 입사된 경우에는, 측거 화소와 측거 화소 사이에 배치되는 트랜지스터 영역 아래에 크로스토크 방지층 DNW(110)(깊은 영역의 N웰)가 배치되어 있기 때문에, 경로 k와 같은 인접하는 측거 화소로 향하는 광전하의 이동 경로가 존재하지 않게 된다. 그 결과, 제1 구성예와 비교하여, 측거 화소-측거 화소간의 크로스토크 저감을 실현할 수 있다. 특히, 화소가 미세화되어 측거 화소-측거 화소의 간격이 축소된 경우에는, 크로스토크 저감 효과가 크다. 이에 의해, 화소가 미세화되어 측거 화소-측거 화소 간격이 축소된 경우라도, 크로스토크량을 열화시킬 일이 없이, 미세화가 가능해졌다.
여기까지는, 본 발명을 CMOS 센서를 사용한 오토 포커스 센서에 적용했을 경우에 대해서 서술했지만, 예를 들어 CCD 이미지 센서와 같은 다른 고체 촬상 소자에 적용하는 것도 가능하다.
1 : P+ Si 반도체 기판
2 : P- Si층
3 : N웰
4 : 콘택트 홀
5 : 제1 배선층
6 : 제2 배선층
7 : 제3 배선층
8 : 배선층간 절연막
9 : 크로스토크 방지층 DNW
10 : 포토다이오드 PD
11 : 포토다이오드 PD 표면 P형 보호층
12 : P웰
13 : N+ 확산층
14 : 소자 분리 영역
15 : 게이트 전극
16 : N형 아이솔레이션 NISO
17 : P+ 확산층
18 : 측광 화소 영역
19 : 측거 화소 영역
20 : 시프트 레지스터 회로 영역
2 : P- Si층
3 : N웰
4 : 콘택트 홀
5 : 제1 배선층
6 : 제2 배선층
7 : 제3 배선층
8 : 배선층간 절연막
9 : 크로스토크 방지층 DNW
10 : 포토다이오드 PD
11 : 포토다이오드 PD 표면 P형 보호층
12 : P웰
13 : N+ 확산층
14 : 소자 분리 영역
15 : 게이트 전극
16 : N형 아이솔레이션 NISO
17 : P+ 확산층
18 : 측광 화소 영역
19 : 측거 화소 영역
20 : 시프트 레지스터 회로 영역
Claims (15)
- 화소 영역과 상기 화소 영역에 인접하고, 논리 회로가 형성되는 논리 회로 영역을 갖는 고체 촬상 장치로서,
상기 화소 영역과 상기 논리 회로 영역이 형성되는 제1 도전형의 반도체층과,
상기 반도체층 상에 형성되고, 상기 반도체층보다 고농도의 제1 도전형의 제1 반도체 영역과,
상기 화소 영역의 소자와 상기 논리 회로 영역의 소자를 분리하는 소자 분리 영역
을 갖고,
상기 화소 영역에는 상기 제1 반도체 영역 상에 제2 도전형의 포토다이오드가 형성되고,
상기 제2 도전형의 포토다이오드의 영역에 있어서, 상기 포토다이오드로부터 상기 제1 반도체 영역을 넘어 상기 반도체층으로 연장되는 제2 도전형의 제2 반도체 영역이 형성되는 고체 촬상 장치. - 제1항에 있어서,
상기 소자 분리 영역에 있어서, 상기 소자 분리 영역을 형성하는 산화막으로부터 상기 제1 반도체 영역을 넘어 상기 반도체층으로 연장되는 제2 도전형의 제3 반도체 영역이 형성되는 고체 촬상 장치. - 제2항에 있어서,
상기 반도체층 상에 형성되는 제2 도전형의 제4 반도체 영역을 갖고,
상기 제3 반도체 영역은 상기 제4 반도체 영역으로부터 플러스 전위가 급전되는 고체 촬상 장치. - 제1항에 있어서,
상기 제2 반도체 영역은, 상기 반도체층에 형성되고, 상기 포토다이오드의 내주를 따라 링 형상으로 형성되는 제1 부분과, 상기 제1 부분 상에 도트 형상으로 형성되는 복수의 제2 부분을 갖는 고체 촬상 장치. - 제1항에 있어서,
상기 제2 반도체 영역은, 상기 반도체층에 형성되고, 상기 포토다이오드의 내주를 따라 링 형상으로 형성되는 제1 부분과, 상기 제1 부분 상에 라인 형상으로 형성되는 복수의 제2 부분을 갖는 고체 촬상 장치. - 제1항에 있어서,
상기 제2 반도체 영역은, 상기 반도체층에 형성되고, 상기 포토다이오드의 평면 형상에 따른 평면 형상을 갖고 형성되는 제1 부분과, 상기 제1 부분 상에 도트 형상으로 형성되는 복수의 제2 부분을 갖고, 상기 복수의 제2 부분은 상기 제1 부분 상에 전면적으로 배치되는 고체 촬상 장치. - 제1항에 있어서,
상기 제2 반도체 영역은, 상기 반도체층에 형성되고, 상기 포토다이오드의 평면 형상에 따른 평면 형상을 갖고 형성되는 제1 부분과, 상기 제1 부분 상에 라인 형상으로 형성되는 복수의 제2 부분을 갖고, 상기 복수의 제2 부분은 상기 제1 부분 상에 전면적으로 배치되는 고체 촬상 장치. - 제1 화소와 제2 화소를 갖는 고체 촬상 장치로서,
제1 도전형의 반도체층과,
상기 반도체층 상에 형성되고, 상기 반도체층보다 고농도의 제1 도전형의 제1 반도체 영역과,
상기 제1 반도체 영역 상에 형성되는 제1 화소의 제2 도전형의 제1 포토다이오드와,
상기 제1 반도체 영역 상에 형성되는 제2 화소의 제2 도전형의 제2 포토다이오드
를 갖고,
상기 제1 포토다이오드의 영역에 있어서, 상기 제1 포토다이오드로부터 상기 제1 반도체 영역을 넘어 상기 반도체층으로 연장되는 제2 도전형의 제2 반도체 영역이 형성되고, 상기 제2 포토다이오드의 영역에 있어서 상기 제2 포토다이오드로부터 상기 제1 반도체 영역을 넘어 상기 반도체층으로 연장되는 제2 도전형의 제3 반도체 영역이 형성되는 고체 촬상 장치. - 제8항에 있어서,
상기 제1 포토다이오드와 상기 제2 포토다이오드와의 사이에는, 상기 제1 화소 또는 상기 제2 화소를 구성하는 회로가 형성되는 화소 회로 형성 영역이 설치되고,
상기 화소 회로 형성 영역에 있어서, 상기 제1 반도체 영역 아래에 제2 도전형의 제4 반도체 영역이 설치되는 고체 촬상 장치. - 제9항에 있어서,
상기 제1 화소와 상기 제2 화소가 설치되는 화소 영역에 인접하고, 논리 회로가 형성되는 논리 회로 영역과,
상기 화소 영역의 소자와 상기 논리 회로 영역의 소자를 분리하는 소자 분리 영역을 갖고,
상기 소자 분리 영역에 있어서, 상기 소자 분리 영역을 형성하는 산화막으로부터 상기 제1 반도체 영역을 넘어 상기 반도체층으로 연장되는 제2 도전형의 제5 반도체 영역이 형성되는 고체 촬상 장치. - 제10항에 있어서,
상기 반도체층 상에 형성되는 제2 도전형의 제6 반도체 영역을 갖고,
상기 제5 반도체 영역은 상기 제6 반도체 영역으로부터 플러스의 전위가 급전되는 고체 촬상 장치. - 제8항에 있어서,
상기 제2 반도체 영역 및 상기 제3 반도체 영역은 각각, 상기 반도체층에 형성되고, 상기 포토다이오드의 내주를 따라 링 형상으로 형성되는 제1 부분과, 상기 제1 부분 상에 도트 형상으로 형성되는 복수의 제2 부분을 갖는 고체 촬상 장치. - 제8항에 있어서,
상기 제2 반도체 영역 및 상기 제3 반도체 영역은 각각, 상기 반도체층에 형성되고, 상기 포토다이오드의 내주를 따라 링 형상으로 형성되는 제1 부분과, 상기 제1 부분 상에 라인 형상으로 형성되는 복수의 제2 부분을 갖는 고체 촬상 장치. - 제8항에 있어서,
상기 제2 반도체 영역 및 상기 제3 반도체 영역은 각각, 상기 반도체층에 형성되고, 상기 포토다이오드의 평면 형상에 따른 평면 형상을 갖고 형성되는 제1 부분과, 상기 제1 부분 상에 도트 형상으로 형성되는 복수의 제2 부분을 갖고, 상기 복수의 제2 부분은 상기 제1 부분 상에 전면적으로 배치되는 고체 촬상 장치. - 제8항에 있어서,
상기 제2 반도체 영역 및 상기 제3 반도체 영역은 각각, 상기 반도체층에 형성되고, 상기 포토다이오드의 평면 형상에 따른 평면 형상을 갖고 형성되는 제1 부분과, 상기 제1 부분 상에 라인 형상으로 형성되는 복수의 제2 부분을 갖고, 상기 복수의 제2 부분은 상기 제1 부분 상에 전면적으로 배치되는 고체 촬상 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2011-185464 | 2011-08-29 | ||
JP2011185464A JP5677238B2 (ja) | 2011-08-29 | 2011-08-29 | 固体撮像装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130024740A true KR20130024740A (ko) | 2013-03-08 |
KR101373905B1 KR101373905B1 (ko) | 2014-03-12 |
Family
ID=46465007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120075784A KR101373905B1 (ko) | 2011-08-29 | 2012-07-11 | 고체 촬상 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9093349B2 (ko) |
EP (1) | EP2565925A3 (ko) |
JP (1) | JP5677238B2 (ko) |
KR (1) | KR101373905B1 (ko) |
TW (1) | TWI483391B (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6115982B2 (ja) * | 2011-07-04 | 2017-04-19 | ソニーセミコンダクタソリューションズ株式会社 | 撮像素子および撮像装置 |
JP6355311B2 (ja) | 2013-10-07 | 2018-07-11 | キヤノン株式会社 | 固体撮像装置、その製造方法及び撮像システム |
JP2016092178A (ja) | 2014-11-04 | 2016-05-23 | 株式会社リコー | 固体撮像素子 |
US9998691B2 (en) | 2015-03-11 | 2018-06-12 | Canon Kabushiki Kaisha | Pixel, a solid-state imaging device, and an imaging apparatus having barrier region between photoelectric conversion portions in parallel |
KR102577844B1 (ko) | 2016-08-09 | 2023-09-15 | 삼성전자주식회사 | 이미지 센서 |
US10410934B2 (en) * | 2017-12-07 | 2019-09-10 | Micron Technology, Inc. | Apparatuses having an interconnect extending from an upper conductive structure, through a hole in another conductive structure, and to an underlying structure |
KR20220034973A (ko) * | 2020-09-11 | 2022-03-21 | 삼성전자주식회사 | 이미지 센서 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002164529A (ja) * | 2000-11-28 | 2002-06-07 | Sony Corp | 固体撮像素子およびその製造方法 |
JP4270742B2 (ja) * | 2000-11-30 | 2009-06-03 | Necエレクトロニクス株式会社 | 固体撮像装置 |
JP4625605B2 (ja) | 2002-06-28 | 2011-02-02 | 富士フイルム株式会社 | 固体撮像装置 |
KR100461975B1 (ko) * | 2002-12-27 | 2004-12-17 | 매그나칩 반도체 유한회사 | 이미지센서의 트렌치 소자분리막 형성방법 |
JP4426273B2 (ja) * | 2003-05-22 | 2010-03-03 | イノテック株式会社 | Mos型固体撮像装置及びその製造方法 |
JP5230058B2 (ja) | 2004-06-07 | 2013-07-10 | キヤノン株式会社 | 固体撮像装置およびカメラ |
JP4530747B2 (ja) | 2004-07-16 | 2010-08-25 | 富士通セミコンダクター株式会社 | 固体撮像装置及びその製造方法 |
JP2006064956A (ja) | 2004-08-26 | 2006-03-09 | Canon Inc | オートフォーカス用固体撮像装置とそれを用いたオートフォーカスカメラ |
JP4595464B2 (ja) * | 2004-09-22 | 2010-12-08 | ソニー株式会社 | Cmos固体撮像素子の製造方法 |
KR100924706B1 (ko) * | 2005-03-28 | 2009-11-03 | 후지쯔 마이크로일렉트로닉스 가부시키가이샤 | 촬상 장치 |
KR20080016259A (ko) * | 2006-08-18 | 2008-02-21 | 동부일렉트로닉스 주식회사 | 씨모스 이미지 센서 및 그 제조방법 |
US8357984B2 (en) * | 2008-02-08 | 2013-01-22 | Omnivision Technologies, Inc. | Image sensor with low electrical cross-talk |
JP5328207B2 (ja) * | 2008-04-01 | 2013-10-30 | キヤノン株式会社 | 固体撮像装置 |
KR101534544B1 (ko) * | 2008-09-17 | 2015-07-08 | 삼성전자주식회사 | 에피 층을 갖는 픽셀 셀을 구비한 이미지 센서, 이를 포함하는 시스템, 및 픽셀 셀 형성 방법 |
-
2011
- 2011-08-29 JP JP2011185464A patent/JP5677238B2/ja not_active Expired - Fee Related
-
2012
- 2012-06-21 TW TW101122195A patent/TWI483391B/zh not_active IP Right Cessation
- 2012-07-05 EP EP12004985.3A patent/EP2565925A3/en not_active Withdrawn
- 2012-07-11 KR KR1020120075784A patent/KR101373905B1/ko not_active IP Right Cessation
- 2012-07-12 US US13/547,452 patent/US9093349B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP5677238B2 (ja) | 2015-02-25 |
US9093349B2 (en) | 2015-07-28 |
KR101373905B1 (ko) | 2014-03-12 |
EP2565925A2 (en) | 2013-03-06 |
JP2013048132A (ja) | 2013-03-07 |
US20130049156A1 (en) | 2013-02-28 |
EP2565925A3 (en) | 2014-05-07 |
TWI483391B (zh) | 2015-05-01 |
TW201314877A (zh) | 2013-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10504947B2 (en) | Solid-state image sensor and camera | |
CN111937151B (zh) | 光检测器 | |
CN105895650B (zh) | 固体摄像装置以及电子设备 | |
US8564701B2 (en) | Solid-state imaging device having a buried photodiode and a buried floating diffusion positioned for improved signal charge transfer, and electronic apparatus including the solid-state imaging device | |
KR101373905B1 (ko) | 고체 촬상 장치 | |
US7816755B2 (en) | Photoelectric conversion device with isolation arrangement that reduces pixel space without reducing resolution or sensitivity | |
JP4950703B2 (ja) | 固体撮像素子 | |
TWI497702B (zh) | Solid state camera device | |
KR101693880B1 (ko) | 고체 촬상 소자, 촬상 장치 | |
JP4751865B2 (ja) | 裏面照射型固体撮像素子及びその製造方法 | |
JP5478217B2 (ja) | 固体撮像装置 | |
KR20170043140A (ko) | 이미지 센서 | |
TWI740958B (zh) | 用於前照式紅外線影像感測器的光電閘及其製造方法 | |
JP2023017991A (ja) | 撮像素子 | |
JP2013149740A (ja) | 撮像装置、及び撮像装置を含む撮像システム | |
US20110001207A1 (en) | Solid state image sensor and manufacturing method thereof | |
KR20080078541A (ko) | 고체 촬상 장치 및 촬상 장치 | |
US8836065B2 (en) | Solid-state imaging device | |
JP2005268644A (ja) | 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール | |
US20140110771A1 (en) | Solid-state imaging device and semiconductor device | |
JP2008066742A (ja) | 固体撮像装置 | |
WO2023286330A1 (ja) | 光検出装置及び電子機器 | |
JP2011165951A (ja) | 固体撮像素子 | |
JP6178835B2 (ja) | 固体撮像装置およびカメラ | |
KR20240095209A (ko) | 광 검출 장치 및 전자 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170221 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |