JP5478217B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP5478217B2
JP5478217B2 JP2009267550A JP2009267550A JP5478217B2 JP 5478217 B2 JP5478217 B2 JP 5478217B2 JP 2009267550 A JP2009267550 A JP 2009267550A JP 2009267550 A JP2009267550 A JP 2009267550A JP 5478217 B2 JP5478217 B2 JP 5478217B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
region
color filter
type
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009267550A
Other languages
English (en)
Other versions
JP2011114068A (ja
Inventor
三佳 森
徹 沖野
裕 廣瀬
剛久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009267550A priority Critical patent/JP5478217B2/ja
Priority to CN201080052831.3A priority patent/CN102668083B/zh
Priority to PCT/JP2010/004906 priority patent/WO2011064920A1/ja
Publication of JP2011114068A publication Critical patent/JP2011114068A/ja
Priority to US13/462,895 priority patent/US8680640B2/en
Application granted granted Critical
Publication of JP5478217B2 publication Critical patent/JP5478217B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、光電変換部を含む画素部が行列状に配列された固体撮像装置に関する。
近年、MOS(Metal Oxide Semiconductor)型の固体撮像装置は、低消費電力駆動及び高速撮像が可能な装置として注目されており、携帯機器カメラ、車載カメラ及び監視カメラと幅広い分野で搭載され始めている。
図6は一般的なMOS型の固体撮像装置の回路構成を示している。図6に示すように、光電変換部(フォトダイオード)101を含む画素部100が行列状に配置されて撮像領域を構成している。光電変換部101により光電変換された電荷は、転送トランジスタ103によって、浮遊拡散層(フローティングディフュージョン)102に転送される。浮遊拡散層102に転送された電荷は、増幅トランジスタ104で増幅され、垂直シフトレジスタ108により選択された選択トランジスタ106を介して出力信号線111に伝達される。さらに、増幅された電荷は、水平シフトレジスタ109を介して出力端子112から出力される。なお、浮遊拡散層102に蓄積されている余剰電荷は、ドレイン領域が電源線107と接続されたリセットトランジスタ105により排出される。
図7は従来例に係る画素部100の断面構成を示している(例えば、特許文献1を参照。)。図7に示すように、p型半導体基板201の上には、p型エピタキシャル層203が形成されている。各画素部100は、素子分離207によって区画されており、緑色光を透過する緑フィルタ227G、赤色光を透過する赤フィルタ227R及び青色光を透過する青フィルタ227Bのいずれかが配置されている。
p型エピタキシャル層203の上部には、p型の第1不純物注入領域219とその下にn型の第2不純物注入領域217とが配置されて、光電変換部であるフォトダイオードが形成されている。n型の第2不純物領域217とp型エピタキシャル層203との接合部分も光電変換部となる。p型エピタキシャル層203における各第2不純物注入領域217の下方には、p型の第1埋没バリヤ層205が連続して形成されている。すなわち、第1埋没バリヤ層205にドーピングされたp型の不純物濃度は、p型エピタキシャル層203にドーピングされたp型の不純物濃度よりも高い。
p型エピタキシャル層203における第1埋没バリヤ層205の上で、且つ緑フィルタ227Gと青フィルタ227Bとが形成された画素部100には、第2埋没バリヤ層211が形成されている。さらに、青フィルタ227Bが形成された画素部100には、第2埋没バリヤ層211の上に第3埋没バリヤ層215が形成されている。ここで、第2埋没バリヤ層211及び第3埋没バリヤ層215には、p型の不純物がドーピングされており、第1埋没バリヤ層205の不純物濃度と同程度の濃度を有する。また、各埋没バリヤ層205、211及び217の上部は、いずれも第2不純物領域217と離れている。
以上により、各画素部100に入射される光の波長に応じて、フォトダイオードの空乏領域の幅及び位置を調節することにより、クロストークを防止している。
また、各画素部に入射される光の波長に応じて、フォトダイオードを構成するn型不純物の注入深さを各画素部で変更し、例えば、青フィルタを有する画素部のフォトダイオードを浅く、赤フィルタを有する画素部のフォトダイオードを深く形成して、フォトダイオードの空乏領域を調節することにより、クロストークを防止する従来技術もある。
特開2006−210919号公報 特許第4130891号公報
しかしながら、前記従来のフォトダイオード構造を持つ固体撮像装置には、以下のような問題がある。
すなわち、図7に示す固体撮像装置は、フォトダイオードを構成するn型の第2不純物注入領域の下方に、光の波長に応じてそれぞれ厚さが異なるp型の埋没バリヤ層を設けているものの、各埋没バリヤ層の不純物濃度が低い場合は発生電荷のライフタイムが長くなるため、光電変換されて発生する電荷は消失が遅くなる。これにより、隣接する画素部のフォトダイオードに電荷の流入が起こり、クロストークが増大する。例えば、入射光がn型の第2不純物注入領域の下方のp型の埋没バリヤ層まで到達すると、このp型領域において電荷が発生して隣接するフォトダイオードに流入する。
なお、フォトダイオードを構成するn型不純物注入領域を半導体基板の深い領域にまで形成すると、p型領域への光の到達を防止することは可能であるが、斜めに入射される光成分による隣接する画素部への光の漏れ込みが顕著となって、クロストークが増大する。
また、カラーフィルタによって長波長の光成分を除去すると、半導体基板の深部への光の到達は防止できるものの、入射光量が減少して長波長の光に対する感度が低下する。
一方、図7においては、フォトダイオードを構成するn型の不純物注入領域の下方に設けるp型領域(埋没バリヤ層)の形状を変更しているが、p型領域の不純物濃度が高い場合は、n型の不純物注入領域とp型領域との接合リークが増大してノイズが増加する。
本発明は、前記従来の問題に鑑み、感度及び読み出し特性を維持しながら、光電変換された電荷の他の画素部への流入を防止できるようにすることを目的とする。
前記の目的を達成するため、本発明は、固体撮像装置を裏面照射型とし、入射される光の波長に応じて、光電変換部の形状を異ならせる構成とする。
具体的に、本発明に係る固体撮像装置は、半導体基板と、半導体基板の上部に行列状に配置して形成された第1導電型の複数の光電変換部と、半導体基板の一の面である電荷検出面に形成され、光電変換部に蓄積される電荷を検出する検出回路部と、検出回路部の下側に形成され、各光電変換部と接する第2導電型の不純物注入領域を含む第2導電型の複数の分離拡散層と、半導体基板における一の面と対向する他の面である光入射面に形成され、異なる波長の光を透過する複数のカラーフィルタとを備え、各光電変換部の形状は、カラーフィルタと対応して、分離拡散層を構成する不純物注入領域により異なることを特徴とする。
本発明の固体撮像装置によると、各光電変換部の形状は、カラーフィルタと対応して、分離拡散層を構成する不純物注入領域により異なるため、例えば比較的に短波長の光を透過するカラーフィルタと光電変換部との距離を短くすることができる。その結果、斜めの入射光によるクロストークを減少することができる。また、光の波長に応じて、光電変換部の形状が異なるため、画素部の感度を確保しながらクロストークを減少させることができる。
本発明の固体撮像装置において、複数の光電変換部は、第1の波長領域において透過率が最大となる第1のカラーフィルタと対応する第1の光電変換部と、第1の波長領域よりも波長が長い第2の波長領域において透過率が最大となる第2のカラーフィルタと対応する第2の光電変換部とを有し、第2の光電変換部における光入射面と平行な方向の幅が最大となる領域は、第1の光電変換部における光入射面と平行な方向の幅が最大となる領域よりも、電荷検出面に近くてもよい。
このようにすると、長波長の光を受ける光電変換部は、半導体基板の電荷検出面側に近い深部にまで形成されることになるため、光電変換された電荷を光電変換部に効率良く集めることが可能となるので、高感度を維持しながらクロストークが減少する。また、電荷検出面側の第2導電型の不純物注入領域の深さを調整することにより、光電変換部の形状を調節できるため、電荷読み出しが低電圧で可能となる。また、第2導電型の不純物注入領域を高濃度化することも可能となるため、ノイズ成分を低減しながら、電荷読み出しが低電圧で可能となる。
この場合に、第2の光電変換部は、光入射面における開口面積及び電荷検出面における開口面積と比べて、半導体基板の内部において光入射面と平行な方向の断面積が最大となっていてもよい。
このようにすると、半導体基板の電荷検出面側に近い深部に到達する入射光を光電変換部に効率良く集めることができるため、高感度を維持しながらクロストークを減少させることが可能となる。
また、この場合に、第2の光電変換部における光入射面と平行な方向の幅が最大となる領域は、分離拡散層の内部に拡張して形成されていてもよい。
このようにすると、半導体基板の電荷検出面側に近い深部に到達する入射光を光電変換部に効率良く集めることができるため、高感度を維持しながらクロストークを減少させることが可能となる。また、画素のサイズが微細化されて、分離拡散層も同様に狭小となっても、第2導電型の不純物注入領域に対する不純物注入を深い位置にまで形成することなく、隣接する光電変換部と電気的な分離が可能となって、クロストークが減少する。
この場合に、第2の光電変換部における光入射面と平行な方向の幅が最大となる領域は、第2の光電変換部と隣接する少なくとも1つの第1の光電変換部における電荷検出面側の下方にまで拡張して形成されていてもよい。
このようにすると、光電変換部を半導体基板の電荷検出面側に近い深部にまで形成しても、斜めの入射光による基板深部の発生電荷を集めることができるため、高感度を維持しながらクロストークを減少させることができる。
本発明に係る固体撮像装置は、基板表面からの光電変換部の深さを光波長に応じて調節できるため、電荷の読み出しを低電圧で維持しながら、高感度で且つ低クロストークを実現することができる。
本発明の一実施形態に係る固体撮像装置における画素部を示す模式的な部分断面図である。 本発明の一実施形態の第1変形例に係る固体撮像装置における画素部を示す模式的な部分断面図である。 本発明の一実施形態の第2変形例に係る固体撮像装置における画素部を示す模式的な部分断面図である。 本発明の一実施形態の第3変形例に係る固体撮像装置における撮像領域を示す模式的な平面図である。 図4のV−V線における模式的な部分断面図である。 従来のMOS型の固体撮像装置を示す回路図である。 従来のMOS型の固体撮像装置における画素部を示す模式的な部分断面図である。
(一実施形態)
本発明の一実施形態について図1を参照しながら説明する。なお、本発明は、以下の一実施形態及び後述する各変形例に限定されない。また、本発明の効果を奏する範囲を逸脱しない範囲で適宜変更可能である。さらに、各変形例との組み合わせることも可能である。
本発明に係る固体撮像装置は、複数の画素部が行列状に配列された、MOS型の固体撮像装置であって、基本的な回路構成は、図6に示した回路構成と同一である。
図1は本実施形態に係る固体撮像装置における画素部100B、100G及び100Rの断面構成であって、ここでは、3画素分を示している。各画素部100B、100G及び100Rは、例えば、シリコン(Si)からなる半導体基板1に形成された、n型の拡散領域からなる光電変換部(以降、フォトダイオードとも呼ぶ。)11と、フォトダイオード11に蓄積された電荷を出力するMOS型トランジスタからなる出力回路12と、青カラーフィルタ17、緑カラーフィルタ18及び赤カラーフィルタ19のいずれかとを有している。フォトダイオード11と出力回路12を構成するソースドレイン領域との間は、それぞれ絶縁分離部13により電気的に分離されている。
出力回路12を駆動する駆動線及び電荷を出力する出力線等の配線14は、例えば酸化シリコンからなる層間膜15に積層されて形成されている。絶縁分離部13の下側には、p型の分離拡散層10がそれぞれ形成されている。分離拡散層10は、互いに隣接するフォトダイオード11同士を電気的に分離する役割を担っており、各画素部100B、100G及び100Rの間のクロストークを防止する。
半導体基板1における出力回路12が形成された電荷検出面と反対側の面上には、例えば、酸化シリコン又は窒化シリコンからなる絶縁膜16を介在させ、且つ各画素部100B、100G及び100Rに対応して各カラーフィルタ17、18及び19が形成されている。ここで、各カラーフィルタ17、18及び19は、公知のベイヤ配列でもよく、他の配列でも構わない。青カラーフィルタ17は、短波長(約450nm)の光に対して高透過率を示すカラーフィルタであり、赤カラーフィルタ19は、長波長(約650nm)の光に対して高透過率を示すカラーフィルタであり、緑カラーフィルタ18は、青カラーフィルタ17と赤カラーフィルタ19との中間の波長(約550nm)の光に対して高透過率を示すカラーフィルタである。
フォトダイオード11と絶縁膜16との間には、第1の高濃度p型層20が全画素部100B、100G及び100Rにわたって均一の深さで形成されている。第1の高濃度p型層20は、半導体基板1の裏面(光入射面)の欠陥(結晶欠陥)に起因する暗時発生電荷のフォトダイオード11への流入を抑えて、低ノイズ化を実現する。
出力回路12が形成された電荷検出面(基板表面)とフォトダイオード11との間にも、第2の高濃度p型層21、第3の高濃度p型層22及び第4の高濃度p型層23がそれぞれ形成されている。具体的には、赤カラーフィルタ19が形成されている画素部100Rには、第4の高濃度p型層23が基板表面から浅く形成され、青カラーフィルタ17が形成されている画素部100Bには、第2の高濃度p型層21が基板表面から深く形成されている。緑カラーフィルタ18が形成されている画素部100Gには、第3の高濃度p型層22が、第2の高濃度p型層21よりも浅く且つ第4の高濃度p型層23よりも深く形成されている。
なお、フォトダイオード11の蓄積電荷を浮遊拡散層(図示せず)に転送するため、フォトダイオード(光電変換部)11の一部の領域は、各画素部100B、100G及び100Rにおいて、電荷検出面から同等の深さに浅く形成されている。また、各高濃度p型層21〜23は、半導体基板1の表面の欠陥に起因する暗時発生電荷のフォトダイオード11への流入を抑えて、低ノイズ化を実現する。
本実施形態に係る固体撮像装置は、各カラーフィルタ17〜19が設けられた半導体基板1の裏面である光入射面から光が入射されて、フォトダイオード11により光電変換された電荷が蓄積されて出力される。なお、本実施形態は、レンズを図示していないが、各カラーフィルタ17〜19の上に配置されていてもよい。
一般に、シリコンからなる半導体基板1に入射する光は、波長が450nmの場合は、約0.3μmの深さで光強度が半減する。また、光の波長が550nmの場合は、約0.8μmの深さで光強度が半減し、波長が650nmの場合は、約2.3μmの深さで光強度が半減する。従って、光の波長が長くなるほど半導体基板1の深部にまで入射光が到達して、斜めの入射光によるクロストークが顕在化する。特に、MOS型固体撮像装置は、半導体基板の表面上に配線14を積層して設けており、半導体基板1の電荷検出面から各カラーフィルタ17〜19までの距離が離れるため、斜めの入射光によるクロストークの影響が大きくなる。そこで、本実施形態に係る固体撮像装置は、各カラーフィルタ17〜19と半導体基板1との距離を短くするため、配線14が形成されていない半導体基板1の裏面側にカラーフィルタ17〜19を形成して、光を裏面から入射する裏面照射型の構成を採る。
赤カラーフィルタ19に入射した画素部100Rへの透過光は、半導体基板1の基板表面側の深部にまで到達するため、第4の高濃度p型層23を基板表面から浅く形成して、フォトダイオード11の形成領域を大きくしている。これにより、半導体基板1における光入射面からの深部で発生した光電変換された電荷を蓄積できるため、クロストークを低減することができる。一方、青カラーフィルタ17及び緑カラーフィルタ18にそれぞれ入射した画素部100B、100Gへの透過光は、半導体基板1の光入射面から浅い領域にまでしか到達しないため、第2の高濃度p型層21及び第3の高濃度p型層22を光入射面から浅く形成している。これにより、図1に示すように、赤カラーフィルタ19に入射した画素部100Rを透過する斜めの入射光が、赤カラーフィルタ19を有する画素部100Rと隣接する他の画素部100B、100Gに到達しても、フォトダイオード11が形成されていない領域において光電変換されて電荷が発生するため、画素部100Rからのクロストークを低減することができる。
例えば、半導体基板1の厚さを5μmとすると、青カラーフィルタ17を有する画素部100Bのフォトダイオード11は、半導体基板1の裏面から約2μmの深さまで形成し、緑カラーフィルタ18を有する画素部100Gのフォトダイオード11は、半導体基板1の裏面から3.8μmの深さまで形成し、赤カラーフィルタ19を有する画素部100Rのフォトダイオード11は、半導体基板1の裏面から約4.7μmの深さまで形成する。このようにすると、青カラーフィルタ17を有する画素部100Bの透過波長が450nmの透過光、及び緑カラーフィルタ18を有する画素部100Gの透過波長が550nmの透過光は、それぞれのフォトダイオード11においてほとんど光電変換される。従って、画素部100B、100Gにおける感度は低下しない。一方、赤カラーフィルタ19を有する画素部100Rの透過波長が650nmの透過光のうちフォトダイオード11により光電変換されない一部の光は、各高濃度p型層21〜23によって消失するため、画素部100Rからのクロストークが大幅に減少する。具体的には、従来技術に対してクロストークは半減しており、赤カラーフィルタ19を有する画素部100Rと隣接する緑カラーフィルタ18を有する画素部100Gの出力値に対する画素部100Rの出力値の比の値は、約1%である。
以下、本実施形態に係る固体撮像装置の製造方法の概略を説明する。
n型のフォトダイオード(光電変換部)11は、注入エネルギーが200keV〜2000keVで、燐又は砒素等のn型の不純物濃度が1×1014/cm〜1×1017/cmのイオン注入を選択的に行って形成する。
絶縁分離部13は、公知のSTI(Shallow Trench Isolation)構造又はLOCOS(Local Oxidation of Silicon)構造により選択的に形成する。
p型の分離拡散層10は、注入エネルギーが100keV〜3000keVで、ホウ素等のp型の不純物濃度が1×1015/cm〜1×1018/cmのイオン注入を選択的に行って形成する。
第1の高濃度p型層20は、注入エネルギーが1keV〜100keVで、p型の不純物濃度が1×1017/cm〜1×1020/cmのイオン注入を行って形成する。このように、第1の高濃度p型層20の不純物濃度を高濃度とすることにより、発生電荷のライフタイムが短くなり、欠陥に起因する発生電荷のフォトダイオード11への流入を防止することができる。
第2の高濃度p型層21は、注入エネルギーが1keV〜1500keVで、p型の不純物濃度が1×1017/cm〜1×1020/cmのイオン注入を画素部100Bに選択的に行って形成する。第3の高濃度p型層22は、注入エネルギーが1keV〜800keVで、p型の不純物濃度が1×1017/cm〜1×1020/cmのイオン注入を画素部100Gに選択的に行って形成する。また、第4の高濃度p型層23は、注入エネルギーが1keV〜100keVで、p型の不純物濃度が1×1017/cm〜1×1020/cmのイオン注入を画素部100Rに選択的に行って形成する。
なお、画素部100B、100G及び100Rにおけるフォトダイオード11の一部分、すなわち、各画素部100B、100G及び100Rにおける中央部分で且つ基板表面の近傍は、各高濃度p型層21〜23を介して同等の深さに形成される。前述したように、このフォトダイオード11における浅い部分から浮遊拡散部へ蓄積された電荷を転送する。
また、第1の高濃度p型層20と同様に、各高濃度p型層21〜23の各不純物濃度を高濃度とすることによって、発生電荷のライフタイムが短くなり、欠陥に起因する発生電荷の各フォトダイオード11への流入を防止することが可能となる。
以上説明したように、本実施形態によると、各画素部100B、100G及び100Rの感度を確保しながら、長波長の斜めの入射光による画素部100Rからのクロストークを低減することができる。
なお、フォトダイオード(光電変換部)11を構成するn型の不純物領域における基板表面と平行な方向の幅が最大となる領域とは、p型の分離拡散層10によって囲まれた領域であって、半導体基板1における電荷検出面から最も近くに位置するn型不純物の高濃度領域である。n型の高濃度領域であるため、p型の分離拡散層10におけるp型不純物の熱拡散による影響を低減できるため、フォトダイオード11の領域の幅が最大となる。
(一実施形態の第1変形例)
以下、一実施形態の第1変形例について図2を参照しながら説明する。
図2は第1変形例に係る固体撮像装置における画素部100B、100G及び100Rの断面構成であって、ここでは、3画素分を示している。なお、図2において、図1に示した構成部材と同一の構成部材には同一の符号を付すことによりその説明を省略する。
図2に示すように、青カラーフィルタ17を有する画素部100Bにおける第2の高濃度p型拡散層21の内部には、n型の第1のオーバフロードレイン層24が形成されている。これと同様に、緑カラーフィルタ18を有する画素部100Gにおける第3の高濃度p型拡散層22の内部には、n型の第2のオーバフロードレイン層25が形成されている。このようにすると、第2の高濃度p型層21及び第3の高濃度p型層22を、一実施形態のように、p型の不純物濃度が高い領域とする必要がなくなる。その上、このような構成であっても、赤カラーフィルタ19を有する画素部100Rと隣接する画素部100B及び100Gにおいて、画素部100Rからの斜めの入射光により発生した電荷のフォトダイオード11への流入を防ぐことができるため、クロストークの低減が可能となる。
なお、各オーバフロードレイン層24、25は、出力回路12に印加されるグランド(GND)電圧又は電源電圧が印加されており、光電変換された電荷を印加電圧側に移動させる。
第1変形例を実現する製造方法は、上述した一実施形態とほぼ同様である。
一実施形態との相違点は、第2の高濃度p型層21及び第3の高濃度p型層22におけるp型の不純物濃度を1×1015/cm〜1×1018/cmとしており、この場合でも、フォトダイオード11とのpn接合によるリークは、一実施形態の構造と比べて10分の1以下に抑えることができる。
また、青カラーフィルタ17を有する画素部100Bに形成する第1のオーバフロードレイン層24は、注入エネルギーが10keV〜1500keVで、n型の不純物濃度が1×1015/cm〜1×1018/cmのイオン注入を選択的に行って形成する。
緑カラーフィルタ18を有する画素部100Gに形成する第2のオーバフロードレイン層25は、注入エネルギーが10keV〜800keVで、n型の不純物濃度が1×1015/cm〜1×1018/cmのイオン注入を選択的に行って形成する。
これにより、一実施形態と同等のクローストーク特性及び感度特性を維持しながら、ノイズを10分の1以下に抑制することが可能となる。
(一実施形態の第2変形例)
以下、一実施形態の第2変形例について図3を参照しながら説明する。
図3は第2変形例に係る固体撮像装置における画素部100B、100G及び100Rの断面構成であって、ここでは3画素分を示している。なお、図3において、図1及び図2に示した構成部材と同一の構成部材には同一の符号を付すことによりその説明を省略する。
第1変形例との相違点は、図3に示すように、青カラーフィルタ17を有する画素部100B及び緑カラーフィルタ18を有する画素部100Gにおけるp型の各分離拡散層10の内部に、n型の第3のオーバフロードレイン層26が形成されている点である。ここで、各第3のオーバフロードレイン層26は、第1のオーバフロードレイン層24及び第2のオーバフロードレイン層25とそれぞれ電気的に接続されている。
この構成により、半導体基板1における基板表面側の深部に到達する長波長光の斜めの入射角度が大きくなっても、赤カラーフィルタ19を有する画素部100Rと隣接する画素部100B及び100Gにおいて、画素部100Rからの斜めの入射光により発生した電荷のフォトダイオード11への流入を防ぐことができるため、画素部100Rからのクロストークの低減が可能となる。
従来技術に対してクロストークは低減しており、例えば、赤カラーフィルタ19を有する画素部100Rと隣接する緑カラーフィルタ18を有する画素部100Gの出力値に対する画素部100Rの出力値の比の値は、約0.5%である。
なお、各オーバフロードレイン層24〜26は、出力回路12に印加されるグランド(GND)電圧又は電源電圧が印加されており、光電変換された電荷を印加電圧側に移動させる。
第2変形例を実現する製造方法は、上述した第1変形例とほぼ同様である。
第1変形例との相違点は、青カラーフィルタ17を有する画素部100B及び緑カラーフィルタ18を有する画素部100Gに形成する第3のオーバフロードレイン層26は、注入エネルギーが200keV〜2000keVで、n型の不純物濃度が1×1015/cm〜1×1018/cmのイオン注入をp型の分離拡散層10に対して選択的に行って形成する点である。
これにより、第3のオーバフロードレイン層26は、青カラーフィルタ17を有する画素部100Bの第1のオーバフロードレイン層24及び緑カラーフィルタ18を有する画素部100Gの第2のオーバフロードレイン層25とそれぞれ電気的に接続するように形成され、且つ、各画素部100B、100Gのフォトダイオード11を囲むようにp型の分離拡散層10の内部に形成される。
以上のように、第2変形例によると、赤カラーフィルタ19を有する画素部100Rに入射される長波長光の斜めの入射角度が大きくなったとしても、画素部100Rに起因するクロストークを低減することができる。また、各カラーフィルタ17〜19の上にレンズを形成して光を集光する必要がなくなるため、クロストークを1%以下に抑制することが可能となる。すなわち、集光されずにp型の分離拡散層10に光が入射しても、光電変換された電荷は、各オーバフロードレイン層24〜26からGND又は電源電圧に移動するため、各フォトダイオード11には流入しないからである。
このため、第2変形例に係る固体撮像装置においては、レンズ形成工程が不要となるので、製造プロセスにおけるTAT(Turn Around Time)の短縮及び製造コストの低減を図ることができる。
(一実施形態の第3変形例)
以下、一実施形態の第3変形例について図4及び図5を参照しながら説明する。
図4は第2変形例に係る固体撮像装置におけるベイヤ配列された画素部100B、100G及び100Rを含む撮像領域の平面構成を示し、図5は図4のV−V線における断面構成を示している。なお、図4及び図5において、図1に示した構成部材と同一の構成部材には同一の符号を付すことによりその説明を省略する。
一実施形態との相違点は、図5に示すように、赤カラーフィルタ19を有する画素部100Rにおいて、フォトダイオード(光電変換部)11における第4の高濃度p型層23の下側部分が、該フォトダイオード11と接する分離拡散層10及び第3の高濃度p型層22の内部にまで拡張されて形成されている点である。すなわち、画素部100Rにおけるフォトダイオード11は、光入射面における開口面積及び電荷検出面における開口面積と比べて、半導体基板1の内部において光入射面と平行な方向の断面積が最大となるように形成されている。さらに言い換えれば、画素部100Rにおけるフォトダイオード11における光入射面と平行な方向の幅が最大となる領域が、該フォトダイオード11と隣接する、緑カラーフィルタ18を有する画素部100Gのフォトダイオード11の下側(電荷検出面側の下方)にまで拡張して形成されている。
第3変形例によると、赤カラーフィルタ19を有する画素部100Rに入射される長波長の入射光のうち、斜めの入射光により光電変換された電荷は、隣接する画素部100Gのフォトダイオード11への流入を防止することができる。その上、画素部100R自体の感度も向上する。従来技術に対してクロストークは半減しており、赤カラーフィルタ19を有する画素部100Rと隣接する緑カラーフィルタ18を有する画素部100Gの出力値に対する画素部100Rの出力値の比の値は、約0.3%である。すなわち、半導体基板1の電荷検出面側の深部において発生する電荷の画素部100Rと隣接する画素部100Gのフォトダイオード11への漏れを防止して、画素部100Rのフォトダイオード11に捕獲することが可能となる。
第3変形例においては、赤カラーフィルタ19を有する画素部100Rと隣接する緑カラーフィルタ18を有する画素部100Gのフォトダイオード11の下方にまで、画素部100Rのフォトダイオード11を拡張した場合、一実施形態の構成と比べて、画素部100Rの感度は1.3倍となる。
なお、画素部100Rのフォトダイオード11を分離拡散層10で留めた場合は、画素部100Rの感度は、一実施形態の構成と比べて1.1倍となる。また、この場合のクロストークは、約0.6%である。
第3変形例を実現する製造方法は、上述した一実施形態とほぼ同様である。
一実施形態との相違点は、赤カラーフィルタ19を有する画素部100Rのフォトダイオード11を、青カラーフィルタ17を有する画素部100B及び緑カラーフィルタ18を有する画素部100Gの各フォトダイオード11の下方に形成する場合に、注入エネルギーが200keV〜800keVで、n型の不純物濃度は1×1014/cm〜1×1017/cmとする点である。
なお、青カラーフィルタを有する画素部100Bのフォトダイオード11は、第2の高濃度p型層21が占める領域が大きい。従って、赤カラーフィルタ19を有する画素部100Rのフォトダイオード11は、第2の高濃度p型層21の内部に、第3の高濃度p型層22の内部に形成するよりも大きくしてもよい。このように、第2の高濃度p型層21と第3の高濃度p型層22とに対して、n型不純物の注入エネルギー及び注入濃度を調節することにより、赤カラーフィルタ19を有する画素部100Rの感度も向上し、且つそのクロストークをも低減することができる。
なお、各画素部100B、100G及び100Rにおけるフォトダイオード(光電変換部)11の開口面積とは、フォトダイオード11における半導体基板1の光入射面の近傍であって、p型の分離拡散層10により囲まれる領域の面積、又は電荷検出面の近傍であって、各高濃度p型層21、22及び23により囲まれる領域をいう。
各フォトダイオード22は、光入射面と平行な方向の断面形状が多角形状であり、その周囲をp型の分離拡散層10又は各高濃度p型層21、22及び23が囲む構造である。
さらに、図5に示すように、第3変形例においては、赤カラーフィルタを有する画素部100Rにおいて、フォトダイオード11における電荷検出面側の近傍の開口面積が、光入射面側の近傍の開口面積よりも大きい。
以上のように、第3変形例によると、赤カラーフィルタを有する画素部100Rにおいて、半導体基板1の電荷検出面側に近い深部に到達する斜めの入射光をフォトダイオード11に効率良く集めることができるため、高感度を維持しながらクロストークを減少させることができる。また、各画素部のサイズが微細化されて、各分離拡散層10も同様に狭小となっても、p型の不純物注入領域に対する不純物注入を深い位置にまで形成することなく、画素部100Rと隣接する他のフォトダイオード11と電気的な分離が可能となるため、クロストークが減少する。
本発明に係る固体撮像装置は、基板表面からの光電変換部の深さを光波長に応じて調節できるため、電荷の読み出しを低電圧で維持しながら、高感度で且つ低クロストークを実現することができ、光電変換部を含む画素部が行列状に配列された固体撮像装置等に有用である。
1 半導体基板
10 分離拡散層
11 光電変換部(フォトダイオード)
12 出力回路
13 絶縁分離部
14 配線
15 層間膜
16 絶縁膜
17 青カラーフィルタ
18 緑カラーフィルタ
19 赤カラーフィルタ
20 第1の高濃度p型層
21 第2の高濃度p型層
22 第3の高濃度p型層
23 第4の高濃度p型層
24 第1のオーバフロードレイン層
25 第2のオーバフロードレイン層
26 第3のオーバフロードレイン層
100B 画素部(青)
100G 画素部(緑)
100R 画素部(赤)

Claims (5)

  1. 半導体基板と、
    前記半導体基板の上部に行列状に配置して形成された第1導電型の複数の光電変換部と、
    前記半導体基板の一の面である電荷検出面に形成され、前記光電変換部に蓄積される電荷を検出する検出回路部と、
    前記検出回路部の下側に形成され、前記各光電変換部と接する第2導電型の不純物注入領域を含む第2導電型の複数の分離拡散層と、
    前記半導体基板における前記一の面と対向する他の面である光入射面に形成され、異なる波長の光を透過する複数のカラーフィルタとを備え、
    前記各光電変換部の形状は、前記カラーフィルタと対応して、前記分離拡散層を構成する前記不純物注入領域により異なることを特徴とする固体撮像装置。
  2. 前記複数の光電変換部は、第1の波長領域において透過率が最大となる第1のカラーフィルタと対応する第1の光電変換部と、前記第1の波長領域よりも波長が長い第2の波長領域において透過率が最大となる第2のカラーフィルタと対応する第2の光電変換部とを有し、
    前記第2の光電変換部における前記光入射面と平行な方向の幅が最大となる領域は、前記第1の光電変換部における前記光入射面と平行な方向の幅が最大となる領域よりも、前記電荷検出面に近いことを特徴とする請求項1に記載の固体撮像装置。
  3. 前記複数の光電変換部は、前記第2の波長領域よりも波長が長い第3の波長領域において透過率が最大となる第3のカラーフィルタと対応する第3の光電変換部をさらに有し、
    前記第の光電変換部は、前記光入射面における開口面積及び前記電荷検出面における開口面積と比べて、前記半導体基板の内部において前記光入射面と平行な方向の断面積が最大となることを特徴とする請求項2に記載の固体撮像装置。
  4. 前記第の光電変換部における前記光入射面と平行な方向の幅が最大となる領域は、前記分離拡散層の内部に拡張して形成されていることを特徴とする請求項3に記載の固体撮像装置。
  5. 前記第の光電変換部における前記光入射面と平行な方向の幅が最大となる領域は、前記第の光電変換部と隣接する少なくとも1つの第1の光電変換部における電荷検出面側の下方にまで拡張して形成されていることを特徴とする請求項3に記載の固体撮像装置。
JP2009267550A 2009-11-25 2009-11-25 固体撮像装置 Active JP5478217B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009267550A JP5478217B2 (ja) 2009-11-25 2009-11-25 固体撮像装置
CN201080052831.3A CN102668083B (zh) 2009-11-25 2010-08-04 固体摄像装置
PCT/JP2010/004906 WO2011064920A1 (ja) 2009-11-25 2010-08-04 固体撮像装置
US13/462,895 US8680640B2 (en) 2009-11-25 2012-05-03 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267550A JP5478217B2 (ja) 2009-11-25 2009-11-25 固体撮像装置

Publications (2)

Publication Number Publication Date
JP2011114068A JP2011114068A (ja) 2011-06-09
JP5478217B2 true JP5478217B2 (ja) 2014-04-23

Family

ID=44066035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267550A Active JP5478217B2 (ja) 2009-11-25 2009-11-25 固体撮像装置

Country Status (4)

Country Link
US (1) US8680640B2 (ja)
JP (1) JP5478217B2 (ja)
CN (1) CN102668083B (ja)
WO (1) WO2011064920A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022448A (ja) * 2012-07-13 2014-02-03 Toshiba Corp 固体撮像装置
JP6021613B2 (ja) * 2012-11-29 2016-11-09 キヤノン株式会社 撮像素子、撮像装置、および、撮像システム
CN104823442B (zh) * 2012-12-05 2018-03-30 松下知识产权经营株式会社 固体摄像装置
JP2014179413A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 固体撮像装置
JP6285667B2 (ja) * 2013-09-03 2018-02-28 キヤノン株式会社 固体撮像装置の製造方法
US20150097213A1 (en) * 2013-10-04 2015-04-09 Omnivision Technologies, Inc. Image sensor and pixels including vertical overflow drain
WO2017039038A1 (ko) * 2015-09-04 2017-03-09 재단법인 다차원 스마트 아이티 융합시스템 연구단 다중 필팩터가 적용된 이미지 센서
US11107853B2 (en) * 2018-10-19 2021-08-31 Canon Kabushiki Kaisha Photoelectric conversion apparatus
JP7190648B2 (ja) * 2018-12-20 2022-12-16 パナソニックIpマネジメント株式会社 固体撮像素子、及び、固体撮像素子の製造方法
FR3093376B1 (fr) * 2019-03-01 2022-09-02 Isorg Capteur d'images couleur et infrarouge
US11228430B2 (en) 2019-09-12 2022-01-18 General Electric Technology Gmbh Communication systems and methods
CN110649056B (zh) * 2019-09-30 2022-02-18 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036087A (ko) 2002-10-23 2004-04-30 주식회사 하이닉스반도체 광의 파장에 따라 포토다이오드의 깊이가 다른 씨모스이미지센서 및 그 제조 방법
JP4742523B2 (ja) * 2004-06-14 2011-08-10 ソニー株式会社 固体撮像素子及びその駆動方法
JP4507769B2 (ja) 2004-08-31 2010-07-21 ソニー株式会社 固体撮像素子、カメラモジュール及び電子機器モジュール
KR100684878B1 (ko) 2005-01-24 2007-02-20 삼성전자주식회사 빛의 파장에 따라 다른 두께의 메몰 베리어층을 구비하는이미지 센서 및 그 형성 방법
US7812381B2 (en) 2005-01-24 2010-10-12 Samsung Electronics Co., Ltd. Image sensor with light receiving region having different potential energy according to wavelength of light and electronic product employing the same
KR100660714B1 (ko) * 2005-12-29 2006-12-21 매그나칩 반도체 유한회사 백사이드 조명 구조의 씨모스 이미지 센서 및 그의 제조방법
JP2007201267A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp 固体撮像素子およびその製造方法
US7423306B2 (en) * 2006-09-27 2008-09-09 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor devices
JP4659788B2 (ja) * 2007-06-22 2011-03-30 富士フイルム株式会社 裏面照射型撮像素子
JP4751865B2 (ja) 2007-09-10 2011-08-17 富士フイルム株式会社 裏面照射型固体撮像素子及びその製造方法
KR101152389B1 (ko) * 2007-09-13 2012-06-05 삼성전자주식회사 이미지 센서와 그 제조 방법
JP2009081169A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 固体撮像素子
JP5245572B2 (ja) * 2008-06-26 2013-07-24 富士通セミコンダクター株式会社 半導体装置及び携帯型電子機器
JP5428479B2 (ja) * 2009-04-13 2014-02-26 ソニー株式会社 固体撮像装置の製造方法、固体撮像装置、および電子機器

Also Published As

Publication number Publication date
JP2011114068A (ja) 2011-06-09
US20120211851A1 (en) 2012-08-23
CN102668083B (zh) 2014-09-03
WO2011064920A1 (ja) 2011-06-03
CN102668083A (zh) 2012-09-12
US8680640B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
JP5478217B2 (ja) 固体撮像装置
KR101352436B1 (ko) 이미지 센서
TWI469334B (zh) 背照式互補式金氧半導體影像感測器
CN105895650B (zh) 固体摄像装置以及电子设备
KR100758321B1 (ko) 포토다이오드 영역을 매립한 이미지 센서 및 그 제조 방법
USRE46123E1 (en) Solid-state image sensor and method of manufacturing the same
KR101125966B1 (ko) 고체 촬상 소자, 카메라 모듈 및 전자 기기 모듈
JP5537523B2 (ja) 固体撮像装置
JP3584196B2 (ja) 受光素子及びそれを有する光電変換装置
JP4742057B2 (ja) 裏面照射型固体撮像素子
KR20050058977A (ko) 광전변환장치와 그 제조방법, 및 촬상시스템
JP2009038309A (ja) 固体撮像素子およびその製造方法、電子情報機器
KR101373905B1 (ko) 고체 촬상 장치
US20110001207A1 (en) Solid state image sensor and manufacturing method thereof
WO2011070693A1 (ja) 固体撮像装置
JP4479729B2 (ja) 固体撮像装置、電子モジュール及び電子機器
US9876041B2 (en) Solid-state imaging device and method of manufacturing the same
JP2004152819A (ja) 固体撮像装置及びその製造方法
JP2013162077A (ja) 固体撮像装置
KR20110079329A (ko) 이미지 센서 및 그 제조방법
KR100880287B1 (ko) 이미지 센서 및 그 제조방법
JP4751731B2 (ja) Ccd型固体撮像素子
KR20100138086A (ko) 이미지센서 및 그 제조방법
JP2011138848A (ja) 固体撮像素子及びその製造方法
KR20110075954A (ko) 이미지 센서의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150