KR20120078864A - 고연화점 핏치의 제조방법 - Google Patents

고연화점 핏치의 제조방법 Download PDF

Info

Publication number
KR20120078864A
KR20120078864A KR1020110000154A KR20110000154A KR20120078864A KR 20120078864 A KR20120078864 A KR 20120078864A KR 1020110000154 A KR1020110000154 A KR 1020110000154A KR 20110000154 A KR20110000154 A KR 20110000154A KR 20120078864 A KR20120078864 A KR 20120078864A
Authority
KR
South Korea
Prior art keywords
softening point
high softening
mixture
pitch
carbon
Prior art date
Application number
KR1020110000154A
Other languages
English (en)
Inventor
오영세
이희종
이수정
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to KR1020110000154A priority Critical patent/KR20120078864A/ko
Publication of KR20120078864A publication Critical patent/KR20120078864A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/02Working-up pitch, asphalt, bitumen by chemical means reaction
    • C10C3/026Working-up pitch, asphalt, bitumen by chemical means reaction with organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

본 발명은 석유계 중질유 및 예를 들어, 나프탈렌, 메틸나프탈렌 또는 안트라센 등과 같은 방향족 탄화수소의 단물질, 또는 예를 들어, 콜타르 또는 콜타르핏치 등과 같은 석탄계 잔사 등에 산처리로 활성화된 탄소나노튜브가 함유된 탄소원에 할로겐화합물을 촉매로 사용하여 반응시켜 탄소섬유 및 활성탄소섬유 등의 전구체로 사용이 가능한 고연화점 광학적 등방성 핏치를 제조하는 방법에 관한 것이다. 본 발명에 따른 고연화점 광학적 등방성 핏치의 제조방법은, 석유계 중질유, 예를 들어, 나프탈렌, 메틸나프탈렌 또는 안트라센 등과 같은 방향족 탄화수소의 단물질, 또는 예를 들어, 콜타르 또는 콜타르핏치 등과 같은 석탄계 잔사 등에 산처리로 활성화된 탄소나노튜브가 함유된 탄소원에 할로겐화합물을 가하고, 혼합한 반응혼합물을 가열하여 반응시키는 것으로 이루어짐을 특징으로 한다. 따라서, 방향족화도가 70% 이하인 석유계 중질유 및 방향족 탄화수소 단물질을 포함한 대부분의 석탄계 잔사 및 석유계 중질유 그리고 방향족 탄화수소를 주 탄소원으로 하여, 고연화점 광학적 등방성 핏치를 비교적 단시간에 고수율로 제조할 수 있는 효과가 있다.

Description

고연화점 핏치의 제조방법 {METHOD FOR MANUFACTURING PITCH HAVING HIGH SOFTENING POINT}
본 발명은 고연화점 광학적 등방성 핏치의 제조방법에 관한 것으로서, 보다 상세하게는 석유계 중질유(中質油)/중질유(重質油), 석탄계 콜타르/콜타르핏치 및 방향족 유기화합물 등의 물질을 주 탄소원으로 하여 범용 탄소섬유, 활성탄소섬유, 탄소-탄소복합체, 리튬이온 2차전지 음극활물질용 탄소재 등의 전구체로 사용이 가능한 고연화점 광학적 등방성 핏치의 제조방법에 관한 것이다.
탄소재 등의 제조시 전구체로 사용되는 고연화점 광학적 등방성 또는 이방성 핏치는 탄화하여 탄소소재를 제조할 경우, 탄화 수율이 높고, 수득된 탄소재의 기계적 및/또는 전기적 물성이 양호하다는 장점이 있다.
석유계 중질유, 방향족 탄화수소의 단물질(예를 들면, 나프탈렌, 메틸나프탈렌 또는 안트라센), 석탄계 잔사(예를 들면, 콜타르 또는 콜타르핏치) 등을 출발물질로하여 제조하는 연화점 200℃ 이상의 고연화점 핏치는 일반적으로 범용 탄소섬유, 활성탄소섬유, 탄소-탄소복합체, 리튬이온 2차전지 음극활물질용 탄소재 등의 전구체(前驅體;Precursor)로 널리 사용되고 있다. 상기 석유계 중질유, 방향족 탄화수소의 단물질, 석탄계 잔사 등을 액상 열처리하여 제조되는 고연화점 핏치를 전구체로 사용하여 탄소섬유 및 탄소질 입자 등을 제조하기 위하여는 방사 및 입자제조 등으로 성형한 후, 고온 열처리(탄화)하여 탄소질의 최종제품을 제조하는 방법을 사용하여 왔다. 그러나, 핏치 등으로 성형하여 만든 섬유 및 입자 등은 고온의 열처리를 직접 행할 경우, 용융되어 형태가 파괴되므로 일반적으로 산화 등의 불융화 처리를 필수적으로 선행하여야만 탄화 시 형태를 유지할 수 있는 문제점이 있었다. 불융화 처리는 산화성 가스 분위기(예를 들면, 공기, 이산화탄소 또는 일산화질소) 또는 산화성 액체 분위기(질산수용액 또는 염산수용액) 중에서 핏치로 제조한 섬유 및 입자를 장시간 처리하는 것으로 이루어지며, 대개의 경우, 경제적, 환경적인 면을 고려하여 공기 분위기 중에서 100 내지 350℃의 온도를 유지하면서 1분 내지 수일의 시간 동안 산화열처리를 수행하는 것으로 이루어지고 있다. 일반적으로 연화점 200℃ 이하의 핏치를 전구체로 사용하여 제조한 섬유 및 입자 등은 이러한 불융화처리에서 장시간의 열처리를 수행하여야 하기 때문에 에너지의 소모가 심하고, 탄화시의 탄화 수율을 저하시키며, 수득되는 탄소재의 기계적 물성이 저하됨은 물론 생산비가 상승되는 등의 문제점이 있었다.
일반적으로 탄소재의 전구체로 사용되는 물질은 셀룰로즈 성분을 다량으로 함유하고 있는 목질 펄프, 레이온 및 산화열처리에 의하여 사다리형 축합물의 형성이 가능한 아크릴사(Polyacrylonitrile ; PAN) 및 콜타르 또는 콜타르 핏치, 석유계 중질유 등을 탄소원으로 하여 제조한 고연화점 광학적 등방성 또는 이방성 핏치를 얻을 수 있으며, 이들 중 고연화점 광학적 등방성 핏치는 주로 석탄계 및 석유계 잔사 또는 중질유를 불활성가스의 분위기에서 열처리하는 방법, 공기를 불어 넣으면서 열처리하는 방법, 질산을 첨가하여 열처리하는 방법, 니트로화합물 등의 반응첨가물 또는 염화알루미늄 등 촉매를 가하여 열처리하는 방법 및 할로겐화합물(예를 들면, 염소(Cl2), 티오닐클로라이드(SOCl2), 설푸릴클로라이드(SO2Cl2), 브롬(Br2) 및 요오드(I2))을 첨가하여 열처리하는 방법 등을 들 수 있다. 그러나, 상기한 바와 같은 불활성열처리에 의하여 연화점이 200℃ 이상인 균질한 광학적 등방성 핏치를 얻기 위하여는 저온에서 장시간 열처리하여야만 하는 문제점이 있었으며, 그럼에도 불구하고 콜타르의 경우에서는 탄소 원의 20 내지 40 중량%, 석유계 중질유에서는 0 내지 25 중량% 정도의 낮은 수율로 고연화점 광학적 등방성 핏치를 수득하는 문제점이 있었다. 또한, 수득되는 핏치가 균질하게 용해되지 못하고, 높은 방향족화도에 의해 용매에 대한 가용성이 매우 낮은 단점을 지니고 있다.
석유계 중질유 및 석탄계 잔사 등에 니트로화합물을 첨가하여 열처리함으로써 연화점을 높이는 방법은 고가의 니트로화합물의 첨가에 따른 생산비의 상승 및 니트로화합물과 출발원료의 반응시 니트로화합물의 균질한 분산의 어려움 등으로 인하여 수득된 핏치가 불균질하게 되는 문제점이 있었다. 또한, 염화알루미늄을 첨가하여 촉매열처리하는 방법은 반응 종료 후, 수득된 핏치로부터 촉매로 사용된 염화알루미늄의 제거가 곤란하다는 문제점이 있었으며, 이 경우, 수득된 핏치를 탄화하여 탄소재를 제조할 경우, 핏치내에 잔류하는 염화알루미늄 등이 불순물로 작용하게 되고, 이로 인해 최종적으로 수득되는 탄소재의 기계적 물성이 저하되는 문제점을 가지고 있다. 특히, 석탄계 중질유에 니트로화합물을 1 내지 10 중량% 첨가하고, 온도 150 내지 400℃에서 1 내지 120분간 처리하여 개질처리물을 수득하고, 이 개질처리물을 단환의 방향족 탄화수소 용제에 용해시켜 석출되는 불용분을 제거하고, 수득된 용액에서 용제를 회수하여 가용성분을 수득하고, 이 가용성분을 가열처리하는 것을 포함하는 제조방법은 수율이 낮고, 제조공정이 복잡하며, 그에 따라 막대한 설비를 필요로 하는 문제점이 있었다.
또한, 이러한 고연화점 광학적 등방성 또는 이방성 핏치 전구체는 탄소원이 되는 석탄계 및 석유계 중질유 등은 양이 풍부하고, 탄소원으로부터 핏치 전구체를 제조하는 수율이 비교적 높은 것이 장점으로 알려져 있으나, 탄소원인 석탄계 및 석유계 중질유 중 일부 종류는 상기 종래의 기술로 전구체인 고연화점 광학적 등방성 핏치를 제조할 경우, 열처리과정에서 거의 모든 성분들이 휘발하여 전구체 핏치를 경제적으로 제조할 수 없게 되는 문제점을 가진 것도 존재하여 산업적으로 사용할 수 없는 경우도 있었다.
할로겐 화합물을 첨가하여 고연화점 광학적 등방성 핏치를 제조하는 방법은 석탄계 잔사인 콜타르, 콜타르 핏치, 석유계 잔사인 FCC-DO 등을 출발원료로 하여 제조할 경우에는 반응생성물의 수율이 출발원료에 대하여 30 중량% 이상으로 연화점 150℃ 이상의 균질한 핏치가 얻어지나, 석유계 중질유(예를 들면, fa(방향족화도)가 60% 이하인 C10+ 유분 등), 이환족 나프탈렌 유도체인 메틸나프탈렌 등을 출발원료로 할 경우에는 장시간 같은 조건하에서 열처리하여도 생성물의 수율이 30 중량% 미만으로 되는 문제점이 있었다.
상기 서술한 바와 같은 이유로 최근에는 석탄계 콜타르, 콜타르 핏치, 석유계 중질유 및 증류분 또는 증류잔사(예를 들면 fa가 60% 이하인 C10+ 유분 및 진공증류 잔류물), 이환족 나프탈렌 유도체인 메틸나프탈렌 등까지도 출발원료로 하여 고수율로 열 및 균질하게 용융 또는 용해가능하며, 산화 불융화성이 우수한 고연화점의 핏치를 제조하고자 하는 연구가 활발히 진행되고 있다.
또한 고기능성 탄소소재인 탄소섬유, 활성탄소섬유, 리튬이온 2차전지 음극활물질용 탄소재 등을 제조하기 위하여는 전구체인 고연화점 광학적 등방성 핏치가 열에 대한 용융 또는 용매에 대한 용해과정에서 균일하며 단일상의 것이 요구되며, 나아가서 고순도의 전구체 핏치가 요구되므로, 연화점, 피리딘 가용분, 퀴놀린 가용분 등의 제어인자를 임의로 제어하며, 더욱이 금속 등의 불순물을 함유하지 않는 증류분 또는 방향족 탄화수소 단물질(예를 들면, 메틸나프탈렌 등)을 이용하여 고수율로 고연화점 광학적 등방성 핏치를 제조하는 연구가 역시 활발하게 진행되고 있다
종래의 기술로는 석탄계 잔사 및 석유계 중질유와 같은 복잡한 혼합물을 출발원료로 하여 고연화점의 핏치를 제조할 경우, 수득된 핏치의 탄소소재 제조 등의 응용단계에서 과도한 열분해 및 축합반응이 일어나기 쉽고, 이로 인해 가스 및 불용물질이 생성되어 소정의 탄소재를 제조할 수 없거나 물성이 극히 나쁜 탄소재를 수득할 수 밖에 없는 문제점이 빈발하였다. 따라서, 연화점, 피리딘 가용분, 퀴놀린 가용분 등의 제어인자를 조절하여 전구체 핏치의 응용단계에서 산화에 의한 불융화 등에 적합한 고연화점 광학적 등방성 핏치를 제조하는 새로운 방법을 개발할 필요성이 있다.
발명이 이루고자 하는 본 발명의 목적은, 연화점, 피리딘 가용분, 퀴놀린 가용분 등의 제어인자를 조절하여 전구체 핏치의 응용단계에서 산화에 의한 불융화 등에 적합한 고연화점 광학적 등방성 핏치를 제조하는 방법을 제공한다.
본 발명의 다른 목적은, 일반적인 방향족 탄화수소 전반에 적용이 가능하며, 특히 석탄계 잔사인 콜타르, 콜타르의 정제 잔사인 콜타르 핏치, 석유계 중질유 및 증류분 또는 방향족탄화수소 단물질(예를 들면, 메틸나프탈렌 등) 등을 출발원료로 하여 고연화점 광학적 등방성 핏치를 제조하는 방법을 제공한다.
본 발명의 일 실시예에 따른 고연화점 광학적 등방성 핏치의 제조방법은 석유계 중질유 및 석탄계 잔사를 포함하는 탄소원에 산처리로 활성화된 탄소나노튜브를 혼합한 제1 혼합물을 가열하는 단계, 상기 제1 혼합물에 할로겐화합물을 첨가하여 제2 혼합물을 형성하는 단계 및 상기 제2 혼합물을 가열하여 반응시키는 단계를 포함한다.
본 발명의 일측에 따르면, 상기 탄소원은 석유계 중질유의 C10+ 유분 또는 메틸나프탈렌을 포함할 수 있다.
본 발명의 일측에 따르면, 상기 탄소원은 프리카본이 제거된 것을 포함할 수 있다.
본 발명의 일측에 따르면, 상기 산처리로 활성화된 탄소나노튜브는 상기 탄소원 대비 0.1 내지 20 중량%의 양으로 혼합될 수 있다.
본 발명의 일측에 따르면, 상기 산처리로 활성화된 탄소나노튜브는 황산과 질산의 부피비가 3:1인 혼합 수용액에서 산처리된 후 방향족 화합물 용매에서 초음파 분산 처리될 수 있다.
본 발명의 일측에 따르면, 상기 할로겐 화합물은 상기 탄소원 대비 5 내지 100중량%로 혼합될 수 있다.
본 발명의 일측에 따르면, 상기 제1 혼합물을 가열하는 단계에서 상기 탄소원은 60℃ 내지 200℃로 가열될 수 있다.
본 발명의 일측에 따르면, 상기 제2 혼합물을 가열하여 반응시키는 단계에서 상기 제2 혼합물은 60℃ 내지 200℃로 가열될 수 있다.
본 발명의 일측에 따르면, 상기 제2 혼합물은 230℃ 내지 360℃로 승온하여 2 내지 12시간 더 가열될 수 있다.
본 발명에 의하면 종래의 방법으로는 제조가 불가능하거나 또는 저수율로밖에 핏치의 제조가 불가능하였던 방향족화도가 70% 이하인 석유계 중질유 및 방향족 탄화수소 단물질을 포함한 대부분의 석탄계 잔사 및 석유계 중질유 그리고 방향족 탄화수소를 탄소원으로 이용하여, 고기능성 탄소재에 전구체로 사용가능한 고연화점 광학적 등방성 핏치를 비교적 단시간에 고수율로 제조할 수 있는 효과가 있다.
또한, 본 발명에 의하면 제조되는 핏치의 연화점의 적절한 조절 가능한 핏치의 제조방법을 제공하는 효과가 있다.
본 발명의 일 실시예에 따른 고연화점 광학적 등방성 핏치의 제조방법은 석유계 중질유 및 석탄계 잔사를 포함하는 탄소원에 산처리로 활성화된 탄소나노튜브를 혼합한 제1 혼합물을 가열하는 단계, 상기 제1 혼합물에 할로겐화합물을 첨가하여 제2 혼합물을 형성하는 단계 및 상기 제2 혼합물을 가열하여 반응시키는 단계를 포함한다. 상기 탄소원은 석유계 중질유의 C10+ 유분 또는 메틸나프탈렌을 포함하거나 상기 탄소원은 프리카본이 제거된 것을 포함할 수 있다. 상기 C10+ 유분, 메틸나프탈렌 또는 프리카본이 제거된 탄소원은 대부분이 휘발되어 핏치로서 수율이 극히 낮은 것들이지만, 본 발명에서는 이러한 휘발성이 높은 탄화수소들도 본 발명에 따라 높은 수율로 고연화점 광학적 등방성 핏치로 제조할 수 있다. 특히 석유계 중질유의 C10+ 유분은 열중량분석(Thermal Gravity Analysis; TGA) 결과 200℃에서 대부분 휘발되는 물질이며, 원소분석 결과는 탄소 89.05, 수소 8.90, 질소 1,93, 황 0.12이며, 방향화도(fa)가 51.4%인 물질로서, 핏치로서 제조가 불가능한 것으로 알려진 것이다.
본 발명의 일측에 따르면, 상기 산처리로 활성화된 탄소나노튜브는 황산과 질산의 부피비 3:1의 혼합 수용액에서 1시간 내지 10시간 동안 산처리되어 활성화 후, 벤젠 또는 톨루엔 등과 같은 방향족 화합물에서 1시간 내지 4시간 동안 초음파 처리하여 분산액으로 만들어 사용할 수 있다.
상기 탄소나노튜브는 통상적인 화학기상증착법(Chemical Vapor Deposition; CVD)을 이용하여 제조되는 단일벽(Single Wall NT; SWNTs) 또는 다중벽(Multi Wall NT; MWNTs)이 단독 또는 혼합되어 사용될 수 있다.
상기 산처리로 활성화된 탄소나노튜브는 상기 탄소원 대비 0.1 내지 20 중량%가 혼합되고, 상기 제1 혼합물을 가열하는 단계에서 상기 탄소원은 60℃ 내지 200℃로 가열될 수 있다.
본 발명의 일측에 따르면, 상기 할로겐 화합물은 상기 탄소원 대비 5 내지 100중량%로 혼합된다. 상기 할로겐 화합물은 염소(Cl2), 티오닐클로라이드(SOCl2), 설푸릴클로라이드(SO2Cl2), 브롬(Br2), 요오드(I2) 또는 이들 중 2종 이상을 혼합하여 사용될 수 있다. 상기 할로겐 화합물은 탄소원 대비 5 내지 100 중량%, 바람직하게는 10 내지 30 중량%가 혼합될 수 있다. 상기 할로겐화합물이 5 중량% 미만인 경우, 핏치의 분자량과 수율이 낮아 연화점 향상 효과가 떨어질 수 있고, 반대로 100 중량%를 초과하는 경우, 경제적으로 제조 비용의 상승이 커서 공정에 부적합하다는 단점이 있다. 상기 활성화된 탄소나노튜브는 상기 탄소원 대비 0.1 내지 20중량%, 바람직하게는 1 내지 5중량%가 사용될 수 있으며, 상기 활성화된 탄소나노튜브가 상기 탄소원 대비 0.1 중량% 미만으로 혼합되는 경우, 혼합에 의한 효과가 너무 작게 나타나는 문제점이 있을 수 있고, 반대로 20 중량%를 초과하는 경우, 역시 부반응을 일으키는 등의 문제점이 있을 수 있다.
본 발명의 일측에 따르면, 상기 제2 혼합물을 가열하여 반응시키는 단계에서 상기 제2 혼합물은 60℃ 내지 200℃로 0.5 내지 2시간 동안 가열될 수 있다. 상기 가열 온도가 60℃ 미만의 온도로 가열되는 경우, 반응개시가 잘 일어나지 않게 되는 문제점이 있을 수 있으며, 반대로 200℃를 초과하는 경우, 저분자 물질의 휘발에 의하여 할로겐 화합물의 반응효과가 저하되는 문제점이 있을 수 있다.
본 발명의 일측에 따르면, 상기 제2 혼합물은 230℃ 내지 360℃로 승온하여 2 내지 12시간 더 가열된다. 상기 승온하여 더 가열되는 공정은 후속 공정으로, 반응 후에 반응 생성물로서의 핏치 중에 잔존할 수 있는 할로겐 화합물을 분해시켜 탈할로겐화하는 과정이다. 230℃ 미만으로 가열되는 경우에는 반응이 일어나지 않을 수 있고, 360℃를 초과하는 경우에는 과다한 중합에 의한 핏치의 광학적 이방성화 또는 코크스화 등이 일어나는 문제점이 있을 수 있다.
이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술될 것이다. 그리고 실시예에서 사용되는 활성화된 탄소나노튜브 분산액은 통상의 열화학기상증착법(thermal chemical vapor deposition)으로 제조되는데 먼저 기판에 철과 몰리브덴(철/몰리브덴=1/4)촉매를 박막증착한 후 700℃에서 에틸렌 가스 흘려 탄소나노튜브를 정장시킨 후 이를 황산과 질산이 혼합(부피비로 황산/질산 =3/1)된 수용액(20 중량%)에서 2시간 산처리로 활성화된 후 20g을 취하여 200g의 톨루엔에 투입하고 초음파 처리기에서 3시간 처리하여 분산액을 제조하여 사용하였다.
이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어서는 안 될 것이다.
실시예 1
탄소원으로서 납사크랫킹 (Naphtha cracking) 공정의 바닥에서 생산되는 석유 중질유 100g을 상기에서 제조된 활성화된 탄소나노튜브 분산액 10g을 500ml 반응기에 투입하고 잘 혼합한 뒤 150℃까지 가열하고 연이어 브롬을 중질유의 10 중량% 가하고, 2시간 교반하면서 반응시킨 후, 승온하여 300℃에서 6시간 더 반응시키고, 반응종료 후, 2시간 동안 질소가스를 통과시켜 미반응 또는 저반응분자를 제거시키고, 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
실시예 2
할로겐 화합물로 티오닐클로라이드 10 중량% 가하고, 승온온도를 320℃에서 6시간 더 반응시키는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
실시예 3
탄소원으로 콜타르핏치정제분 100g을 가하고, 승온온도를 320℃에서 6시간 더 반응시키는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
실시예 4
활성화된 탄소나노튜브 분산액 5g을 가하고, 승온온도를 280℃에서 6시간 더 반응시키는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
실시예 5
C10+ 유분 200g과 활성화된 탄소나노튜브 분산액 5g을 500ml 반응조에 넣고, 140℃까지 가열하여 용융시킨후, 브롬 26ml을 30분에 걸쳐 적가해주며 반응시키고, 반응종료 후 질소가스를 불어넣으면서 250℃까지 승온하여 6시간 가열하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
실시예 6
승온 후의 반응시간을 10시간으로 하는 것을 제외하고는 상기 실시예 4와 동일하게 수행하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
비교예 1
탄소원으로서 납사크랫킹 (Naphtha cracking) 공정의 바닥에서 생산되는 석유 중질유 100g을 500ml 반응조에 투입하고, 150℃까지 가열하여 한 후, 브롬을 중질유의 10 중량% 가하고 300℃로 승온하여 6시간 동안 반응시켰다. 반응종료 후, 2시간 동안 질소가스를 통과시켜 미반응 또는 저반응분자를 제거시키고, 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
비교예 2
승온온도를 320℃로 하는 것을 제외하고는 상기 비교예 1과 동일하게 수행하여 목적하는 고연화점 광학적 등방성 핏치를 수득하였으며, 수득된 핏치의 연화점과 수율을 표 1에 나타내었다.
수득된 핏치의 연화점 및 수율
항목 수득된 핏치의 연화점(℃) 수득된 핏치의 수율(%)
실시예 1 270 42
실시예 2 296 39
실시예 3 303 37
실시예 4 289 35
실시예 5 268 38
실시예 6 276 37
비교예 1 150 25
비교예 2 168 29
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (9)

  1. 석유계 중질유 및 석탄계 잔사를 포함하는 탄소원에 산처리로 활성화된 탄소나노튜브를 혼합한 제1 혼합물을 가열하는 단계;
    상기 제1 혼합물에 할로겐화합물을 첨가하여 제2 혼합물을 형성하는 단계; 및
    상기 제2 혼합물을 가열하여 반응시키는 단계를 포함하는 고연화점 광학적 등방성 핏치의 제조방법.
  2. 제1항에 있어서,
    상기 탄소원은 석유계 중질유의 C10+ 유분 또는 메틸나프탈렌을 포함하는 고연화점 광학적 등방성 핏치의 제조방법.
  3. 제1항에 있어서,
    상기 탄소원이 프리카본이 제거된 것을 포함하는 고연화점 광학적 등방성 핏치의 제조방법.
  4. 제1항에 있어서,
    상기 산처리로 활성화된 탄소나노튜브는 황산과 질산의 부피비가 3:1인 혼합 수용액에서 산처리된 후 방향족 화합물 용매에서 초음파 분산 처리되는 고연화점 광학적 등방성 핏치의 제조방법.
  5. 제4항에 있어서,
    상기 산처리로 활성화된 탄소나노튜브는 상기 탄소원 대비 0.1 내지 20 중량%의 양으로 혼합되는 고연화점 광학적 등방성 핏치의 제조방법.
  6. 제1항에 있어서,
    상기 할로겐 화합물은 상기 탄소원 대비 5 내지 100중량%로 혼합되는 고연화점 광학적 등방성 핏치의 제조방법.
  7. 제1항에 있어서,
    상기 제1 혼합물을 가열하는 단계에서 상기 탄소원은 60℃ 내지 200℃로 가열되는 고연화점 광학적 등방성 핏치의 제조방법.
  8. 제1항에 있어서,
    상기 제2 혼합물을 가열하여 반응시키는 단계에서 상기 제2 혼합물은 60℃ 내지 200℃로 가열되는 고연화점 광학적 등방성 핏치의 제조방법.
  9. 제8항에 있어서,
    상기 제2 혼합물은 230℃ 내지 360℃로 승온하여 2 내지 12시간 더 가열되는 고연화점 광학적 등방성 핏치의 제조방법.
KR1020110000154A 2011-01-03 2011-01-03 고연화점 핏치의 제조방법 KR20120078864A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110000154A KR20120078864A (ko) 2011-01-03 2011-01-03 고연화점 핏치의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110000154A KR20120078864A (ko) 2011-01-03 2011-01-03 고연화점 핏치의 제조방법

Publications (1)

Publication Number Publication Date
KR20120078864A true KR20120078864A (ko) 2012-07-11

Family

ID=46712054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110000154A KR20120078864A (ko) 2011-01-03 2011-01-03 고연화점 핏치의 제조방법

Country Status (1)

Country Link
KR (1) KR20120078864A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512238B1 (ko) * 2013-09-26 2015-04-14 지에스칼텍스 주식회사 고용해성 피치의 제조 방법
KR101634070B1 (ko) * 2014-12-23 2016-06-29 주식회사 포스코 핏치 제조방법 및 핏치
KR20200002205A (ko) * 2018-06-29 2020-01-08 충남대학교산학협력단 이상적인 퀴놀린 불용성분 함량을 갖는 석유계 바인더 피치의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512238B1 (ko) * 2013-09-26 2015-04-14 지에스칼텍스 주식회사 고용해성 피치의 제조 방법
KR101634070B1 (ko) * 2014-12-23 2016-06-29 주식회사 포스코 핏치 제조방법 및 핏치
KR20200002205A (ko) * 2018-06-29 2020-01-08 충남대학교산학협력단 이상적인 퀴놀린 불용성분 함량을 갖는 석유계 바인더 피치의 제조방법

Similar Documents

Publication Publication Date Title
Rajabpour et al. Low-temperature carbonization of polyacrylonitrile/graphene carbon fibers: A combined ReaxFF molecular dynamics and experimental study
US20180051397A1 (en) Method for producing carbon fibers
Leistenschneider et al. A mechanism study of acid-assisted oxidative stabilization of asphaltene-derived carbon fibers
CN111575053B (zh) 一种体积排阻分离-热缩聚制备中间相沥青的方法及其应用
KR20180051078A (ko) 고연화점 등방성 피치의 제조 방법 및 이를 포함하는 탄소 섬유
Fernández-García et al. Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids
Jiang et al. Controlling spinning pitch property by tetrahydrofuran-soluble fraction of coal tar pitch co-carbonization with petrolatum
KR20120078864A (ko) 고연화점 핏치의 제조방법
WO2010131708A1 (ja) 生コークスの製造方法及びニードルコークスの製造方法
Liu et al. Controllable synthesis of a carbonaceous pitch from molecular dimension by a novel method of chlorination-dechlorination
CN108611113B (zh) 一种深度氧化—催化缩聚制备中间相沥青及碳纤维的方法
CN112625722B (zh) 一种通过组合原料制备可纺沥青的方法及制备碳纤维的应用
Dong et al. Co-carbonization of brominated petroleum pitch, coal tar pitch and benzoyl chloride to prepare cokes
JP6026593B2 (ja) 炭素繊維用ピッチの製造方法
CN105778057A (zh) 一种共碳化法制备中间相沥青的方法
JP5870066B2 (ja) 炭素繊維用ピッチの製造方法
KR101651945B1 (ko) 잔사유 유래 광학적 이방성 피치, 상기 피치 제조방법 및 상기 피치로 제조된 피치탄소섬유
KR101537869B1 (ko) 고연화점 등방성 피치의 제조 방법
KR100244912B1 (ko) 고연화점 광학적 등방성 핏치의 제조방법
JP3015949B2 (ja) 高軟化点光学的等方性ピッチの製造方法
US20220010462A1 (en) Systems and methods for manufacturing carbon fiber from coal
KR19990012606A (ko) 고연화점 광학적 등방성 핏치의 제조방법
KR101857609B1 (ko) 방사선 기술을 이용한 다공성 활성탄 및 그 제조방법
KR19990012609A (ko) 고연화점 광학적 등방성 핏치의 제조방법
KR19990012610A (ko) 고연화점 광학적 등방성 핏치의 제조방법

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination