KR20120033769A - 가돌리늄 착물을 함유하는 mri조영제 - Google Patents

가돌리늄 착물을 함유하는 mri조영제 Download PDF

Info

Publication number
KR20120033769A
KR20120033769A KR1020100095471A KR20100095471A KR20120033769A KR 20120033769 A KR20120033769 A KR 20120033769A KR 1020100095471 A KR1020100095471 A KR 1020100095471A KR 20100095471 A KR20100095471 A KR 20100095471A KR 20120033769 A KR20120033769 A KR 20120033769A
Authority
KR
South Korea
Prior art keywords
do3a
complex
cyclohexyl
trans
aminomethyl
Prior art date
Application number
KR1020100095471A
Other languages
English (en)
Other versions
KR101236142B1 (ko
Inventor
김태정
장용민
김희경
구성욱
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020100095471A priority Critical patent/KR101236142B1/ko
Priority to PCT/KR2010/009151 priority patent/WO2012043933A1/ko
Priority to CN201080069387.6A priority patent/CN103153969B/zh
Priority to EP10857933.5A priority patent/EP2623500B1/en
Priority to US13/876,904 priority patent/US8901294B2/en
Priority to JP2013531463A priority patent/JP5763772B2/ja
Publication of KR20120033769A publication Critical patent/KR20120033769A/ko
Application granted granted Critical
Publication of KR101236142B1 publication Critical patent/KR101236142B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 가돌리늄 착물을 함유하는 MRI 조영제에 관한 것으로, 더욱 구체적으로 화학식 1의 구조를 갖는 DO3A-트란스아믹산 또는 그 에스테르 화합물에 관한 것이다.
본 발명에 따르면 DO3A-트란스아믹산 또는 그 에스테르 화합물을 제조할 수 있으며, 상기 화합물을 이용하여 가돌리늄 착물을 제조할 수 있다. 본 발명에 따라 제조된 가돌리늄 착물을 유효성분으로 함유하는 MRI 조영제는 현재 상용화 되어 있는 조영제에 비해 높은 이완율을 갖는다. 뿐만 아니라, 본 발명에 따른 MRI 조영제는 간 특이적 및 심혈관 이중 조영 기능을 갖는다. 따라서 본 발명에 따른 가돌리늄 착물을 함유하는 MRI 조영제는 자기공명영상(MRI)의 대조 조영제로의 필요한 주요한 특성을 만족하므로 MRI 조영제에 널리 적용될 수 있으며, 특히 기존의 조영제보다 조영증강효과를 높일 수 있다.

Description

가돌리늄 착물을 함유하는 MRI조영제 {MRI contrast agents comprising Gd-complexes}
본 발명은 가돌리늄 착물을 함유하는 MRI 조영제에 관한 것으로, 더욱 구체적으로 화학식 1의 구조를 갖는 DO3A-트란스아믹산 또는 그 에스테르 화합물에 관한 것이다.
자기공명영상(Magnetic Resonance Imagine; MRI)은 자기장 안에서 수소 원자의 스핀이 이완되는 현상을 이용하여, 신체의 해부학적, 생리학적, 생화학적 정보 영상을 얻는 방법으로, 인간 또는 동물의 신체기관을 비침습적이며 실시간으로 영상화할 수 있는 뛰어난 영상 진단 장비중의 하나이다.
생명과학, 의학분야에서 MRI를 다양하고 정밀하게 활용하기 위해, 외부에서 물질을 주입하여 영상대조도를 증가시키는데, 이때 사용되는 물질을 조영제(contrast agent)라고 한다. MRI 이미지 상에서 조직들 사이의 대조도(contrast)는 조직 내의 물분자 핵스핀(nuclear spin)이 평형상태로 돌아가는 이완작용(relaxation)이 조직별로 다르기 때문에 생기는 현상이며, 조영제는 이러한 이완작용에 영향을 끼쳐 조직간 이완도의 차이를 벌리고, MRI 시그널의 변화를 유발하여 조직간의 대조를 보다 선명하게 하는 역할을 한다. 조영제는 특징과 기능, 주입하는 대상에 따라 활용도와 정밀도의 차이가 생긴다. 조영제들을 이용하여 증강된 대조는 특정 생체기관과 조직들의 주변과 영상신호를 높이거나 낮추어서 보다 선명하게 영상화하게 해준다. MRI 이미지를 얻기를 원하는 신체부위의 영상신호를 상대적으로 높게 만드는 조영제를 'positive 조영제' 라고 하며, 이와 반대로 주위보다 상대적으로 낮게 만드는 조영제를 'negative 조영제' 라고 한다.
자기공명영상의 대조 조영제로 인체 사용을 위해 승인된 조영제로는 자기이완율이 약 4.7 mM-1s-1(20 MHz, 298 K)을 나타내는 디에틸렌트리아민-N,N,N',N'',N''-펜타아세테이트, (N-Me-글루카민)2[Gd(DTPA)(H2O)] (Magnevist, Schering)와 같은 이온화 Gd(Ⅲ) 착물과 자기이완율이 4.4 mM-1s- 1(20 MHz, 298 K)를 나타내는 [Gd(DTPA-bismethylamide)(H2O)] (Omniscan, Nycomed)와 같은 중성 Gd(Ⅲ) 착물이 있다.
이러한 자기공명영상의 대조 조영제로서의 필요한 성질은 열역학적 안정성, 수용성, 및 상자성 Gd(Ⅲ) 이온을 만드는 원인이 되는 다배위(multidentate) 구조, 즉 적어도 한 분자의 물과 결합해 높은 물과의 자기이완을 나타내어야 한다. 또한 자기공명영상 대비 조영제는 화학적 활성이 없어야하며, 생체 내에서 세포 독성이 낮아야하고, 진단이 끝난 후에는 생체 밖으로 완전히 배출되어야 한다.
그러나, 상기 조영제들은 수용성과 자기이완율이 낮은 편이며, 생체 내에서 세포 독성이 비교적 높다는 문제점이 있다. 따라서 여전히 최적화된 자기공명영상 조영제의 개발이 절실한 실정이다.
이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구 노력한 결과, 본 발명에 따라 합성된 DO3A-트란스아믹산 또는 그 에스테르 화합물을 이용하여 가돌리늄 착물을 제조하는 경우, 상기 가돌리늄 착물을 함유하는 MRI 조영제는 간 특이성 및 심혈관 이중 조영 효과가 있으며, 높은 이완율을 가짐을 확인하고, 본 발명을 완성하게 되었다.
따라서 본 발명의 주된 목적은 화학식 1의 구조를 갖는 DO3A-트란스아믹산 또는 그 에르테르 화합물을 제공하는데 있다.
본 발명의 다른 목적은 상기 화합물을 포함하는 착물 리간드(L)용 조성물 및 상기 화합물을 리간드로 포함하는 가돌리늄 착물을 제공하는데 있다.
본 발명의 또 다른 목적은 높은 이완율과 열역학 및 속도론적 안정성을 갖는 가돌리늄 착물을 함유하는 MRI조영제를 제공하는데 있다.
본 발명의 한 양태에 따르면, 본 발명은 하기 화학식 1의 구조를 갖는 DO3A-트란스아믹산 또는 그 에스테르 화합물을 제공한다:
[화학식 1]
Figure pat00001
상기 화학식에서 R은 H, Me, Et, (CH2)2OH, CH2OMe, 또는 CH2CH=CH2 이다.
본 발명의 다른 양태에 따르면, 본 발명은 하기 단계들을 포함하는 상기 DO3A-트란스아믹산 또는 그 에스테르 화합물의 제조방법을 제공한다:
a) 트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(trans-4(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)에 브로모아세틸 브로마이드(bromoacetyl bromide)를 첨가하여 교반하는 단계;
b) 상기 혼합물에 DO3A-( t BuO)3를 첨가하여 교반하는 단계;
c) 상기 혼합물에 TFA를 첨가하여 tert-butyl 그룹을 deprotection시키는 단계;
d) 상기 혼합물을 저압에서 용매를 모두 제거한 후 메탄올을 넣어 녹인 후, 실리카 겔 크로마토그래피를 수행하는 단계; 및
e) 상기 크로마토그래피로 얻은 물질을 진공상태에서 건조하여 DO3A-트란스아믹산 또는 그 에스테르 화합물을 얻는 단계.
상기 제조방법에 따라 생성되는 화합물의 모식도를 도 1에 나타내었다. 본 발명을 보다 자세히 설명하면 하기와 같다.
상기 a) 단계의 트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(화합물 1b)는 트란스-4-(아미노메틸)사이클로헥산카복실릭 애시드(trans-4(aminomethyl)cyclohexane carboxylic acid)를 이용하여 합성하였다. 이후 상기 a) 단계를 완료하면 화합물 2b인 에틸 4-((2-브로모아세트아미도)메틸)사이클로헥산카복실레이트(Ethyl 4-((2-bromoacetamido)methyl)cyclohexanecarboxylate)가 합성된다. 그리고, b) 단계를 완료하면 화합물 3b인 Tert-부틸 N,N',N''-(N'''-(2-((4-에톡시카보닐) 사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트(Tert-butyl N,N',N''-(N'''-(2-((4-ethoxycarbonyl) cyclohexyl)methylamino-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate)가 합성되고, 이를 이용하여 c) 단계를 완료한 후 d), e) 단계를 거치면 최종적으로 DO3A-트란스아믹산 에스테르 유도체 1이 얻어진다.
상기 DO3A-트란스아믹산 에스테르 유도체 1은 도 1에 나타낸 합성 모식도 중 4b 화합물이다.
본 발명의 화합물 제조방법에 있어서, 상기 a) 단계의 트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드 대신 알릴-트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(Allyl-trans-4(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하는 것을 특징으로 한다.
상기 알릴-트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드는 트란스-4-(아미노메틸)사이클로헥산카복실릭 애시드(trans-4(aminomethyl)cyclohexanecarboxylic acid)를 이용하여 합성하였으며, 이는 화합물 1c이다. 이렇게 합성된 화합물 1c를 이용하여 제조방법의 a) 단계를 거치면, 화합물 2c인 알릴 4-((2-브로모아세트아미도)메틸)사이클로헥산카복실레이트(Allyl 4-((2-bromoacetamido)methyl)cyclohexanecarboxylate)가 합성된다. 그리고 화합물 2c를 이용하여 b) 단계를 완료하면, 화합물 3c인 Tert-부틸 N,N',N''-(N'''-(2-((4-알릴옥시카보닐)사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트(Tert-butyl N,N',N''-(N'''-(2-((4-allyloxycarbonyl) cyclohexyl)methylamino-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate)가 합성되고, 이를 이용하여 c) 단계를 완료한 후 d), e) 단계를 거치면 최종적으로 DO3A-트란스아믹산 에스테르 유도체 2가 얻어진다.
상기 DO3A-트란스아믹산 에스테르 유도체 2는 도 1에 나타낸 합성 모식도 중 4c 화합물이다.
상기에 따라 합성된 DO3A-트란스아믹산 에스테르 유도체 1인 4b 화합물을 이용하여 DO3A-트란스아믹산인 4a 화합물을 제조할 수 있다. 보다 구체적인 제조과정은 실시예에 설명하였다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 DO3A-트란스아믹산 또는 그 에스테르 화합물을 포함하는 착물 리간드(L)용 조성물을 제공한다.
본 발명의 한 양태에 따르면, 본 발명은 상기 DO3A-트란스아믹산 또는 그 에스테르 화합물을 리간드(L)로 포함하고, 상기 리간드에 배위결합하는 금속원자를 포함하는 착물을 제공한다.
본 발명에 있어서, 상기 금속원자는 가돌리늄(Gd)인 것을 특징으로 한다.
또한 상기 리간드에 배위결합하는 금속원자를 포함하는 착물은 [Gd(L)(H2O)ㆍxCH3COOHㆍyH2O]의 화학식을 갖는 것을 특징으로 한다.
본 발명의 금속원자를 포함하는 착물은 상기 서술한 바와 같이 합성된 DO3A-트란스아믹산 또는 그 에스테르 화합물(4a ~ 4c 화합물)을 이용하여 제조한다. 각각의 4a 내지 4c 화합물과 GdCl3ㆍ6H2O(gadolinium chloride hexahydrate)를 반응시켜 가돌리늄 착물을 제조한다.
본 발명의 한 양태에 따르면, 상기 착물을 유효성분으로 함유하는 자기공명영상(MRI) 조영제를 제공한다.
본 발명에 있어서, 상기 조영제는 간 특이성과 심혈관 이중 조영 기능을 갖는 것을 특징으로 한다. 또한 상기 조영제는 높은 이완율, 향상된 열역학 및 속도론적 안정성을 가지는 것을 특징으로 한다.
구체적으로 본 발명의 실시예에서 확인한 바와 같이, 본 발명에 따라 제조된 가돌리늄 착물을 유효성분으로 함유하는 MRI 조영제의 상자기성 이완율의 변화(R 1 P(t)/R 1 P(0))를 측정하는 경우, 본 발명에 의해 합성된 가돌리늄 착물(5a, 5b 및 5c)은 72 시간을 기준으로 모두 다 높은 이완율을 나타내며, 상당히 좋은 속도론적 안정성(약 98% 이상)을 띄고 있음을 확인하였다. 현재 시중에 판매되고 있는 MRI 조영제와 비교하면 Dotarem과 거의 유사한 효과를 나타내는 것이다. 또한 본 발명에 따른 가돌리늄 착물의 이완 시간(T 1, T 2)과 이완율(R 1, R 2)을 측정하는 경우 상용화되어 있는 조영제와 비교할 때, 5b와 5c가 상당히 높은 R 1 값을 지니고 있음을 확인하였다. 특히 가장 높은 R 1 값을 갖는 5c는 Dotarem과 비교할 때 2.6 배 높다. 현재의 시스템에서 이러한 높은 R 1 값은 Dotarem과 비교할 때 증가된 분자량 때문인 것으로 사료된다. 분자량의 증가는 회전관련 시간을 증가시키기 때문에 R 1 이완율을 향상시킨다. 높은 이완율을 갖는 조영제는 상대적으로 적은 양을 투여해도 높은 조영증강효과를 나타내므로, 본 발명에 따른 MRI 조영제는 뛰어난 조영증강효과를 보일 것이다. 실제로, 실험용 쥐를 통해 조영효과를 확인한 경우 본 발명의 MRI 조영제를 투여한 후 간, 심장, 혈액에서 높은 조영효과가 나타나는 것을 확인할 수 있다.
이상 설명한 바와 같이, 본 발명에 따르면 DO3A-트란스아믹산 또는 그 에스테르 화합물을 제조할 수 있으며, 상기 화합물을 이용하여 가돌리늄 착물을 제조할 수 있다. 본 발명에 따라 제조된 가돌리늄 착물을 유효성분으로 함유하는 MRI 조영제는 현재 상용화 되어 있는 조영제에 비해 높은 이완율을 갖는다. 뿐만 아니라, 본 발명에 따른 MRI 조영제는 간 특이적 및 심혈관 이중 조영 기능을 갖는다. 따라서 본 발명에 따른 가돌리늄 착물을 함유하는 MRI 조영제는 자기공명영상(MRI)의 대조 조영제로의 필요한 주요한 특성을 만족하므로 MRI 조영제에 널리 적용될 수 있으며, 특히 기존의 조영제보다 조영증강효과를 높일 수 있다.
도 1은 본 발명에 따른 가돌리늄 착물의 합성 모식도를 나타낸 것이다.
도 2는 가돌리늄 착물(5a ~ 5c)과 상용화 되어 있는 MRI 조영제의 상자기성 이완율의 변화(R 1 P(t)/R 1 P(0))를 측정한 결과를 나타낸 것이다.
도 3은 가돌리늄 착물(5a ~ 5c)과 Dotarem의 이완 시간과 이완률 map 사진을 나타낸 것이다.
도 4a 내지 4c는 실험용 쥐에 가돌리늄 착물을 투여한 후, 투여 경과 시간에 따른 MR 이미지를 측정한 결과이다.
도 5는 측정된 MR 이미지를 이용하여 CNR을 계산한 결과를 나타낸 것이다.
도 6은 본 발명의 따른 가돌리늄 착물의 농도에 따른 세포 생존율을 측정한 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1. DO3A 컨쥬게이트 제조
DO3A 컨쥬게이트를 제조하기 위한 합성과정은 하기에 자세히 나타내었으며, 각각의 합성된 화합물은 NMR을 이용하여 확인하였다. 1H 및 13C NMR은 Bruker Advance 400 또는 500 Spectrometer(Korea Basic Science Institute)를 이용하여 수행하였다. NMR 결과에서 화학적 이동(chemical shift)은 TMS(tetramethylsilane)를 기준으로 δ 값으로 나타내었다. 결합 상수(coupling constant)는 Hz로 나타내었다.
1-1. DO3A-트란스아믹산 에스테르 유도체 1의 합성
(1) 트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(trans-4(aminomethyl)cyclohexane ethyl carboxylate hydrochloride )(1b) 합성
먼저, TCI(Japan)로부터 구매한 트란스-4-(아미노메틸)사이클로헥산카복실릭 애시드(trans-4(aminomethyl)cyclohexane carboxylic acid)를 이용하여 트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드를 합성하였다.
0 ℃에서 에탄올(ethanol) 40 ml에 트란스-4-(아미노메틸)사이클로헥산사복실릭 애시드(1.57 g, 10 mmol)를 넣고 교반하다가 천천히 티오닐 클로라이드(thionyl chloride)(0.9 ml, 12 mmol)를 넣고 10 분 동안 차갑게 유지시켜 교반시켰다. 이후 상기 반응혼합물을 1 시간 동안 70 ℃에서 환류시킨 후, 상온으로 냉각시켰다. 용매를 저압에서 완전히 제거한 후, 남은 성분들을 헥산(hexane)(25 ml)으로 두 번 나누어 세척하여 남은 용매를 제거시켰다. 용매가 완전히 제거된 혼합물을 6 시간 동안 진공 상태에서 건조시켜 트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드를 얻어내었으며, 수득률은 2.13g(96 %) 이었다.
1H NMR(d6-DMSO): δ = 4.03(q, J = 7.08, 2H, OCH2CH3), 2.61(m, 1H, H13), 2.21(m, 1H, H10), 1.85(m, 2H, H9), 1.27(m, 4H, H12 H11), 1.16(t, J = 7.06, 3H, OCH2CH3), 0.96(m, 4H, H12 H11). Anal. Calcd for C10H20ClNO2: C, 54.17; H, 9.09; N, 6.32. Found: C, 53.78; H, 8.91; N, 6.34.
(2) 에틸 4-((2- 브로모아세트아미도 ) 메틸 ) 사이클로헥산카복실레이트 ( Ethyl 4-((2-bromoacetamido)methyl)cyclohexanecarboxylate)(2b) 합성
0 ℃에서 상기 합성된 트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(3.00 g, 13.5 mmol)와 K2CO3(3.73 g, 27.1 mmol)를 CH3CN(100 ml)에 넣어 혼합물을 제조한 후, 상기 혼합물에 브로모아세틸 브로마이드(bromoacetyl bromide)(1.1 mol eq in 20 ml CH3CN)를 1 시간에 걸쳐 천천히 첨가하고, 80 ℃에서 18 시간 동안 교반하였다. 교반이 완료된 후, 혼합물을 필터시켜 무기염을 제거하고, 저압에서 유기용매를 모두 증발시켰다. 남은 성분들은 30 ml의 증류수로 3 번 세척하고, CH2Cl2를 넣어 녹였다. 이후 정제하지 않은 합성 물질을 얻기 위해, 상기 물질을 Na2SO4 하에서 건조시키고, 필터하고, 증발시켜 용매를 완전히 제거하였다. 그러고 나서, 실리카 겔 크로마토그래피(gradient elution CH2Cl2 to 30 % Ethyl Acetate(EA)-CH2Cl2, Rf = 0.5 (EA:CH2Cl2 = 4:6))를 수행하여 완전히 정제시켰다. 그 결과 합성된 에틸 4-((2-브로모아세트아마이드)메틸)사이클로헥산카복실레이트의 수득률은 2.49 g(60 %) 이었다.
1H NMR (CDCl3): δ = 6.54(br, 1H, -CONH-), 4.12(q, 2H, -OCH 2CH3), 3.90(s, 2H, BrCH 2CO-), 3.16(t, 2H, -CONHCH 2-), 2.22(m, 1H, CH3CH2COOCH-, cyclohexyl), 1.80-2.10(m, 4H, CH 2-, cyclohexyl), 1.52(m, 1H, NHCH2CH-, cyclohexyl), 1.49-1.37(m, 2H, -CH2-, cyclohexyl), 1.24(t, 3H, -COOCH2CH 3), 1.08-0.92(m, 2H, -CH 2-, cyclohexyl). 13CNMR(CDCl3): δ = 175.79(BrCH2 C ONH-), 165.57(- C OOCH2CH3), 60.23(-COO C H2CH3), 45.96(-COO C H-, cyclohexyl), 43.17(-NH C H2CH-), 37.12(-NHCH2 C H-, cyclohexyl), 29.68(Br C H2CO-), 29.35(- C H2-, cyclohexyl), 28.34(- C H2-, cyclohexyl), 14.22(-COOCH2 C H3). Anal. Calcd for C12H20BrNO3: C, 47.07; H, 6.58; N, 4.57. Found: C, 47.78; H, 6.85; N, 4.72(purity>95%). FAB-MS (m/z): calc. for C12H21BrNO3, 306.07([MH]+). Found: 306.20.
(3) DO3A -( t BuO ) 3 HBr 의 합성
0 ℃에서 CH3CN 120 ml에 cylen(1,4,7,10-tetraazacyclododecane)(strem, USA)(5.34 g, 30 mmol)과 NaHCO3(8.34 g, 99 mmol)을 넣고 교반하다가, tert-butyl bromoacetate(19.35 g, 99 mmol)를 30 분에 걸쳐 천천히 떨어트려 첨가하였다. 이후 상기 반응 혼합물을 상온에서 48 시간 동안 교반시켰다. 반응이 완료되면, 상기 혼합물을 필터하여 무기 고체(inorganic solid)를 제거하고, 다시 필터하여 용매를 제거하였다. 필터하여 남은 고체상태의 물질을 클로로포름(chloroform)에 넣은 후, 녹지 않고 남아있는 고체 부유물을 필터하여 제거하였다. 이후 여과액(filtrate)을 농축시켜 얻은 고체 물질을 톨루엔(toluene)으로 재결정시켰다. 그 결과 합성된 DO3A-( t BuO)3ㆍHBr의 수득률은 11.30 g(61 %) 이었다.
1H NMR (CDCl3): δ = 3.37(s, 4H, 2 x CH 2 acetates), 3.29(s, 2H, CH 2 uniqueacetate), 3.10(br , 4H, -CH 2CH 2-ring), 2.88-2.93(brm, 12H, -CH 2CH 2-ring), 1.55(s, 27H, C(CH 3)3). 13CNMR(CDCl3): δ = 28.19 (-C( C H3)), 47.52(- C H2CH2-, cyclicring, asymmetric), 49.15(-CH2 C H2-, cyclicring, asymmetric), 51.31(- C H2CH2-, cyclicring, symmetric), 58.17(- C H2COO-, acetate), 81.66(- C (CH3)), 169.62(-CH2 C OO-, uniqueacetate), 170.51(-CH2 C OO-, acetate). Anal. Calcd for C26H51N4O6?HBr: C, 52.43; H, 8.63; N, 9.41. Found: C, 52.10; H, 8.90; N, 9.00(purity>95%). Maldi-TofMS(m/z): calc. for C26H51N4O6, 515.38([MH]+). Found: 515.39.
(4) Tert -부틸 N, N' , N'' -( N''' -(2-((4- 에톡시카보닐 ) 사이클로헥실 ) 메틸아미노 -2- 옥소에틸 )-1,4,7,10-테 트라아자사이클 로도데칸-1,4,7-트릴)트리아세테이트( Tert - butyl N, N' , N'' -( N''' -(2-((4-ethoxycarbonyl) cyclohexyl ) methylamino -2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate)(3b) 합성
CH3CN 10 ml에 상기에서 합성한 에틸 4-((2-브로모아세트아미도)메틸)사이클로헥산카복실레이트(1.13 g, 3.69 mmol)를 넣어 교반하다가, CH3CN 50 ml에 DO3A-( t BuO)3ㆍHBr(2 g, 3.36 mmol)와 K2CO3(1.4 g, 11.07 mmol)를 넣어 제조한 혼합물을 천천히 첨가하였다. 이후 상기 혼합물을 상온에서 24 시간 동안 교반시킨 후, 필터하였다. 여과액(filtrate)을 저압에서 증발시켰으며, 그 결과 노란색 빛의 고체 물질을 얻어내었다. 정제시키지 않은 상기 고체 물질을 실리카 겔 크로마토그래피(gradient elution CH2Cl2 to 10 % MeOH-CH2Cl2, Rf = 0.5 (MeOH:CH2Cl2 = 1:9))를 수행하여 완전히 정제시켜 최종적으로 흰색의 고체 합성물질을 얻어내었다. 합성된 tert-부틸 N,N',N''-(N'''-(2-((4-에톡시카보닐) 사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트의 수득률은 2.11 g(85 %) 이었다.
1H NMR (CDCl3): δ = 4.11(q, 2H, -COOCH 2CH3), 3.38(s, 4H, 2 x CH 2 acetate), 3.29(s, 2H, CH 2 unique acetate), 3.05-3.15(br m, 6H, overapped-CH 2CH 2-ring and CH 2 acetate arm), 2.85-2.94(br m, 12H, -CH 2CH 2-ring), 2.18-2.24(m, 1H, CH3CH2COOCH-), 1.88-2.00(m, 4H, -CH 2-, cyclohexyl), 1.60(m, 1H, -NHCH2CH-, cyclohexyl), 1.46(s, 27H, -C(CH 3)3), 1.41-1.45(m, 2H, -CH 2-, cyclohexyl), 1.25(t, 3H, -OCH2CH 3), 1.01-1.05(m, 2H, -CH 2-, cyclohexyl). FAB-MS(m/z): Calc. for C38H70N5O9, 740.52([MH]+); C38H69N5O9Na, 762.50([MNa]+). Found: 740.40([MH]+), 762.40([MNa]+). Maldi-TofMS(m/z): found, 740.50([MH]+), 762.50([MNa]+). Purity<90%.
(5) DO3A - 트란스아믹산 에스테르 유도체 1(4b) 합성
TFA 10 ml에 상기에서 합성한 tert-부틸 N,N',N''-(N'''-(2-((4-에톡시카보닐) 사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트(2.0 g, 2.70 mmol)를 넣고 24 시간 동안 상온에서 교반시킨다. 교반이 완료되면, 상기 용액을 디에틸 에테르(diethyl ether) 50 ml로 희석시키고, 필터한 후, 디에틸 에테르로 세척한 후, 진공하에서 건조시켜 흰색의 고체 물질을 얻어내었다. 상기 물질에 NaOH로 산적정(acidimetric titration)을 한 후, 원소분석(elemental analysis)을 측정하여 합성된 물질이 C26H45N5O9ㆍCF3COOH임을 확인하였다. 상기 합성된 물질의 수득률은 2.25 g(91 %) 이었다.
1H NMR (D2O): δ = 3.95-4.01(q, 2H, -OCH 2CH3), 3.62(br s, 8H, acetatearm-CH 2-), 3.14(br s, 16H, -CH 2CH 2-cyclicring), 2.90-2.92(d, 2H, -CONHCH 2-), 2.13-2.20(m, 1H, CH3CH2COOCH-), 1.79-1.82(m, 2H, -CH 2-, cyclohexyl), 1.62-1.65(m, 2H, -CH 2-, cyclohexyl), 1.31-1.35(m, 1H, -NHCH2CH-, cyclohexyl), 1.19~1.27(m, 2H, -CH 2-, cyclohexyl), 1.06-1.10(t, 3H, -OCH2CH 3), 0.79-0.89(m, 2H, -CH 2-, cyclohexyl). 13CNMR(500 NMR, D2O): δ = 13.3(-CH2 C H3), 28.10(-CH2 C H2-, cyclohexyl), 29.10(- C H2CH2-, cyclohexyl), 36.56(-(CH2)2 C HCH2NH-, cyclohexyl), 43.16(-(CH2)2CH C H2NH-), 45.29(-(CH2)2 C HCOOCH2CH3), 49.12(- C H2CH2-, cyclicring, asymmetric), 50.25(-CH2 C H2-, cyclicring, symmetric), 52.22(- C H2COONH-), 55.17(- C H2COOH, acetate), 171.01(-CH2 C ONH-), 179.32(-CH2 C OOCH2CH3), 181.36(-CH2 C OOH). Anal. Calcd for C26H45N5O9 ?3CF3COOH: C, 42.06; H, 5.29; N, 7.66. Found: C, 42.09; H, 5.85; N, 8.26(Purity>95%). Maldi-Tof-MS(m/z): calc. for C26H46N5O9, 572.33([MH]+), C26H45N5O9Na, 594.31([MNa]+). Found: 572.44([MH]+), 594.44([MNa]+).
1-2. DO3A - 트란스아믹산 에스테르 유도체 2의 합성
(1) 알릴- 트란스 -4-( 아미노메틸 ) 사이클로헥산에틸카복실레이트 하이드로클로라이드( Allyl - trans -4(aminomethyl)cyclohexaneethylcarboxylate hydrochloride ) (1c) 합성
먼저, TCI(Japan)으로부터 구매한 트란스-4-(아미노메틸)사이클로헥산카복실릭 애시드(trans-4(aminomethyl)cyclohexanecarboxylic acid)를 이용하여 알릴-트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드를 합성하였다.
0 ℃에서 알릴 알코올(allyl alcohol) 50 ml에 트란스-4-(아미노메틸)사이클로헥산사복실릭 애시드(3.93 g, 25 mmol)를 넣고 교반하다가 천천히 티오닐 클로라이드(thionyl chloride)(3.57 g, 30 mmol)를 넣고 10 분 동안 차갑게 유지시켜 교반시킨다. 이후 상기 반응혼합물을 1 시간 동안 75 ℃에서 환류시킨 후, 상온으로 냉각시켰다. 용매를 저압에서 완전히 제거한 후, 남은 성분들을 헥산(hexane)(30 ml)으로 세 번 세척하여 남은 용매를 제거시켰다. 용매가 완전히 제거된 혼합물을 6 시간 동안 진공 상태에서 건조시켜 알릴-트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드를 얻어내었으며, 수득률은 4.79 g(82 %) 이었다.
1H NMR (d 6-DMSO, 400 MHz): δ = 7.81(br s, 3H, NH 2 HCl), 5.71(m, 1H), 5.16(m, 2H, OCH2CH=CH 2), 4.32(m, 2H, OCH 2CH=CH2), 2.40(d, J = 7.00, 2H, H9), 2.07(m, 1H, H13), 1.66(m, 4H, H11/H12), 1.33(m, 1H, H10), 0.92(m, 4H, H11/H12). 13C NMR (d 6-DMSO, 100 MHz): δ = 174.77(C1), 133.12(OCH2 CH=CH2), 117.78(OCH2CH=CH2), 64.46(OCH2CH=CH2), 44.01(CH2NH2), 42.32(C2), 35.12(C4), 29.02(C3, C5), 28.20(C2, C6). Anal. Calc. for C11H19NO2?HCl: C, 56.52; H, 8.62; N, 5.99. Found: C, 56.37; H, 8.54; N, 5.76%. FABMS (m/z): calc. for C11H20NO2, 198.28 ([MH]+); found, 198.10.
(2) 알릴 4-((2- 브로모아세트아미도 ) 메틸 ) 사이클로헥산카복실레이트 ( Allyl 4-((2-bromoacetamido)methyl)cyclohexanecarboxylate)(2c) 합성
상기 실시예 1-1의 (2)의 합성 과정에서 트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드 대신 알릴-트란스-4-(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(3.02 g, 12.83 mmol)를 사용한 것을 제외하고는 동일한 방법으로 합성하였다. 수득률은 2.86 g(70 %) 이었다.
1H NMR (CDCl3): δ = 6.54(br, 1H, -CONH-), 5.87-5.92(m, 1H, -OCH2CH=CH2), 5.24-5.32(m, 2H, -OCH2CH=CH 2), 4.57(d, 2H, -OCH 2 CH=CH2), 3.89(s, 2H, BrCH 2CONH-), 3.16(t, 2H, -CH 2NHCO-), 2.27(m, 1H, CH2=CHCH2COOCH-), 1.82-2.03(m, 4H, -CH 2-, cyclohexyl), 1.52(m, 1H, -NHCH2CH-), 1.46-1.51(m, 2H, CH 2-, cyclohexyl), 0.92-1.10(m, 2H, -CH 2-, cyclohexyl). 13CNMR (d 6-DMSO): δ = 175.32(BrCH2 C ONH-), 165.33(- C OOCH2CH=CH2), 132.29(-COOCH2 C H=CH2), 118.01(-COOCH2CH= C H2), 64.92(-COO C H2CH=CH2), 45.98(-COO C H-, cyclohexyl), 43.17(-NH C H2CH-), 37.12(-NHCH2 C H-, cyclohexyl), 29.68(Br C H2CO-), 29.44(- C H2-, cyclohexyl), 28.35(- C H2-, cyclohexyl). Anal. Calcd for C13H20BrNO3: C, 49.07; H, 6.34; N, 4.40. Found: C, 48.90; H, 6.39; N, 4.27(purity>95%). FAB-MS(m/z): calc. For C13H21BrNO3, 318.07([MH]+). Found: 318.30.
(3) Tert -부틸 N, N' , N'' -( N''' -(2-((4- 알릴옥시카보닐 ) 사이클로헥실 ) 메틸아미노 -2- 옥소에틸 )-1,4,7,10- 테트라아자사이클로도데칸 -1,4,7-트릴)트리아세테이트(Tert-butyl N,N',N''-(N'''-(2-((4-allyloxycarbonyl) cyclohexyl)methylamino-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate)(3c)의 합성
상기 실시예 1-1의 (4)의 합성 과정에서 에틸 4-((2-브로모아세트아미도)메틸)사이클로헥산카복실레이트 대신 알릴 4-((2-브로모아세트아미도)메틸)사이클로헤산카복실레이트(1.17 g, 3.69 mmol)를 사용한 것을 제외하고는 동일한 방법으로 합성하였다. 수득률은 2.10 g(83 %) 이었다.
1H NMR (CDCl3): δ = 5.85-5.95(m, 1H, -CH2CH=CH2), 5.19-5.31(m, 2H, -CH2CH=CH 2), 4.54(d , 2H, -CH 2CH=CH2), 0.95-1.05(m, 2H, -CH 2-, cyclohexyl), 1.37-1.45(m, 2H, -CH 2-, cyclohexyl), 1.46(s, 27H, -C(CH 3)3), 2.21-3.51(br m, 27H, overapped-CH 2CH 2-cyclic ring(16H), -CH 2-acetate arms(8H), -NHCH 2CH-(2H), -NHCH2CH-(1H)), 1.90-2.00(br m, 4H, -CH 2-, cyclohexyl), 1.60(m, 1H, -OOCCH2CH-). Maldi-Tof MS(m/z) Calc. for C39H69N5O9Na: 774.50([MNa]+), C39H69N5O9K: 790.47([MK]+). Found: 774.58[MNa]+, 790.60[MK]+. Purity<90%.
(4) DO3A - 트란스아믹산 에스테르 유도체 2(4c) 합성
상기 실시예 1-1의 (5)의 합성 과정에서 tert-부틸 N,N',N''-(N'''-(2-((4-에톡시카보닐) 사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트 대신 tert-부틸 N,N',N''-(N'''-(2-((4-알릴옥시카보닐) 사이클로헥실)메틸아미노-2-옥소에틸)-1,4,7,10-테트라아자사이클로도데칸-1,4,7-트릴)트리아세테이트(2.03 g, 2.70 mmol)를 사용한 것을 제외하고는 동일한 방법으로 합성하였다. 수득률은 2.60 g(89 %) 이었다.
1H NMR (D2O): δ = 5.84-5.94(m, 1H, -OCH2CH=CH2), 5.18-5.28(m, 2H, -OCH2CH=CH 2), 4.53-4.55(d, 2H, -OCH 2CH=CH2), 3.61-3.72(m, 8H, -CH 2-acetatearms), 3.14-3.27(br m, 16H, -C H 2CH 2-cyclic ring), 2.98-2.99(d, 2H, -CONHCH 2-), 2.27-2.34(m, 1H, CH3CH2COOCH-, cyclohexyl), 1.91-1.93(m, 2H, -CH 2-, cyclohexyl), 1.72-1.74(m, 2H, -CH 2-, cyclohexyl), 1.40-1.48(m, 1H, -NHCH2CH-, cyclohexyl), 1.28-1.37(m, 2H, -CH 2-, cyclohexyl), 0.88-0.98(m, 2H, -CH 2-, cyclohexyl). 13CNMR (500 NMR, D2O): δ = 28.09(-CH2 C H2-, cyclohexyl), 29.05(- C H2CH2-, cyclohexyl), 36.51(-(CH2)2 C HCH2NH-, cyclohexyl), 43.06(-(CH2)2CH C H2NH-), 45.35(-(CH2)2 C HCOOCH2CH=CH2), 49.52(- C H2CH2-, cyclicring), 52.21(- C H2COONH-), 55.12(- C H2COOH, acetate), 65.58(-COO C H2CH=CH2), 118.03(-COOCH2CH= C H2), 132.06(-COOCH2 C H=CH2), 171.99(-CH2 C ONH-), 179.73(-CH2 C OOCH2CH=CH2), 181.28(-CH2 C OOH). Anal. Calcd for C27H45N5O9 ?2.4CF3COOH: C, 43.76; H, 5.65; N, 8.28. Found: C, 43.65; H, 6.03; N, 9.07 (Purity>95%). Maldi-Tof MS(m/z): calc. for C27H46N5O9, 584.33([MH]+), C27H45N5O9Na, 606.31([MNa]+). Found: 584.36([MH]+), 606.32([MNa]+).
1-3. DO3A-트란스아믹산(4a)의 합성
DO3A-트란스아믹산은 상기에서 합성한 DO3A-트란스아믹산 에스테르 유도체 1을 이용하여 합성하였다.
에탄올 20 ml에 상기 실시예 1-1에서 합성한 4b 화합물(1.0 g, 1.0 mmol)을 넣은 후, 상기 용액에 5 N의 NaOH를 첨가하여 pH를 10까지 적정하였다. pH 적정이 완료된 후, 저압에서 용매를 제거하고, 메탄올 10 ml을 넣어 녹여주었다. 이후 용액을 메탄올을 통과시키는 짧은 실리카 겔(silica gel, 60 mesh) 크로마토그래피를 수행한 후, 다시 용매를 제거하였다. 용매가 완전히 제거된 남은 물질을 디에틸 에티르로 분쇄하고, 흰색의 고체 합성 물질을 얻기 위해 진공상태에서 건조시켰다. 이렇게 합성된 DO3A-트란스아믹산의 수득률은 0.50 g(85 %) 이었다.
1H NMR (D2O): δ = 0.85-0.94(m, 2H, -CH 2-, cyclohexyl), 1.20-1.29(m, 2H, -CH 2-, cyclohexyl), 1.41(br s, 1H, -NHCH2CH-, cyclohexyl), 1.68-1.71(m, 2H, -CH 2-, cyclohexyl), 1.80-1.83(m, 2H, -CH 2-, cyclohexyl), 1.98-2.04(m, 1H, HOOCCH-, cyclohexyl), 2.35-3.45(br m, 26H, overapped-CH 2C H 2-cyclic ring (16H), -CH 2-acetate arms (8H), -CONHCH 2-(2H). 13CNMR(D2O): δ = 29.02(-CH2 C H2-, cyclohexyl), 29.74(- C H2CH2-, cyclohexyl), 37.10(-(CH2)2 C HCH2NH-, cyclohexyl), 44.80(-(CH2)2CH C H2NH-), 45.63(-(CH2)2 C HCOOH), 48.67(- C H2CH2-, cyclicring, symmetric), 51.56(-CH2 C H2-, cyclicring, asymmetric), 52.06(-CH2 C H2-, cyclicring, asymmetric), 55.51(- C H2COONH-), 55.80(- C H2COOH, unique acetate), 57.12(- C H2COOH, acetates), 170.84(-CH2 C ONH-), 171.92(-CH2 C OOH, unique), 177.02(-CH2 C OOH), 183.70(-(CH2)2CH C OOH). Maldi-Tof MS(m/z): calc. for C24H42N5O9, 544.30([MH]+), C24H41N5O9Na, 566.28([MNa]+); found, 544.35([MH]+), 566.33([MNa]+). Purity<90%.
실시예 2. 가돌리늄 착물 제조
상기 실시예 1에서 합성한 DO3A 컨쥬게이트를 이용하여 가돌리늄 착물을 제조하였다. 가돌리늄 착물을 제조하기 위한 합성과정은 하기에 자세히 나타내었으며, 각각의 합성된 화합물은 FAB-Mass를 이용하여 확인하였다. FAB-Mass 스펙트라는 JMS-700 mass spectrophotometer(Jeol, Japan)를 사용하여 얻어내었다.
2-1. 가돌리늄 착물 1(5a)의 합성
증류수 10 ml에 상기에서 합성한 DO3A-트란스아믹산(4a)(0.5 g, 0.9 mmol)을 넣어 용액을 만든 후, 상기 용액에 GdCl36H2O(gadolinium chloride hexahydrate)(0.34 g, 0.92 mmol)을 첨가한 후, 상온에서 18 시간 동안 교반하였다. 교반 완료 후, 반응하지 않은 Gd 이온을 걸러내기 위해 상기 반응 혼합물을 sephadex G-25에 통과시켜 Gd가 결합된 혼합물만을 분리하였다. 이후, 0 ℃에서 ethanolic solution에 디에틸 에테르(diethyl ether)를 천천히 첨가시킴으로써 흰색의 고체 합성물질을 얻어내었다. Gd3 + 이온의 제거는 자일렌올 오렌지 지시약(xylenol orange indicator)으로 확인하였다. 상기 가돌리늄 착물의 수득률은 0.71 g(90 %) 이었다.
Anal. Calcd for NaC24H37GdN5O9 ?CF3COOH?H2O: C, 36.66; H, 4.73; N, 8.22. Found: C, 36.86; H, 4.97; N, 7.50 (Purity>95%). FAB-MS(m/z): calc. For C24H38GdN5O9Na, 721.18([MNa(H2O)]+). Found: 721.19. HR-FABMS(m/z): calc. for C24H39GdN5O9, 699.1989([MH-(H2O)]+); found, 699.1984.
2-2. 가돌리늄 착물 2(5b)의 합성
상기 실시예 2-1의 합성 과정에서 DO3A-트란스아믹산(4a) 대신 DO3A-트란스아믹산 에스테르 유도체 1(4b)(0.913 g, 1 mmol)을 사용한 것을 제외하고는 동일한 방법으로 합성하였다. 수득률은 1.12 g(95 %) 이었다.
Anal. Calcd for C26H44GdN5O10 ?2.5CF3COOH?8H2O: C, 31.74; H, 5.37; N, 5.97. Found: C, 31.51; H, 5.02; N, 6.01 (Purity>95%). HR-FABMS(m/z): calc. for C26H42GdN5O9Na, 749.2128([MNa-(H2O)]+). Found: 749.2126.
2-3. 가돌리늄 착물 3(5c)의 합성
상기 실시예 2-1의 합성 과정에서 DO3A-트란스아믹산(4a) 대신 DO3A-트란스아믹산 에스테르 유도체 2(4c)(0.857 g, 1 mmol)를 사용한 것을 제외하고는 동일한 방법으로 합성하였다. 수득률은 1.01 g(90 %) 이었다.
Anal. Calcd for C27H44GdN5O10 ?2CF3COOH?8H2O: C, 33.01; H, 5.54; N, 6.21. Found: C, 32.69; H, 5.22; N, 6.70 (Purity>95%). HR-FABMs(m/z): calcd for C27H43GdN5O9, 739.2308([MH-(H2O)]+); found, 739.2307.
실시예 3. 평형상수( Protonation constants ), 안정화상수( Stability constants ), 선택상수, 조건부 안정화상수 및 pM 값 측정
상기에서 제조한 DO3A 컨쥬게이트 및 가돌리늄 착물의 평형상수, 안정화상수, 선택상수, 조건부 안정화상수 및 pM 값을 측정하였다. DO3A 컨쥬게이트(4a ~ 4c)의 양성자 첨가 반응에 의한 평형상수(K i H) 및 가돌리늄 착물(5a ~ 5c)의 안정화상수는 하기에 나타낸 각각의 수학식(1 및 2)으로 정의하였다. 하기 수학식에서 H i L(L=4; i=1,2,..)은 양성자화된 리간드(protonated ligand)이며, L은 탈양성자화된(deprotonated) 자유 리간드 이며, M은 비가수분해된 아쿠아 금속 이온(unhydrolyzed aqua metal ion; Gd, Ca, Zn, Cu)이고, ML은 비양성자화(non-protonated) 및 비가수분해된 것을 나타낸다.
<수학식 1>
K i H = [H i L]/[H i -1L][H+]
<수학식 2>
K ML(therm) = [ML]/[M][L]
각각의 DO3A 컨쥬게이트의 평형상수 및 가돌리늄(Gd(Ⅲ)), 칼슘(Ca(Ⅱ)), 아연(Zn(Ⅱ)) 및 구리(Cu(Ⅱ)) 복합체들의 안정화상수는 전위차 적정(potentiometric titration)으로 결정하였다. 결과는 하기 표 1에 나타내었으며, 대조군으로 DOTA 및 DTPA, EOB-DTPA, BOTPA, DTPA-BMA와 같은 비환식 유도체(acyclic analogues)의 값을 측정하여 비교하였다.
표 1에 나타낸 것과 같이, DO3A 컨쥬게이트들(4a ~ 4c)의 평형상수(logK i H) 및 전체 염기도(overall basicity; ∑pK a)는 비환식, open-chain counterpart보다 높거나 유사하였다. 전체 염기도는 리간드의 금속 및 공여원자(donor atom) 사이의 정전기 상호작용(electrostatic interaction)의 강도와 직접적으로 상호관련이 있으므로, 따라서 킬레이트(chelate)의 안정성과 연관이 있다. 높은 염기도의 리간드는 틀림없이 열역학적으로 더 안정한 혼합물 형태를 이끌 수 있으며, 이는 각각의 DO3A 컨쥬게이트를 이용하여 제조한 가돌리늄 착물로 증명된다.
또한, DO3A 컨쥬게이트들 중 4a가 가장 높은 logK GdL 값(18.73)을 나타내는 것을 확인할 수 있으며, 특히 DOTA(18.33) 보다도 높은 값을 갖는다. 이는 생리적 조건(physiological condition)에서 Gd-리간드(L)의 결합 안정성이 DOTA 보다 높음을 의미한다. 4a에 의해 획득된 높은 결합 안정성은 4a 리간드와 Gd(Ⅲ) 이온(L4 - ↔ Gd3 + 및 L3 - ↔ Gd3 +)의 정전기적 상호작용이 4b, 4c에 비해 강하기 때문인 것으로 설명될 수 있다.
그리고, pM(리간드와 금속간의 결합력을 나타내는 값) 값은 리간드의 염기도 및 혼합물의 양성자화에 영향을 미친다. 따라서 pM의 값이 크면, 주어진 조건 하에서 금속 이온에 대한 리간드의 친화성이 크다. 표 1에 나타낸 바와 같이, pGd 값이 칼슘(Ca(Ⅱ)), 아연(Zn(Ⅱ)) 및 구리(Cu(Ⅱ))에 비해 높음을 알 수 있다. 이는 각각의 DO3A 컨쥬게이트들의 Gd(Ⅲ) 착물은 다른 endogenous metal 이온에 의한 영향을 받지 않고 안정화됨을 의미한다.
[표 1. 평형상수, 안정화상수, 선택상수, 조건부 안정화상수 및 pM 값]
Figure pat00002

실시예 4. 금속교환( transmetallatin ) 운동
Gd-착물은 비록 열역학적으로 안정하더라고, 속도론적으로는 생체 내 이온에 의해 금속교환이 일어날 수 있으며, 이 과정에 의해 상자기성 가돌리늄(Gd(Ⅲ)) 이온이 complex에서 빠져나오게 된다. 이런 생체 내 이온으로는 구리, 칼슘, 망간 등이 있다. 구리이온은 생체 내의 혈액에 아주 작은 양(1 ~ 10 mol/L)이 존재하고, 칼슘 이온은 DTPA나 DOTA에 비해 상대적으로 낮은 결합 정도를 띄고 있다(Gd에 비해 대략 log10 정도 낮음). 망간만이 유일하게 혈액 내에서 가돌리늄 이온과 교환이 일어날 정도로 충분한 양(55 ~ 125 mol/L)을 가지고 있을 뿐만 아니라 열역학적으로 가돌리늄에 비해 4배 정도 낮다. 따라서 망간이온이 존재하는 상태에서의 Gd-complex의 안정성은 아주 중요하다. 신체 내에서 생체 내 이온에 의해 금속교환(transmetallation)이 발생한다면, 자유 가돌리늄 이온을 생성할 것이고 생체 내의 다른 이온이 리간드와 결합하여 신장을 통해 체외로 배출될 것이다.
만약 망간이온에 의해 상자기성 가돌리늄 착물에 금속교환(transmetallation)이 일어나게 되면, phosphate 완충 용액에 의해 자유 가돌리늄이온이 GdPO4 형태가 되는데, 수용성이 매우 낮고(K sp = 10-22.2 mol2/L2), 이로 인해 water proton 이완율에 영향을 주지 못하게 된다. 따라서 시간에 따른 상대적인 값, R 1 P(t)/R 1 P(0)는 금속교환을 측정하는 좋은 방법이다. 시간에 따른 R 1 P(t)/R 1 P(0)의 변화는 속도론적인 측면에서 어느 정도의 정보를 제공하고, 이론적으로 시간이 무한대(t=∞)가 되면 열역학적인 측면을 반영한다.
따라서, 본 발명에 따른 가돌리늄 착물의 금속교환 운동을 확인하기 위해 2.5 mmol/L의 Gd-complex와 ZnCl2가 Phosphate 완충용액(pH 7.4) 상에서 시간에 따라 변화하는 물의 proton 이완률(R1 P)을 측정하였다. 이완율의 변화를 확인하기 위하여, 1 ml의 Gd-complex 완충용액에 10 μL(250 mmol/L)의 ZnCl2 용액을 첨가한 후, 충분히 흔들어 잘 혼합되도록 한다. 또한 대조효과를 확인하기 위해, Dotarem, Omniscan, Multihance, Primovist 및 ethyl tranexamate(6)를 Zinc acetate에서 상기와 동일한 실험을 수행하였다. 실험 결과는 실온에서 Magnetom Tim Trip(Simens, Germany, 3T whole body system)으로 측정되었다. 측정 결과는 도 2에 나타내었다.
도 2는 상자기성 이완율의 변화(R 1 P(t)/R 1 P(0))를 나타낸다. 도 2에서 나타낸 바와 같이, 이완율의 진행정도에 따라 두 그룹으로 나눌 수 있다: (A) Dotarem, 5a ~ 5c의 macrocyclic chelates 및 (B) 그 외의 acyclic chelates. 본 발명에 의해 합성된 가돌리늄 착물 1 ~ 3(5a, 5b 및 5c)은 72 시간을 기준으로 모두다 상당히 좋은 속도론적 안정성(약 98% 이상)을 띄고 있음을 알 수 있다. 이러한 특성은 Dotarem과 거의 유사하다. 이는 가돌리늄 착물의 구조적인 유사성에서 기인한 것으로 판단된다. 가돌리늄 착물은 macrocyclic motif로써 같은 수의 5각형 링을 가지고 있다. 최초 5분에 이완률 상승이 나타남을 볼 수 있는데, 이는 가돌리늄이 decomplexation 과정에서 물과 더 많이 만나게 되어 상승효과가 나타난 것으로 보인다. 그 외의 Omniscan, Multihance, Primovist에서는 급격한 감소 효과가 나타나는데, 이는 acyclic open-chain DTPA-bis(amide) motif에 의해서 발생한 것으로 판단된다. 특히 Omniscan에서는 동일한 측정시간 대에서 최초 이완율의 30%까지 감소하는 것을 확인할 수 있다. 또한 ethyl tranexamate(6)의 위치는 두 그룹(macrocyclic과 acyclic)의 중간적 위치에 있다. 이는 DTPA-bis(amide)에 있어 tranexamic moiety가 열역학적 안정성뿐만 아니라 속도론적으로 중요한 역할을 하는 것으로 예상할 수 있다. 이런 연관성은 DTPA-BMA와 비교하여, tranexamic moiety가 회전 관련 시간을 증기시켜 R 1 이완율을 상당히 증가시킨 것이다.
실시예 5. 이완 시간( relaxation time ) 및 이완율( relaxivity )
상기에서 제조한 가돌리늄 착물의 이완 시간(T 1, T 2)과 이완율(R 1, R 2)을 측정하였다. 높은 이완율을 갖는 조영제는 상대적으로 적은 양을 투여해도 높은 조영증강효과를 나타낸다.
T 1 측정은 1.5 T 에서 다양한 T 1(inversion time)에 따른 inversion 회복(inversion recovery)을 사용하여 확인하였다. MR 이미지는 35 가지의 다른 T 1 값(50 ~ 1750 msec)에서 얻어졌다. T 1 이완시간(relaxatin time)은 각각의 T 1 값에서 signal intensity의 최소 비선형 fitting에 의해 측정되었으며, T 2 측정은 다양한 spin-echo 측정을 위한 CPMG(Carr Purcell Meiboon Gill) pulse sequence를 적용하여 이루어 졌다. 34 가지의 다른 영상은 34 가지의 다른 TE(echo time) 값으로부터 얻어졌다. T 2 이완 시간은 각각의 echo time에서 다양한 spin-echo 측정을 위한 픽셀의 중간 값을 비선형 fitting 법으로 측정하였다. 이완률(relaxivity)은 이완시간당 mM의 역수(R=1/sㆍmM)로 계산되었다. 결정된 이완시간과 이완율은 최종적으로 펜텀 map으로 변환되었다. 팬텀 이미지는 동일 농도에서 비교를 목적으로 Dotarem과 가돌리늄 착물들을 동시에 얻었다. 측정 결과는 도 3 및 표 2에 나타내었다. 도 3은 본 발명에 따른 가돌리늄 착물(5a ~ 5c)과 Dotarem의 이완 시간과 이완률 map 사진이며, 표 2는 본 발명의 가돌리늄 착물과 다른 Gd-complexes의 이완시간과 이완율을 나타낸 것이다.
표 2에서 상용화 되어 있는 조영제와 비교할 때, 5b와 5c가 상당히 높은 R 1 값을 지니고 있음을 확인할 수 있으며, 특히 가장 높은 R 1 값을 갖는 5c는 Dotarem과 비교할 때 2.6 배 높다. 현재의 시스템에서 이러한 높은 R 1 값은 Dotarem과 비교할 때 아마도 증가된 분자량 때문일 것으로 사료된다. 분자량의 증가는 회전관련 시간을 증가시키기 때문에 R 1 이완율을 향상시킨다. 또한 추가적으로 inner-sphere 물 분자와 carboxylic group의 상호작용도 이완율 상승의 인자로 작용할 것이다. 즉, 5b, 5c의 물분자 교환율이 소수성 alkyl ester 그룹에 의해 증가된 것으로 보이고, 대조적으로 carboxylic acid 같은 친수성 그룹(5a)은 수소결합으로 인해 inner-sphere 물분자와의 교환 속도가 늦어 이완율이 낮은 것으로 사료된다.
[표 2. 가돌리늄 착물의 이완시간 및 이완율]
Figure pat00003

실시예 6. In vivo MRI test
본 발명에 따른 MRI 조영제의 조영효과 실험을 위해 6주령의 수컷 ICR 마우스(weight = 29 ~ 31 g)를 준비한 후, 테스트를 위해 마우스들을 산소 존재 하에서 1.5% 이소플루란(isoflurane)으로 마취시킨 후, 본 발명의 가돌리늄 착물(5c)을 0.1 mmol Gd/Kg으로 처리하였다. 처리 완료 후, 마취로부터 깨어난 실험 마우스들을 우리(cage) 안에 넣고 물과 음식을 자유롭게 섭취하도록 하였으며, 37 ℃의 따뜻한 물수건으로 온도를 유지시켰다.
MR 이미지는 1.5 T(GE Healthcare, Milwaukee, WI, USA)의 직접 제작한 동물용 RF 코일에서 측정하였다. 이 코일은 안쪽 직경이 50 mm 정도의 receiver 타입이다. 3D fast SPGR의 상수를 사용하여 이미지를 획득하였다: TR(repetition time) = 8.8 ms; TE(echo time) = 3.9 ms; 10 mm FOV(field of view); 256×192 matrix size; 1.0 mm slice thickness; NEX(number of acquisition) = 4. 스핀에코를 위한 이미지 변수들은 다음과 같다: TR = 500 ms; TE = 13 ms; 6 mm FOV; 192×128 matrix size; 1.5 mm slice thickness; NEX = 4. 각각의 이미지는 3분 16초의 간격으로 측정되었으며, 가돌리늄 착물(0.1 mmol/kg의 5c)을 주입한 후 26 시간까지의 MR 이미지를 얻어내었다. 그리고 상기에서 획득한 MR 이미지 분석은 Advantage Window software(GE Medical, USA)를 이용하여 특정 ROI(region of interest)에서의 신호 강도를 측정하였다. 또한 CNR(Contrast to Noise Ratio)은 하기 수학식 3을 이용하여 계산하였으며, 수학식에서 SNR은 noise ratio에 대한 신호를 의미한다.
<수학식 3>
CNR = SNRpost - SNRpre
측정 결과는 도 4a 내지 4c 및 도 5에 나타내었다.
먼저, 도 4a ~ 4c는 측정된 MR 이미지를 나타낸다. 도 4a를 통해 가돌리늄 착물을 처리한지 초기 1 시간 이후 간(liver)에서 강한 신호가 관찰되며, 동일한 시간 이후 심장(heart)과 동맥(astery)에서도 유사하게 혈액저류효과(blood-pool effect)가 관찰됨을 알 수 있다. 그리고 도 4b에서 확인할 수 있듯이, 처리 5 분 후 간, 신장(kidney), 대동맥(aorta)에서 조영효과가 동시에 나타난다. 따라서 본 발명에 따른 가돌리늄 착물은 간뿐만 아니라 심혈관에서의 이중(bi-functionality) 조영효과를 나타냄을 알 수 있다.
또한 도 4c는 수담관(bile duct)을 통해 배출되는 양상을 확인한 결과이다.초기에는 수담관에 조영제가 존재하지 않기에 영상이 어둡게 나타나지만, 조영제 투여 후, 시간이 지남에 따라 간의 hepatobiliary uptake후에 천천히 수담관을 통해 조영제가 장으로 배출되는 것을 볼 수 있다. 이는 조영제(5c)가 간을 조영하고 배출되는 것을 증명하는 명백한 근거이다.
그리고, ICP(Inductively Coupled Plasma) 측정을 통해 투여 시간에 따른 Gd(Ⅲ) 이온의 함량을 알아봄으로써, 수담관을 통한 배출여부를 더 확인하였다. 확인 결과, 표 3에 나타낸 바와 같이 시간이 경과할수록 간과 신장에서 Gd(Ⅲ) 이온의 함량이 감소하는 것을 확인할 수 있으며, 투여한지 6 시간 이후에는 소장(intestine)에서도 Gd(Ⅲ) 이온이 측정되는 것으로 보아 간과 수담관을 통해 배출됨이 증명되었다.
[표 3. ICP 측정 결과]
Figure pat00004

이러한 본 발명의 가돌리늄 착물의 이중 조영효과는 가돌리늄 착물의 구조적인 특이성으로 인한 것으로 사료된다. 기존의 상용화되어 있는 조영제들과 다르게 acyclic DTPA 대신에 macrocyclic chelate DO3A를 사용하였으며, 특히 킬레이트 백본(chelate backbone)에서 방향족 치환기(aromatic substituent)의 존재에 대해 언급된 적이 없다. 상기 방향족과 조직(organ) 또는 혈구 세포(blood cell) 간의 친유성 상호작용(lipophilic interaction)에 의해 혈액저류(blood-pool)가 향상된 것으로 예측된다. 반면, 현재 상용화 되고 있는 Multihance와 Primovist는 acyclic DTPA moieties를 이용하며, 이들 백본(backbone)은 방향족 잔기에 의해 유도되며, 이들의 존재는 MRI 조영제와 조직 또는 혈구 세포간의 비-공유 친유성 상호작용(non-covalent lipophilic interaction)을 증가시킬 것으로 예상된다. 따라서 MRI 조영제와 조직 또는 혈수 세포간의 비-공유 친유성 상호작용을 위한 방향족(aromatic)의 존재가 필수적인 요소가 아님을 본 발명을 통해 확인할 수 있다.
또한, 상기 측정된 MR 이미지의 CNR(Contrast to Noise Ratio)을 측정한 결과 도 5에 나타낸 것과 같이, 강한 간세포 흡수가 관찰되는데 이는 투여된 MRI 조영제가 담수관을 통해 천천히 배출되기 때문인 것으로 사료된다. 이러한 배출 특성은 MRI 조영제의 생체 내에서 긴 순환시간으로 설명될 수 있다.
실시예 7. 세포 생존율( cell viability )
HEK(human embrionic kidney)-293의 세포 생존율을 MTT 실험을 수행하여 측정하였다.
먼저 HEK-293 세포를 heat-inactivated FCS(10%), 페니실린(100 IU/mL), 스트렙토마이신(100 mg/mL) 및 젠타마이신(200 mg/mL)을 포함하는 DMEM(Dulbecco's modified eagle's medium, Gibco) 배지에 1×104 cells/well 밀도로 96-웰 플레이트에 접종하고, 37 ℃ 및 5% CO2 조건으로 배양하였다. 배양 1일 후 본 발명의 가돌리늄 착물 5a 내지 5c(가돌리늄 농도; 0.01 ~ 1.0 mM)를 페니실린(100 IU/mL), 스트렙토마이신(100 mg/mL) 및 젠타마이신(200 mg/mL)을 포함하는 DMEM 배지에 희석한 후 배지를 교체하여 24 시간 동안 배양시켰다. 배양 완료 후, 5 mg/ml의 MTT(3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide, Sigma) 용액 10 μl를 처리하여 동일 조건으로 4 시간 동안 반응시켰다. 반응 완료 후, 상층액을 제거한 세포에 DMSO(dimethylsulfoxide) 100 μl를 첨가하여 MTT 포르마잔(formazan)을 용해시키고, 마이크로플레이트 리더(Molecular Device, USA Vio-rad 550 Reader)를 이용하여 570 nm에서 O.D.(Optical Density)를 측정하였다. 측정 결과는 도 6에 나타내었다.
도 6에 나타낸 바와 같이, 가돌리늄 착물과 24 시간 동안 배양시켰을 때 세포 증식 및 생존에 영향을 미치지 않음을 확인할 수 있다. 즉, 각 실험군들의 세포 생존율이 100 %에 근접하는바, 본 발명의 가돌리늄 착물 조영제는 세포 독성을 나타내지 않음을 확인할 수 있다.
[reference]
1. Kumar, K.; Chang, C. A.; Francesconi, L. C.; Dischino, D. D.; Malley, M. F.; Gougoutas, J. Z.; Tweedle, M. F. Synthesis, Stability, and Structure of Gadolinium(III) and Yttrium(III) Macrocylcic Poly(amino carboxylates). Inorg. Chem. 1994, 33 (16), 3567-75.
2. Kumar, K.; Tweedle, M. F.; Malley, M. F.; Gougoutas, J. Z. Synthesis, Stability, and Crystal Structure Studies of Some Ca2 +, Cu2 +, and Zn2 + Complexes of Macrocylcic Polyamino Carboxylates. Inorg. Chem. 1995, 34 (26), 6472-80.
3. Martell, A. E.; Smith, R. M. Critical Stability Constants, Plenum, vol. 1: New york, 1974.
4. Schmitt-Willich, H.; Brehm, M.; Ewers, C. L.; Michl, G.; Muller-Fahrnow, A.; Petrov, O.; Platzek, J.; Raduchel, B.; Sulzle, D. Synthesis and Physicochemical Characterization of a New Gadolinium Chelate: The Liver-Specific Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA. Inorg. Chem. 1999, 38 (6), 1134-44.
5. Port, M.; Idee, J. M.; Medina, C.; Robic, C.; Sabatou, M.; Corot, C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 2008, 21 (4), 469-90.
6. Uggeri, F.; Aime, S.; Anelli, P. L.; Botta, M.; Brocchetta, M.; de Haeen, C.; Ermondi, G.; Grandi, M.; Paoli, P. Nevel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes {Ln = Gd, La, Lu}. Inorg. Chem. 1995, 34 (3), 633-42.
7. Cacheris, W. P.; Quay, S. C.; Rocklage, S. M. The relationship between thermodynamics and toxicity of gadolinium complexes. Magn. Reson. Imaging 1990, 8 (4), 467-81.
8. Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40 (11), 715-24.
9. Dutta, S.; Park, J. A.; Jung, J. C.; Chang, Y.; Kim, T. J. Gd-complexes of DTPA-bis(amide) conjugates of tranexamic acid and its esters with high relaxivity and stability for magnetic resonance imaging. Dalton. Trans. 2008 (16), 2199-206.

Claims (10)

  1. 하기 화학식 1의 구조를 갖는 DO3A-트란스아믹산 또는 그 에스테르 화합물:
    [화학식 1]
    Figure pat00005

    상기 화학식에서 R은 H, Me, Et, (CH2)2OH, CH2OMe, 또는 CH2CH=CH2 이다.
  2. 하기 단계들을 포함하는 제 1항에 따른 DO3A-트란스아믹산 또는 그 에스테르 화합물의 제조방법:
    a) 트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(trans-4(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)에 브로모아세틸 브로마이드(bromoacetyl bromide)를 첨가하여 교반하는 단계;
    b) 상기 혼합물에 DO3A-( t BuO)3를 첨가하여 교반하는 단계;
    c) 상기 혼합물에 TFA를 첨가하여 tert-butyl 그룹을 deprotection시키는 단계;
    d) 상기 혼합물을 저압에서 용매를 모두 제거한 후 메탄올을 넣어 녹인 후, 실리카 겔 크로마토그래피를 수행하는 단계; 및
    e) 상기 크로마토그래피로 얻은 물질을 진공상태에서 건조하여 DO3A-트란스아믹산 또는 그 에스테르 화합물을 얻는 단계.
  3. 제 2항에 있어서, 상기 a) 단계의 트란스-4(아미노메틸)사이클로헥산카복실레이트 하이드로클로라이드 대신 알릴-트란스-4(아미노메틸)사이클로헥산에틸카복실레이트 하이드로클로라이드(Allyl-trans-4(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하는 것을 특징으로 하는 제조방법.
  4. 제 1항에 따른 DO3A-트란스아믹산 또는 그 에스테르 화합물을 포함하는 착물 리간드(L)용 조성물.
  5. 제 1항에 따른 DO3A-트란스아믹산 또는 그 에스테르 화합물을 리간드(L)로 포함하고, 상기 리간드에 배위결합하는 금속원자를 포함하는 착물.
  6. 제 5항에 있어서, 상기 금속원자는 가돌리늄(Gd)인 것을 특징으로 하는 착물.
  7. 제 6항에 있어서, 상기 착물은 [Gd(L)(H2O)ㆍxCH3COOHㆍyH2O]의 화학식을 갖는 것을 특징으로 하는 착물.
  8. 제 5항 내지 7항 중 어느 한 항에 따른 착물을 유효성분으로 함유하는 자기공명영상(MRI) 조영제.
  9. 제 8항에 있어서, 상기 조영제는 간 특이성과 심혈관 이중 조영 기능을 갖는 것을 특징으로 하는 자기공명영상(MRI) 조영제.
  10. 제 8항에 있어서, 상기 조영제는 높은 이완율, 향상된 열역학 및 속도론적 안정성을 가지는 것을 특징으로 하는 자기공명영상(MRI) 조영제.
KR1020100095471A 2010-09-30 2010-09-30 가돌리늄 착물을 함유하는 mri조영제 KR101236142B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020100095471A KR101236142B1 (ko) 2010-09-30 2010-09-30 가돌리늄 착물을 함유하는 mri조영제
PCT/KR2010/009151 WO2012043933A1 (ko) 2010-09-30 2010-12-21 가돌리늄 착물을 함유하는 mri조영제
CN201080069387.6A CN103153969B (zh) 2010-09-30 2010-12-21 含有钆配合物的mri造影剂
EP10857933.5A EP2623500B1 (en) 2010-09-30 2010-12-21 Mri contrast agent having gadolinium complex
US13/876,904 US8901294B2 (en) 2010-09-30 2010-12-21 MRI contrast agent having gadolinium complex
JP2013531463A JP5763772B2 (ja) 2010-09-30 2010-12-21 ガドリニウム錯体を含有するmri造影剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100095471A KR101236142B1 (ko) 2010-09-30 2010-09-30 가돌리늄 착물을 함유하는 mri조영제

Publications (2)

Publication Number Publication Date
KR20120033769A true KR20120033769A (ko) 2012-04-09
KR101236142B1 KR101236142B1 (ko) 2013-02-21

Family

ID=45893352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100095471A KR101236142B1 (ko) 2010-09-30 2010-09-30 가돌리늄 착물을 함유하는 mri조영제

Country Status (6)

Country Link
US (1) US8901294B2 (ko)
EP (1) EP2623500B1 (ko)
JP (1) JP5763772B2 (ko)
KR (1) KR101236142B1 (ko)
CN (1) CN103153969B (ko)
WO (1) WO2012043933A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150083721A (ko) 2014-01-10 2015-07-20 경북대학교 산학협력단 Do3a-트라넥스아믹산 콘쥬게이트를 포함하는 가돌리늄 착물
WO2017065584A1 (ko) * 2015-10-16 2017-04-20 주식회사 엔지켐생명과학 자기공명영상용 조영제의 제조방법
KR20180011264A (ko) * 2015-06-04 2018-01-31 바이엘 파마 악티엔게젤샤프트 자기 공명 영상화에 사용하기 위한 신규 가돌리늄 킬레이트 화합물
KR102203368B1 (ko) * 2020-10-30 2021-01-14 경북대학교 산학협력단 신규한 화합물 및 이를 함유하는 mri 조영제

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951324B2 (en) 2010-02-25 2018-04-24 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
CN108042811A (zh) 2012-11-15 2018-05-18 恩多塞特公司 用于治疗由psma表达细胞引起的疾病的共轭物
CN103114122B (zh) * 2012-12-31 2014-06-11 浙江工业大学 利用游动放线菌制备反式-4-氨甲基-环己烷甲酸的方法
KR101469900B1 (ko) * 2013-04-18 2014-12-09 경북대학교 산학협력단 Do3a-디아미노바이페닐 화합물 및 이를 리간드로 포함하는 가돌리늄 착물
LT4095130T (lt) 2013-10-18 2024-04-25 Novartis Ag Žymėti prostatos specifinio membranos antigeno (psma) inhibitoriai, jų naudojimas kaip vizualizavimo medžiagų ir farmacinių medžiagų prostatos vėžiui gydyti
ES2541787B1 (es) * 2014-01-23 2016-05-03 Universidad Nacional De Educación A Distancia Compuestos y composiciones que comprenden nanotubos de carbono y compuestos de formula (I) y su uso como agentes de contraste
CA2966736A1 (en) 2014-11-03 2016-05-12 Thromboltyics, Llc Antifibrinolytic compounds
US10188759B2 (en) 2015-01-07 2019-01-29 Endocyte, Inc. Conjugates for imaging
JP6772549B2 (ja) * 2016-05-23 2020-10-21 Dic株式会社 重合性化合物及び光学異方体
KR102232979B1 (ko) * 2018-03-22 2021-03-29 경북대학교 산학협력단 Do3a 가돌리늄 착물의 신규한 구조를 갖는 화합물, 이를 포함하는 항염증제 및 조영제
CN109876159B (zh) * 2019-04-15 2020-06-26 牡丹江医学院 新型靶向造影剂及其在心血管类疾病诊断中的用途
CN114560821A (zh) * 2022-03-16 2022-05-31 国科温州研究院(温州生物材料与工程研究所) 一种环型Gd(III)配合物及其制备方法和应用
CN115124484B (zh) * 2022-04-11 2023-07-28 兰州大学 一类新型mr肝脏特异性造影剂及其合成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160535B2 (en) 2001-10-31 2007-01-09 Bracco International Bv Conjugates of antioxidants with metal chelating ligands for use in diagnostic and therapeutic applications
DE10135356C1 (de) * 2001-07-20 2003-04-17 Schering Ag Makrocyclische Metallkomplexe und deren Verwendung zur Herstellung von Konjugaten mit Biomolekülen
US7226577B2 (en) * 2003-01-13 2007-06-05 Bracco Imaging, S. P. A. Gastrin releasing peptide compounds
KR20090123171A (ko) * 2008-05-27 2009-12-02 경북대학교 산학협력단 Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법
KR101094207B1 (ko) * 2008-08-21 2011-12-14 연세대학교 산학협력단 T1―t2 이중방식 mri 조영제
US20100227794A1 (en) * 2008-11-26 2010-09-09 I.S.T. Corporation Smart contrast agent and method for detecting transition metal ions and treating related disorders

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150083721A (ko) 2014-01-10 2015-07-20 경북대학교 산학협력단 Do3a-트라넥스아믹산 콘쥬게이트를 포함하는 가돌리늄 착물
KR20180011264A (ko) * 2015-06-04 2018-01-31 바이엘 파마 악티엔게젤샤프트 자기 공명 영상화에 사용하기 위한 신규 가돌리늄 킬레이트 화합물
WO2017065584A1 (ko) * 2015-10-16 2017-04-20 주식회사 엔지켐생명과학 자기공명영상용 조영제의 제조방법
KR102203368B1 (ko) * 2020-10-30 2021-01-14 경북대학교 산학협력단 신규한 화합물 및 이를 함유하는 mri 조영제
WO2022092602A1 (ko) * 2020-10-30 2022-05-05 경북대학교 산학협력단 신규한 화합물 및 이를 함유하는 mri 조영제

Also Published As

Publication number Publication date
EP2623500B1 (en) 2015-11-25
US8901294B2 (en) 2014-12-02
JP2013540120A (ja) 2013-10-31
KR101236142B1 (ko) 2013-02-21
EP2623500A4 (en) 2014-10-08
WO2012043933A1 (ko) 2012-04-05
CN103153969B (zh) 2015-09-30
EP2623500A1 (en) 2013-08-07
JP5763772B2 (ja) 2015-08-12
US20130231475A1 (en) 2013-09-05
CN103153969A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
KR101236142B1 (ko) 가돌리늄 착물을 함유하는 mri조영제
KR101469900B1 (ko) Do3a-디아미노바이페닐 화합물 및 이를 리간드로 포함하는 가돌리늄 착물
CN108368067B (zh) 二聚造影剂
CN108290849B (zh) 造影剂
Tei et al. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide (III) DOTA complexes
CN108779082B (zh) 造影剂
WO2006029560A1 (en) Paramagnetic complexes with pendant crown compounds showing improved targeting-specificity as mri contrast agents
CN109963838B (zh) 二聚造影剂
Gu et al. Gd-complexes of 1, 4, 7, 10-tetraazacyclododecane-N, N′, N′′, N′′′-1, 4, 7, 10-tetraacetic acid (DOTA) conjugates of tranexamates as a new class of blood-pool magnetic resonance imaging contrast agents
Parac‐Vogt et al. Pharmacokinetic and in vivo evaluation of a self‐assembled gadolinium (III)‐iron (II) contrast agent with high relaxivity
US20090104124A1 (en) Paramagnetic Complexes with Pendant Crown Compounds Showing Improved Targeting- Specificity as MRI Contrast Agents
WO1995028392A1 (en) Chelant compounds
WO2001051095A2 (de) Paramagnetische dota-derivate, diese enthaltende pharmazeutische mittel, verfahren zu ihrer herstellung und ihre verwendung für das nekrose- und infarkt-mr-imaging
CN105899494B (zh) 含do3a-氨甲环酸共轭物的钆配合物
Tear et al. An albumin-binding Gd-HPDO3A contrast agent for improved intravascular retention
KR101836461B1 (ko) 페로센을 기반으로 한 새로운 형태의 mr 조영제의 개발
KR101197511B1 (ko) 유리딘계 가돌리늄 착물 및 이를 포함하는 mri 조영제
EP3386953B1 (en) Contrast agents
KR20120057324A (ko) 페로센을 포함하는 고리형 구조의 새로운 가돌리늄 킬레이트
KR20130015534A (ko) 높은 혈관 조영 효과를 가지는 고리형 구조의 가돌리늄 킬레이트

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200210

Year of fee payment: 8