KR20090123171A - Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법 - Google Patents

Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법 Download PDF

Info

Publication number
KR20090123171A
KR20090123171A KR1020080049115A KR20080049115A KR20090123171A KR 20090123171 A KR20090123171 A KR 20090123171A KR 1020080049115 A KR1020080049115 A KR 1020080049115A KR 20080049115 A KR20080049115 A KR 20080049115A KR 20090123171 A KR20090123171 A KR 20090123171A
Authority
KR
South Korea
Prior art keywords
ligand
bis
gadolinium
dtpa
complex
Prior art date
Application number
KR1020080049115A
Other languages
English (en)
Inventor
김태정
장용민
박지애
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020080049115A priority Critical patent/KR20090123171A/ko
Priority to PCT/KR2008/003144 priority patent/WO2009145378A1/en
Publication of KR20090123171A publication Critical patent/KR20090123171A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/16Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of hydrocarbon radicals substituted by amino or carboxyl groups, e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/02Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/04Preparation of carboxylic acid amides from ketenes by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 N,N-디메틸포름아미드에 DTPA-비스-안하이드라이드를 첨가하여 교반하는 제 1 단계, 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드 또는 2-메톡시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드 또는 알릴-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드를 첨가하여 교반하는 제 2 단계, 저압에서 용매를 모두 제거한 후 메탄올을 넣어 녹인 후 실리카 겔 크로마토그래피를 실시하는 제 3 단계 및 진공상태에서 건조하는 제 4 단계를 포함하여 새로운 형태의 DTPA-비스-아미드(DTPA-bis-amide) 리간드를 합성한다.
또한, 본 발명은 상기 제 4 단계에서 얻어진 DTPA-비스-아미드 리간드를 증류수에 넣은 후, Gd2O3를 첨가하고 교반하는 제 5 단계, 불순물 및 용매를 제거하는 제 6 단계, 메탄올에 녹인 후, 아세토니트릴로 침전시켜 고체를 수득하는 제 7 단계를 더 포함하여 신규한 가돌리늄 착물을 합성한다.
또한, 본 발명은 상기의 가돌리늄 착물을 포함하는 암진단용 MR 조영제를 제공한다.
리간드, DTPA-비스-아미드(DTPA-bis-amide), 가돌리늄, 암 진단용 조영제, 세포독성

Description

DTPA-비스-아미드 리간드를 포함하는 가돌리늄 착물과 그 합성방법{Gd Complex comprising DTPA-bis-amide Ligand And Method For Preparing The Same}
본 발명은 자기이완율을 높일 수 있는 분자량이 큰 새로운 형태의 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법에 관한 것이다.
또한, 본 발명은 상기의 리간드를 이용하여 높은 수용성을 갖는 신규한 가돌리늄 (Gd) 착물을 합성하는 방법에 관한 것이다.
또한, 본 발명은 상기의 방법으로 합성된 가돌리늄 (Gd) 착물을 포함하여, 조영증강효과가 높고 세포독성이 감소된 암진단용 MR 조영제에 관한 것이다.
자기공명영상법(MRI)은 진단의 이미지화로 인해 널리 사용되고 있다. 비록 연약한 피부 조직의 이미지를 자기공명영상법에 의해 지원해 줄 수 있지만 명암대비의 작용에 사용되는 조영제의 큰 명암 대비강화 작용에 의해 이미지의 질이 결정된다. 따라서 효율적인 자기공명영상법의 대조 조영제들의 성장은 최근 충분한 관심을 끌게 되었다. 이런 자기공명영상의 대조 조영제로의 필요한 성질로는 열역학 적 안정성, 수용성, 그리고 상자성 Gd(III)이온을 만드는 원인이 되는 다배위 (multidentate)구조, 즉 적어도 한 분자의 물과 결합해 높은 물과의 자기이완을 나타내어야 한다는 것이다. 또한, 자기공명영상 대비 조영제는 화학적 활성이 없어야 하며, 생체 안에서 세포독성이 낮아야 하고, 진단이 끝난 후에는 완전히 배출되어야한다.
자기공명영상의 대조 조영제로 인체 사용을 위해 승인된 조영제로는 자기이완율이 약 4.7 mM-1s-1(20MHz, 298K)을 나타내는 디에틸렌트리아민-N,N,N',N'',N''-펜타아세테이트, (N-Me-글루카민)2[Gd(DTPA)(H2O)] (Magnevist , Schering)와 같은 이온화 Gd(III) 착물과 자기이완율이 4.4mM-1s-1 (20MHz, 298K)를 나타내는 [Gd(DTPA-bismethylamide)(H2O)] (Omniscan , Nycomed)와 같은 중성 Gd(III)착물 이 있다.
그러나 상기의 조영제는 수용성과 자기이완율이 낮은 편이며, 생체 안에서 세포 독성이 비교적 높은 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해서 안출된 것으로서, 본 발명에 따른 리간드 합성 방법에 따라서 제조된 리간드를 사용함으로써, 높은 수용성을 갖는 가돌리늄 착물을 제공하는 것을 목적으로 한다.
또한, 본 발명에 따른 가돌리늄 (Gd) 착물의 합성 방법에 따라 제조된 착물을 사용함으로써, 암진단용 MR 조영제가 기존의 MR 조영제보다 높은 조영증강효과를 갖게 하는 것을 목적으로 한다.
또한, 본 발명에 따른 암진단용 MR 조영제가 기존의 MR 조영제보다 세포독성을 감소시키는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본원 발명은 새로운 형태의 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법에 관한 것으로서, N,N-디메틸포름아미드(N,N-demethylformamide)에 DTPA-비스-안하이드라이드(DTPA-bis-anhydride)를 첨가하여 교반하는 제 1 단계, 상기 혼합물에 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 교반하는 제 2 단계, 상기 혼합물을 저압에서 용매를 모두 제거한 후 메탄올을 넣어 녹인 후 실리카 겔 크로마토그래피를 실시하는 제 3 단계 및 상기 제 3 단계에서 얻어진 물 질을 진공상태에서 건조하여 리간드 L4를 얻는 제 4 단계를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 제 2 단계의 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드 대신에 2-메톡시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-Methoxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 제 4 단계에서 리간드 L5를 얻는 것을 특징으로 한다.
바람직하게는, 상기 제 2 단계의 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride) 대신에 알릴-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(Allyl-trans-4- (aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 제 4 단계에서 리간드 L6을 얻는 것을 특징으로 한다.
또한, 본 발명에 따른 신규한 가돌리늄(Gd) 착물의 합성 방법은, 상기 제 4 단계에서 얻어진 DTPA-비스-아미드(DTPA-bis-amide) 리간드를 증류수에 넣은 후, Gd2O3를 첨가하고 교반함으로써 혼합용액을 제조하는 제 5 단계, 상기 제 5 단계에서 얻어진 혼합용액 중에서 불순물 및 용매를 제거하는 제 6 단계, 상기 제 6 단계에서 얻어진 물질을 메탄올에 녹인 후, 아세토니트릴로 침전시켜 고체를 수득하는 제 7 단계를 더 포함하는 것을 특징으로 한다.
바람직하게는, 상기 제 5 단계의 DTPA-비스-아미드(DTPA-bis-amide) 리간드와 Gd2O3의 몰농도 비율은 1 : 1 인 것을 특징으로 특징으로 한다.
바람직하게는, 상기 제 5 단계의 교반은 90 ~ 100 ℃ 의 온도범위에서 5 ~ 7 시간 동안 행하는 것을 특징으로 특징으로 한다.
바람직하게는, 상기 제 6 단계는 제 5 단계에서 얻어진 혼합용액을 규조토에 통과시켜서 불순물 및 용매를 제거하는 것을 특징으로 한다.
또한 본 발명에 따른 DTPA-비스-아미드(DTPA-bis-amide) 리간드는 상기의 방법에 따라 합성된 것을 특징으로 한다.
바람직하게는, 상기의 DTPA-비스-아미드(DTPA-bis-amide) 리간드는 향상된 열역학적 안정성을 갖는 것을 특징으로 한다.
또한, 본 발명에 따른 가돌리늄(Gd) 착물은 상기의 방법에 따라 합성된 것을 특징으로 한다.
바람직하게는, 상기 가돌리늄(Gd) 착물은 화학식 1의 [Gd(L)(H2O)]·xH2O 로 표기되며, 여기서, L은 제 8 항의 리간드를 말하며, x는 0 ~ 12 인 것을 특징으로 한다.
바람직하게는, 상기 가돌리늄(Gd) 착물은 향상된 용해도, 자기 이완율을 갖는 것을 특징으로 한다.
바람직하게는, 상기 가돌리늄(Gd) 착물은 낮은 세포독성을 갖는 것을 특징으로 한다.
또한, 본 발명에 따른 암진단용 MR 조영제는 상기의 가돌리늄(Gd) 착물을 포함하는 것을 특징으로 한다.
이상에서 상술한 바와 같이, 본 발명에 따른 리간드 합성 방법에 따라서 제조된 리간드는 극성 작용기인 트란스아믹산을 포함하고 있으므로, 가돌리늄 착물이 높은 수용성을 갖게 하는 효과가 있다.
또한, 본 발명에 따른 합성 방법에 의해 제조된 가돌리늄 착물을 암진단용 MR 조영제에 사용할 때, 기존의 MR 조영제보다 조영증강효과를 높이는 효과가 있다.
또한, 본 발명에 따른 암진단용 MR 조영제는 본 발명에 따른 가돌리늄(Gd) 착물을 포함하고 있으므로, 기존의 MR 조영제보다 세포독성을 감소시키는 효과가 있다.
본 발명은 새로운 형태의 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법 및 신규한 가돌리늄 착물의 합성 방법에 관한 것으로서, 상기의 DTPA-비스-아미드(DTPA-bis-amide) 리간드는 극성 작용기를 가진 트란스아믹산 및 에스테르 컨쥬게이트를 포함하고 있다. 이와 같이 리간드가 극성 작용기를 포함하고 있으므로, 높은 수용성을 갖게 되었다.
또한, 본 발명의 DTPA는 금속친화성의 킬레이트화합물 디에틸렌트리아민 5초산(DiethyleneTriamine PentaAcetic acid)의 약칭으로서, 방사선 장해에 대한 화학적 방호제이다. 상기 방호제는 방사성 물질을 체외로 제거하는 작용이 있어 세포독성을 줄일 수 있다.
본 발명의 착물(complex)이란 1개 또는 그 이상의 원자나 이온을 중심으로 몇 개의 다른 원자이온분자 또는 원자단 등이 방향성을 갖고 입체적으로 배위(配位)하여 하나의 원자집단을 이루고 있는 것을 말한다. 여기서, 중심이 되는 원자 또는 이온에 배위하고 있는 원자이온분자 또는 원자단 따위를 리간드[配位子]라고 부른다. 착물임을 명시하기 위해서 화학식에서는 [ ]로 묶어서 나타내며, 중심원자와 배위자 사이의 결합 정도는 이온결합 또는 공유결합이며, 리간드의 수는 생긴 원자단이 대전(帶電)해 있지 않아도 포함된다.
이하 구체적으로 본 발명에 대하여 설명하기로 한다.
제조예 1 ( 리간드 L4 )
N,N-디메틸포름아미드(N,N-dimethylformamide, DMF) 15mL에 DTPA-비스-안하이드라이드(DTPA-bis-anhydride)(0.71g, 2mmol)를 넣고 교반시키다가 2-하이드록시에틸-트랜스-4-(아미노메틸) 시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl -trans-4- (aminomethyl) cyclohexaneethylcarboxylate hydrochloride)(0.63g, 4mmol)를 넣어주었다. 반응 혼합물은 65℃에서 4시간 동안 교반시킨 후 저압에서 용매를 모두 제거하고 메탄올 10mL를 넣어 녹여 주었다. 용 액은 메탄올을 통과시키는 짧은 실리카 겔(silica gel, 60 메쉬) 크로마토그래피를 실시해 주고, 다시 용매를 모두 제거하였다. 흰색의 고체가 얻어지면 진공상태에서 50℃를 유지시키면서 8시간 동안 건조한다.
아래의 실험 data로부터, 제조예에 따른 결과물이 리간드 L4임을 확인할 수 있다.
수득율 : 3.93 g (87%)
1H [d 6-DMSO, 400 MHz] : δ 8.25 (s, 2H, CH2CONH), 4.17 (s, 2H, H2), 3.54 (m, 8H, OCH 2CH 2OH), 3.40 (m, 8H, H7, H5), 3.07 (m, 4H, H3/H4), 2.94 (m, 4H, H3/H4), 2.24 (m, 2H, H13), 2.08 (m, 4H, H9), 1.81 (m, 8H, H11/H12), 1.37 (m, 2H, H10), 1.08 (m, 8H, H11/H12)
13C NMR (d 6-DMSO, 100 MHz) : δ 175.46 (C1/C8), 175.09 (C1/C8), 172.96 (C14), 172.26 (C6), 65.83 (OCH2CH2OH), 65.26 (OCH2 CH2OH), 63.99 (C2), 59.25 (C7), 56.49 (C5), 54.83 (C3/C4), 54.54 (C3/C4), 44.84 (C13), 43.02 (C9), 42.76 (C10), 29.59 (C11), 28.52 (C12)
C34H57N5O148H2O에 대한 계산값 : C: 45.17, H: 8.14, N: 7.75
실험값 : C: 45.33, H: 7.86, N: 7.66
FAB-MS (m/z): C34H58N5O14에 대한 계산값 : 760.85 ([MH]+)
실험값 : 760.65 ([MH]+)
C34H57N5NaO14 에 대한 계산값 : 782.83 ([MNa]+)
실험값 : 782.60 ([MNa]+)
제조예 2 ( 리간드 L5 )
제조예 1의 방법과 같이 하되, 2-하이드록시에틸-트랜스-4-(아미노메틸) 시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl -trans-4- (aminomethyl) cyclohexaneethylcarboxylate hydrochloride) 대신에 2-메톡시에틸-트랜스-4-(아미노메틸) 시클로헥실카르복실레이트하이드로클로라이드(2-Methoxyethyl -trans-4- (aminomethyl) cyclohexaneethylcarboxylate hydrochloride)를 사용하였다. 흰색의 고체가 얻어지면 진공상태에서 50℃를 유지시키면서 8시간 동안 건조한다.
아래의 실험 data로부터, 제조예에 따른 결과물이 리간드 L5임을 확인할 수 있다.
수득율 : 3.87 g (83%)
1H [d 6-DMSO, 400 MHz] : δ 8.31 (s, 2H, CH2CONH), 4.14 (s, 2H, H2), 4.09 (m, 4H, OCH 2CH2OCH3), 3.56 (m, 4H, OCH2CH 2OCH3), 3.48 (m, 8H, H7, H5), 3.36 (m, 4H, H3/H4), 3.23 (s, 6H, OCH2CH2OCH 3), 3.08 (m, 4H, H3/H4), 2.93 (m, 4H, H9), 2.21 (m, 2H, H13), 1.76 (m, 8H, H11/H12), 1.37 (m, 2H, H10), 1.08 (m, 8H, H11/H12)
13C [d 6-DMSO, 100 MHz] : δ 175.34 (C14), 172.88 (C1/C8), 172.05 (C1/C8), 170.09 (C6), 70.11 (OCH2 CH2OCH3), 63.20 (OCH2CH2OCH3), 58.42 (OCH2CH2OCH3), 56.45 (C2), 54.83 (C7), 54.55 (C5), 51.85 (C3/C4), 49.72 (C3/C4), 44.84 (C13), 42.66 (C9), 37.07 (C10), 29.53 (C11), 28.52 (C12)
C36H61N5O148H2O에 대한 계산값 : C: 46.39, H: 8.33, N: 7.51
실험값 : C: 46.22, H: 7.97, N: 7.83
FAB-MS (m/z): C36H62N5O14에 대한 계산값 : 788.9 ([MH]+)
실험값 : 788.67 ([MH]+)
C36H61N5NaO14에 대한 계산값 : 810.88 ([MNa]+)
실험값 : 810.61 ([MNa]+)
제조예 3 ( 리간드 L6 )
제조예 1의 방법과 같이 하되, 2-하이드록시에틸-트랜스-4-(아미노메틸) 시 클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl -trans-4- (aminomethyl) cyclohexaneethylcarboxylate hydrochloride) 대신에 알릴-트랜스-4-(아미노메틸) 시클로헥실카르복실레이트하이드로클로라이드(Allyl -trans-4- (aminomethyl) cyclohexaneethylcarboxylate hydrochloride)를 사용하였다. 흰색의 고체가 얻어지면 진공상태에서 50℃를 유지시키면서 8시간 동안 건조한다.
아래의 실험 data로부터, 제조예에 따른 결과물이 리간드 L6임을 확인할 수 있다.
수득율 : 3.60 g (82%)
1H NMR (d 6-DMSO, 400 MHz) : δ8.28 (s, 2H, CH2CONH), 5.89 (m, 2H, OCH2CH=CH2), 5.22 (m, 4H, OCH2CH=CH 2), 4.52 (d, J = 4.52, 4H, OCH 2CH=CH2), 4.15 (s, 2H, H2), 3.55 (m, 4H, H7), 3.48 (m, 4H, H5), 3.36 (m, 4H, H9), 3.08 (m, 4H, H3/H4), 2.94 (m, 4H, H3/H4), 2.25 (m, 2H, H13), 1.81 (m, 8H, H11/H12), 1.38 (m, 2H, H10), 1.12 (m, 8H, H11/H12)
13C NMR (d 6-DMSO, 100 MHz) : δ174.94 (C14), 172.93 (C1/C8), 172.13 (C1/C8), 170.24 (C6), 133.14 (OCH2 CH=CH2), 117.75 (OCH2CH=CH2), 64.41 (OCH2CH=CH2), 56.46 (C2), 54.81 (C7), 54.55 (C5), 53.05 (C3/C4), 52.27 (C3/C4), 44.85 (C13), 42.70 (C9), 37.09 (C10), 29.58 (C11), 28.55 (C12)
C36H57N5O127H2O에 대한 계산값: C: 49.25, H: 8.15, N: 7.98
실험값: C: 49.13, H: 7.80, N: 8.17
FAB-MS (m/z): C36H58N5O12에 대한 계산값 : 752.41 ([MH]+)
실험값 : 752.55 ([MH]+)
C36H57N5NaO12에 대한 계산값 : 774.39 ([MNa]+)
실험값 : 774.50 ([MNa]+)
제조예 4 (가돌리늄 착물 Gd(L4))
3차 증류수 10 mL에 리간드 L4(0.73 g, 1 mmol)를 넣고 Gd2O3(0.18 g 0.5 mmol)를 넣어준다. 서스펜션 형태의 반응 혼합물은 100℃에서 6시간 동안 교반하였다. 반응이 끝나면 연한 노란색의 용액이 얻어졌다. 이 용액을 규조토(Celite)에 통과시켜 녹지 않은 불순물을 모두 제거한 후 용매도 모두 제거하였다. 남아있는 물질은 메탄올(methanol) 5mL를 가해 충분히 녹인 후 아세토니트릴(Acetonitrile) 100 mL로 재침전시키고 나면 흰색의 고체를 얻을 수 있었다. 얻어진 흰색 고체는 필터한 후 건조시켰다. 도 1에서 가돌리늄 착물을 합성하는 방법을 간략히 나타내었다.
아래의 실험 data로부터, 제조예에 따른 결과물이 가돌리늄 착물 Gd(L4)임을 확인할 수 있다.
수득율 : 1.89 g (88%)
C34H56GdN5O158H2O에 대한 계산값 : C: 37.94, H: 6.74, N, 6.51
실험값 : C: 37.92, H: 6.48, N: 6.88
FABMS (m/z): C34H57GdN5O15에 대한 계산값 : 933.09 ([MH]+)
실험값 : 932.77
C34H55GdN5O14에 대한 계산값 : 915.08 (MH - (H2O))+
실험값 : 914.84
제조예 5 (가돌리늄 착물 Gd ( L5 ))
제조예 4와 같은 방법으로 제조하되, 리간드 L4 대신에 리간드 L5를 사용하였다. 도 1에서 가돌리늄 착물을 합성하는 방법을 간략히 나타내었다.
아래의 실험 data로 부터, 제조예에 따른 결과물이 가돌리늄 착물 Gd(L5)임을 확인할 수 있다.
수득률 : 1.98 g (90%)
C36H60GdN5O158H2O에 대한 계산값: C: 39.16, H: 6.94, N: 6.34
실험값 : C: 39.02, H: 6.70, N: 6.65
FABMS (m/z): C36H59GdN5O14에 대한 계산값 : 943.13 (MH - (H2O))+
실험값 : 942.78 (MH - (H2O))+
제조예 6 (가돌리늄 착물 Gd ( L6 ))
제조예 4와 같은 방법으로 제조하되, 리간드 L4 대신에 리간드 L6을 사용하였다. 도 1에서 가돌리늄 착물을 합성하는 방법을 간략히 나타내었다.
아래의 실험 data로부터, 제조예에 따른 결과물이 가돌리늄 착물 Gd(L6)임을 확인할 수 있다.
수득율 1.80 g (87%)
C36H56GdN5O136H2O에 대한 계산값 : C: 41.89, H: 6.64, N: 6.78
실험값 : C: 42.09, H: 6.47, N: 6.97
FABMS (m/z): C36H55GdN5O12에 대한 계산값 : 907.1 (MH - (H2O))+
실험값 : 906.78
상기의 제조예에 따른 실험은 질소 기류 하에서 표준 Schlenk 기술(standard Schlenk techniques)을 사용하여 행해졌고, 실험에 필요한 용매 또한 수분을 미리 제거하였다. 시약은 알드리치(Aldrich)로부터 구입하였다. 사용하는 물은 3차 증류 수를 사용하였다.
1H 와 13C NMR 측정장치는 한국기초과학센터(KBSI)에 있는 Bruker Advance 400 또는 500을 사용하였고, NMR 측정값들은 테트라메틸실란 (tetramethylsilane) (TMS)을 0으로 기준 하여 계산하였다. 커플링 상수(J )는 전자 에너지가 20 혹은 70 eV의 Micromass QUATTRO II GC8000 시리즈 모델을 사용하여 측정하였다. IR 스펙트럼은 KBSI에 있는 Mattson FT-IR Galaxy 6030E을 사용하였다. 원소 분석은 경북대학교 공동 실험 실습실 관에서 측정하였다.
이하의 실험예에서는 본원 발명에 따른 리간드(L4 내지 L6) 및 가돌리늄 착물(Gd(L4) 내지 Gd(L6))의 뛰어난 효과를 확인하기 위하여, 상자성 조영제로 널리 알려져 있는 옴니스캔(Omniscan)과 비교하였다.
실험예 1 (양성자 첨가 평형상수, 안정화상수, 선택상수, 조건부 안정화상수, pM 값)
제조예에 따라서 제조된 리간드(L4 내지 L6)의 양성자 첨가 평형상수(K i H)와 가돌리늄 착물(Gd(L4) 내지 Gd(L6))의 안정화상수(K ML), 선택상수(K Sel), 조건부 안정화상수(K' Sel), 그리고 pH 7.4에서 가돌리늄(Gd(III)), 칼슘 (Ca(II)), 아연 (Zn(II)), 구리(Cu(II))의 pM 값(리간드와 금속 간의 결합력을 나타내는 값)을 하 기의 표 1에 나타냈다.
양성자 첨가 평형상수(K i H)는 K i H = [HiL]/[Hi -1L][H+] 의 식을 통해서 구할 수 있으며, 여기서 HiL은 양성자가 첨가된 리간드를 의미하며, i = 1, 2,...이다.
안정화상수(K ML)는 K ML = [ML]/[M][L] 의 식을 통해서 구할 수 있으며, 여기서 M은 Gd, Ca, Zn, Cu 이며, L은 리간드를 의미한다.
pM 값은 pH = 7.4 의 조건에서 pM = -log[Mn +] 의 식을 통해서 구할 수 있다.
또한, 상기의 [M]= 1μmol/dm3 , [L]은 1.1μmol/dm3 의 농도를 사용하였다.
Figure 112008037765505-PAT00001
가돌리늄 착물을 조영제로 이용할 경우, 인체내에서 가돌리늄이 리간드와 분리되면 독성있는 가돌리늄에 의해 세포독성을 일으킬 수 있으므로, 이러한 분리가 일어나지 않도록 리간드와 가돌리늄 간의 결합상태가 강하고 안정할수록 바람직하다. 따라서, 상기 표 1에서 볼 수 있는 바와 같이, 양성자 첨가 평형상수(K i H), 안정화상수(K ML), 선택상수(K Sel), 조건부 안정화상수(K' Sel),pM 값에 있어서, 옴니스캔 (DTPABMA) 보다 큰 값을 나타내는 가돌리늄(Gd)을 사용한 리간드(L4 내지 L6)는 리간드와 가돌리늄 간의 결합상태가 안정하다는 것을 의미하며, 좋은 조영제로 사용될 수 있다는 것을 의미한다.
실험예 2 (이완시간과 이완율)
제조예에 따라서 제조된 가돌리늄 착물(Gd(L4) 내지 Gd(L6))의 이완시간(T1, T2)과 이완율(R1, R2)을 측정하였다. 높은 이완율을 갖는 조영제는 상대적으로 적은 양을 투여해도 높은 조영증강효과를 나타내기 때문에, 자기공명영상에서 매우 중요하다. 도 2에서 볼 수 있듯이, 높은 분자량을 갖는 Gd(L4) 내지 Gd(L6) 은 옴니스캔(Omniscan)에 비해 1.6배에서 1.7배 정도 높은 이완율을 나타내므로, 본원 발명은 보다 효과적으로 신호를 나타낼 수 있는 조영제라고 볼 수 있다.
또한, 도 3은 이완시간 지도(T1 map)와 이완율 지도(R1 map)를 보여주고 있다. 이완 시간 지도(T1 map)에서 이완 시간(T1)은 신호 강도로 나타내므로, 지도 상에서 밝은 신호 강도는 더 긴 이완시간을 의미한다. 따라서, 도 3에서 볼 수 있듯이, Gd(L4) 내지 Gd(L6) 은 옴니스캔에 비해서 밝은 신호 강도를 보이므로, 더 긴 이완시간을 갖는 것을 확인할 수 있고, 따라서 본원 발명은 조영 효과를 더 오래 지속시키므로 보다 효과적인 조영제임을 확인할 수 있다.
이완시간 T1의 측정은 1.5T(64MHz)에서 가변 전도시간(TI)의 역 회복 방법을 통해 진행하였다. 자기공명(MR) 이미지는 50 내지 1750 msec 영역으로부터 35개의 다른 TI을 필요로 한다. 이완시간 T1 은 각 TI 값에 측정되는 신호의 강도의 비선형, 정방형의 발작으로부터 얻게 된다.
이완시간 T2 측정을 위한 CPMG(Carr-Purcell-Meiboon-Gill)연속파동은 복수회전 메아리측정에 의해 얻어진다. 34개의 이미지는 10 내지 1900 msec로부터 34개의 다른 에코시간(TE)을 획득하게 된다. 이완시간 T2는 각각의 에코시간에 다수 스핀-에코 측정을 위한 평균 픽셀 값의 비선형 정방형 형태로부터 얻어진다.
이완율(R1 과 R2)은 mM 당 이완 시간(T1 과 T2)의 역으로서 계산되었다.
실험예 3 (세포 독성도)
세포독성도를 조사하기 위하여 MTT(Tetrazolium-based colorimetric) 검색법을 사용하였다. MTT 검색법은 탈수소 효소작용에 의하여 노란색의 수용성 MTT tetrazolium을 청자색의 비수용성 MTT formazan(3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide)으로 환원시키는 미토콘드리아의 능력을 이용하는 것이다. 살아있는 세포에 MTT tetrazolium를 처리하게 되면, 미토콘드리아의 리덕타아제(reductase)에 의해 MTT tetrazolium가 환원되어 MTT formazan(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide)을 형성하게 된다. 즉, 어떤 화합물을 농도별로 일정 시간동안 처리해서 세포의 사멸을 충분히 유도한 뒤에 MTT tetrazolium를 처리하면, 세포독성이 나타나지 않는 낮은 농도에서는 MTT formazan이 형성되고, 세포독성이 나타나는 높은 농도에서는 MTT formazan이 형성되지 않는 것이다. 이러한 화합물을 농도구배 별로 MTT formazan의 형성을 측정하면 세포 생존도를 결정할 수 있다.
도 4는 MTT 검사법을 이용하여 가돌리늄 착물(Gd(L4) 내지 Gd(L6))과 옴니스캔(Omniscan)의 세포독성도를 비교한 결과이다. 즉, 세포 생존도가 높을수록 가돌리늄 착물의 세포독성도는 낮음을 보여주는 것이다. 세포에 아무것도 첨가하지 않은 것을 대조군으로 하고, 대조군의 MTT formazan의 형성을 측정하여 세포 생존도 100%로 정하였다. 세포에 다양한 농도(0.5mM ~ 10mM)의 가돌리늄 착물(Gd(L4) 내지 Gd(L6))과 옴니스캔을 첨가한 경우, 60% 이상의 세포 생존도를 보여주었다. 도 4의 그래프를 통해서, 가돌리늄 착물(Gd(L4) 내지 Gd(L6))는 세포독성도가 낮아서 조영제로서 사용하기에 유용한 것임을 확인할 수 있다.
도 1은 본 발명의 리간드(L4 내지 L6) 및 가돌리늄 착물(Gd(L4) 내지 Gd(L6))의 합성 과정을 나타낸 것이다.
DMF에 DTPA-bis-anhydride를 넣고 교반시키다가 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(R=(CH2)2OH)를 넣어주면 리간드 L4가 형성되고, 여기에 Gd2O3을 첨가하면 가돌리늄 착물 Gd(L4)가 형성된다.
DMF에 DTPA-bis-anhydride를 넣고 교반시키다가 2-메톡시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(R=(CH2)2OMe)를 넣어주면 리간드 L5가 형성되고, 여기에 Gd2O3을 첨가하면 가돌리늄 착물 Gd(L5)가 형성된다.
DMF에 DTPA-bis-anhydride를 넣고 교반시키다가 알릴-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(R=CH2CH=CH2)를 넣어주면 리간드 L6이 형성되고, 여기에 Gd2O3을 첨가하면 가돌리늄 착물 Gd(L6)이 형성된다.
도 2는 가돌리늄 착물(Gd(L4) 내지 Gd(L6))과 옴니스캔(Omniscan) 및 순수한 물의 이완시간(T1 및 T2) 및 상응하는 이완율(R1 및 R2)을 나타낸 것이다.
도 3는 가돌리늄 착물(Gd(L4) 내지 Gd(L6))과 옴니스캔(Omniscan) 및 순수한 물의 이완시간 지도(T1 map) 및 상응하는 이완율 지도(R1 map)를 나타낸 것이다.
도 4는 MTT 검사법을 이용하여 가돌리늄 착물(Gd(L4) 내지 Gd(L6))과 옴니스캔(Omniscan)의 세포독성을 비교한 것이다.

Claims (14)

  1. N,N-디메틸포름아미드(N,N-demethylformamide)에 DTPA-비스-안하이드라이드(DTPA-bis-anhydride)를 첨가하여 교반하는 제 1 단계;
    상기 혼합물에 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 교반하는 제 2 단계;
    상기 혼합물을 저압에서 용매를 모두 제거한 후 메탄올을 넣어 녹인 후 실리카 겔 크로마토그래피를 실시하는 제 3 단계; 및
    상기 제 3 단계에서 얻어진 물질을 진공상태에서 건조하여 리간드 L4를 얻는 제 4 단계를 포함하는
    새로운 형태의 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법.
  2. 제 1 항에 있어서, 상기 제 2 단계의 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드 대신에 2-메톡시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-Methoxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 제 4 단계에서 리간드 L5를 얻는 것을 특징으로 하는 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법.
  3. 제 1 항에 있어서, 상기 제 2 단계의 2-하이드록시에틸-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(2-hydroxyethyl-trans-4-(aminomethyl)cyclohexaneethylcarboxylate hydrochloride) 대신에 알릴-트랜스-4-(아미노메틸)시클로헥실카르복실레이트하이드로클로라이드(Allyl-trans-4- (aminomethyl)cyclohexaneethylcarboxylate hydrochloride)를 첨가하여 제 4 단계에서 리간드 L6을 얻는 것을 특징으로 하는 DTPA-비스-아미드(DTPA-bis-amide) 리간드의 합성 방법.
  4. 제 1 항 내지 제 3 항에 있어서,
    상기 제 4 단계에서 얻어진 DTPA-비스-아미드(DTPA-bis-amide) 리간드를 증류수에 넣은 후, Gd2O3를 첨가하고 교반함으로써 혼합용액을 제조하는 제 5 단계;
    상기 제 5 단계에서 얻어진 혼합용액 중에서 불순물 및 용매를 제거하는 제 6 단계;
    상기 제 6 단계에서 얻어진 물질을 메탄올에 녹인 후, 아세토니트릴로 침전시켜 고체를 수득하는 제 7 단계를 더 포함하는
    신규한 가돌리늄(Gd) 착물의 합성 방법.
  5. 제 4 항에 있어서, 상기 제 5 단계의 DTPA-비스-아미드(DTPA-bis-amide) 리 간드와 Gd2O3의 몰농도 비율은 1 : 1 인 것을 특징으로 하는 가돌리늄(Gd) 착물의 합성 방법.
  6. 제 4 항에 있어서, 상기 제 5 단계의 교반은 90 ~ 100 ℃ 의 온도범위에서 5 ~ 7 시간 동안 행하는 것을 특징으로 하는 가돌리늄(Gd) 착물의 합성 방법.
  7. 제 4 항에 있어서, 상기 제 6 단계는 제 5 단계에서 얻어진 혼합용액을 규조토에 통과시켜서 불순물 및 용매를 제거하는 것을 특징으로 하는 가돌리늄(Gd) 착물의 합성 방법.
  8. 제 1 항 내지 제 3 항 중 어느 한 항의 방법에 따라 합성된 DTPA-비스-아미드(DTPA-bis-amide) 리간드.
  9. 제 8 항에 있어서, 상기의 DTPA-비스-아미드(DTPA-bis-amide) 리간드는 향상된 열역학적 안정성을 갖는 것을 특징으로 하는 DTPA-비스-아미드(DTPA-bis-amide) 리간드.
  10. 제 4 항 내지 제 7 항 중 어느 한 항의 방법에 따라 합성된 가돌리늄(Gd) 착물.
  11. 제 10 항에 있어서, 상기 가돌리늄(Gd) 착물은 하기의 화학식 1로 표기되는 것을 특징으로 하는 가돌리늄(Gd) 착물.
    [Gd(L)(H2O)]·xH2O
    여기서, L은 제 8 항의 리간드를 말하며,
    x는 0 ~ 12 이다.
  12. 제 11 항에 있어서, 상기 가돌리늄(Gd) 착물은 향상된 용해도, 자기 이완율을 갖는 것을 특징으로 하는 가돌리늄(Gd) 착물.
  13. 제 11 항에 있어서, 상기 가돌리늄(Gd) 착물은 낮은 세포독성을 갖는 것을 특징으로 하는 가돌리늄(Gd) 착물.
  14. 제 10 항 내지 제 13 항에 의한 가돌리늄(Gd) 착물을 포함하는 암진단용 MR 조영제.
KR1020080049115A 2008-05-27 2008-05-27 Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법 KR20090123171A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080049115A KR20090123171A (ko) 2008-05-27 2008-05-27 Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법
PCT/KR2008/003144 WO2009145378A1 (en) 2008-05-27 2008-06-04 Gd complex comprising dtpa-bis-amide ligand and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080049115A KR20090123171A (ko) 2008-05-27 2008-05-27 Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법

Publications (1)

Publication Number Publication Date
KR20090123171A true KR20090123171A (ko) 2009-12-02

Family

ID=41377236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080049115A KR20090123171A (ko) 2008-05-27 2008-05-27 Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법

Country Status (2)

Country Link
KR (1) KR20090123171A (ko)
WO (1) WO2009145378A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236142B1 (ko) * 2010-09-30 2013-02-21 경북대학교 산학협력단 가돌리늄 착물을 함유하는 mri조영제
KR101239129B1 (ko) * 2011-01-10 2013-03-05 한국원자력의학원 Spect/mri 이중 조영제 및 그 제조방법
KR101239130B1 (ko) * 2011-01-10 2013-03-05 한국원자력의학원 Mri 조영제 및 그 제조방법
WO2017065584A1 (ko) * 2015-10-16 2017-04-20 주식회사 엔지켐생명과학 자기공명영상용 조영제의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124471A (en) * 1990-03-26 1992-06-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Bifunctional dtpa-type ligand
DE19646762B4 (de) * 1996-11-04 2004-05-13 Schering Ag Verwendung von Metallverbindungen zur Herstellung von Mitteln zur Strahlentherapie von Tumoren

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236142B1 (ko) * 2010-09-30 2013-02-21 경북대학교 산학협력단 가돌리늄 착물을 함유하는 mri조영제
KR101239129B1 (ko) * 2011-01-10 2013-03-05 한국원자력의학원 Spect/mri 이중 조영제 및 그 제조방법
KR101239130B1 (ko) * 2011-01-10 2013-03-05 한국원자력의학원 Mri 조영제 및 그 제조방법
WO2017065584A1 (ko) * 2015-10-16 2017-04-20 주식회사 엔지켐생명과학 자기공명영상용 조영제의 제조방법

Also Published As

Publication number Publication date
WO2009145378A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
KR101469900B1 (ko) Do3a-디아미노바이페닐 화합물 및 이를 리간드로 포함하는 가돌리늄 착물
Gros et al. New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles
WO1986002352A1 (en) Gadolinium chelates as nmr contrast agents
US10759817B2 (en) Gadolinium complex, method for synthesis of the gadolinium complex, and MRI contrast agent including the gadolinium complex
KR102515879B1 (ko) 신규한 가돌리늄계 화합물, 이의 제조 방법, 및 이를 함유하는 mri 조영제
EP3551614B1 (en) Dimeric contrast agents
Wang et al. Fluoride-specific fluorescence/MRI bimodal probe based on a gadolinium (III)–flavone complex: synthesis, mechanism and bioimaging application in vivo
KR20090123171A (ko) Dtpa-비스-아미드 리간드를 포함하는 가돌리늄 착물과그 합성방법
Li et al. A Gd 3 Al tetranuclear complex as a potential bimodal MRI/optical imaging agent
Ruloff et al. Novel heteroditopic chelate for self-assembled gadolinium (III) complex with high relaxivity
JP5291930B2 (ja) 錯化合物及びそれから成るmriプローブ
CN109928889B (zh) 羧酸甜菜碱型含氟化合物及其合成方法和应用
Hovland et al. Preparation and in vitro evaluation of GdDOTA-(BOM) 4; a novel angiographic MRI contrast agent
Strauch et al. A simple approach to a new T 8-POSS based MRI contrast agent
Siddiqui et al. Lanthanide complexes on Ag nanoparticles: Designing contrast agents for magnetic resonance imaging
Dutta et al. Synthesis and Magnetic Relaxation Properties of Paramagnetic Gd-complexes of New DTPA-bis-amides. The X-ray Crystal Structure of [Gd (L)(H~ 2O)]· 3H~ 2O (L= DTPA-bis (4-carboxylicphenyl) amide)
US8822697B2 (en) Paramagnetic polynuclear metal complex having high self-relaxation rate, preparation method thereof, and contrast medium containing same
KR100749087B1 (ko) 신규한 dtpa-비스-아미드 리간드들 및 이들이 결합된가돌리늄 착물
KR101115799B1 (ko) Dtpa 유도체, 금속 착물, mr 및 ct 조영제 및 이의 제조 방법
KR101836461B1 (ko) 페로센을 기반으로 한 새로운 형태의 mr 조영제의 개발
EP2189167A1 (en) Contrast agent containing silsesquioxane
KR102667904B1 (ko) 가돌리늄계 화합물, 이를 포함하는 mri 조영제
KR102646267B1 (ko) 가돌리늄계 화합물, 이를 포함하는 mri 조영제
US20220331454A1 (en) Iron(iii) complexes having new contrast agent properties, for magnetic resonance imaging
CN114181233A (zh) 一种钆基T1磁共振造影剂FD-Gd-123及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application