KR20110082158A - 마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법 - Google Patents

마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법 Download PDF

Info

Publication number
KR20110082158A
KR20110082158A KR1020117010030A KR20117010030A KR20110082158A KR 20110082158 A KR20110082158 A KR 20110082158A KR 1020117010030 A KR1020117010030 A KR 1020117010030A KR 20117010030 A KR20117010030 A KR 20117010030A KR 20110082158 A KR20110082158 A KR 20110082158A
Authority
KR
South Korea
Prior art keywords
mirror element
optical beam
deflected
window
light
Prior art date
Application number
KR1020117010030A
Other languages
English (en)
Other versions
KR101594205B1 (ko
Inventor
슈테판 핀터
외르크 무코오
요악힘 프리츠
크리슈토프 프리제
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20110082158A publication Critical patent/KR20110082158A/ko
Application granted granted Critical
Publication of KR101594205B1 publication Critical patent/KR101594205B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/14Arrangements for focusing or reflecting ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/16Optical or photographic arrangements structurally combined with the vessel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/22Circuits for controlling dimensions, shape or centering of picture on screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/26Modifications of scanning arrangements to improve focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

본 발명은, 광 윈도우(12)와, 이 광 윈도우(12)에 대해 제1 위치로부터 하나 이상의 회전축(14, 16)을 중심으로 하나 이상의 제2 위치로 조정될 수 있는 미러 소자(10)와, 검출면을 구비하고 검출면의 광도를 측정하여 상응하는 센서 신호(A, B)를 공급하는 광학 센서(34a, 34b)와[이때 광 윈도우(12), 제1 위치에서의 미러 소자(10) 및 검출면은, 미러 소자(10)에 의해 광 윈도우(12)로 편향된 광학 빔(30) 중에서 광 윈도우(12)에서 반사된 성분(32)이 적어도 부분적으로 검출면에 도달하는 방식으로 상호 간에 배치되도록 설계된다], 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치와 관련하고, 그리고/또는 편향된 광학 빔(30)의 현재 세기와 관련한 정보를 센서 신호(A, B)를 바탕으로 평가하도록 설계되는 평가 유닛을 포함하는 마이크로 기계 부품에 관한 것이다. 또한, 본 발명은 마이크로 기계 부품을 작동시키기 위한 방법에 관한 것이다.

Description

마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법{MICROMECHANICAL COMPONENT AND A METHOD FOR OPERATING A MICROMECHANICAL COMPONENT}
본 발명은 마이크로 기계 부품과, 이러한 마이크로 기계 부품을 작동시키기 위한 방법에 관한 것이다.
광학 빔 편향을 위한 마이크로 기계 부품은 종종 하나 이상의 회전축을 중심으로 조정될 수 있는 미러를 포함한다. 예컨대 미러는 상호 간에 수직으로 배향된 2개의 회전축을 중심으로 조정될 수 있도록, 이동 불가능한 프레임에 대해 짐벌 장착될 수 있다. 2개의 회전축을 중심으로 조정될 수 있는 미러를 포함하는 마이크로 기계 부품은 예컨대 프로젝터 또는 스캐너에서 광학 빔을 표면에 주사(scanning)하기 위해 이용된다. 이와 관련하여 바람직하게는 프로젝터 또는 스캐너의 작동 중에 두 회전축을 중심으로 프레임에 대한 미러의 현재 위치에 대한 정보가 검출될 수 있다. 그로 인해 미러의 현재 위치가 목표하는 미러 위치에 상응하는지 여부에 대한 검사를 할 수 있다.
프레임에 대한 미러의 현재 위치를 검출하기 위한 선행기술로부터 공지된 제1 가능성은 미러를 프레임에 연결하는 수단인 비틀림 스프링들에 압전 저항 소자들을 배치하는 것을 기반으로 한다. 압전 저항 소자들은 예컨대 휘트스톤 브리지(wheatstone bridge)로서 형성될 수 있다. 비틀림 스프링들의 비틀림 시에 기계적 응력이 발생하고, 이 기계적 응력을 통해서는 압전 저항 소자들의 전기 저항이 변동하게 된다. 그로 인해 압전 저항 소자들의 전기 저항의 평가를 통해 프레임에 대한 미러의 현재 위치가 결정될 수 있다.
그러나 압전 저항 소자들의 전기 저항을 검출하기 위해서는 평가 유닛에 압전 저항 소자들을 연결하는 전기 공급 라인들이 비틀림 스프링들을 통해 [또는 짐벌 링(gimbal ring) 상에서] 안내되어야 한다. 휘트스톤 브리지로서 형성되는 압전 저항 소자는 예컨대 상기 형식의 4개의 전기 공급 라인을 필요로 한다. 전기 공급 라인들이 비틀림 스프링들을 통해 안내될 수 있도록 하기 위해, 전기 공급 라인들은 비교적 좁게 형성되어야 한다. 공급으로서는 비교적 높은 전류가 압전 소자에 공급되면서 접지되어야 한다. 그러나 압전 소자에서 생성되는 전기 희망 신호는 매우 약하고 간섭에 취약하다.
그러므로 전기 공급 라인의 제조, 배치 및 차폐는 비교적 어렵다. 추가로 전기 공급 라인은 스프링 변형을 바탕으로 종종 기계적으로 파괴된다. 또한, 전기 공급 라인은 비틀림 스프링의 굽힘 및 비틀림 강성을 저하시키며, 이런 점은 미러의 조정 가능성에 부정적으로 작용한다.
프레임에 대한 미러의 현재 위치를 검출하기 위한 선행기술로부터 공지된 제2 가능성의 경우 하나 이상의 제1 전극이 이동식 소자, 예컨대 미러 또는 비틀림 스프링에 고정 배치된다. 이동식 소자의 조정 이동에 따라, 제1 전극과 프레임에 대해 고정 배치되는 제2 전극 사이의 용량이 변동한다. 그러나 두 전극 사이의 용량과 관련한 평가에 사용되는 신호는 비교적 작고 그에 상응하게 간섭에 취약하다. 그러므로 신호에 따라 결정되는 미러의 위치는 종종 정확하지 않다. 추가로, 미러의 현재 위치를 검출하기 위한 이러한 통상적인 가능성 역시 제1 전극의 접촉을 위해 비틀림 스프링을 통해 안내되는 전기 공급 라인을 요구한다. 그러므로 앞 단락에서 설명한 단점은 두 전극 사이의 용량을 평가함으로써 미러의 현재 위치를 검출하는 경우에도 발생한다.
본 발명은 청구항 제1항의 특징들을 포함하는 마이크로 기계 부품과 청구항 제5항의 특징들을 포함하는 마이크로 기계 부품의 작동 방법을 제공한다.
본 발명은, 미러 소자를 구비한 마이크로 기계 부품이 일반적으로 광 윈도우(light window)를 포함하고, 광 윈도우의 경계면에서는 방출되는 광학 빔이 부분적으로 반사되면서 반사 빔으로서 마이크로 기계 부품의 내부로 편향된다는 인식을 기반으로 한다. 마이크로 기계 부품의 내부 표면에서 반사 빔의 입사 위치(position of incidence)는 반사 위치로서 지칭될 수 있으며, 광 윈도우에 대해 반사되는 미러 소자의 현재 위치에 따른다. 그에 따라 반사 위치의 검출을 통해, 광 윈도우에 대해 반사되는 미러 소자의 현재 위치에 대한 정보를 평가할 수 있다. 추가되거나, 대체되는 실시예로서, 상기 방식으로 광학 빔의 현재 세기도 검출될 수 있다.
반사 위치는 일반적으로 미러 소자의 위치가 하나 이상일 경우 미러 소자에, 또는 미러 소자를 조정하기 위한 하나 이상의 스프링에 위치하지 않는다. 그러므로 하나 이상의 광학 센서는, 반사하는 미러 소자의 조정 특성과 스프링들의 굽힘 및 비틀림 강성을 저하시키지 않는 방식으로 배치될 수 있다. 그러므로 본 발명은 반사하는 미러 소자의 현재 위치 및/또는 광학 빔의 현재 세기를 검출하기 위한, 선행기술에 비해 더욱 바람직한 가능성을 제공한다.
광 윈도우에 대한 미러 소자의 현재 위치와 관련한 정보는 광 윈도우에 대한 미러 소자의 위치에 관련하는 변수로서 이해할 수 있다. 물론, 상기 정보는 광 윈도우에 고정 배치되는 마이크로 기계 부품의 또 다른 구성 소자에 대한 미러 소자의 위치 및/또는 배향각일 수도 있다.
미러 소자의 현재 위치와 관련하여 평가된 정보는 자기 진단 기능을 위해 이에 부합하게 설계된 비교 유닛에 의해 미러 소자의 설정 위치와 비교될 수 있다. 자기 진단 기능을 위해 이용되는 구성 소자들은 간단하게 마이크로 기계 부품에 통합될 수 있다. 광학 센서는 예컨대 광학 전자 소자이다. 특히 하나 이상의 광학 센서는 프레임 홀더에 미러 소자를 연결하는 수단인 하나 이상의 스프링을 통한 전기 공급 라인이 필요하지않는 방식으로 배치될 수 있다. 그로 인해 하나 이상의 스프링에 배치되는 전기 공급 라인을 바탕으로 하는 희망 신호의 전기 간섭의 위험은 존재하지 않는다.
바람직한 실시예에 따라, 마이크로 기계 부품은, 편향된 광학 빔의 중에서 광 윈도우를 통해 투과된 성분을 이용하여 표면을 주사하기 위한 미러 소자를 2개의 회전축을 중심으로 조정하도록 설계되는 제어 및 구동 유닛을 포함하며, 이에 추가로 제어 및 구동 유닛은, 공급되는 광학 빔 블록 신호의 수신 시에 편향된 광학 빔이 마이크로 기계 부품의 조리개(aperture)를 향하는 방식으로 미러 소자를 조정하도록 설계된다. 본 발명에 따른 마이크로 기계 부품은 예컨대 프로젝터 또는 스캐너에서 이용될 수 있다. 예컨대 마이크로 기계 부품은 자동차, 영상 프로젝터 및/또는 2D 스캐너에서의 헤드업 디스플레이를 위한 마이크로 미러로서 이용된다. 편향된 광학 빔이 조리개를 향하도록 함으로써, 투영된 영상에 "흑점"이 생성될 수 있지만, 이를 위해 편향된 광학 빔의 세기는 감소되지 않아도 된다. 이에 추가로 조리개에서 반사되는 반사 빔을 바탕으로, 광 윈도우에 대한 미러 소자의 현재 위치와 관련하고, 그리고/또는 편향된 광학 빔의 현재 세기와 관련하는 정보가 검출될 수 있다.
바람직한 개선예에 따라, 평가 유닛은 추가로, 센서 신호의 시간별 파형을 바탕으로, 미러 소자의 정지 상태를 인식하고, 미러 소자의 정지 상태가 사전 설정된 시간 동안 인식되는 점에 한해 제어 및 구동 유닛에 광학 빔 블로킹 신호를 출력하도록 설계된다. 또한, 이에 대체되는 실시예로서, 차단 신호도 편향된 광학 빔을 방출하는 광원에 출력될 수 있다. 이와 같은 방식으로, 편향된 광학 빔이 더욱 오랜 시간 동안 사람의 눈에 도달할 때 특히 높은 상해 위험은 현저히 감소할 수 있다.
앞의 단락에서 설명한 장점은 또한, 광 윈도우 및 미러 소자를 포함하는 마이크로 기계 부품을 작동시키기 위한 대응하는 방법에서도 보장된다.
특히, 편향된 광학 빔 중에서 광 윈도우를 통해 투과된 성분에 의해 투영면이 적어도 부분적으로 주사되는 방식으로 미러 소자가 2개의 회전축을 중심으로 조정됨으로써 사전 설정된 영상이 투영면에 투영될 수 있고, 투영면이 주사되는 동안에는 적어도 1회 미러 소자의 현재 위치가 검출되어 미러 소자의 사전 설정된 설정 위치와 비교된다. 그로 인해 본 발명은 마이크로 기계 부품의 작동 중에 자기 진단 기능 또는 기능 모니터링을 가능하게 한다.
또한, 2개 이상의 광원이 연속해서 활성화될 수 있고, 2개 이상의 광원 중 일측 광원의 활성화 후에는 편향된 광학 빔의 현재 세기가 검출되고, 검출된 현재 세기가 고려되는 조건에서 휘도 제어 신호가 마지막으로 활성화되는 광원에 출력된다. 이와 같은 방식으로 2개 이상의 광원의 휘도 보정이 간단하게 실시될 수 있다.
보완적인 실시예로서, 사전 설정된 영상의 투영으로, 투영면은 두 회전축 중 하나 이상의 회전축을 중심으로 한 미러 소자의 조정을 통해 적어도 부분적으로 주사될 수 있고, 투영면이 적어도 부분적으로 주사되는 동안에는, 방출되는 하나 이상의 광원으로부터 방출되는 광학 빔이 검출면에 도달하지 않으므로, 검출면에서의 광도 검출을 통해, 투영면에서의 하나 이상의 부분 광도가 평가되는 점이 보장된다. 예컨대 방출되는 하나 이상의 광원이 앞서 일시적으로 비활성화되거나, 방출되는 하나 이상의 광원의 방출이 블로킹된다. 그로 인해 설명한 방법을 통해, 또는 대응하는 마이크로 기계 부품을 이용하여 투영면에서의 광도를 계측할 수 있다.
본 발명의 추가 특징 및 장점들은 다음에서 도면들에 기초해서 상세하게 설명된다.
도 1a 및 도 1b는 마이크로 기계 부품의 일 실시예를 도시한 개략도이다.
도 2는 도 1a 및 도 1b의 마이크로 기계 부품에서 측정된 전압 신호들에 대한 2가지 실례를 각각 나타낸 2개의 좌표계이다.
도 1a 및 도 1b에는 마이크로 기계 부품의 일 실시예의 개략도가 도시되어 있다.
도시된 마이크로 기계 부품은, 마이크로 기계 부품의 하우징의 광 윈도우(12)에 대해 조정될 수 있는 미러 소자(10)를 포함한다. 도시된 실시예의 경우, 미러 소자(10)는 광 윈도우(12)에 대해 제1 회전축(14) 및 제2 회전축(16)을 중심으로 조정될 수 있다. 두 회전축(14, 16) 중 하나 이상의 회전축을 중심으로 한 미러 소자(10)의 조정은 예컨대 정전기식 및/또는 자기식 구동 장치에 의해 이루어질 수 있다. 두 회전축(14, 16)은 바람직하게는 상호 간에 수직으로 배향된다.
그러나 본 발명은 두 회전축(14, 16)을 중심으로 조정될 수 있는 미러 소자(10)에 국한되지 않는다. 그 대신에 미러 소자(10)는 또한 하나의 회전축(14 또는 16)을 중심으로만 조정될 수 있는 방식으로 배치될 수 있다. 마찬가지로 본 발명은 미러 소자(10)를 조정하기 위한 구동 장치의 특정의 형식에만 제한되지 않는다. 이와 같은 이유에서, 회전축들(14, 16) 중 하나 이상의 회전축을 중심으로 미러 소자(10)를 조정하기 위한 구동 장치의 구성 소자로서 도 1a에만 도시된 구성 소자들(18 내지 22)은 더 이상 설명되지 않는다.
미러 소자(10)는 예컨대 칩(24)으로부터 에칭될 수 있다. 이런 경우 미러 소자(10)의 제조 시에 추가로, 프레임 홀더로서 기능하는 칩(24)에 미러 소자(10)를 연결하는 수단인 하나 이상의 스프링(26)이 칩(24)으로부터 에칭될 수 있다. 예컨대 미러 소자(10)는 비틀림 스프링으로서 형성되는 4개의 스프링(26)에 의해, 도 1b에 개략적으로 도시된 바와 같이, 칩(24)에 짐벌 장착된다. 여기서 각각 2개의 스프링(26)은 미러 소자(10)가 조정될 수 있는 중심이 되는 두 회전축(14, 16)을 따라 연장된다. 칩(24)에 조정 가능한 미러 소자(10)를 장착하기 위해 적합한 스프링들(26)은 선행기술로부터 공지되었기 때문에, 여기서는 그에 대해 더욱 상세하게 설명되지 않는다.
보다 나은 개관을 위해, 마이크로 기계 부품의 하우징의 다양한 구성 소자들 중에 광 윈도우(12)만이 도 1a와 도 1b에 도시되어 있다. 광 입사 윈도우(12)는, 입사되는 광학 빔(28)이 미러 소자(10)에 도달하는 방식으로, 입사되는 광학 빔(28)을 마이크로 기계 부품의 하우징 내부로 결합할 수 있다. 광 윈도우(12)는 바람직하게는 예컨대 유리와 같이 높은 투과도를 갖는 재료로 제조된다. 입사되는 광학 빔(28)은 도 1a 및 도 1b에 도시된 실례에서 결합면(F)(coupling surface)을 통해 광 윈도우(12)의 외측 경계면에 투과된다. 그러나 여기서, 본 발명은 입사 되는 광학 빔(28)이 마이크로 기계 부품 외부의 광원으로부터 방출되는 마이크로 기계 부품에만 국한되지 않는다는 점이 주지된다. 그 대신에 마이크로 기계 부품 내부에 입사되는 광학 빔(28)을 방출하기 위한 광원이 배치될 수 있다. 입사되는 광학 빔(28)은, 편향된 광학 빔(30)으로서 광 윈도우(12)에 충돌하는 방식으로 미러 소자(10)의 반사 가능하게 형성된 표면에서 편향된다. 이를 위해 바람직하게 미러 소자(10)는 예컨대 적합한 코팅층을 바탕으로 높은 반사도를 갖는 표면을 포함한다. 광 윈도우(12)에 입사되는 편향된 광학 빔(30)의 입사각은 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치에 따른다. 이에 상응하게 광 윈도우(12) 상의 편향된 광학 빔(30)의 입사 위치(P1 내지 P6) 또는 입사각은 회전축들(14, 16) 중 하나 이상의 회전축을 중심으로 미러 소자(10)가 회전할 시에 변동한다[여기에 도시된 입사 위치들(P1 내지 P6)은 가능한 입사 위치에 대한 실례일 뿐이다].
광 윈도우(12)에 입사되는 편향된 광학 빔(30)은 광 윈도우(12)의 경계면들 중 하나 이상의 경계면에서 적어도 부분적으로 반사된다. 편향된 광학 빔(30)의 반사된 성분은 반사 빔(32)으로서 마이크로 기계 부품의 내부로 되돌아간다. 편향된 광학 빔(30)의 반사되지 않은 성분은 광 윈도우(12)를 통해 투과되고, 라인 또는 표면의 주사를 위해 이용될 수 있다.
도 1a 및 도 1b에 도시된 실례에서, 반사 빔(32)이 칩(24)의 표면에서 반사 위치(R1 내지 R6)에 입사되는 방식으로 광 윈도우(12)가 칩(24)에 대해 배치된다. [입사 위치들(P1 내지 P6)에 상응하게 반사 위치들(R1 내지 R6)에 대해서도 가능한 실례만이 도시되어 있다.] 물론, 반사 빔(32)이 마이크로 기계 부품의 내부에서 원하는 다른 표면 영역에 입사되는 방식으로 광 윈도우(12)가 미러 소자(10)에 대해 배치될 수도 있다.
칩(24) 상의 반사 위치(R1 내지 R6)는 광 입사 윈도우 상의 편향된 빔(30)의 입사 위치(P1 내지 P6)에 따른다. 이와 같은 의존성의 보다 나은 설명을 위해, 다양한 입사 위치(P2 내지 P6)가 칩(24) 상의 해당 반사 위치(R2 내지 R6)와 함께 도 1b에 도시되어 있다.
그에 따라 광 윈도우(12) 또는 칩(24)에 대한 미러 소자(10)의 현재 위치와, 칩(24) 상의 반사 빔(32)의 반사 위치(R1 내지 R6) 간에 관계가 존재한다. 이와 같은 점이 미러 소자(10)의 출발 위치를 벗어난 미러 소자의 편향에 대한, 칩(24) 상의 반사 빔(32)의 반사 위치(R1 내지 R6)의 의존성이다. 만일 미러 소자(10)가 칩(24)의 표면에 대해 평행하게 배향되는 미러 요소의 출발 위치에 위치한다면, 반사 빔(32)은 반사 위치(R2)에서 칩(24)의 표면에 도달한다. 그에 비해서 반사 위치들(R3 내지 R6)은 두 회전축(14, 16)을 중심으로 상이한 회전 방향으로 이루어지는 미러 소자(10)의 최대 편향에 상응한다.
칩(24) 상에 하나 이상의 광학 센서(34a 또는 34b)를 배치하는 것을 통해, 반사 빔(32)의 반사 위치(R1 내지 R6)의 현재 위치에 대한 정보가 검출될 수 있다. 여기서 하나 이상의 광학 센서(34a 또는 34b)는 바람직하게는 감광성 전기 소자로서 형성되고, 이 전기 소자의 센서 신호는 광학 센서(34a 또는 34b)의 검출면에 입사되는 광도에 따른다. 또한, 전기 광학 소자의 이용도 가능하며, 이때 전기 광학 소자의 신호는 입사되는 광학 빔의 위치에 따른다(PSD; Position Sensitive Device; 위치 검출 소자). 검출면은 예컨대 광학 센서(34a 또는 34b)의 표면이다. 간단하면서도 경제적으로 제조할 수 있는, 하나 이상의 광학 센서(34a 또는 34b)의 실시예는 표준 제조 방법으로 칩(24) 상에 제조될 수 있는 pn-접합부를 갖는 다이오드이다.
바람직하게는 하나 이상의 광학 센서(34a 또는 34b)는 미러 소자(10)와 하나 이상의 스프링(26)으로부터 이격되어 배치된다. 예컨대 하나 이상의 광학 센서(34a 또는 34b)는 칩(24)의 랜드 영역(land range) 상에 배치되며, 그럼으로써 하나 이상의 광학 센서(34a 또는 34b)는 전기적으로 간단하게 접촉되면서도, 광학 센서(34a 또는 34b)의 접촉을 위해 하나 이상의 스프링(26)을 통해 안내되는 전기 라인(36a 또는 36b)은 필요하지 않게 된다. 이런 경우 하나 이상의 광학 센서(34a 또는 34b)의 장착은 하나 이상의 스프링(26)의 비틀림 강성 또는 굽힘 강성 및 미러 소자(10)의 조정 가능성을 저하시키지 않는다.
칩(24)의 표면에 장착되는 복수의 광학 센서(34a, 34b)의 적합한 수, 기하구조 형태 및 위치 설정을 통해, 반사 빔(32)의 현재 반사 위치(R1 내지 R6)는 높은 정밀도로 검출될 수 있다. 복수의 광학 센서(34a 및 34b)의 기하구조, 배치 및 전기 회로에 대한 가능한 실시예들은 당업자라면 분명하게 알고 있기 때문에, 두 광학 센서(34a, 34b)의 배치는 도 1b에 개략적으로만 도시되어 있다. 두 광학 센서(34a, 34b) 각각은 하나 이상의 전기 라인(36a 또는 36b)을 통해 해당하는 접점(38a 또는 38b)과 연결된다. 이에 추가로 칩(24)의 표면에는 접지(40)가 형성된다.
접점(38a)과 접지(40) 사이에서는 전압 신호 A가 측정된다. 이에 상응하게 접점(38b)과 접지(40) 사이에서는 전압 신호 B가 측정된다. 전압 신호 A 또는 B의 레벨은 해당하는 광학 센서(34a 또는 34b)의 검출면에 입사되는 광의 세기에 상응한다. 그로 인해 전압 신호들(A 및 B)을 통해 칩(24)의 표면에서 반사 빔(32)의 반사 위치(R1 내지 R6)가 검출된다.
도 2는 도 1a 및 도 1b의 마이크로 기계 부품에서 측정되는 전압 신호들(A, B)에 대한 2가지 실례를 도시하기 위한 2개의 좌표계를 나타낸 것이다. 두 좌표계의 가로좌표는 시간 축(t)이며, 재현된 주기(π1)의 시간 범위는 제1 회전축을 중심으로 한 미러 소자의 편향에 상응한다. 두 좌표계의 세로좌표는 측정된 전압 신호들(A, B)을 나타낸다.
재현된 작동 모드에서, 미러 소자는, 제2 회전축을 중심으로 한 미러 소자의 편향의 주기 π1과 주기 π2 간의 비율이 16:1과 동일하도록, 두 회전축을 중심으로 조정된다. 두 좌표계에 도시된 그래프 g1 및 g2의 최대값은 제2 회전축을 중심으로 한 미러 소자의 최대 조정에 상응한다. 그에 반해 두 그래프(g1, g2)의 포락선들(s1, s2)은 제1 회전축을 중심으로 한 미러 소자의 조정을 나타낸다.
본원에서 설명되는 마이크로 기계 부품의 평가 유닛의 바람직한 개선예에서는, 칩 상의 반사 빔의 현재 위치를 검출하기 위해, 두 전압 신호(A, B)의 차이가 평가된다. 두 전압 신호(A, B)의 차이는 예컨대 일광, 하나 이상의 광원의 휘도 및/또는 온도와 같은 외부 영향에 대해 민감하지 않기 때문에, 간단한 방식으로 계측 정밀도가 향상되고, 그리고/또는 잘못된 계측 결과의 위험은 감소된다.
도 1a 및 도 1b에 따라 설명한 마이크로 기계 부품의 실시예는 프로젝터에서 이용될 수 있다. 투영된 영상은 표면에 걸쳐 편향된 광학 빔(30)이 주사되는 것을 통해 생성되며, 이와 동시에 입사되는 광학 빔(28)의 광도도 변동한다. 영상의 투영 전, 마이크로 기계 부품의 스위치온 후에 미러 소자(10)를 조정하기 위한 구동 장치와 광학 빔 변조를 위한 (미 도시된) 유닛의 보정(동기화)이 실시될 수 있다. 이를 위해 예컨대 빔 휘도가 감소하거나 완만하게 증가할 시에 투영된 표면은 짧은 시간 동안에 완전하게 조명되며, 동시에 반사 위치(R1 내지 R6)가 검출되고 평가된다. 동기화가 성공적으로 실시된 다음, 목표한 영상이 투영될 수 있다. 이와 같은 스위치온 후 초기화 절차는 마이크로 기계 부품과 사용된 광원의 자기 진단으로서 동시에 실행될 수 있다.
또한, 하나 이상의 광학 센서(34)는, 광원이 일시적으로 전원 차단되고 미러 소자(10)가 이동할 시에, 투영된 영상을 위해 편향된 광학 빔(30)이 향해야 하는 표면에서 휘도 분포의 검출을 위해서도 이용될 수 있다. 그로 인해 상기 표면에서의 휘도 분포도 또한 계측될 수 있고, 광원의 방출의 보정/조절을 위해 이용될 수 있다.
이에 추가로 본원에서 설명되는 마이크로 기계 부품은 다양한 광원, 예컨대 상이하게 방출되는 파장을 갖는 광원들의 휘도 보정을 위해서도 사용될 수 있다. 이를 위해 예컨대 개별 광원들은 초기화 동안 연속해서 스위치온되고, 이때 광원들의 각각의 세기가 계측되고 필요에 따라 상호 간에 보정된다.
또한, 본원에서 설명되는 마이크로 기계 부품에 의해, 작동 중 마이크로 기계 부품 및/또는 광원의 기능 점검도 가능하다. 이를 위해 하나 이상의 광학 센서(34)는, 목표하는 영상의 투영을 위해 구현되는 기능 순서를 저하시키지 않는 방식으로 배치된다.
바람직하게는 투영된 영상의 "흑색 픽셀"의 개수가 비교적 많을 시에도, 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치를 검출할 수 있다. 이는, 광 윈도우(12)에 특히 높은 반사도를 갖는 조리개(42)가 장착되면서 실현될 수 있다. 편향된 광학 빔(30)이 조리개(42)에 도달한다면, 편향된 광학 빔은 거의 완전하게 반사 빔(32)으로서 칩(24) 상에 반사된다. 조리개(42)로부터 편향된 반사 빔(32)에 의해서는 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치가 검출될 수 있으면서도, 투영된 영상에서는 지각할 수 있는 광점이 생성되지 않는다.
또한, 바람직하게는 특히 미러 소자(10)가 극도로 편향될 경우 미러 소자(10)의 현재 위치를 검출할 수 있다. 만일 광 윈도우(12)에서 조리개(42)를 배제하고자 한다면, 투영된 영상 둘레에 밝은 프레임을 설정할 수 있다. 투영된 영상 둘레에 추가로 투영되는 밝은 프레임은 특히, 회전 방향(전환점)의 변경 직전 미러 소자(10)가 극도로 편향될 시에 미러 소자(10)의 현재 위치를 정확하게 검출하는 가능성을 제공한다. 이는 미러 소자(10)의 조정을 위해 사용되는 구동 장치의 구성 소자들의 상호 작용을 향상시킬 수 있다. 이와 같은 방식으로 미러 소자(10)의 조정 이동과 광학 빔 변조의 동기화가 추가로 가능해진다.
프로젝터에서는 투영된 영상의 양호한 대비 및 양호한 지각성(perceptibility)을 위해 입사되는 광학 빔(28)의 높은 광도가 바람직하다. 그러나 고성능의 광원, 예컨대 레이저의 사용은 편향된 광학 빔(30)이 눈에 도달할 시 높은 상해 위험과 결부된다. 그러나 이와 같은 사고 시 상해 위험은, 미러 소자(10)의 정지가 인식될 때 광원이 즉시 비활성화되는 점이 기술적으로 보장되면서 현저히 감소할 수 있다. 전술한 단락들에서 설명한 방법에 의해서는, 미러 소자(10)의 작동 상태를 영구적으로 모니터링 하면서, 미러 소자(10)의 정지를 인식할 때 광원을 스위치오프하기 위한 신호를 출력할 수 있다. 광원의 비활성화에 대체되는 실시예로서, 비록 광원이 스위치온된 상태라도, 미러 소자(10)의 이동이 인식되지 않는 점에 한해, 편향된 광학 빔(30)이 자동으로 조리개(42)를 향할 수도 있다. 그렇게 함으로써 편향된 광학 빔(30)이 사용자의 눈으로 도달하는 점은 방지될 수 있다.

Claims (11)

  1. 마이크로 기계 부품이며,
    광 윈도우(12)와,
    상기 광 윈도우(12)에 대해 제1 위치로부터 하나 이상의 회전축(14, 16)을 중심으로 하나 이상의 제2 위치로 조정될 수 있는 미러 소자(10)와,
    검출면을 구비하고 상기 검출면에 입사되는 광학 빔의 광도 및/또는 입사 위치를 검출하여 상응하는 센서 신호(A, B)를 공급하는 광학 센서(34a, 34b)와,
    [이때 상기 광 윈도우(12), 제1 위치에서의 미러 소자(10) 및 검출면은, 미러 소자(10)에 의해 광 윈도우(12)로 편향된 광학 빔(30) 중에서 광 윈도우(12)에서 반사된 성분(32)이 적어도 부분적으로 검출면에 도달하는 방식으로 상호 간에 배치되도록 설계된다]
    광학 센서(34a, 34b)로부터 공급되는 센서 신호(A, B)가 고려되는 조건에서, 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치와 관련하고, 그리고/또는 편향된 광학 빔(30)의 현재 세기와 관련한 정보를 평가하도록 설계되는 평가 유닛을
    포함하는 마이크로 기계 부품.
  2. 제1항에 있어서, 마이크로 기계 부품은, 편향된 광학 빔(30) 중에서 광 윈도우(12)를 통해 투과된 성분을 이용하여 투영면을 주사하기 위한 미러 소자(10)를 2개의 회전축(14, 16)을 중심으로 조정하도록 설계되는 제어 및 구동 유닛(18, 20, 22)을 포함하며, 추가로 제어 및 구동 유닛(18, 20, 22)은 공급된 광학 빔 블로킹 신호의 수신 시에, 편향된 광학 빔(30)이 마이크로 기계 부품의 조리개(42)를 향하는 방식으로 미러 소자(10)를 조정하도록 설계되는, 마이크로 기계 부품.
  3. 제2항에 있어서, 평가 유닛은 추가로 센서 신호의 시간별 파형을 바탕으로 미러 소자(10)의 정지 상태를 인식하고, 미러 소자(10)의 정지 상태가 사전 설정된 시간 동안 인식되는 점에 한해 제어 및 구동 유닛(18, 20, 22)에 광학 빔 블로킹 신호를 출력하도록 설계되는, 마이크로 기계 부품.
  4. 제1항 또는 제2항에 있어서, 평가 유닛은 추가로 센서 신호의 시간별 파형을 바탕으로 미러 소자(10)의 정지 상태를 인식하고, 미러 소자(10)의 정지 상태가 사전 설정된 시간 동안 검출되는 점에 한해 편향된 광학 빔(30)을 방출하는 광원에 차단 신호를 출력하도록 설계되는, 마이크로 기계 부품.
  5. 광 윈도우(12)와, 상기 광 윈도우(12)에 대해 제1 위치로부터 하나 이상의 회전축(14, 16)을 중심으로 하나 이상의 제2 위치로 조정될 수 있는 미러 소자(10)를 구비한 마이크로 기계 부품의 작동 방법이며,
    미러 소자(10)에 의해 광 윈도우(12)로 편향된 광학 빔(30) 중에서 광 윈도우(12)에서 반사되는 성분(32)이 적어도 부분적으로 검출면에 도달하는 방식으로, 제1 위치에서의 미러 소자(12)와 광 윈도우(12)에 대해 배치되는 검출면에 입사되는 광학 빔의 광도 및/또는 입사 위치를 검출하는 단계와,
    검출된 광도 및/또는 검출된 입사 위치를 고려하면서, 광 윈도우(12)에 대한 미러 소자(10)의 현재 위치와 관련하고, 그리고/또는 편향된 광학 빔(30)의 현재 세기와 관련한 정보를 평가하는 단계를
    포함하는 마이크로 기계 부품의 작동 방법.
  6. 제5항에 있어서, 검출면에서 검출된 광도의 시간별 파형에서 미러 소자(10)의 가능한 정지 상태가 검사되고, 미러 소자(10)의 정지 상태가 사전 설정된 시간 동안 인식되는 점에 한해 편향된 광학 빔(30)이 마이크로 기계 부품의 조리개(42)를 향하는 방식으로 미러 소자(10)가 조정되는, 마이크로 기계 부품의 작동 방법.
  7. 제5항에 있어서, 검출면에서 측정된 광도의 시간별 파형에서 미러 소자(10)의 가능한 정지 상태가 검사되고, 미러 소자(10)의 정지 상태가 사전 설정된 시간 동안 인식되는 점에 한해 편향된 광학 빔(30)을 방출하는 하나 이상의 광원에 차단 신호가 출력되는, 마이크로 기계 부품의 작동 방법.
  8. 제5항 내지 제7항 중 어느 한 항에 있어서, 편향된 광학 빔(30) 중에서 광 윈도우(12)를 통해 투과된 성분에 의해 투영면이 적어도 부분적으로 주사되는 방식으로 미러 소자(10)가 2개의 회전축(14, 16)을 중심으로 조정됨으로써, 사전 설정된 영상이 투영면에 투영되고, 투영면이 주사되는 동안 적어도 1회 미러 소자(10)의 현재 위치가 검출되어 미러 소자(10)의 사전 설정된 설정 위치와 비교되는, 마이크로 기계 부품의 작동 방법.
  9. 제5항 내지 제8항 중 어느 한 항에 있어서, 편향된 광학 빔(30) 중에서 광 윈도우(12)를 통해 투과된 성분에 의해 투영면이 적어도 부분적으로 주사되는 방식으로 미러 소자(10)가 2개의 회전축(14, 16)을 중심으로 조정됨으로써, 사전 설정된 영상이 투영면에 투영되고, 이 투영면의 조명되지 않는 부분면에 대해서는 편향된 광학 빔(30)이 마이크로 기계 부품의 조리개(42)를 향하는 방식으로 미러 소자(10)가 조정되는, 마이크로 기계 부품의 작동 방법.
  10. 제5항 내지 제9항 중 어느 한 항에 있어서, 2개 이상의 광원이 연속해서 활성화되고, 2개 이상의 광원 중 일측의 광원이 활성화된 후에, 편향된 광학 빔(30)의 현재 세기가 측정되며, 검출된 현재 세기가 고려되는 조건에서, 마지막으로 활성화되는 광원에 휘도 제어 신호가 출력되는, 마이크로 기계 부품의 작동 방법.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서, 사전 설정된 영상의 투영 전에, 투영면은 두 회전축(14, 16) 중 하나 이상의 회전축을 중심으로 한 미러 소자(10)의 조정을 통해 적어도 부분적으로 주사되고, 투영면이 적어도 부분적으로 주사되는 동안 방출되는 하나 이상의 광원으로부터 방출된 광학 빔(28)이 검출면에 도달하지 않음으로써, 검출면에서의 광도 검출을 통해 투영면에서 하나 이상의 부분 광도가 평가되는 점이 보장되는, 마이크로 기계 부품의 작동 방법.
KR1020117010030A 2008-11-03 2009-09-16 마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법 KR101594205B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008043416A DE102008043416A1 (de) 2008-11-03 2008-11-03 Mikromechanisches Bauteil und Verfahren zum Betreiben eines mikromechanischen Bauteils
DE102008043416.7 2008-11-03

Publications (2)

Publication Number Publication Date
KR20110082158A true KR20110082158A (ko) 2011-07-18
KR101594205B1 KR101594205B1 (ko) 2016-02-17

Family

ID=41682559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117010030A KR101594205B1 (ko) 2008-11-03 2009-09-16 마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법

Country Status (5)

Country Link
US (1) US8896897B2 (ko)
EP (1) EP2347299B1 (ko)
KR (1) KR101594205B1 (ko)
DE (1) DE102008043416A1 (ko)
WO (1) WO2010060664A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988074B2 (ja) * 2012-01-27 2016-09-07 日本精機株式会社 車両用ヘッドアップディスプレイ装置およびそのセルフチェック方法
EP2918635A1 (en) 2014-03-12 2015-09-16 Autoneum Management AG Thermoplastic compostition comprising Polyethylene, manufacture and use thereof
JP6459392B2 (ja) * 2014-10-28 2019-01-30 ミツミ電機株式会社 光走査装置
DE102019201224A1 (de) * 2019-01-31 2020-08-06 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung und entsprechendes Herstellungsverfahren
JP2022187718A (ja) * 2021-06-08 2022-12-20 富士フイルム株式会社 光走査装置及び画像形成装置
JP2022187717A (ja) * 2021-06-08 2022-12-20 富士フイルム株式会社 画像形成装置、及びその作動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067065A1 (en) * 1999-05-04 2000-11-09 Lockheed Martin Missiles And Space Company Optical metrology device for precision angular measurement of a pointing mirror
US6175451B1 (en) * 1998-07-30 2001-01-16 Sony Corporation Optical axis correcting apparatus and method of correcting optical axis
US20020075553A1 (en) * 2000-09-20 2002-06-20 Orcutt John W. Packaged micromirror assembly with in-package mirror position passive component feedback
KR20070071966A (ko) * 2005-12-30 2007-07-04 삼성전자주식회사 마이크로 미러의 동작 주파수의 측정이 가능한 마이크로광스캐너

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800270A (en) * 1987-06-23 1989-01-24 Canadian Patents & Development Ltd. Galvanometric optical scanning system having a pair of closely located synchronization
US5187364A (en) * 1989-03-22 1993-02-16 National Research Council Of Canada/Conseil National De Recherches Du Canada Scanning device with waveform generator optimizer
US6714336B2 (en) 2000-09-08 2004-03-30 Texas Instruments Incorporated Packaged micromirror assembly with in-package mirror position feedback
JP2010244484A (ja) * 2009-04-10 2010-10-28 Funai Electric Co Ltd 画像表示装置、画像表示方法および画像表示プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175451B1 (en) * 1998-07-30 2001-01-16 Sony Corporation Optical axis correcting apparatus and method of correcting optical axis
WO2000067065A1 (en) * 1999-05-04 2000-11-09 Lockheed Martin Missiles And Space Company Optical metrology device for precision angular measurement of a pointing mirror
US20020075553A1 (en) * 2000-09-20 2002-06-20 Orcutt John W. Packaged micromirror assembly with in-package mirror position passive component feedback
KR20070071966A (ko) * 2005-12-30 2007-07-04 삼성전자주식회사 마이크로 미러의 동작 주파수의 측정이 가능한 마이크로광스캐너

Also Published As

Publication number Publication date
EP2347299A1 (de) 2011-07-27
DE102008043416A1 (de) 2010-05-06
KR101594205B1 (ko) 2016-02-17
US8896897B2 (en) 2014-11-25
EP2347299B1 (de) 2018-05-30
US20110261428A1 (en) 2011-10-27
WO2010060664A1 (de) 2010-06-03

Similar Documents

Publication Publication Date Title
KR101594205B1 (ko) 마이크로 기계 부품 및 마이크로 기계 부품의 작동 방법
US6670603B2 (en) Image projector and image correction method
JP4398702B2 (ja) プロジェクタ
US20110148764A1 (en) Optical navigation system and method for performing self-calibration on the system using a calibration cover
CN110832380B (zh) 用于校准数据眼镜的投影装置的方法以及用于执行方法的数据眼镜的投影装置
KR20140119034A (ko) 차량용 헤드업 디스플레이 장치 및 그 셀프체크방법
JP2013501247A (ja) 光学マイクロプロジェクションシステムおよび投影方法
US20120212454A1 (en) Optical position detecting device and display system provided with input function
US7365297B2 (en) Object detecting apparatus having a current adjuster for controlling amount of electric current supplied to a laser device in compensation for a diversity of current-luminosity characteristics of the laser device
US7485864B2 (en) Radiometer, sighting device for a radiometer and method therefor
CN110687675A (zh) 振镜系统、微投影设备以及电子设备
US20180172985A1 (en) Optical scanning device, manufacturing method of optical scanning device, and optical scanning control device
US20220299759A1 (en) Light deflector, image projection apparatus, and distance-measuring apparatus
CN113050291A (zh) 结构光投射器
CN115113403A (zh) 成像装置及其控制方法
US6847441B2 (en) Method of measuring optical characteristics of spectacle lenses and lens meter
JPS61295522A (ja) 焦点検出装置
US20220299757A1 (en) Movable device, image projection apparatus, laser headlamp, head-mounted display, distance measurement device, and mobile object
WO2020184238A1 (ja) 光学制御装置および、これを含むヘッドアップディスプレイ装置
JP7338403B2 (ja) 光偏向器、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び車両
JP7024521B2 (ja) 画像表示装置
US11137595B2 (en) Light deflection device, image projector, laser head lamp, and mobile object
WO2020200039A1 (zh) 一种振荡式反射镜的相位校准系统及方法
US20210109342A1 (en) Light deflector, deflecting device, distance-measuring apparatus, image projection device, and vehicle
US20220155582A1 (en) Operating device, light deflector, light deflecting device, distance measurement apparatus, image projection apparatus, and mobile object

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200128

Year of fee payment: 5