WO2020200039A1 - 一种振荡式反射镜的相位校准系统及方法 - Google Patents

一种振荡式反射镜的相位校准系统及方法 Download PDF

Info

Publication number
WO2020200039A1
WO2020200039A1 PCT/CN2020/081421 CN2020081421W WO2020200039A1 WO 2020200039 A1 WO2020200039 A1 WO 2020200039A1 CN 2020081421 W CN2020081421 W CN 2020081421W WO 2020200039 A1 WO2020200039 A1 WO 2020200039A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan line
oscillating mirror
scanning
line
scan
Prior art date
Application number
PCT/CN2020/081421
Other languages
English (en)
French (fr)
Inventor
俞红祥
王康恒
杨以杰
Original Assignee
安世亚太科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安世亚太科技股份有限公司 filed Critical 安世亚太科技股份有限公司
Priority to US17/436,681 priority Critical patent/US20220196517A1/en
Publication of WO2020200039A1 publication Critical patent/WO2020200039A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the invention belongs to the category of electrical control systems and methods, in particular to a phase calibration system and method of an oscillating mirror.
  • miniature oscillating mirrors made by miniaturization process are constantly emerging.
  • miniature galvanometer devices that are excited by pulse voltage and driven by periodic electrostatic fields, and some are excited by pulse current.
  • Micro galvanometer device driven by periodic magnetic field Their oscillation frequency can reach more than 20 kHz, and the angular amplitude can reach more than ⁇ 25°.
  • These devices have been used to construct a variety of optical scanning or optical imaging devices, such as automotive HUD displays, lidars, structured light three-dimensional scanners, etc.
  • the electrical excitation pulse signal applied to the micro-galvanometer driving mechanism has a phase between its phase and the simple resonance generated by the micro-galvanometer
  • the phase difference is affected by factors such as the manufacturing process of the micro galvanometer and the material inconsistency, and there is a certain degree of dispersion.
  • the micro galvanometer is limited by its size. Set up a high-resolution angle sensor.
  • the commonly used method is based on the motion characteristics of the simple resonance of the micro galvanometer. According to the phase of the electrical excitation signal and the phase difference between it and the simple resonance, the real-time deflection angle of the galvanometer is calculated to be used for beam switching and brightness. Control, this method requires that each micro galvanometer device must have a one-to-one corresponding accurate phase difference parameter, which has become one of the main difficulties in the batch application of micro galvanometers.
  • phase calibration effect of the above scheme not only depends on the detection accuracy of the image edge position, but also requires the micro mirror and the projection plane to be accurately parallel and center aligned. The operation is difficult and the actual calibration effect is poor.
  • phase calibration method with simple solutions and high accuracy.
  • the present invention provides a technical system and method for phase calibration of an oscillating mirror that has a simple scheme, high precision, and can realize electrical excitation.
  • a phase calibration system for an oscillating reflector comprising a laser light source, an oscillating reflector and a scanning controller.
  • the laser light source emits a laser beam located in a normal plane drawn from the deflection axis of the oscillating reflector.
  • the laser beam is The fixed incident angle is irradiated to the center position of the oscillating mirror and irradiated on the projection plane after reflection; the projection plane is parallel to the plane of the oscillating mirror in static state;
  • the scanning controller is connected to the oscillating mirror and laser Light source electrical connection;
  • the scan controller sends out an electrical excitation signal according to the natural frequency of the oscillating mirror, and applies it to the oscillating mirror driving mechanism through a signal line; the oscillating mirror driving mechanism drives the oscillating mirror to make a forward motion. Deflection clockwise or counterclockwise; the scanning controller outputs a beam switch signal to the laser light source, and the laser beam emitted by the laser light source is reflected by the oscillating mirror to form a continuous scanning line segment on the projection plane;
  • a first scan line and a second scan line are constructed; the scan controller matches the first scan line to the clockwise scanning stage of the oscillating mirror, and matches the second scan line to the counterclockwise of the oscillating mirror Scanning phase, and scanning sequentially; detecting the relative position of the scanned first scanning line and the second scanning line, and adjusting the phase difference parameter of the scanning controller according to the relative position of the first scanning line and the second scanning line.
  • the oscillating mirror driving mechanism includes an electrostatic electrode or an electromagnetic coil.
  • the continuous scan line segment is a line pattern whose length can be equalized into 2n pixels.
  • the laser beam scans the first to 2n pixels on the projection plane in sequence; when the oscillating mirror starts to deflect counterclockwise from the limit position, the laser beam is Scan the 2nth to 1st pixels on the projection plane sequentially.
  • the scanning controller determines the pixel scanned by the laser beam on the projection plane according to the real-time angle of the oscillating mirror, and outputs the laser brightness data corresponding to the pixel To the laser light source to obtain the desired pixel pattern on the projection plane.
  • the first scan line and the second scan line are selected from at least one or a combination of line patterns and simple geometric patterns.
  • the first scan line is a line pattern in which the m+1 to nth pixels are bright and the remaining pixels are off; the second scan line is a line pattern in which the 2n-m to n+1th pixels are bright and the remaining pixels are off ,
  • n is a positive integer
  • m is zero or a positive integer
  • m is less than n
  • (n+1) is less than (2n-m).
  • the relative positions of the first scan line and the second scan line include three states of partial overlap, mutual separation, and first connection.
  • the phase difference parameter of the scan controller is adjusted in the leading direction; when the relative positions of the first scan line and the second scan line are separated from each other, The phase difference parameter of the scan controller is adjusted in the lagging direction; when the relative position of the first scan line and the second scan line is adjusted to the first connected state, the phase calibration of the oscillating mirror is completed.
  • the present invention also provides a phase calibration method of an oscillating mirror, the method includes the following steps:
  • the oscillating mirror deflects clockwise, and the laser beam sequentially scans the pixels on the first scan line on the projection plane; the oscillating mirror deflects counterclockwise, and the laser beam sequentially scans the pixels on the second scan line on the projection plane;
  • the beneficial effect of the present invention is that the phase calibration method of the electrically excited oscillation mirror of the present invention does not need to add additional optical or electrical components, and does not require special projection planes or image edge detection equipment, and only needs to simply adjust the laser light source drive mode, and then Through the two specially constructed scanning patterns, the partial overlap, mutual separation, and first connection state of the two scanning patterns on the projection plane can be detected through a simple recognition method, and the phase difference parameter value applied by the scanning controller can be adjusted. , The phase calibration of the oscillating mirror can be completed.
  • the laser light source of the present invention has strong beam direction and good focusing, and the boundary of the scanning line segment obtained by the beam on the projection screen is clear; when two projection line segments are separated, the dark part in the middle is obvious; when the two projection line segments partially overlap, The brightness of the overlapping part is outstanding, so it is convenient to detect the relative position of the first scan line and the second scan line, which is beneficial to realize the fine adjustment of the phase difference parameter of the scan controller, and finally realize the high-precision phase calibration of the oscillating mirror.
  • the phase calibration method of the oscillating mirror of the present invention has a simple solution, high technical feasibility, and high phase calibration accuracy, and is easy to popularize and apply in an oscillating mirror device.
  • Figure 1 is a schematic diagram of the overall structure of a phase calibration system for an oscillating mirror of the present invention
  • FIG. 2 is a schematic diagram of the optical path of a phase calibration system for an oscillating mirror of the present invention
  • 3A and 3B are schematic diagrams of scanning modes of a phase calibration system of an oscillating mirror of the present invention.
  • 5A to 5C are schematic diagrams of the relative positions of the first scan line and the second scan line during calibration according to an embodiment of the present invention
  • Fig. 6 shows the implementation steps of a phase calibration method for an oscillating mirror of the present invention.
  • a phase calibration system of an oscillating mirror includes a laser light source, an oscillating mirror and a scanning controller.
  • an oscillating reflector 2 is provided on the base of the rigid support 1
  • a laser light source 3 is provided on the rigid support 1
  • the laser beam emitted by the laser light source 3 is directed to the micro-oscillating
  • the center position of the reflector 2 is reflected on the projection plane 4, and the projection plane 4 is parallel to the static oscillating reflector 2; the schematic diagram of the optical path is shown in Fig. 2.
  • the laser beam 11 emitted by the laser light source 3 is located In the normal plane 12 drawn from the torsion axis of the oscillating mirror 2, the reflected light beam 13 reflected by the oscillating mirror 2 is directed toward the projection plane 4.
  • the scan controller When scanning, the scan controller sends out an electrical excitation signal according to the natural frequency of the oscillating mirror, and applies it to the oscillating mirror drive mechanism through a signal line.
  • the oscillating mirror driving mechanism includes an electrostatic electrode or an electromagnetic coil.
  • the oscillating mirror 2 can be driven by the driving mechanism to deflect clockwise or counterclockwise; at the same time, the scanning controller outputs the beam switch signal to the laser light source 3.
  • the reflected beam 13 of the laser beam 11 reflected by the oscillating mirror 2 scans on the projection plane 4 to form a scanning line segment pattern 14.
  • the specific scanning method is shown on the left side of Figure 3.
  • the oscillating mirror 2 When the oscillating mirror 2 is in the counterclockwise extreme position, the scanning point 21 of the reflected beam 13 on the projection plane 4 is located on the leftmost side, and then the oscillating mirror 2 moves in a clockwise direction Scanning, the scanning point 21 moves from left to right; as shown on the right side of Figure 3, when the oscillating mirror 2 is in the clockwise limit position, the scanning point 21 of the reflected beam 13 on the projection plane 4 is located on the far right, and then the micro The oscillating mirror 2 scans counterclockwise, and the scan point 21 moves from right to left.
  • the miniature oscillating mirror 2 performs continuous simple harmonic oscillation, the clockwise scanning and the counterclockwise scanning are performed alternately, and the scanning point 21 on the projection plane 4 moves from left to right and from right to left.
  • the continuous scan line segment 14 is a line pattern whose length can be aliquoted into 2n pixels. Therefore, during scanning, when the oscillating mirror starts to deflect clockwise from the extreme position, the reflected beam 13 scans the first to 2n pixels on the projection plane in sequence; when the oscillating mirror starts to deflect counterclockwise from the extreme position, The reflected light beam 13 sequentially scans the 2n to 1st pixels on the projection plane.
  • the scan controller 5 can also calculate the instantaneous deflection of the oscillating mirror 2 according to the phase of the electrical excitation signal and the applied phase difference parameters. According to the geometric parameters of the optical path shown in Figure 2, calculate the pixel point where the reflected beam 13 instantaneous scanning spot is located, and then index the brightness value of the pixel point from the scan pattern data, and transmit the laser brightness data corresponding to the pixel To the laser light source 3 to control its output corresponding brightness laser beam 11 to be reflected to the projection plane 4 to obtain the desired pixel pattern.
  • a first scan line and a second scan line are constructed; the scan controller matches the first scan line to the clockwise scanning stage of the oscillating mirror, and matches the second scan line to the counterclockwise of the oscillating mirror Scanning stage, and scan sequentially;
  • the first scan line and the second scan line are selected from line patterns, and may also be selected from at least one of simple geometric patterns such as rectangles and triangles, or a combination of the foregoing patterns.
  • the pattern only needs to be conducive to the detection of light and dark brightness.
  • the first scan line is a line pattern in which the m+1th to nth pixels are bright and the remaining pixels are off; the second scan line is the 2n-mth to n+1th pixels bright, The line pattern where the remaining pixels are turned off, where n is a positive integer, m is zero or a positive integer, m is less than n, and (n+1) is less than (2n-m).
  • the first scan line is a line pattern in which the first to nth pixels are bright and the remaining pixels are off
  • the second scan line is a line pattern in which the 2n to n+1th pixels are bright and the remaining pixels are off.
  • n is a positive integer and m is 0.
  • the 1st to nth pixels are sequentially scanned, that is, the first scanning line
  • the 2n to n+1th pixels are sequentially scanned, That is, the second scan line.
  • the first scan line is a line pattern in which the n/2+1 to nth pixels are bright and the remaining pixels are off;
  • the n/2+1 to nth pixels are sequentially scanned, that is, the first scan line; in the counterclockwise scanning stage of the oscillating mirror, the 3n/2 to the nth pixels are sequentially scanned n+1 pixels, that is, the second scan line.
  • the relative position of the scanned first scan line and the second scan line is detected, and the phase difference parameter of the scan controller is adjusted.
  • the relative positions of the first scan line and the second scan line include three states: partial overlap, mutual separation, and first connection.
  • the first scan line 31 obtained by the oscillating mirror scanning clockwise is deviated from the projection plane 4 to the left
  • the second scan line 32 obtained by the counterclockwise scanning of the oscillating mirror deviates to the right from the center line of the projection plane 4, and the first scan line 31 and the second scan line 32 are separated from each other, as shown in FIG.
  • the technical solution of the present invention also includes a phase calibration method of an oscillating mirror, the method comprising the following steps:
  • the oscillating mirror deflects clockwise, and the laser beam sequentially scans the pixels on the first scan line on the projection plane; the oscillating mirror deflects counterclockwise, and the laser beam sequentially scans the pixels on the second scan line on the projection plane;
  • the first scan line and the second scan line in the S01 step are selected from line patterns, and may also be selected from at least one of simple geometric patterns such as rectangles and triangles, or a combination of the above patterns. combination.
  • the pattern only needs to be conducive to the detection of light and dark brightness.
  • the first scan line is a line pattern in which the m+1th to nth pixels are bright and the remaining pixels are off; the second scan line is the 2n-mth to n+1th pixels bright, The line pattern where the remaining pixels are turned off, where n is a positive integer, m is zero or a positive integer, m is less than n, and (n+1) is less than (2n-m).
  • the first scan line is a line pattern in which the first to nth pixels are bright and the remaining pixels are off
  • the second scan line is a line pattern in which the 2n to n+1th pixels are bright and the remaining pixels are off.
  • n is a positive integer and m is 0.
  • the 1st to nth pixels are sequentially scanned, that is, the first scanning line
  • the 2n to n+1th pixels are sequentially scanned, That is, the second scan line.
  • the first scan line is a line pattern in which the n/2+1 to nth pixels are bright and the remaining pixels are off;
  • the n/2+1 to nth pixels are sequentially scanned, that is, the first scan line; in the counterclockwise scanning stage of the oscillating mirror, the 3n/2 to the nth pixels are sequentially scanned n+1 pixels, that is, the second scan line.
  • steps S03 to S05 are specifically shown in FIGS. 5A to 5C. If it is detected that the first scan line 31 and the second scan line 32 are separated from each other, that is, in FIG. Adjust the phase difference parameter applied by the scan controller in the direction until the two bright line segments are just connected in the first position, as shown in Figure 5C, the phase difference parameter applied by the scan controller is completed; if the first scan line 31 and the second scan line 32 are detected When it is in a partially overlapping state, as shown in Figure 5B, adjust the phase difference parameter applied by the scanning controller in the leading direction until the two bright line segments are completely separated, and then adjust the phase difference parameter of the scanning controller in the lagging direction until the two bright lines are completely separated. The line segments are just connected in the first place, as shown in Figure 5C, which completes the calibration of the phase difference parameters applied by the scan controller relative to the actual phase of the oscillating mirror.
  • the invention utilizes the reciprocating scanning symmetry characteristic of the simple resonant oscillation of the oscillating mirror to construct scanning pattern data with complementary pixel brightness and darkness. Only when the phase difference parameter applied by the scanning controller is consistent with the actual phase of the simple resonant oscillation of the oscillating mirror At this time, the pattern data with complementary brightness and darkness of the pixels can be accurately matched with the reciprocating motion of the oscillating mirror, and then a continuous and uniformly-bright scan line after perfect stitching can be obtained on the projection plane, so as to achieve the effect of being clearly distinguishable and easy to detect.
  • the splicing continuity of the scanning pattern on the projection plane of the present invention has nothing to do with the installation parallelism and distance of the projection plane relative to the oscillating mirror, and the position and attitude deviation of the projection plane does not affect the phase calibration accuracy of the oscillating mirror.
  • the method of the present invention for judging the splicing state of the reciprocating scanning patterns in addition to the use of optical sensitive devices, such as digital cameras, etc., as long as the reciprocating oscillation movement of the oscillating mirror is symmetrical and the scanning frequency exceeds the minimum frequency required by human vision residual Judging by human eye observation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本发明公开了一种振荡式反射镜的相位校准系统及方法,通过利用振荡式反射镜简谐振荡运动的往复扫描对称特征,构造像素明暗互补的扫描图案数据,当扫描控制器所应用的相位差参数,与振荡式反射镜简谐振荡的实际相位一致时,像素明暗互补的图案数据与振荡式反射镜的往复运动精确匹配,进而在投影平面上得到完美拼接后的连续且亮度均匀的扫描线,从而达到清晰可辨,易检测,方便校准操作的效果。

Description

一种振荡式反射镜的相位校准系统及方法 技术领域
本发明属于电气控制系统及方法类,具体是一种振荡式反射镜的相位校准系统及方法。
背景技术
随着超精密制造技术的进步,近年来,采用微缩工艺制作的微型振荡式反射镜正不断涌现,其中有采用脉冲电压激励,通过周期性静电场驱动的微型振镜器件,也有采用脉冲电流激励,通过周期性磁场驱动的微型振镜器件。它们的振荡频率可达20千赫兹以上,角度振幅可达±25°以上。这些器件已被用于构建多种光学扫描或光学成像装置,如汽车HUD显示器、激光雷达、结构光三维扫描仪等。受到微型振荡式反射镜普遍采用硅/石英材质扭转梁结构及材料特性影响,施加到微型振镜驱动机构上的电激励脉冲信号,其相位与微型振镜所产生的简谐振荡之间存在相位差,并且该相位差受微型振镜制作工艺、材料不一致性等因素影响,存在一定分散性。
另一方面,要达成微型振镜反射光束的精确扫描控制,必须依赖准确的振镜偏转角度信号,而区别于大尺寸振镜电机所采用的角度传感器方案,微型振镜受尺寸限制,很难设置高分辨率角度传感器。目前普遍采用的方式是基于微型振镜简谐振荡运动特性,根据电激励信号相位及其与简谐振荡之间的相位差参数,计算得出振镜实时偏转角度,从而用于光束开关以及亮度控制,该方式要求每个微型振镜器件必须有一一对应的准确相位差参数,这已成为微型振镜批量应用的主要难点之一。
在缺失准确相位差参数的情况下,现有工程解决方案一般通过检测微型振镜所投射图案边缘位置偏差,间接推算电激励信号与简谐振荡之间的相位差,或直接根据所投射图案边缘变化规律,手动调整投射控制器的相位差参数,直至边缘位置相同,上述方案的相位校准效果不仅依赖于图像边缘位置的检测精度,而且要求微型反射镜与投影平面保持精确平行且中心对齐,因此操作困难、实际校准效果差。目前,在电激励振荡式微型反射镜技术领域,还缺少一种方案简便、精度高的相位校准方法。
发明内容
本发明针对现有技术的不足,提供一种方案简单、精度高、能实现电激励的振荡式反射镜相位校准的技术系统和方法。
本发明的技术方案如下:
一种振荡式反射镜的相位校准系统,包含激光光源、振荡式反射镜和扫描控制器,所述激光光源射出位于振荡式反射镜偏转轴线引出的法平面内的激光光束,所述激光光束以固定入射角照射至所述振荡式反射镜中心位置,并经反射后照射到投影平面上;所述投影平面与静态时振荡式反射镜平面平行;所述扫描控制器与振荡式反射镜和激光光源电连接;
扫描时,所述扫描控制器根据振荡式反射镜的固有频率发出电激励信号,并通过信号线路施加到振荡式反射镜驱动机构上;所述振荡式反射镜驱动机构驱动振荡式反射镜做顺时针或逆时针偏转;所述扫描控制器输出光束开关信号至激光光源,所述激光光源发出的激光光束经振荡式反射镜反射后,在投影平面上形成一条连续扫描线段;
校准时,构造第一扫描线和第二扫描线;所述扫描控制器将第一扫描线匹配至振荡式反射镜的顺时针扫描阶段,将第二扫描线匹配到振荡式反射镜的逆时针扫描阶段,并依次进行扫描;检测扫描出的第一扫描线和第二扫描线的相对位置,并根据所述第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数。
优选的,所述振荡式反射镜驱动机构包含静电电极或电磁线圈。
优选的,所述连续扫描线段为可将长度等分量化为2n个像素的线图案。
优选的,当振荡式反射镜从极限位置开始顺时针偏转时,激光光束在投影平面上依次扫描第1至第2n个像素;当振荡式反射镜从极限位置开始逆时针偏转时,激光光束在投影平面上依次扫描第2n至第1个像素。
优选的,当振荡式反射镜做顺时针或逆时针偏转时,所述扫描控制器根据振荡式反射镜实时角度,判断激光光束在投影平面扫描的像素,并将该像素对应的激光亮度数据输出至激光光源,从而在投影平面上得到所需的像素图案。
优选的,所述第一扫描线和第二扫描线选自线图案、简单几何图案中的至少一种或组合。
优选的,第一扫描线为第m+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第2n-m至第n+1个像素明亮,其余像素熄灭的线图案,其中n为正整数,m为零或正整数,m小于n,且(n+1)小于(2n-m)。
优选的,第一扫描线和第二扫描线的相对位置包括局部重叠、相互分离、首位相连 三种状态。
优选的,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置调节至首位相连的状态时,即完成振荡式反射镜的相位校准。
本发明还提供了一种振荡式反射镜的相位校准方法,所述方法包含如下步骤:
S01.构造第一扫描线和第二扫描线;
S02.振荡式反射镜顺时针偏转,激光光束在投影平面上依次扫描第一扫描线上的像素;振荡式反射镜逆时针偏转,激光光束在投影平面上依次扫描第二扫描线上的像素;
S03.检测扫描出的第一扫描线和第二扫描线的相对位置;
S04.根据检测到的第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数,具体的,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数;
S05.当第一扫描线和第二扫描线的相对位置调节至首位相连的状态时,即完成振荡式反射镜的相位校准。
本发明的有益效果在于,本发明的电激励振荡式反射镜相位校准方法,无需增加额外的光学或电气部件,也无需特制投影平面或图像边缘检测设备,仅需简单调整激光光源驱动模式,进而通过专门构建的两种扫描图案,通过简单的识别方式即可检测两种扫描图案在投影平面上的局部重叠、相互分离、首位相连的状态,并进而调整扫描控制器所应用的相位差参数值,即可完成振荡式反射镜的相位校准。
本发明激光光源的光束方向性强、聚焦性好,光束在投影屏幕上得到的扫描线段边界清晰;当两个投影线段分离时,其中间的暗部明显;当两个投影线段有局部重叠时,其重叠部分亮度突出,因此方便检测出第一扫描线和第二扫描线的相对位置,有利于实现扫描控制器相位差参数的精细调节,最终实现振荡式反射镜的高精度相位校准。
本发明的振荡式反射镜的相位校准方法,方案简单、技术可行性高,相位校准精度高,易于在振荡式反射镜装置中推广应用。
附图说明
图1为本发明一种振荡式反射镜的相位校准系统的总体结构示意图;
图2为本发明一种振荡式反射镜的相位校准系统的光路示意图;
图3A、图3B为本发明一种振荡式反射镜的相位校准系统的扫描方式示意图;
图4为本发明一种振荡式反射镜的相位校准系统的控制信号连接图;
图5A至5C为本发明实施例在校准时第一扫描线与第二扫描线相对位置示意图;
图6为本发明一种振荡式反射镜相位校准方法的实施步骤。
附图标号:刚性支架1,振荡式反射镜2,激光光源3,投影平面4,扫描控制器5,激光光束11,法平面12,反射光束13,扫描线段图案14,增材基板8,第一扫描线31,第二扫描线32。
具体实施方式
下面结合附图对本发明实施例作详细描述。
一种振荡式反射镜的相位校准系统,包含激光光源、振荡式反射镜和扫描控制器。在一个或多个实施例中,如图1所示,刚性支架1的底座上设有振荡式反射镜2,刚性支架1上设有激光光源3,激光光源3射出的激光光束指向微型振荡式反射镜2的中心位置,并经反射后照射到投影平面4上,投影平面4与静态时振荡式反射镜2平行;其光路示意图如图2所示,激光光源3射出的激光光束11,位于从振荡式反射镜2扭转轴线引出的法平面12内,经振荡式反射镜2反射后的反射光束13射向投影平面4。
扫描时,所述扫描控制器根据振荡式反射镜的固有频率发出电激励信号,并通过信号线路施加到振荡式反射镜驱动机构上。优选的,所述振荡式反射镜驱动机构包含静电电极或电磁线圈。
在一个或多个实施例中,如图2所示,振荡式反射镜2可以在驱动机构的驱动下,做顺时针或逆时针偏转;与此同时,扫描控制器输出光束开关信号至激光光源3,激光光束11经振荡式反射镜2反射后的反射光束13在投影平面4上扫描,形成扫描线段图案14。
具体扫描方式如图3左侧所示,振荡式反射镜2处于逆时针极限位置时,反射光束13在投影平面4的扫描点21位于最左侧,接下来振荡式反射镜2进行顺时针方向扫描,扫描点21自左向右移动;如图3右侧所示,振荡式反射镜2处于顺时针极限位置时,反射光束13在投影平面4的扫描点21位于最右侧,接下来微型振荡式反射镜2进行逆时针方向扫描,扫描点21自右向左移动。微型振荡式反射镜2做连续简谐振荡时,上述顺时针扫描和逆时针扫描交替进行,扫描点21在投影平面4上自左向右,与自右向 左的扫描运动亦交替进行。
在一个或多个实施例中,所述连续扫描线段14为可将长度等分量化为2n个像素的线图案。因此在扫描时,当振荡式反射镜从极限位置开始顺时针偏转时,反射光束13在投影平面上依次扫描第1至第2n个像素;当振荡式反射镜从极限位置开始逆时针偏转时,反射光束13在投影平面上依次扫描第2n至第1个像素。
在上述实施例中,当振荡式反射镜开始顺时针或逆时针偏转时,扫描控制器5还可以根据电激励信号相位及所应用的相位差参数,计算得出振荡式反射镜2的瞬时偏转角度,并根据图2所示光路几何参数,计算出反射光束13瞬时扫描光斑所处像素点,进而从扫描图案数据中索引得到该像素点的亮度值,并将该像素对应的激光亮度数据传输至激光光源3,以控制其输出相应亮度激光光束11,以反射至投影平面4,从而得到所需像素图案。
校准时,构造第一扫描线和第二扫描线;所述扫描控制器将第一扫描线匹配至振荡式反射镜的顺时针扫描阶段,将第二扫描线匹配到振荡式反射镜的逆时针扫描阶段,并依次进行扫描;
所述第一扫描线和第二扫描线选自线图案,还可以选自矩形、三角形等简单几何图案中的至少一种,或者上述图案的组合。所述图案只要有利于通过明暗亮度检出即可。
在一个或多个实施例中,第一扫描线为第m+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第2n-m至第n+1个像素明亮,其余像素熄灭的线图案,其中n为正整数,m为零或正整数,m小于n,且(n+1)小于(2n-m)。
在其中一个实施例中,第一扫描线为第1至第n个像素明亮,其余像素熄灭的线图案,第二扫描线为第2n至第n+1个像素明亮,其余像素熄灭的线图案。即n为正整数,m为0。在振荡式反射镜的顺时针扫描阶段,依次扫描第1至第n个像素,即第一扫描线;在振荡式反射镜的逆时针扫描阶段,依次扫描第2n至第n+1个像素,即第二扫描线。
优选的,第一扫描线为第n/2+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第3n/2至第n+1个像素明亮,其余像素熄灭的线图案,即n为正偶数,m=n/2。在振荡式反射镜的顺时针扫描阶段,依次扫描第n/2+1至第n个像素,即第一扫描线;在振荡式反射镜的逆时针扫描阶段,依次扫描第3n/2至第n+1个像素,即第二扫描线。
在连续交替扫描过程中,检测扫描出的第一扫描线和第二扫描线的相对位置,并调节扫描控制器相位差参数。其中,第一扫描线和第二扫描线的相对位置包括局部重叠、 相互分离、首位相连三种状态。
图5A至5C所示,当扫描控制器所应用的相位差参数超前于振荡式反射镜实际相位时,振荡式反射镜顺时针扫描所得的第一扫描线31,向左侧偏离投影平面4的中心线,振荡式反射镜逆时针扫描所得的第二扫描线32,向右侧偏离投影平面4的中心线,第一扫描线31与第二扫描线32处于相互分离状态,即图5A所示;反之,扫描控制器所应用的相位差参数,滞后于振荡式反射镜实际相位时,顺时针扫描所得的第一扫描线31,右端向右侧穿过投影平面4的中心线,逆时针扫描所得的第二扫描线32,左端向左侧穿过投影平面4的中心线,第一扫描线31的右端与第二扫描线32的左端局部重叠,即图5B所示;当且仅当扫描控制器所应用的相位差参数与振荡式反射镜实际相位一致时,第一扫描线31的右端与第二扫描线32的左端刚好首尾相连图5C,从而拼接成一条连续且亮度均匀的投影线33。
因此,在根据所述第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数时,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数。
本发明的技术方案还包括,一种振荡式反射镜的相位校准方法,所述方法包含如下步骤:
S01.构造第一扫描线和第二扫描线;
S02.振荡式反射镜顺时针偏转,激光光束在投影平面上依次扫描第一扫描线上的像素;振荡式反射镜逆时针偏转,激光光束在投影平面上依次扫描第二扫描线上的像素;
S03.检测扫描出的第一扫描线和第二扫描线的相对位置;
S04.根据检测到的第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数,具体的,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数;
S05.当第一扫描线和第二扫描线的相对位置调节至首位相连的状态时,即完成振荡式反射镜的相位校准。
在一个或多个实施例中,所述S01步骤中的第一扫描线和第二扫描线选自线图案,还可以选自矩形、三角形等简单几何图案中的至少一种,或者上述图案的组合。所述图案只要有利于通过明暗亮度检出即可。
在一个或多个实施例中,第一扫描线为第m+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第2n-m至第n+1个像素明亮,其余像素熄灭的线图案,其中n为正整数,m为零或正整数,m小于n,且(n+1)小于(2n-m)。
在其中一个实施例中,第一扫描线为第1至第n个像素明亮,其余像素熄灭的线图案,第二扫描线为第2n至第n+1个像素明亮,其余像素熄灭的线图案。即n为正整数,m为0。在振荡式反射镜的顺时针扫描阶段,依次扫描第1至第n个像素,即第一扫描线;在振荡式反射镜的逆时针扫描阶段,依次扫描第2n至第n+1个像素,即第二扫描线。
优选的,第一扫描线为第n/2+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第3n/2至第n+1个像素明亮,其余像素熄灭的线图案,即n为正偶数,m=n/2。在振荡式反射镜的顺时针扫描阶段,依次扫描第n/2+1至第n个像素,即第一扫描线;在振荡式反射镜的逆时针扫描阶段,依次扫描第3n/2至第n+1个像素,即第二扫描线。
在一个或多个实施例中,S03至S05步骤具体的如图5A至图5C所示,若检测到第一扫描线31与第二扫描线32处于相互分离状态,即图5A,则向滞后方向调节扫描控制器所应用的相位差参数,直至两条明亮线段刚好首位相连,如图5C,即完成扫描控制器所应用相位差参数;若检测到第一扫描线31与第二扫描线32处于局部重叠状态时,即图5B,则向超前方向调节扫描控制器所应用的相位差参数,直至两条明亮线段完全分离,然后再向滞后方向调节扫描控制器相位差参数,直至两条明亮线段刚好首位相连,如图5C,即完成扫描控制器所应用相位差参数,相对于振荡式反射镜实际相位的校准。
本发明利用振荡式反射镜简谐振荡运动的往复扫描对称特征,构造像素明暗互补的扫描图案数据,只有当扫描控制器所应用的相位差参数,与振荡式反射镜简谐振荡的实际相位一致时,像素明暗互补的图案数据才能与振荡式反射镜的往复运动精确匹配,进而在投影平面上得到完美拼接后的连续且亮度均匀的扫描线,从而达到清晰可辨,易检测的效果。本发明扫描图案在投影平面上的拼接连续性,与投影平面相对振荡式反射镜的安装平行度以及距离无关,投影平面的位置、姿态偏差不影响振荡式反射镜的相位校准精度。
本发明判断往复扫描图案拼接状态的手段,除采用光学敏感器件,如数码相机等外,只要振荡式反射镜的往复振荡运动对称,并且扫描频率超过人眼视觉残留要求的最低频率,还可直接通过人眼观测判断。
以上所述,仅是本发明较佳的实施方式,并非对本发明的技术方案做任何形式上的 限制。凡是依据本发明的技术实质对以上实施例做任何简单修改,形式变化和修饰,均落入本发明的保护范围。

Claims (10)

  1. 一种振荡式反射镜的相位校准系统,其特征在于,包含激光光源、振荡式反射镜和扫描控制器,所述激光光源射出位于振荡式反射镜偏转轴线引出的法平面内的激光光束,所述激光光束以固定入射角照射至所述振荡式反射镜中心位置,并经反射后照射到投影平面上;所述投影平面与静态时振荡式反射镜平面平行;所述扫描控制器与振荡式反射镜和激光光源电连接;
    扫描时,所述扫描控制器根据振荡式反射镜的固有频率发出电激励信号,并通过信号线路施加到振荡式反射镜驱动机构上;所述振荡式反射镜驱动机构驱动振荡式反射镜做顺时针或逆时针偏转;所述扫描控制器输出光束开关信号至激光光源,所述激光光源发出的激光光束经振荡式反射镜反射后,在投影平面上形成一条连续扫描线段;
    校准时,构造第一扫描线和第二扫描线;所述扫描控制器将第一扫描线匹配至振荡式反射镜的顺时针扫描阶段,将第二扫描线匹配到振荡式反射镜的逆时针扫描阶段,并依次进行扫描;检测扫描出的第一扫描线和第二扫描线的相对位置,并根据所述第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数。
  2. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,所述振荡式反射镜驱动机构包含静电电极或电磁线圈。
  3. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,所述连续扫描线段为可将长度等分量化为2n个像素的线图案。
  4. 根据权利要求3所述的振荡式反射镜的相位校准系统,其特征在于,当振荡式反射镜从极限位置开始顺时针偏转时,激光光束在投影平面上依次扫描第1至第2n个像素;当振荡式反射镜从极限位置开始逆时针偏转时,激光光束在投影平面上依次扫描第2n至第1个像素。
  5. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,当振荡式反射镜做顺时针或逆时针偏转时,所述扫描控制器根据振荡式反射镜实时角度,判断激光光束在投影平面扫描的像素,并将该像素对应的激光亮度数据输出至激光光源,从而在投影平面上得到所需的像素图案。
  6. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,所述第一扫描线和第二扫描线选自线图案、简单几何图案中的至少一种或组合。
  7. 根据权利要求1至6中的任一项所述的振荡式反射镜的相位校准系统,其特征在 于,第一扫描线为第m+1至第n个像素明亮,其余像素熄灭的线图案;第二扫描线为第2n-m至第n+1个像素明亮,其余像素熄灭的线图案,其中n为正整数,m为零或正整数,m小于n,且(n+1)小于(2n-m)。
  8. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,第一扫描线和第二扫描线的相对位置包括局部重叠、相互分离、首位相连三种状态。
  9. 根据权利要求1所述的振荡式反射镜的相位校准系统,其特征在于,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置调节至首位相连的状态时,即完成振荡式反射镜的相位校准。
  10. 一种振荡式反射镜的相位校准方法,其特征在于,所述方法包含如下步骤:
    S01.构造第一扫描线和第二扫描线;
    S02.振荡式反射镜顺时针偏转,激光光束在投影平面上依次扫描第一扫描线上的像素;振荡式反射镜逆时针偏转,激光光束在投影平面上依次扫描第二扫描线上的像素;
    S03.检测扫描出的第一扫描线和第二扫描线的相对位置;
    S04.根据检测到的第一扫描线和第二扫描线的相对位置调节扫描控制器相位差参数,具体的,当第一扫描线和第二扫描线的相对位置为局部重叠时,向超前方向调节扫描控制器相位差参数;当第一扫描线和第二扫描线的相对位置为相互分离时,向滞后方向调节扫描控制器相位差参数;
    S05.当第一扫描线和第二扫描线的相对位置调节至首位相连的状态时,即完成振荡式反射镜的相位校准。
PCT/CN2020/081421 2019-03-29 2020-03-26 一种振荡式反射镜的相位校准系统及方法 WO2020200039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/436,681 US20220196517A1 (en) 2019-03-29 2020-03-26 Phase alignment system and method of oscillating mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910248730.6A CN111751084B (zh) 2019-03-29 2019-03-29 一种振荡式反射镜的相位校准系统及方法
CN201910248730.6 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020200039A1 true WO2020200039A1 (zh) 2020-10-08

Family

ID=72664685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081421 WO2020200039A1 (zh) 2019-03-29 2020-03-26 一种振荡式反射镜的相位校准系统及方法

Country Status (3)

Country Link
US (1) US20220196517A1 (zh)
CN (1) CN111751084B (zh)
WO (1) WO2020200039A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345207A (zh) * 2020-10-28 2021-02-09 歌尔光学科技有限公司 振镜检测装置、振镜检测方法和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189040A (zh) * 1997-01-06 1998-07-29 旭光学工业株式会社 具有级光学扫描系统的扫描装置
US20090147336A1 (en) * 2007-12-11 2009-06-11 Mitsuo Suzuki Optical scanner and color image forming apparatus
CN103163077A (zh) * 2013-01-31 2013-06-19 华中科技大学 旋转器件型光谱椭偏仪系统参数校准方法
CN106997152A (zh) * 2016-01-26 2017-08-01 上海微电子装备有限公司 扫描反射镜监测系统及方法、调焦调平系统
CN108303705A (zh) * 2017-12-27 2018-07-20 西安理工大学 Nd:YAG固体激光器自混合速度传感器及其测速方法
CN108431583A (zh) * 2015-12-22 2018-08-21 微视公司 用于扫描投影仪中的反馈控制的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540672A (zh) * 2012-02-15 2012-07-04 凝辉(天津)科技有限责任公司 一种微型单镜片单光源阵列式激光扫描投影装置
CN103676420B (zh) * 2012-09-04 2015-08-19 光宝科技股份有限公司 具有相位检测及补偿功能的激光扫描式投影装置
CN106248347B (zh) * 2016-07-22 2018-11-16 西北工业大学 一种mems扫描镜性能参数测量系统及方法
CN207163693U (zh) * 2017-07-26 2018-03-30 常州雷射激光设备有限公司 一种扫描场镜畸变校准装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189040A (zh) * 1997-01-06 1998-07-29 旭光学工业株式会社 具有级光学扫描系统的扫描装置
US20090147336A1 (en) * 2007-12-11 2009-06-11 Mitsuo Suzuki Optical scanner and color image forming apparatus
CN103163077A (zh) * 2013-01-31 2013-06-19 华中科技大学 旋转器件型光谱椭偏仪系统参数校准方法
CN108431583A (zh) * 2015-12-22 2018-08-21 微视公司 用于扫描投影仪中的反馈控制的系统和方法
CN106997152A (zh) * 2016-01-26 2017-08-01 上海微电子装备有限公司 扫描反射镜监测系统及方法、调焦调平系统
CN108303705A (zh) * 2017-12-27 2018-07-20 西安理工大学 Nd:YAG固体激光器自混合速度传感器及其测速方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345207A (zh) * 2020-10-28 2021-02-09 歌尔光学科技有限公司 振镜检测装置、振镜检测方法和可读存储介质

Also Published As

Publication number Publication date
US20220196517A1 (en) 2022-06-23
CN111751084B (zh) 2021-10-29
CN111751084A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
JP4620901B2 (ja) 2次元光走査装置、及び該2次元光走査装置の駆動方法
US6803938B2 (en) Dynamic laser printer scanning alignment using a torsional hinge mirror
RU2464603C1 (ru) Блок оптического сканирования, проектор изображений, включающий в себя его, автомобильное устройство отображения на ветровом стекле и мобильный телефон
US9936176B2 (en) Image protection device and adjustment method
EP2105791B1 (en) Projection image display apparatus
TW201734501A (zh) 具有對掃描區域部分之改良式凝視的雷射雷達傳輸器
US9182600B2 (en) Image display apparatus and head-mounted display
US20140153001A1 (en) Gimbaled scanning mirror array
US10792931B2 (en) Optical deflection apparatus, head-up display apparatus, optical writing unit, image forming apparatus, and object recognition apparatus
US7059523B1 (en) Scan line alignment in raster pattern
CN101517455A (zh) 激光投影仪
CN101876778A (zh) 激光投影机
US7997742B2 (en) Capacitive comb feedback for high speed scan mirror
US20110279879A1 (en) Image forming apparatus
JPH09230277A (ja) 光走査装置
US9910271B2 (en) Actuator device, optical deflector, an image projection apparatus, and image forming apparatus
WO2020200039A1 (zh) 一种振荡式反射镜的相位校准系统及方法
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
CN112399159B (zh) 利用单个频率来驱动多谐振mems镜
US10928611B2 (en) Lens module and projector
JP4641378B2 (ja) 光走査装置及びそれを有する画像表示装置
JP2004093890A (ja) 投射型画像表示装置
JPH09230278A (ja) 光走査装置
JP2012181479A (ja) 画像形成装置
US11287644B2 (en) Alteration of resonant mode frequency response in mechanically resonant device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783880

Country of ref document: EP

Kind code of ref document: A1