KR20100016766A - 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법 - Google Patents

정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법 Download PDF

Info

Publication number
KR20100016766A
KR20100016766A KR1020080076382A KR20080076382A KR20100016766A KR 20100016766 A KR20100016766 A KR 20100016766A KR 1020080076382 A KR1020080076382 A KR 1020080076382A KR 20080076382 A KR20080076382 A KR 20080076382A KR 20100016766 A KR20100016766 A KR 20100016766A
Authority
KR
South Korea
Prior art keywords
substrate
nanostructure
electrode
layer pattern
nanostructures
Prior art date
Application number
KR1020080076382A
Other languages
English (en)
Other versions
KR101071325B1 (ko
Inventor
홍승훈
성 명
강주완
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080076382A priority Critical patent/KR101071325B1/ko
Priority to US12/234,529 priority patent/US8245393B2/en
Publication of KR20100016766A publication Critical patent/KR20100016766A/ko
Application granted granted Critical
Publication of KR101071325B1 publication Critical patent/KR101071325B1/ko
Priority to US13/366,184 priority patent/US20120132459A1/en
Priority to US14/622,092 priority patent/US20150181704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0522Using an adhesive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/105Using an electrical field; Special methods of applying an electric potential
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1453Applying the circuit pattern before another process, e.g. before filling of vias with conductive paste, before making printed resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

회로 기판 제공 방법은 제1 기판을 준비하는 단계, 상기 제1 기판 상에 회로-상기 회로는 제1 전극, 제2 전극 및 적어도 하나의 나노구조물을 구비함-를 형성하는 단계, 및 상기 회로를 상기 제1 기판으로부터 중합체인 제2 기판의 표면으로 전이시키는 단계를 구비한다.

Description

정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법{Circuit board comprising a aligned nanostructure and method for fabricating the circuit board}
본 명세서에 개시된 기술은 일반적으로 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법에 관한 것이다.
최근에 탄소나노튜브 또는 나노와이어 등의 나노구조물에 기반한 새로운 소자에 대한 관심이 증대하고 있다. 나노기술을 사용한 이들 소자는 전자, 기계, 광학 또는 바이오 등 다양한 분야에 사용되고 있다. 특히 유연성 전자소자(flexible electronics)에 응용하기 위하여 탄소나노튜브의 뛰어난 전기적, 기계적, 및 구조적 특징을 이용하고자 하는 연구가 있어왔다. 유연성 전자소자에 탄소나노튜브를 사용한 종래 기술로 "Jung Y J et al 2006 Nano Lett . 6 413" 및 "Bradley K et al 2003 Nanolett, 3 1353"이 있으며, 이들은 탄소나노튜브와 고분자의 복합체를 만드는 방법에 대해 개시하고 있다. 하지만 종래의 기술들에서는 시간 및 비용이 많이 드는 CVD 증착 공정에 의해 탄소나노튜브를 성장시키므로, 유연성 전자소자를 저가의 비용으로 대량 생산하는데 어려움이 있다.
일 실시예에 있어서, 회로 기판 제조 방법이 제공된다. 상기 회로 기판 제조 방법은 제1 기판을 준비하는 단계, 상기 제1 기판 상에 회로-상기 회로는 제1 전극, 제2 전극 및 적어도 하나의 나노구조물을 구비함-를 형성하는 단계, 및 상기 회로를 상기 제1 기판으로부터 중합체인 제2 기판의 표면으로 전이시키는 단계를 구비한다.
다른 실시예에 있어서, 회로 기판이 제공된다. 상기 회로 기판은 중합체 기판, 상기 중합체 기판의 표면에 위치한 제1 전극 및 제2 전극, 및 상기 제1 전극 및 상기 제2 전극과 전기적으로 연결된 적어도 하나의 나노구조물을 구비한다.
이하, 본 명세서에 개시된 실시예들을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 개시된 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 따라서 본 개시된 기술은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 일 구성요소 또는 일 층이 다른 구성요소 또는 다른 층 "의 위에" 또는 "에 연결"이라고 언급되는 경우, 상기 일 구성요소 또는 상기 일 층이 상기 다른 구성요소 또는 다른 층의 바로 위에 형성 또는 바로 연결되는 경우는 물론, 이들 사이에 추가적인 구성요소 또는 층이 개재되는 경우도 포함할 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 회로 기판의 일 실시예의 사시도를 나타내는 도면이다. 도 2는 도 1에 표현된 회로 기판의 평면도(도 2의 (a)) 및 단면도(도 2의 (b))를 나타내는 도면이다. 단면도는 평면도의 A-A’선에 따른 단면도이다. 도 1 및 2를 참조하면, 회로 기판(100)은 중합체 기판(111), 제1 전극(112), 제2 전극(113) 및 적어도 하나의 나노구조물(114)을 구비한다.
중합체 기판(111)은 예를 들면 유연성 기판일 수 있다. 유연성 기판은 폴리디메틸실록산(polydimethylsiloxane, PDMS) 기판과 같은 실리콘 고분자 기판일 수 있다. 폴리디메틸실록산은 유연성이 있고, 불활성이며, 무독성이자 불연성인 재료로서, 바이오 분야 등에 적합한 소재이다.
제1 전극(112) 및 제2 전극(113)은 중합체 기판(111)의 표면에 위치한다. 제1 전극(112) 및 제2 전극(113)이 중합체 기판(111)의 표면에 위치함은 도 1에 표현된 바와 같이 제1 전극(112) 및 제2 전극(113) 각각의 일부분이 중합체 기판(111)에 함입된 경우를 포함한다. 또한, 제1 전극(112) 및 제2 전극(113)이 중합체 기판(111)의 표면에 위치함은 도 1과 달리 제1 전극(112) 및 제2 전극(113) 각각이 중합체 기판(111)의 표면 위에 위치한 경우(미도시)도 포함한다. 제1 전극(112) 및 제2 전극(113)은 전도체이며, 예를 들면 금속 또는 도핑된 폴리실리콘을 포함할 수 있다. 제1 전극(112) 및 제2 전극(113) 각각은 도 2에 표현된 바와 같이 금(Au) 층(121) 및 팔라듐(Pd) 층(122)을 구비한 다층 구조를 가질 수 있다. 도 1에는 제1 전극(112) 및 제2 전극(113)이 적어도 하나의 나노구조물(114)의 위에 위치한 예가 표현되어 있으나, 제1 전극(112) 및 제2 전극(113)이 적어도 하나의 나노구조 물(114)의 아래에 위치하여도 무방하다.
적어도 하나의 나노구조물(114)은 제1 전극(112) 및 제2 전극(113)에 전기적으로 연결된다. 도 1과 2에는 적어도 하나의 나노구조물(114)이 제1 전극 및 제2 전극에 연결된 예가 표현되어 있다. 적어도 하나의 나노구조물(114)이 제1 전극(112) 및 제2 전극(113)에 연결된다는 것은 적어도 하나의 나노구조물(114) 각각이 제1 전극(112) 및 제2 전극(113)에 연결되는 것에 한정되지 아니한다. 보다 구체적으로 적어도 하나의 나노구조물(114) 중 어느 한 나노구조물의 일부분이 제1 전극(112)에 전기적으로 접속되고, 적어도 하나의 나노구조물(114) 중 다른 어느 한 나노구조물의 일부분이 제2 전극(113)에 전기적으로 접속되고, 상기 어느 한 나노구조물과 상기 다른 어느 한 나노구조물이 서로 전기적으로 접속될 수 있다. 또한, 적어도 하나의 나노구조물(114) 중 어느 한 나노구조물의 일부분이 제1 전극(112)에 전기적으로 접속되고, 적어도 하나의 나노구조물(114) 중 다른 어느 한 나노구조물의 일부분이 제2 전극(113)에 전기적으로 접속되고, 상기 어느 한 나노구조물과 상기 다른 어느 한 나노구조물이 적어도 하나의 나노구조물(114) 중 또 다른 적어도 어느 하나의 나노구조물을 통하여 서로 전기적으로 접속될 수도 있다.
일 실시예에 있어서, 적어도 하나의 나노구조물(114)은, 예를 들면 선형 구조를 가지는 나노튜브, 나노와이어 또는 나노로드를 구비할 수 있다. 나노튜브는, 예를 들면 탄소나노튜브일 수 있다. 나노와이어나 나노로드의 재료는 전도성 고분자, 산화바나듐, 산화인듐, 산화아연, 산화주석, 산화카드뮴, 실리콘, 게르마늄, 질화갈륨을 포함하는 다양한 물질 또는 이들의 조합일 수 있다.
일 실시예에 있어서, 적어도 하나의 나노구조물(114)은 적어도 하나의 나노구조물(114)에 의하여 형성된 패턴(123)의 길이 방향(L)으로 정렬될 수 있다. 적어도 하나의 나노구조물(114)이 길이 방향(L)으로 정렬됨은 적어도 하나의 나노구조물(114) 모두가 길이 방향(L)으로 정렬됨을 의미하는 것은 아니다. 적어도 하나의 나노구조물(114)이 길이 방향(L)으로 정렬됨은 적어도 하나의 나노구조물(114)이 임의로 배치됨을 배제하는 것이다. 적어도 하나의 나노구조물(114)이 길이 방향(L)으로 정렬됨은 의도적으로 적어도 하나의 나노구조물(114)을 길이 방향(L)으로 정렬함을 의미한다. 예를 들면, 길이 방향(L)과 45도 이하의 각도를 가지는 나노구조물(들)의 개수가 길이 방향(L)과 45도 초과의 각도를 가지는 나노구조물(들)의 개수의 2배 이상인 경우, 적어도 하나의 나노구조물(114)이 길이 방향(L)으로 정렬된 것으로 판단될 수 있다. 적어도 하나의 나노구조물(114)이 길이 방향(L)으로 정렬되면, 나노구조물이 임의로 배치된 경우에 비하여, 제1 전극(112)과 제2 전극(113) 사이의 저항이 감소될 수 있다.
적어도 하나의 나노구조물(114)의 적어도 일부분은 도 2와 같이 중합체 기판(111)의 내부에 위치할 수도 있다. 이 경우, 중합체 기판(111)이 적어도 하나의 나노구조물(114)을 보호하는 역할을 수행할 수 있다. 예를 들면, 적어도 하나의 나노구조물(114)의 일부분 또는 전부가 중합체 기판(111)의 내부에 위치하면, 적어도 하나의 나노구조물(114)이 중합체 기판(111)의 외부에 위치하는 경우에 비하여, 적어도 하나의 나노구조물(114)이 중합체 기판(111)으로부터 이탈될 확률이 낮아질 수 있다. 예를 들면, 적어도 하나의 나노구조물(114)의 일부분 또는 전부가 중합체 기판(111)의 내부에 위치하면, 적어도 하나의 나노구조물(114)이 중합체 기판(111)의 외부에 위치하는 경우에 비하여, 적어도 하나의 나노구조물(114)과 접촉될 수 있는 액체 등으로부터 야기되는 잡음이 감소될 수 있다. 적어도 하나의 나노구조물(114)은 도 2와 달리 중합체 기판(111)의 표면 위에 형성될 수도 있다.
일 실시예에 있어서, 적어도 하나의 나노구조물(114)은 제1 전극(112)과 제2 전극(113)을 전기적으로 연결하는 전선으로 사용될 수 있다. 예를 들면 광, 분자, DNA(Deoxyribonucleic acid) 또는 온도 등의 다소 또는 고저에 따라 적어도 하나의 나노구조물(114)의 전기적 특성이 변화될 수 있다. 이 경우, 적어도 하나의 나노구조물(114)은 센서 또는 트랜지스터 등의 일 구성요소로 사용될 수 있다.
회로 기판(100)은 중합체 기판(111)에 형성된 폐 회로(closed circuit)를 반드시 구비하여야 하는 것은 아니며, 폐 회로없이 중합체 기판(111)에 형성된 제1 전극(112), 제2 전극(113) 및 이들과 전기적으로 연결된 적어도 하나의 나노구조물(114)을 구비할 수도 있다.
상술한 바에 따르면, 상기 회로 기판은 전극 사이에 나노구조물이 임의로 배치되지 않고 잘 정렬된 구조를 가지고 있어서 전극 간 저항이 작고, 중합체 기판에 나노구조물 회로가 함입되어 있어서 유연하면서도 견고하다.
도 3은 회로 기판의 제조 방법의 일 실시예를 설명하기 위한 흐름도이다.
310 단계에서, 먼저 제1 기판이 제공된다. 제1 기판은 구체적인 예를 들면 금속(예: 금, 알루미늄), 반도체(예: 실리콘, 실리콘 온 인슐레이터(silicon-on- insulator)), 유리 또는 산화물(예: SiO2) 기판일 수 있다.
320 단계에서, 상기 제1 기판 위에 제1 전극, 제2 전극 및 적어도 하나의 나노구조물을 구비하는 회로를 형성한다. 나노구조물은 예를 들면 선형 구조를 가지는 나노튜브, 나노와이어 또는 나노로드를 구비할 수 있다. 나노튜브는 예를 들면 탄소나노튜브일 수 있다. 나노와이어나 나노로드를 구성하는 물질은 전도성 고분자, 산화바나듐, 산화인듐, 산화아연, 산화주석, 산화카드뮴, 실리콘, 게르마늄, 질화갈륨 등의 다양한 물질 또는 이들의 조합일 수 있다. 제1 기판 위에 회로를 형성함에 있어서, 반드시 폐 회로를 형성하여야 하는 것은 아니며, 폐 회로없이 제1 기판 위에 제1 전극, 제2 전극 및 적어도 하나의 나노구조물을 형성할 수도 있다.
330 단계에서, 상기 회로를 상기 제1 기판으로부터 중합체인 제2 기판의 표면으로 전이시킨다. 제2 기판은 예를 들면 유연성 기판일 수 있다. 유연성 기판은 예를 들면 폴리디메틸실록산 기판과 같은 실리콘 고분자 기판일 수 있다. 회로를 전이시키는 단계(330)는 도 3에 표현된 바와 같이 331 단계 내지 333 단계를 구비할 수 있다. 331 단계에서, 상기 회로가 형성된 제1 기판 상에 유동성 물질을 도포한다. 332 단계에서, 상기 회로가 형성된 제1 기판 상에 도포된 유동성 물질을 경화시킨다. 333 단계에서, 유동성 물질을 경화시킴으로써 얻어진 제2 기판을 제1 기판으로부터 분리함으로써 회로가 제1 기판으로부터 제2 기판으로 전이된다.
이와 같은 방식으로 회로 기판을 제조하는 경우, 기존에 정립된 미세가공 공정을 활용하여 반도체, 금속, 유리, 산화물 기판 등에 회로를 형성한 후에, 형성된 회로를 중합체 기판에 전이시킴으로써, 중합체 기판 상에 회로를 용이하게 형성할 수 있다. 또한 이와 같은 방식으로 회로 기판을 제조하는 경우, 나노구조물의 적어도 일부분을 중합체 기판의 내부에 위치시킬 수 있다.
도 4 내지 11은 일 실시예에 따른 회로 기판 제조 방법의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다. 각 도면의 단면도는 평면도의 A-A’선에 따른 단면도이다.
도 4를 참조하면, 제1 기판(431)을 준비한다. 제1 기판(431)으로서 도 3에 대한 설명에서 상술한 바와 같이 다양한 종류의 기판이 사용될 수 있다.
도 5를 참조하면, 제1 기판(431) 상에 극성 분자 층 패턴(432) 및 비극성 분자 층 패턴(433)을 형성한다. 극성 분자 층 패턴(432) 및 비극성 분자 층 패턴(433)의 형성에 의하여, 제1 기판(431)의 상면은 극성 분자 층 패턴(432)이 노출된 영역과 비극성 분자 층 패턴(433)이 노출된 영역으로 나뉠 수 있다.
극성 분자 층 패턴(432)은 사용되는 물질에 따라 양전하나 음전하로 대전될 수 있다. 산화물 나노구조물이 극성 분자 층 패턴(432)에 제공될 경우, 대개 산화물 나노구조물의 표면이 대전되어 있으므로, 정전기적 인력에 의하여 산화물 나노구조물이 극성 분자 층 패턴(432)의 표면에 접착된다. 일 실시예에 있어서, 제1 기판(431)으로서 금이 사용된 경우, 극성 분자 층 패턴(432)은 예를 들면 카복실 말단(-COOH/-COO-)을 갖는 화합물을 구비한 자기 조립 단분자 층 패턴일 수 있다. 이 경우, 극성 분자 층 패턴(432)은 음전하로 대전된다. 카복실 말단을 갖는 화합물은 예를 들면 16-머캅토헥사데카노익산(16-mercaptohexadecanoic acid, MHA)일 수 있다. 다른 실시예에 의하면, 제1 기판(431)으로서 금이 사용된 경우, 극성 분자 층 패턴(432)은 예를 들면 아미노 말단(-NH2/-NH3 +)을 갖는 화합물 또는 2-머캅토이미다졸(2-mercaptoimidazole, 2-MI)을 구비한 자기 조립 단분자 층 패턴일 수 있다. 이 경우, 극성 분자 층 패턴(432)은 양전하로 대전된다. 아미노 말단을 갖는 화합물은 예를 들면 시스테아민(cysteamine)일 수 있다. 또 다른 실시예에 의하면, 제1 기판(431)으로서 실리카(SiO2)가 사용된 경우, 극성 분자 층 패턴(432)은 예를 들면 아미노프로필에톡시실란(aminopropylethoxysilane, APTES)을 구비한 자기 조립 단분자 층 패턴일 수 있다.
비극성 분자 층 패턴(433)은 양전하 또는 음전하로 대전되지 아니한 중성이다. 따라서, 나노구조물로서 산화물 나노구조물이 사용된 경우에, 나노구조물이 비극성 분자 층 패턴(433)에 부착되지 아니하거나, 부착되더라도 극성 분자 층 패턴(432)에 접착된 나노구조물들에 비하여 상대적으로 용이하게 분리된다. 비극성 분자 층 패턴(433)은 예를 들면 메틸-말단의 화합물을 구비한 자기 조립 단분자 층 패턴일 수 있다. 일 실시예에 있어서, 제1 기판(431)으로서 금이 사용된 경우, 비극성 분자 층 패턴(433)의 물질은 예를 들면 1-옥타데칸티올(1-octadecanethiol, ODT)과 같은 티올 화합물일 수 있다. 다른 실시예에 의하면, 제1 기판(431)으로서 실리카, 실리콘, 알루미늄이 사용된 경우, 비극성 분자 층 패턴(433)의 물질은 예 를 들면 옥타데실트리클로로실란(octadecyltrichlorosilane, OTS), 옥타데실트리메톡시실란(octadecyltrimethoxysulane, OTMS) 또는 옥타데실트리에톡시실란(octadecyltriethoxysilane, OTE)과 같은 실란 화합물일 수 있다.
극성 분자 층 패턴(432) 및 비극성 분자 층 패턴(433)은, 예를 들면, 딥-펜 나노리소그래피(DPN), 미세접촉 인쇄법(μCP) 또는 포토리소그래피법 등을 사용하여 형성될 수 있다.
도 6을 참조하면, 극성 분자 층 패턴(432) 상에 제1 전극(412) 및 제2 전극(413)을 형성한다. 제1 전극(412) 및 제2 전극(413)은 전도체이며, 예를 들면 알루미늄(Al), 팔라듐(Pd), 티타늄(Ti) 또는 금(Au)과 같은 금속 또는 도핑된 폴리실리콘일 수 있다. 제1 전극(412) 및 제2 전극(413) 각각은 단층 또는 다층 구조(예를 들면 Au/Pd 또는 Au/Ti)를 가질 수 있다. 도 6에 도시된 바와 같이, 제1 전극(412) 및 제2 전극(413) 각각은 금(Au) 층(421) 및 팔라듐(Pd) 층(422)을 포함할 수 있다. 제1 전극(412) 및 제2 전극(413)의 패터닝은 예를 들면 포토리소그래피 또는 리프트-오프 공정을 사용하여 수행될 수 있다.
도 7을 참조하면, 적어도 하나의 나노구조물(414)을 극성 분자 층 패턴(432)에 자기 조립시킨다.
일 실시예에 있어서, 도 8에 도시된 바와 같이, 제1 기판(431)을 나노구조물들을 구비한 용액(441)에 담금으로써 적어도 하나의 나노구조물(414)을 극성 분자 층 패턴(432)에 자기 조립시킬 수 있다.
다른 실시예에 있어서, 도 9에 도시된 바와 같이, 제1 기판(431)을 나노구조 물들을 구비한 용액(441)에 담그고, 용액(441)과 제1 기판(431) 사이에 바이어스 전압을 인가하는 방식으로 적어도 하나의 나노구조물(414)을 극성 분자 층 패턴(432)에 자기 조립시킬 수 있다. 용액(441)과 제1 기판(431) 사이에 바이어스 전압을 인가하면, 적어도 하나의 나조구조물(414)이 극성 분자 층 패턴(432)에 자기 조립되는 속도가 개선될 수 있다. 예를 들면, 음전하로 대전된 극성 분자 층 패턴(432)이 형성된 제1 기판(431)에 음(-) 바이어스를 인가하면, 양전하로 대전된 나노구조물(414)이 더 빨리 극성 분자 층 패턴(432)에 자기 조립될 수 있다. 또한, 양전하로 대전된 극성 분자 층 패턴(432)이 형성된 제1 기판(431)에 양(+) 바이어스를 인가하면, 음전하로 대전된 적어도 하나의 나노구조물(414)이 더 빨리 극성 분자 층 패턴(432)에 자기 조립될 수 있다.
나노구조물들을 구비한 용액(441)의 예를 들면 탄소나노튜브들을 구비한 용액은 탄소나노튜브들을 1,2-디클로로벤젠에 넣고 초음파를 가하는 방식으로 제조될 수 있다. 또한, 나노와이어들을 구비한 용액은 나노와이어들을 탈이온수에 넣고 초음파를 가하는 방식으로 제조될 수 있다.
나노구조물 그 자체가 산화물이 아니더라도, 공기 중에서 나노구조물의 표면에 산화물이 형성될 수 있으며, 표면에 산화물이 형성된 나노구조물은 양전하나 음전하로 대전될 수 있다. 따라서 이와 같은 방식으로 대전된 나노구조물을 구비한 용액(441)에 제1 기판(431)을 담그어 두면, 나노구조물은 극성 분자 층 패턴(432)과의 정전기적 인력에 의하여 극성 분자 층 패턴(432)에 흡착될 수 있다.
나노구조물과 극성 분자 층 패턴(432)과의 정전기적 인력은 전하-전하 간 인 력(charge-charge interaction) 또는 유발 쌍극자 힘(dipole-driven force)과 같은 반데르발스 힘에 의한 것일 수 있다.
일 실시예에 있어서, 산화아연(ZnO)은 산소 빈격자점(oxygen vacancy)의 존재로 인하여 양전하를 띄고 있으므로, 산화아연을 재질로 하는 나노구조물은 음전하로 대전된 극성 분자 층 패턴(432)의 표면에 강하게 흡착된다. 다른 실시 예에 있어서, 산화바나듐(V2O5)은 음전하를 띄고 있으므로 양전하로 대전된 극성 분자 층 패턴(432)의 표면에 흡착된다. 또 다른 실시예에 있어서, 탄소나노튜브는 양전하로 대전된 극성 분자 층 패턴(432)뿐만 아니라, 음전하로 대전된 극성 분자 층(432) 패턴의 표면에 흡착된다.
적어도 하나의 나노구조물(414)을 극성 분자 층 패턴(432)에 자기 조립시키면, 적어도 하나의 나노구조물(414)은 극성 분자 층 패턴(432)의 길이 방향(L)으로 정렬될 수 있다. 예를 들면, 길이 방향(L)과 45도 이하의 각도를 가지는 나노구조물(들)의 개수가 길이 방향(L)과 45도 초과의 각도를 가지는 나노구조물(들)의 개수의 2배 이상인 경우, 적어도 하나의 나노구조물(414)이 길이 방향(L)으로 정렬된 것으로 판단될 수 있다. 극성 분자 층 패턴(432)의 폭(W)이 좁을수록, 적어도 하나의 나노구조물(414)이 길이 방향(L)으로 정렬되는 정도가 커질 수 있다. 예를 들면, 극성 분자 층 패턴 (432)의 폭(W)은 적어도 하나의 나노구조물(414)의 평균 길이의 1/2 미만일 수 있다.
도 6 및 7에는 제1 전극(412) 및 제2 전극(413)을 형성한 후에, 적어도 하나 의 나노구조물(414)을 극성 분자 층 패턴(432)에 부착시키는 예가 표현되어 있다. 다르게는 제1 전극(412) 및 제2 전극(413)을 형성하기 전에, 적어도 하나의 나노구조물(414)을 극성 분자 층 패턴(432)에 부착시킬 수 있다.
도 10을 참조하면, 제1 기판(431) 상에 유동성 물질(434)을 도포하고, 경화시킨다. 유동성 물질(434)의 경화에 의하여 중합체인 제2 기판(411)이 형성된다. 유동성 물질(434)은 예를 들면 액상의 폴리디메틸실록산(PDMS)과 같은 예비중합체일 수 있다. 폴리디메틸실록산(PDMS)은 예를 들면 가열 또는 자외선의 조사 등에 의하여 경화될 수 있다.
도 11을 참조하면, 유동성 물질(434)을 경화시킴으로써 얻어진 제2 기판(411)을 제1 기판(431)으로부터 분리함으로써 제1 전극(412), 제2 전극(413) 및 적어도 하나의 나노구조물(414)을 제1 기판(431)으로부터 제2 기판(411)으로 전이시킨다.
도 12 내지 17은 다른 실시예에 따른 회로 기판 제조 방법의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다. 각 도면의 단면도는 평면도의 A-A’선에 따른 단면도이다.
도 12를 참조하면, 제1 기판(1231)을 준비한다.
도 13을 참조하면, 제1 기판(1231) 상에 비극성 분자 층 패턴(1233)을 형성한다. 비극성 분자 층 패턴(1233)의 물질로서 제1 예에서 상술한 바와 같이 다양한 물질이 사용될 수 있다. 제1 기판(1231) 상에 비극성 분자 층 패턴(1233)을 형성함 에 있어서, 도 13과 같이 제1 기판(1231)의 상면 중 일부 영역이 노출되도록 비극성 분자 층 패턴(1233)을 형성한다.
도 14를 참조하면, 제1 기판(1231) 상에 제1 전극(1212) 및 제2 전극(1213)을 형성한다. 제1 전극(1212) 및 제2 전극(1213)의 물질로서 제1 예에서 상술한 바와 같이 다양한 물질이 사용될 수 있다. 도 14에는 제1 전극(1212) 및 제2 전극(1213) 각각이 금(Au) 층(1221) 및 팔라듐(Pd) 층(1222)을 구비하는 다층 구조를 가지는 예가 표현되어 있다.
도 15를 참조하면, 적어도 하나의 나노구조물(1214)을 제1 기판(1231)의 노출 영역에 자기 조립시킨다. 일 실시예에 있어서, 제1 기판(1231)을 나노구조물들을 구비한 용액에 담금으로써 적어도 하나의 나노구조물(1214)을 노출 영역에 자기 조립시킬 수 있다. 다른 실시예에 있어서, 제1 기판(1231)을 나노구조물들을 구비한 용액에 담그고, 용액과 제1 기판(1231) 사이에 바이어스 전압을 인가하는 방식으로 적어도 하나의 나노구조물(1214)을 노출 영역에 자기 조립시킬 수 있다. 이러한 담금 공정은 도 8 또는 9에 표현된 담금 공정과 유사하므로, 이에 대한 상세한 설명은 설명의 편의상 생략한다. 적어도 하나의 나노구조물(1214)을 노출 영역에 자기 조립시키면, 적어도 하나의 나노구조물(1214)은 노출 영역의 길이 방향(L)으로 정렬될 수 있다. 노출 영역의 폭(W)이 좁을수록, 적어도 하나의 나노구조물(1214)이 길이 방향(L)으로 정렬되는 정도가 커질 수 있다. 예를 들면, 노출 영역의 폭(W)은 적어도 하나의 나노구조물(1214)의 평균 길이의 1/2 미만일 수 있다.
도 14 및 15를 참조하면, 제1 전극(1212) 및 제2 전극(1213)을 형성한 후에, 적어도 하나의 나노구조물(1214)을 제1 기판(1231)의 노출 영역에 부착시키는 예가 표현되어 있다. 다르게는, 적어도 하나의 나노구조물(1214)을 제1 기판(1231)의 노출 영역에 부착시킨 후에, 제1 전극(1212) 및 제2 전극(1213)을 형성할 수도 있다.
도 16을 참조하면, 제1 기판(1231) 상에 유동성 물질(1234)을 도포하고, 경화시킨다. 유동성 물질(1234)의 경화에 의하여 중합체인 제2 기판(1211)이 형성된다.
도 17을 참조하면, 유동성 물질(1234)을 경화시킴으로써 얻어진 제2 기판(1211)을 제1 기판(1231)으로부터 분리함으로써 제1 전극(1212), 제2 전극(1213) 및 적어도 하나의 나노구조물(1214)을 제1 기판(1231)으로부터 제2 기판(1211)으로 전이시킨다.
상술한 바와 같이, 비극성 분자 층 패턴(1233) 사이에 드러난 제1 기판(1231)의 표면(bare surface)에 적어도 하나의 나노구조물(1214)이 부착될 수 있다. 제1 기판(1231)의 표면은 자연적으로 분극되어 있으므로, 도 4 내지 11과 관련되어 상술한 극성 분자 층 패턴(432)과 마찬가지로 작용할 수 있다. 즉, 나노구조물(1214)이 비극성 분자 층 패턴(1233)에 부착되지 않고, 제1 기판(1231)의 노출 영역에 부착되어, 노출 영역의 길이 방향으로 정렬될 수 있다.
도 18 내지 25는 회로 기판 제조 방법의 제3 예의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다. 각 도면의 단면도는 평면도의 A-A’선에 따른 단면도이다.
도 18을 참조하면, 제1 기판(1831)을 준비한다.
도 19를 참조하면, 제1 기판(1831) 상에 릴리스 층(1835)을 형성한다. 릴리스 층(1835)은 이후의 공정에서 제1 기판(1831) 상에 형성되는 적어도 하나의 나노구조물(1814)이 제2 기판(1811)으로 더 잘 전사되도록 하는 기능을 수행한다. 릴리스 층(1835)의 재료로서 말단에 메틸기를 가진 비극성 물질이 사용될 수 있다. 몇몇 실시예들에 있어서, 릴리스 층(1835)은 생략될 수도 있다.
도 20을 참조하면, 릴리스 층(1835) 상에 제1 전극(1812) 및 제2 전극(1813)을 형성한다. 제1 전극(1812) 및 제2 전극(1813)의 물질로서 제1 예에서 상술한 바와 같이 다양한 물질이 사용될 수 있다. 도 20에는 제1 전극(1812) 및 제2 전극(1813) 각각이 금(Au) 층(1821) 및 팔라듐(Pd) 층(1822)을 구비하는 다층 구조를 가지는 예가 표현되어 있다.
도 21을 참조하면, 제1 기판(1831) 상에 희생 층 패턴(1836)을 형성한다. 릴리스 층(1835)의 일부 영역, 제1 전극(1812) 및 제2 전극(1813)이 노출되도록 희생 층 패턴(1836)을 형성한다. 희생 층 패턴(1836)의 재료는 예를 들면 포토레지스트일 수 있다.
도 22를 참조하면, 제1 기판(1831)을 나노구조물들을 구비한 용액에 담그어 제1 기판(1831) 상에 적어도 하나의 나노구조물(1814)을 부착시킨다.
도 23을 참조하면, 희생 층 패턴(1836)을 제거함으로써, 희생 층 패턴(1836) 상에 부착된 나노구조물들을 제거한다. 또한, 나노구조물들은 릴리스 층(1835)에 부착되지 아니하므로, 희생 층 패턴(1836)을 제거하는 과정에 릴리스 층(1835) 상 에 부착된 나노구조물들도 제거될 수 있다. 따라서, 나노구조물들은 제1 전극(1812) 및 제2 전극(1813)과 정전기적으로 결합하므로, 제1 전극(1812) 또는 제2 전극(1813)에 부착된 적어도 하나의 나노구조물(1814)만이 제거되지 아니한다. 희생 층 패턴(1836)으로 포토레지스트가 사용된 경우, 아세톤 등의 용매를 사용하여 희생 층 패턴(1836)을 제거할 수 있다.
도 24를 참조하면, 제1 기판(1831) 상에 유동성 물질(1834)을 도포하고, 경화시킨다. 유동성 물질(1834)의 경화에 의하여 중합체인 제2 기판(1811)이 형성된다.
도 25를 참조하면, 유동성 물질(1834)을 경화시킴으로써 얻어진 제2 기판(1811)을 제1 기판(1831)으로부터 분리함으로써 제1 전극(1812), 제2 전극(1813) 및 적어도 하나의 나노구조물(1814)을 제1 기판(1831)으로부터 제2 기판(1811)으로 전이시킨다.
상술한 회로 기판의 제조방법에 따르면, 자기조립을 이용한 간단한 공정에 의해 중합체 기판에 나노구조물이 정렬된 회로를 형성할 수 있다. 따라서 비용이 저렴하고, 웨이퍼-스케일과 같은 대면적에도 적용가능하며, 대량 생산이 용이하다.
이상에서 살펴본 바와 같이 본 개시된 기술의 다양한 실시예에 대해 상세히 기술하였지만, 해당 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 개시된 기술의 정신 및 범위를 벗어나지 않으면서 본 개시된 기술을 여러 가지로 변형하여 실시할 수 있음을 이해할 수 있을 것이다.
도 1은 일 실시예에 따른 회로 기판의 사시도를 나타내는 도면이다.
도 2는 도 1에 표현된 회로 기판의 평면도(도 2의 (a)) 및 단면도(도 2의 (b))를 나타내는 도면이다.
도 3은 일 실시예에 따른 회로 기판의 제조 방법를 설명하기 위한 흐름도이다.
도 4 내지 11은 일 실시예에 따른 회로 기판 제조 방법의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다.
도 12 내지 17은 다른 실시예에 따른 회로 기판 제조 방법의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다.
도 18 내지 25는 또 다른 실시예에 따른 회로 기판 제조 방법의 각 단계를 나타내는 도면이다. 각 도면의 (a)는 평면도이고 (b)는 단면도이다.

Claims (31)

  1. (a) 제1 기판을 준비하는 단계;
    (b) 상기 제1 기판 상에 회로-상기 회로는 제1 전극, 제2 전극 및 적어도 하나의 나노구조물을 구비함-를 형성하는 단계; 및
    (c) 상기 회로를 상기 제1 기판으로부터 중합체인 제2 기판의 표면으로 전이시키는 단계를 포함하는 회로 기판 제조 방법.
  2. 제1 항에 있어서,
    상기 제2 기판은 유연성 기판인 회로 기판 제조 방법.
  3. 제1 항에 있어서,
    상기 제2 기판은 실리콘 고분자 기판인 회로 기판 제조 방법.
  4. 제1 항에 있어서,
    상기 제2 기판은 폴리디메틸실록산 기판인 회로 기판 제조 방법.
  5. 제1 항에 있어서,
    상기 제1 기판은 반도체, 금속, 유리 또는 산화물 기판인 회로 기판 제조 방법.
  6. 제1 항에 있어서,
    상기 적어도 하나의 나노구조물은 나노튜브, 나노와이어 또는 나노로드를 구비하는 회로 기판 제조 방법.
  7. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 (c) 단계는
    (c1) 상기 회로가 형성된 상기 제1 기판 상에 유동성 물질을 도포하는 단계;
    (c2) 상기 회로가 형성된 상기 제1 기판 상에 도포된 유동성 물질을 경화시키는 단계;
    (c3) 상기 유동성 물질을 경화시킴으로써 얻어진 상기 제2 기판을 상기 제1 기판으로부터 분리함으로써 상기 회로를 상기 제1 기판으로부터 상기 제2 기판으로 전이시키는 단계를 포함하는 회로 기판 제조 방법.
  8. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 (b) 단계는
    (b1) 상기 제1 기판 상에 극성 분자 층 패턴과 비극성 분자 층 패턴을 형성하는 단계; 및
    (b2) 상기 적어도 하나의 나노구조물을 상기 극성 분자 층 패턴에 자기 조립시키는 단계를 포함하는 회로 기판 제조 방법.
  9. 제8 항에 있어서,
    상기 (b) 단계는
    (b3) 상기 극성 분자 층 패턴 상에 상기 제1 전극 및 상기 제2 전극을 형성하는 단계를 더 포함하는 회로 기판 제조 방법.
  10. 제8 항에 있어서,
    상기 (b2) 단계에 있어서, 상기 제1 기판을 나노구조물들을 구비한 용액에 담금으로써 상기 적어도 하나의 나노구조물이 상기 극성 분자 층 패턴에 자기 조립되는 회로 기판 제조 방법.
  11. 제10 항에 있어서,
    상기 (b2) 단계에 있어서, 상기 용액 및 상기 제1 기판 사이에 바이어스 전압을 인가하는 회로 기판 제조 방법.
  12. 제8 항에 있어서,
    상기 비극성 분자 층 패턴은 메틸-말단의 화합물을 구비한 단분자 층 패턴인 회로 기판 제조 방법.
  13. 제8 항에 있어서,
    상기 극성 분자 층 패턴은 아미노-말단 또는 카복실-말단의 화합물을 구비한 단분자 층 패턴인 회로 기판 제조 방법.
  14. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 (b) 단계는
    (b1) 상기 제1 기판 상면에 비극성 분자 층 패턴을 형성하는 단계; 및
    (b2) 상기 제1 기판의 상면 중 상기 제1 기판이 노출된 노출 영역에 상기 적어도 하나의 나노구조물을 자기 조립시키는 단계를 포함하는 회로 기판 제조 방법.
  15. 제14 항에 있어서,
    상기 (b) 단계는
    (b3) 상기 제1 기판 상에 상기 제1 전극 및 상기 제2 전극을 형성하는 단계를 더 포함하는 회로 기판 제조 방법.
  16. 제14 항에 있어서,
    상기 (b2) 단계에 있어서, 상기 제1 기판을 나노구조물들을 구비한 용액에 담금으로써 상기 적어도 하나의 나노구조물이 상기 노출 영역에 자기 조립되는 회로 기판 제조 방법.
  17. 제16 항에 있어서,
    상기 (b2) 단계에 있어서, 상기 용액 및 상기 제1 기판 사이에 바이어스 전압을 인가하는 회로 기판 제조 방법.
  18. 제14 항에 있어서,
    상기 비극성 분자 층 패턴은 메틸-말단의 화합물을 구비한 단분자 층 패턴인 회로 기판 제조 방법.
  19. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 (b) 단계는
    (b1) 상기 제1 기판 상에 희생 층 패턴을 형성하는 단계;
    (b2) 상기 제1 기판 상에 나노구조물들을 도포하는 단계; 및
    (b3) 상기 희생 층 패턴을 제거함으로써, 상기 나노구조물들 중 상기 희생 층 패턴 상에 형성된 나노구조물들을 제거하는 단계를 포함하는 회로 기판 제조 방법.
  20. 제19 항에 있어서,
    상기 희생 층 패턴은 포토레지스트 패턴인 회로 기판 제조 방법.
  21. 제19 항에 있어서,
    상기 (a) 단계와 상기 (b) 단계 사이에 수행되는
    (d) 상기 기판 상에 릴리스 층을 형성하는 단계를 더 포함하는 회로 기판 제조 방법.
  22. 제21 항에 있어서,
    상기 릴리스 층은 메틸-말단의 화합물을 구비한 단분자 층인 회로 기판 제조 방법.
  23. 중합체 기판;
    상기 중합체 기판의 표면에 위치한 제1 전극 및 제2 전극; 및
    상기 제1 전극 및 상기 제2 전극에 전기적으로 연결된 적어도 하나의 나노구조물;을 구비하되, 상기 적어도 하나의 나노구조물은 상기 적어도 하나의 나노구조물에 의하여 형성된 패턴의 길이 방향으로 정렬된 회로 기판.
  24. 제23 항에 있어서,
    상기 중합체 기판은 유연성 기판인 회로 기판.
  25. 제23 항에 있어서,
    상기 중합체 기판은 실리콘 고분자 기판인 회로 기판.
  26. 제23 항에 있어서,
    상기 중합체 기판은 폴리디메틸실록산 기판인 회로 기판.
  27. 제23 항에 있어서,
    상기 적어도 하나의 나노구조물이 전선(electric line)으로서 사용되는 회로 기판.
  28. 제23 항에 있어서,
    상기 회로 기판이 센서로서 사용되는 회로 기판.
  29. 제23 항에 있어서,
    상기 적어도 하나의 나노구조물의 적어도 일부분은 상기 중합체 기판의 내부에 위치한 회로 기판.
  30. 제23 항에 있어서,
    상기 적어도 하나의 나노구조물은 나노튜브, 나노와이어 또는 나노로드를 구비하는 회로 기판.
  31. 제23 항 내지 제30 항 중 어느 한 항에 있어서,
    상기 패턴의 길이 방향과 45도 이하의 각도를 가지는 나노구조물의 개수가 길이 방향과 45도 초과의 각도를 가지는 나노구조물의 개수의 2배 이상인 회로 기 판.
KR1020080076382A 2008-08-05 2008-08-05 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법 KR101071325B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020080076382A KR101071325B1 (ko) 2008-08-05 2008-08-05 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법
US12/234,529 US8245393B2 (en) 2008-08-05 2008-09-19 Method for fabricating a circuit board including aligned nanostructures
US13/366,184 US20120132459A1 (en) 2008-08-05 2012-02-03 Circuit board including aligned nanostructures
US14/622,092 US20150181704A1 (en) 2008-08-05 2015-02-13 Circuit board including aligned nanostructures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080076382A KR101071325B1 (ko) 2008-08-05 2008-08-05 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20100016766A true KR20100016766A (ko) 2010-02-16
KR101071325B1 KR101071325B1 (ko) 2011-10-07

Family

ID=41651853

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080076382A KR101071325B1 (ko) 2008-08-05 2008-08-05 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법

Country Status (2)

Country Link
US (3) US8245393B2 (ko)
KR (1) KR101071325B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223475B1 (ko) * 2010-07-30 2013-01-17 포항공과대학교 산학협력단 탄소 나노 튜브 필름의 제조 방법 및 탄소 나노 튜브 필름 기반 센서

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136976B2 (ja) * 2007-09-12 2013-02-06 独立行政法人産業技術総合研究所 バナジウム酸化物薄膜パターン及びその作製方法
US8178787B2 (en) * 2008-08-26 2012-05-15 Snu R&Db Foundation Circuit board including aligned nanostructures
US9273004B2 (en) * 2011-09-29 2016-03-01 International Business Machines Corporation Selective placement of carbon nanotubes via coulombic attraction of oppositely charged carbon nanotubes and self-assembled monolayers
KR101402989B1 (ko) * 2013-06-12 2014-06-11 한국과학기술연구원 기판과의 결합력이 향상된 탄소나노튜브 기반 전계효과트랜지스터 소자의 제조방법 및 이에 의하여 제조된 탄소나노튜브 기반 전계효과트랜지스터 소자
CN103424438A (zh) * 2013-09-04 2013-12-04 浙江工商大学 一种适用于明虾的镀钯多壁碳纳米管嗅觉传感器
WO2015156661A1 (en) * 2014-04-07 2015-10-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method of producing a patterned nanowires network
KR102042137B1 (ko) 2014-05-30 2019-11-28 한국전자통신연구원 전자장치 및 그 제조 방법
CN104287698B (zh) * 2014-09-16 2016-04-06 苏州能斯达电子科技有限公司 用于颈部脉搏检测的柔性可贴附传感器及其制备方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6472705B1 (en) * 1998-11-18 2002-10-29 International Business Machines Corporation Molecular memory & logic
US7956525B2 (en) * 2003-05-16 2011-06-07 Nanomix, Inc. Flexible nanostructure electronic devices
US6905655B2 (en) * 2002-03-15 2005-06-14 Nanomix, Inc. Modification of selectivity for sensing for nanostructure device arrays
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
AU2003295889A1 (en) 2002-11-22 2004-06-18 Florida State University Depositing nanowires on a substrate
AU2003298716A1 (en) * 2002-11-27 2004-06-23 Molecular Nanosystems, Inc. Nanotube chemical sensor based on work function of electrodes
US6918284B2 (en) * 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7232771B2 (en) * 2003-11-04 2007-06-19 Regents Of The University Of Minnesota Method and apparatus for depositing charge and/or nanoparticles
EP1578173A1 (en) 2004-03-18 2005-09-21 C.R.F. Società Consortile per Azioni Light emitting device comprising porous alumina and manufacturing process thereof
US8333948B2 (en) * 2004-10-06 2012-12-18 The Regents Of The University Of California Carbon nanotube for fuel cell, nanocomposite comprising the same, method for making the same, and fuel cell using the same
DE102005038121B3 (de) 2005-08-11 2007-04-12 Siemens Ag Verfahren zur Integration funktioneller Nanostrukturen in mikro- und nanoelektrische Schaltkreise
JP4149507B2 (ja) 2005-09-29 2008-09-10 松下電器産業株式会社 電子回路構成部材のマウント方法およびマウント装置
WO2007047523A2 (en) * 2005-10-14 2007-04-26 Pennsylvania State University System and method for positioning and synthesizing of nanostructures
JP2007158117A (ja) 2005-12-06 2007-06-21 Canon Inc ナノワイヤ配列基板の製造方法及びこれを用いた電気素子の製造方法
JP2007158119A (ja) 2005-12-06 2007-06-21 Canon Inc ナノワイヤを有する電気素子およびその製造方法並びに電気素子集合体
KR100842886B1 (ko) 2006-04-04 2008-07-02 재단법인서울대학교산학협력재단 나노선을 이용한 식품 첨가물 l-글루타민산나트륨 검출용바이오센서 및 이의 제조 방법
KR20070112733A (ko) 2006-05-22 2007-11-27 재단법인서울대학교산학협력재단 자기조립법을 이용한 나노구조의 정렬방법 및 그 응용방법
JP2007329351A (ja) 2006-06-08 2007-12-20 Sharp Corp 細線状構造物集合体およびそれを備えた電子デバイス、それらの製造方法、および細線状構造物の配向方法
CN101501481B (zh) 2006-08-07 2013-11-13 首尔大学校产学协力团 纳米结构传感器
DE102007001743A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Halbleiterlaser und Verfahren zur Herstellung eines solchen
KR100829573B1 (ko) 2006-11-02 2008-05-14 삼성전자주식회사 전자소자 및 전계효과 트랜지스터와 그 제조방법
WO2008068752A2 (en) * 2006-12-04 2008-06-12 Ramot At Tel Aviv University Ltd. Formation of organic nanostructure array
KR101287735B1 (ko) * 2006-12-08 2013-07-18 엘지디스플레이 주식회사 박막 트랜지스터의 제조 방법 및 이를 이용한액정표시장치의 제조 방법
US7821061B2 (en) * 2007-03-29 2010-10-26 Intel Corporation Silicon germanium and germanium multigate and nanowire structures for logic and multilevel memory applications
US8980991B2 (en) * 2007-06-08 2015-03-17 Xerox Corporation Intermediate transfer members comprised of hydrophobic carbon nanotubes
US7736979B2 (en) * 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7427238B1 (en) * 2007-07-26 2008-09-23 Oprandi Arthur V Golf club swinging guide
KR101319499B1 (ko) * 2008-02-22 2013-10-17 엘지디스플레이 주식회사 화학적 자기조립 방법을 이용한 나노선 혹은탄소나노튜브의 적층 및 패턴형성 방법과, 이를 적용한액정표시장치의 제조방법
US8198706B2 (en) * 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
US8178787B2 (en) * 2008-08-26 2012-05-15 Snu R&Db Foundation Circuit board including aligned nanostructures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223475B1 (ko) * 2010-07-30 2013-01-17 포항공과대학교 산학협력단 탄소 나노 튜브 필름의 제조 방법 및 탄소 나노 튜브 필름 기반 센서
US8399279B2 (en) 2010-07-30 2013-03-19 Postech Academy-Industry Foundation Fabrication method of carbon nanotube film and sensor based on carbon nanotube film

Also Published As

Publication number Publication date
US20150181704A1 (en) 2015-06-25
KR101071325B1 (ko) 2011-10-07
US20120132459A1 (en) 2012-05-31
US8245393B2 (en) 2012-08-21
US20100032197A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
KR101071325B1 (ko) 정렬된 나노구조물을 구비한 회로 기판 및 그 제조 방법
Park et al. Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles
US9607725B2 (en) Graphene structure, method for producing the same, electronic device element and electronic device
US8216636B2 (en) Method of aligning nanotubes
KR101039630B1 (ko) 기판 상에 나노구조체를 선택적으로 위치시키는 방법 및 이에 의해 형성된 나노구조체를 포함하는 나노-분자 소자
JP2007129227A (ja) 電子装置の製造方法、巻き取り製造工程、薄膜トランジスタ及び塗布装置
KR102129399B1 (ko) 나노엘리먼트들의 직접 어셈블리 및 전사를 위한 다마신 템플레이트
KR100702531B1 (ko) 나노와이어 소자 및 제조방법
US20100035186A1 (en) Manufacturing a graphene device and a graphene nanostructure solution
KR20070112733A (ko) 자기조립법을 이용한 나노구조의 정렬방법 및 그 응용방법
WO2007105405A1 (ja) 異方性形状部材のマウント方法およびマウント装置と、電子デバイスの製造方法と、電子デバイスと、表示装置
KR20110138478A (ko) 나노와이어 소자를 임의 형태로 프린팅하여 나노 소자를 제조하는 방법 및 상기 방법에 사용되는 중간체 빌딩 블록
US7504014B2 (en) High density interconnections with nanowiring
JP5546424B2 (ja) 整列したナノ構造物を含む回路基板
KR100963204B1 (ko) 플렉시블 투명전극 제조 방법
KR101682915B1 (ko) 투명전극 기반의 유전영동 소자 제조 방법
US20100101713A1 (en) Printing mold and manufacturing method thereof, and method of forming thin film pattern using the same
JP2008258532A (ja) 薄膜トランジスタの製造方法及びその製造方法により製造された薄膜トランジスタ。
KR101029995B1 (ko) 대전된 물질을 이용한 1 차원 또는 2 차원 전도성 나노선의 고집적 방법 및 그에 의한 전도성 집적 나노선
Xiong et al. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates
US7709298B2 (en) Selectively altering a predetermined portion or an external member in contact with the predetermined portion
Selvarasah et al. A three dimensional multi-walled carbon nanotube based thermal sensor on a flexible parylene substrate
KR100841457B1 (ko) 오산화이바나듐 나노선 패턴 및 금나노입자 패턴을 포함하는 나노회로의 제조방법
Cho Development of high-rate nano-scale offset printing technology for electric and bio applications
KR20140083627A (ko) 투명전극 기반의 유전영동 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140828

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 8