KR20090024271A - 알칼리 금속 산화물을 포함하는 광섬유 - Google Patents

알칼리 금속 산화물을 포함하는 광섬유 Download PDF

Info

Publication number
KR20090024271A
KR20090024271A KR1020097001210A KR20097001210A KR20090024271A KR 20090024271 A KR20090024271 A KR 20090024271A KR 1020097001210 A KR1020097001210 A KR 1020097001210A KR 20097001210 A KR20097001210 A KR 20097001210A KR 20090024271 A KR20090024271 A KR 20090024271A
Authority
KR
South Korea
Prior art keywords
core
optical fiber
ppm
alkali metal
metal oxide
Prior art date
Application number
KR1020097001210A
Other languages
English (en)
Inventor
로스티슬라프 알 크랍코
하젤 비 Ⅲ 매튜
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20090024271A publication Critical patent/KR20090024271A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/29Segmented core fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 실리카계 코어에 있어서, 상기 코어에서 50 중량ppm내지 500중량ppm의 평균 농도를 갖는 K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹에서 선택된 알칼리 금속 산화물을 포함하고, 염소 및 불소를 더 포함하며, 상기 코어에서 불소의 평균 농도는 코에에서 알칼리 금속 산화물의 평균 농도를 초과하고, 코어에서 염소의 평균 농도는 코어에서 알칼리 금속 산화물의 농도를 초과하는 것을 특징으로 하는 실리카계 코어; 및 상기 코어를 둘러싸고 직접적으로 코어에 인접한 실리카계 클래딩을 포함하는 광섬유에 관한 것이다. 코어 및 클래딩에서 적절한 알칼리 금속 산화물 도펀트의 농도 선택에 의하여, 낮은 광섬유 손실을 얻을 수 있다.
광섬유, 실리카계 코어, 알칼리 금속 산화물

Description

알칼리 금속 산화물을 포함하는 광섬유{OPTICAL FIBER CONTAINING ALKALI METAL OXIDE}
관련된 출원의 상호-참조(Cross-Reference to Related Applications)
본 출원은 그 전체가 본 명세서에 참고문헌으로 인용된 2006년 6월 21일에 출원된 미국 가출원 제60/815,732 및 2006년 8월 29일에 출원된 미국 가출원 제60/840,807의 우선권을 주장한다.
본 발명은 알칼리 금속 산화물로 도핑된(doped) 광섬유 및 이의 제조 방법 및 장치에 관한 것이다.
감쇠(attenuation)는 광섬유의 특성을 제한하는 특성이다. 광섬유 손실은, 예를들어, 광섬유 앰프 사이의 제한 거리의 설정에 있어서 중요한 역할을 한다. 이것은 예를들어, 앰프가 상당한 시스템 비용을 나타내는 해저에서의 사용과 같은 긴 거리 및 극단적으로 긴 거리의 네트워크에서 특히 중요할 뿐만아니라, 시스템 신뢰도에 있어서도 중요한 요소이다. 따라서 가능한한 낮은 수준으로 감쇠를 감소시키는 것에 중대한 상업적인 요구가 존재한다.
본 발명의 하나의 넓은 측면은 불소, 염소, 및 K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹 중 선택된 알칼리 금속 산화물을 포함하는 실리카계 코어(silica based core)를 갖는 광섬유(optical fiber)에 관한 것이다. 상기 알칼리 금속 산화물은 상기 코어에서 바람직하게는 약 50에서 500 중량ppm, 더 바람직하게는 100에서 300 중량ppm 사이의 평균 농도로 코어에 존재하는 것이 바람직하다. 상기 코어에서 불소의 평균 농도는 바람직하게는 코어에서의 알칼리 금속 산화물의 농도을 초과하고, 상기 코어에서 염소의 평균 농도는 마찬가지로 바람직하게는 상기 코어에서 알칼리 금속 산화물의 평균 농도를 초과한다.
본 명세서에서 사용되는 평균농도는 전체 코어에서의 평균 농도를 의미한다. 따라서, 예를들어, 만일 퍼센트의 코어 내부의 K2O가 300 중량ppm이고, 50 퍼센트의 코어 외부의 K2O가 400 중량ppm이라면, 코어에서 K2O의 평균 농도는 350 중량ppm일 것이다.
상기 섬유의 코어는 바람직하게는 상기 코어에서 약 750 중량ppm 초과의 염소를 포함한다. 클래딩(cladding)은 상기 코어를 둘러싸고 직접적으로 코어에 인접한 실리카계 클래딩이다. 상기 클래딩은 바람직하게는 약 10000 ppm을 초과한 양의 불소를 포함한다. 상기 코어는 게르마늄을 본질적으로 가지지 않고, 더욱 바람직하게는 상기 코어는 게르마늄을 가지지 않는다.
일구체예에서, 상기 섬유의 코어는 상기 코어의 중앙선(centerline)을 따라 위치한, 100 ppm 미만의 양의 염소를 포함하는 제1영역, 및 상기 제1영역을 둘러싸는, 염소함량이 100 ppm을 초과하는 제2영역을 포함한다. 상기 제1영역은 또한 바람직하게는 상기 제2영역의 최소 불소 함량 이상의 최대 불소량을 포함한다.
상기 코어에서의 염소의 평균 농도는 바람직하게는 500 ppm 초과, 더욱 바람직하게는 750 ppm 초과, 더욱 바람직하게는 1000 ppm초과, 그리고 가장 바람직하게는 약 1500 ppm 초과한다. 상기 코어에서 불소의 평균 농도는 바람직하게는 500 ppm 초과, 더 바람직하게는 750 ppm 초과, 더 더욱 바람직하게는 1000 ppm 초과, 그리고 가장 바람직하게는 약 1500 ppm 초과한다.
본 명세서에서 개시된 상기 알칼리 금속 산화물(alkali metal oxide) 도핑 테크닉의 사용에 의하여, 광섬유는 1310 nm에서 약 0.30 dB/km 미만 및 1550 nm에서 약 0.175 dB/km 미만, 바람직하게는 1550 nm에서 약 0.170 dB/km 미만, 더욱 바람직하게는 1550 nm에서 약 0.16 dB/km 미만의 감쇠 손실을 나타내도록 만들어질 수 있다.
바람직하게는, 상기 광섬유의 코어 및 클래딩 모두는 알칼리 금속 산화물 도펀트(dopant)를 포함한다. 상기 광섬유의 클래딩 유리(cladding glass)는 불소(F)를 포함할 수 있다. 상기 광섬유는 하나 이상의 코어 세그먼트(segment)를 갖고, 일정 바람직한 구체예에서는, 상기 광섬유는 다수의 코어 세그먼트를 갖는다. 상기 광섬유의 모드 필드(mode field) 반경과 동일한 반경에서 상기 알칼리 금속 산화물 농도는 바람직하게는 약 0.001 중량% 초과한다.
본 발명은 K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹에서 선택된 알칼리 금속 산화물을 포함하고, 20 ppb 미만의 OH를 포함하는 코어를 갖는 광섬유를 제안한다.
본 발명의 추가적인 특징 및 장점은 다음에 이어지는 상세한 설명에서 설명될 것이고, 이는 상세한 설명, 청구항 및 첨부된 도면을 포함하는 본 명세서에 설명된 설명으로부터 또는 본발명의 실시예에 의하여 당업자에게 쉽게 이해될 것이다.
앞서의 일반적 설명 및 이어지는 상세한 설명 모두는 본 발명의 구체예를 나타내고, 청구된 바와 같이 본 발명의 성질 및 특성의 이해를 위해 개요 또는 개관이 제공될 것이다. 첨부된 도면은 본 발명의 추가적인 이해를 제공하기 위하여 포함되고, 본 상세한 설명에 포함되고 일부를 이룬다. 상기 도면은 본 발명의 다양한 구체예를 나타나고, 상세한 설명과 함께 본 발명의 원리 및 운용을 설명한다. 바람직하게, 동일한 부분은 동일하게 번호를 정하였다.
본 발명은 낮은 손실의 광섬유 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 알칼리 금속 산화물 도펀트로 도핑된 광섬유 및 상기 광섬유 및 관련된 프리폼(preform)의 제조 방법에 관한 것이다. 본 명세서에서 사용되는 다음의 문구들은 다음의 의미를 갖는다:
- 상기 모드필드 직경은 단일-모드 광섬유의 엔드페이스(endface)에 걸쳐 광 파워(optical power)의 기준이고,
Figure 112009003665968-PCT00001
로서 표현된다. 여기서 2ω0은 모드필드 직경(그러므로 ω0는 모드필드 반경이다)이고, λ는 빛의 파장을 의미하고, Φ는 방사패턴(radiation pattern)의 중심에 대한 각도이고, 상기 적분은 바람직하게는 0°로부터 90°까지 수행된다. 모드필드 직경은, 예를들어, 테스트 절차 ANSI/TIA/EIA-455-191-A-2001에 따라 측정될 수 있다.
- 유효 영역(effective area)은
Figure 112009003665968-PCT00002
이고, 여기서 상기 적분 극한은 0에서 ∞이고, E는 전파된 빛과 관련된 전기장이다.
- 상대 굴절률,△,은 식 △i = (ni 2 - nc 2)/2ni 2에 의하여 정의되고, 여기서 ni는 i부분의 인덱스 프로파일의 최대 굴절률이고, nc는 일반적으로 상기 클래딩 층의 최소 인덱스로 취하여지는 기준 영역에서의 굴절률이다. 상기 상대 굴절률은 일반적으로 퍼센트로서 표현되고 본 명세서에서는 %△로 표시된다. 다른 지적이 없다면, %△는 상기클래딩의 최소굴절률에 대한 상기 코어의 최대 상대 굴절률을 나타낸다.
- 굴절률 프로파일(refractive index profile) 또는 간단히 인덱스(index) 프로파일은 %△ 및 상기 광섬유, 전형적으로 상기 코어의 선택된 부분의 반경 사이의 관계이다.
- 알파 프로파일은 다음 식을 따르는 코어 굴절률 프로파일을 말한다,
n(r) = n0(1-[r/a]α) (3)
여기서 r은 코어 반경이고, a는 프로파일에서 마지막 포인트이고, r은 프로파일의 첫번째 포인트에서 0으로 선택되고, n0는 대상 코어 영역의 최대 굴절률이고, α는 상기 코어 프로파일 형태로 정의되는 지수이다. 다른 보통의 코어 굴절률 프로파일 형태는 스텝 인덱스(step index), 사다리꼴 인덱스(strapezoidal index) 및 원형 스텝 인덱스, 상기 원형은 빠른 굴절률 변화 영역에서 도펀트의 분산에 의한 것이다.
- 코어는 일반적으로 상기 클래딩에 비하여 높은 굴절률을 갖는 광섬유의 부분을 말하고, 투과된 광 파워가 두드러지게 코어를 통하여 전달된다. 상기 코어는 하나 이상의 세그먼트를 포함할 수 있다. 개개의 코어 세그먼트는 순수 실리카 이상, 또는 미만의 굴절률을 가질 수 있다.
- "ppm"은 다른 명확한 지적이 없는 경우 백만분의 1 중량 또는 "중량ppm(ppm by weight)", 또는 "ppm by wt."을 의미하고, 중량 퍼센트(wt %)로 측정된 것은 10,000을 곱하여 ppm으로 변환할 수 있다.
본 명세서에서 개시된 상기 광섬유는 코어 및 코어를 둘러싸고 직접적으로 코어에 인접한 클래딩을 포함한다. 바람직하게는, 상기 코어는 게르마니아(germania)를 본질적으로 포함하지 않고, 더욱 바람직하게는 상기 코어는 게르마니아를 포함하지 않는다.
일정의 바람직한 구체예에서, 상기 코어는 단일 코어 세그먼트, 즉 중심 코어 세그먼트 및 도 1 및 상기에 설명된 스텝, 원형, 알파 또는 사다리꼴 형태를 갖는 프로파일과 같은 도 1의 나타난 프로파일의 변화에 의하여 대표되는, 코어 세그먼트를 둘러싸고 코어 세그먼트에 직접적으로 인접한 클래딩으로 이루어지고, 여기서 상기 중심 코어 세그먼트는 상기 클래딩에 비하여 양(positive)의 상대 굴절률 △1(r)을 갖는다. 다른 바람직한 구체예에서는, 상기 코어는 중심 코어 세그먼트 및 중심 코어를 둘러싸고 중심코어에 직접적으로 인접한 제1환형(the first annular) 코어 세그먼트와 같은 다수의 코어 세그먼트 및 제1환형 코어 세그먼트를 둘러싸고 제1환형 코어 세그먼트에 직접적으로 인접한 클래딩을 포함하고, 여기서 상기 중심 코어 세그먼트는 상기 클래딩에 비하여 음이 아닌(non-negative), 바람직하게는 양의 상대 굴절률 △1%(r)를 갖고, 제1환형 코어 세그먼트 순수 실리카는 상기 클래딩에 비하여 음이 아닌, 바람직하게는 양의 상대 굴절률 △2%(r)을 갖는다. 본 발명에 따른 광섬유의 하나의 대표적인 구체예는 도 2에 도시되어 있다. 도 2에 도시된 상기 섬유는 상기 코어 영역을 둘러싸는 불소로 도핑된 클래딩을 갖는, 0 내지 약 4마이크론으로 확장된 실리카계 코어 영역을 포함한다. 상기 코어 영역은 상기 코어에서 약 50 내지 500 중량ppm의 평균 농도로 K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹으로 부터 선택된 알칼리 금속 산화물을 포함한다. 상기 코어는 염소 및 불소를 더 포함한다. 바람직하게는, 상기 코어에서 불소의 평균 농도는 상기 코어에서 알칼리 금속 산화물의 평균 농도를 초과하고, 상기 코어에서 염소의 평균량은 상기 코어에서 알칼리 금속 산화물의 평균량을 초과한다. 상기 섬유는 또한 상기 코어를 둘러싸고 도 2에서 도시된 구체예에서는 직접적으로 코어에 인접한 실리카계 클래딩을 포함한다.
도시된 구체예에서, 상기 코어 영역은 상기 코어의 외부 영역(즉, 약 1 내지 4마이크론까지 확장된)에서의 염소의 평균 농도보다 낮은 염소의 평균 농도를 갖는 상기 코어의 중심선을 따라 위치한 제1중심 코어 영역(약 1 마이크론까지 확장되는)을 포함한다. 특히, 중심 코어에서 존재하는 염소의 평균 농도는 100 ppm 미만, 더 바람직하게는 50 ppm 미만이고, 상기 제1 영역을 둘러싸는 제2 또는 외부 코어 영역에서 염소의 평균 농도는 500 ppm 초과, 더욱 바람직하게는 750 ppm 초과, 더 더 바람직하게는 1000 ppm 초과, 그리고 가장 바람직하게는 1500 ppm을 초과한다. 상기 코어 영역에서 염소의 피크 농도는 바람직하게는 500 ppm 초과, 더 바람직하게는 1000 ppm 초과, 가장 바람직하게는 1500 ppm을 초과한다.
상기 중심 코어 영역에서 불소의 평균 농도는 바람직하게는 500 ppm 초과, 더욱 바람직하게는 750 ppm 초과, 가장 바람직하게는 1000 ppm을 초과하고, 상기 제1영역을 둘러싸는 제2 또는 외부 코어 영역에서 불소의 평균 농도는 마찬가지로 바람직하게는 500 ppm 초과, 더욱 바람직하게는 750 ppm 초과, 가장 바람직하게는 1000 ppm을 초과한다.
전체 코어 영역에서 불소의 평균 농도는 바람직하게는 500 ppm 초과, 더 바람직하게는 750 ppm 초과, 가장 바람직하게는 1000 ppm을 초과하고, 바람직하게는 5000 ppm 미만, 더 바람직하게는 4000 ppm 미만이다. 도시된 구체예에서, 상기 제2 코어 영역에서 염소의 피크 농도는 상기 제2 코어 영역에서의 불소의 피크 농도보다 높다. 그러나 이러한 관계가 중요한 것은 아니다. 바람직하게는, 상기 코어 영역에서 염소 및 불소 모두의 평균 농도는 약 500 ppm 초과, 더 바람직하게는 약 750 ppm 초과, 가장 바람직하게는 약 1000 ppm을 초과한다.
바람직한 일정 구체예에서, 본 명세서에서 개시된 상기 광섬유는 단일 코어 세그먼트, 즉 중심 코어 세그먼트 및 상기 중심 코어 세그먼트를 둘러싸고 이에 직접적으로 인접한 클래딩을 포함하고, 여기서 상기 클래딩은 순수 실리카에 비하여 음의 굴절률을 갖고, 상기 코어는 불소, 및 20 내지 700 ppm, 바람직하게는 50 내지 500 ppm, 더욱 바람직하게는 100 내지 400 ppm의 농도를 갖는, K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹으로부터 선택된 금속 산화물을 포함한다: 여기서 상기 코어는 0.2 및 0.5% 사이, 바람직하게는 0.3 및 0.4% 사이의 피크 상대 굴절률(상기 클래딩과 비교하여), △MAX를 포함한다. 상기 광섬유는 SiO2 90 중량% 초과, 바람직하게는 95 중량% 이상을 포함한다.
바람직하게는, 상기 코어 및 상기 광섬유의 클래딩 모두는 알칼리 금속 산화물 도펀트를 포함한다. 상기 알칼리 금속 산화물은 바람직하게는 K, Na, Li, Cs, 또는 Rb, 또는 이들의 혼합물의 산화물이고, 더 바람직한 알칼리 금속 산화물은 K2O, Rb2O, Cs2O 또는 이들의 혼합물이고, 가장 바람직한 알칼리 금속 산화물은 K2O 이다. 바람직하게는, 상기 알칼리 금속 산화물은 상기 광섬유의 코어에서 피크 농도를 갖는다. 상기 알칼리 금속 산화물 농도는 광섬유의 반경에 걸쳐 방사적으로 다양하고, 일정 경우 상기 광섬유 반경의 적어도 일부 영역을 따라 상기 광섬유의 중심선으로부터 반경의 증가에 따른 함수로서 감소한다.
도 1은 단일 코어 세그먼트를 갖는 단일 모드 광섬유의 대표적인 굴절률 프로파일(10)뿐만 아니라, 본 발명의 실시에 의하여 얻을 수 있는 알칼리 금속 산화물의 대표적인 농도 프로파일(12)(반경의 함수로서 알칼리 금속 산화물 농도)을 보여준다. 상기 광섬유는 코어 세그먼트(14) 및 코어 세그먼트(14)를 둘러싸고 이에 직접적으로 인접한 클래딩 세그먼트(16)을 포함한다. 바람직하게는, 상기 알칼리 금속 산화물 농도는 반경의 함수로서 변한다. 바람직하게는, 상기 알칼리 금속 산화물의 농도는 일반적으로, 상기 광섬유의 적어도 일부분을 따라 상기 광섬유의 중심선으로부터의 반경의 증가에 대한 함수로 감소한다. 상기 광섬유의 코어 세그먼트(14)는 도 1에서 보듯이 스텝 형태를 갖을 수 있고,또는 코어 세그먼트(14)는 원형, 알파 또는 삼각형 형태를 갖을 수 있다.
본 발명의 섬유는 바람직하게는 본질적으로 코어에 게르마늄을 포함하지 않는다. 그 대신, 상기 광섬유의 클래딩은 상기 클래딩에 충분한 굴절률 감소 도펀트를 포함하여 도 1에서 도시된 것과 같은 굴절률 프로파일을 형성한다. 이러한 구체예에서, 상기 클래딩 세그먼트(16)의 굴절률은 순수 실리카보다 낮고, 물론 코어(14)보다도 낮다. 여기서 개시된 광섬유의 클래딩에 사용되는 바람직한 굴절률 감소 도펀트는 불소이다.
본 발명에 따른 하나의 구체예에서, 단일 모드 광섬유의 결과에 맞춘 도 1에서 개시된 것과 같은 상기 광섬유의 굴절률 프로파일은 바람직하게는 분산 파장,λ0을 갖지 않고, 1550 nm에서 약 0.07 ps/nm2/km 미만 , 더 바람직하게는 0.06 ps/nm2/km 미만의 분산 기울기, 및 1550 nm에서 약 15 ps/nm2/km초과, 더 바람직하게는 1550 nm에서 15 ps/nm2/km 및 20 ps/nm2/km 사이의 전체 분산을 갖는다. 그러나, 다른 굴절률 프로파일이 상기와 같은 성질을 달성하는데 사용될 수 있다. 바람직하게는, 상기 광섬유는 1500 nm 미만, 더욱 바람직하게는 1400 nm 미만, 가장 바람직하게는 1300 nm미만의 컷오프(cutoff) 파장을 갖는다. 바람직하게 상기 광섬유는 1550 nm에서 약 70 ㎛2초과 , 더 바람직하게는 80 ㎛2 초과하는 유효 영역을 갖는다. 상기 광섬유는 바람직하게는 약 3 ㎛ 초과, 더 바람직하게는 약 3 ㎛ 및 5 ㎛ 사이의 코어 반경, 및 1550 nm에서 약 9 ㎛ 초과, 더 바람직하게는 약 9.5 ㎛ 및 11 ㎛ 사이, 가장 바람직하게는 10 ㎛ 및 11 ㎛ 사이의 모드 필드 직경을 갖는다. 본 발명에 따라 알칼리 금속 산화물을 포함함에 의하여, 광섬유는 1310 nm에서 약 0.30 dB/km 미만 및 1550 nm에서 약 0.18 dB/km 미만, 더 바람직하게는 1550 nm에서 약 0.17 dB/km 미만, 가장 바람직하게는 1550 nm에서 약 0.16 dB/km 미만의 감쇠를 갖도록 만들어 질 수 있다.
알칼리 금속 산화물의 확산은 연신공정(draw process)동안 편리하게 조절될 수 있다. 설명된 방법에서 연신 상태의 변화에 의하여, 알칼리 금속 산화물 도펀트가 원하는 농도 프로파일에서 프리폼을 통하여 분산될 수 있다는 것을 알아냈었다. 바람직하게는, 상기 알칼리 금속 산화물 도펀트는 반지름에 대하여 상대적으로 선형의 관계를 가지고 확산된다. 알칼리 금속 산화물 도펀트의 확산은 부분적으로 도핑된 유리의 온도, 및 상기 온도에 유리가 머무르는 시간에 따라 달라지기 때문에, 이와 동일한 요소가 연신 공정동안 상기 알칼리 금속 산화물 확산 조절에 중요한 역할을 한다. 광섬유가 프리폼(및 상기 프리폼으로부터 연신된 상기 광섬유)가 연신 공정동안 노출된 시간 및 온도는 연신 속도, 연신(로(furnace)) 온도 및 광섬유 장력의 변화에 의하여 조절된다. 예를들어, 연식 속도의 증가는 연신 로에서 상기 광섬유 프리폼의 특정 부분의 체류시간을 감소시키고, 따라서 알칼리 금속 한솨물 도펀트가 상기 광섬유 프리폼으로 확산될 거리를 감소시킨다. 이것은 더 적은 알칼리 금속 산화물이 클래딩에 확산될수록, 따라서, 상기 광섬유의 코어에서 더 높은 알칼리 금속 산화물의 농도를 얻을 수 있다. 반대로, 연신 속도의 감소는 체류시간을 증가시키고, 따라서, 상기 알칼리 금속 산화물이 상기 광섬유의 클래딩에 더 확산되어, 상기 광섬유의 코어에서 알칼리 금속 산화물의 농도를 감소시킬 수 있다. 이와 비슷하게, 로 온도의 증가는 알칼리 금속 산화물의 확산 속도(rate)를 증가시겨, 알칼리 금속 산화물의 농도를 감소시킨다. 결과적으로, 연신 속도 및 로의 온도는 확산을 조절하는데, 따라서 최종 광섬유 내에서 알칼리 금속 산화물의 분산에 효과적으로 사용될 수 있다.
도 3에서 도시된 것은 본 발명의 구체예에 따른, 광섬유의 전구체인 적합한 실리카 유리 물품(article)에 알칼리 금속 산화물을 확산시킴에 의하여 알칼리-도핑된 광섬유를 제조하기위한 제1 방법(402)이다. 상기 방법(402)의 제1단계(401)는 도 3 및 4에서 보여지며 설명되어 있다. 종래의 외부 기상 증착법(outside vapor deposition process)의 도해인 도4에서, 수트 버너(soot burner)(156)는 수트 프리폼(160)의 형성을 위하여 맨드릴(mandrel)(144)위의 다수의 실리카 수트 층(162)을 증착시키는데 이용된다. 결과인 수트 프리폼은 그 이후 표준 염소 건조 기술을 사용하여 건조된다(단계403). 상기 수트는 후에 화합물(예를들어 SiF4)을 포함하는 불소의 대기에 상기 수트를 충분한 시간 및 온도에서 노출시킴에 의하여 불소로 도핑되어(단계 405) 건조 과정으로부터 남아있는 염소의 대부분 또는 전부를 제거한다. 불소-함유 대기(불소 스윕,fluorine sweep)에의 노출은 높은 수준의 불소가 도핑된 유리를 피하기 위하여 바람직하게는 약 1100 ℃이다. 낮은 수준의 불소 도핑이 요구된다. 즉, 예를들면 0.1 내지 0.4 중량%의 불소도핑이 요구된다. 생성된, 불소(및 잠재적으로 염소)가 도핑된 수트 튜브(tube)는 그 후에 고결된다(consolidated)(단계 407).
상기 고결된 유리 튜브는 그 이후 알칼리로 도핑된다(단계 404). 예를들어, 도 5에서 보듯이, 생성된 유리 튜브(106)는 바람직하게는 선반(유리가공 선반 또는 종래의 변형된 화학적 기체 흡착(MCVD) 유리 형성 선반과 같은)에서 척(chucks)사이에 먼저 장착(mounted)된다. 바람직하게는 알칼리 금속 제공 화합물(110)을 받기위한 환형 저장소(annular reservoir)는 저장소를 튜브에 접합(flame working) 또는 그렇지 않으면 용접(welding)함에 의한 튜브(106)의 벽에서 두개의 환형 목형(neck-like) 변형물(112)의 단조에 의하여 튜브(106)의 한 끝단에 가까운 곳에 형성된다. 저장소의 다른 형태가 사용될 수 있다. 바람직하게는, 상기 알칼리 금속의 결정화를 막기위하여, 튜브(106), 및 튜브(106)의 내부에 증착된 추가적인 유리가 본질적으로 염소를 가지지 않는 것이 바람직하다. 본질적으로 염소를 가지지 않는다는 것은 알칼리 염화물 결정에 의한 광학적 손실을 피할수 있을 만큼 충분히 낮은 염소 함량을 보인다는 것을 의미한다. 바람직하게는 약 500 중량ppm 미만, 더욱 바람직하게는 약 100 중량ppm 미만; 가장 바람직하게는 약 50 중량ppm미만의 염소 함량은 이러한 목적을 위하여 요구된다. 또한, 실리카 유리 튜브(106), 및 상기 유리 튜브 내에 증착된 추가적인 유리는 본질적으로 수분(water)을 포함하지 않는다. 수분은 히드록실 그룹 OH를 의미한다. 수분은 흡수 피크(absorption peak) 또는 1383 nm에서 흡수의 원인이되고, 흡수 피크는 광섬유의 작동 파장 영역으로 확장될 수 있다. 이 피크는 상기 섬유 감쇠에 불리한 영향을 줄 수 있다. 그러므로, 흡수 피크를 감소시키는 것이 요구되고, 또한 가능한한 많은 유리의 OH 함량을 감소시킴에 의하여 상기 수분 피크를 감소시키는 것이 바람직하다. 바람직하게는, 유리 튜브(106)이 약 100 중량 ppb미만, 더욱 바람직하게는 약 20 중량ppb미만의 OH를 함유한다. 시작 유리 재료가 알칼리 금속 산화물 도펀트의 확산전에 본질적으로 수분을 포함하지 않는 것을 보장하기위하여, 종래의 염소 건조 기술이 상기 실리카 유리 튜브의 제조동안 적용될 수 있다.
다시 도 5에서, 알칼리 제공원 화합물(110)은 저장소(108)의 튜브(106)으로 도입되고, 열원(114)에 의하여 가열되어 기체를 형성하고 튜브(106)를 순환한다. 산소 또는 캐리어 가스(carrier gas)는 로테이팅 실(rotating seal)을 통하여 튜브(106)의 입구(116)으로 들어옥, 상기 알칼리 금속 산화물 공급원(110)의 튜브(106) 하류(downstream)의 일부분(120)이 가열되어 튜브(106)의 내부표면(122)으로 상기 알칼리 금속 산화물의 확산을 촉진한다. 바람직하게는, 상기 튜브(106)은 다른 유리 막때 또는 이와 유사한 것과 같은 튜브내에 넣어지는 프리폼 구성성분을 가지지 않는다. 상기 알칼리 금속 산화물 제공 화합물(110)의 튜브(106) 하류의 일부분(120)은 충분한 온도로 가열되어 빠르게 알칼리가 표면(122)로 확산되는 것을 촉진하고, 유리의 불투명화(devitrification)을 방지한다. 바람직하게는, 알칼리 금속 산화물 제공 화합물(110)의 튜브(106)의 하류의 일부분(120)은 열원(124)에 의하여 약 1500 ℃ 초과, 더욱 바람직하게는 약 1500 ℃ 및 2000 ℃ 사이의 온도로 가열된다. 바람직하게는, 열원(124)은 튜브(106)의 일부분(120)을 따라 좌우로 움직인다. 알칼리 금속 산화물 제공 화합물(112)는 바람직하게는 K, Na, Li, Cs, 및 Rb로 이루어진 그룹으로부터 선택되는 원소를 포함한다. 바람직하게는, 알칼리 금속 산화물 제공 화합물(110)은 브롬화물, 요오드화물 또는 불화물이다. 가장 바람직하게는, 상기 알칼리 금속 산화물 제공 화합물(110)은 KBr, KI 또는 KNO3이다. 상기 알칼리 금속 산화물(예를들어, K20, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물)은 바람직하게는 튜브(106)의 붕괴(collapse)전에 튜브(106)의 내부 확산 표면(122)로부터 약 100 마이크론 및 500 마이크론 사이의 깊이를 통하여 확산되고, 이에 의하여 알칼리 산화물이 도핑된 유리 튜브가 형성된다. 특히, 튜브에서 상기 확산된 알칼리 금속 산화물 도펀트 농도(중량%)는 반지름 방향에 따라 달라진다. 바람직하게는, 상기 유리 제품(article)(예를 들어, 튜브(106))은 도핑되어 도 5의 확대도에서 보는 것처럼 농도가 내부 1/2 부분(107)에서 가장 높고 외부 1/2 부분에서 가장 낮다. 내부 및 외부 1/2 부분 사이의 경계점은 상기 튜브(106)의 반지름 두께(점선(111)으로 나타나있는)의 절반에 의하여 결정되고, 여기에 위치한다. 예를들어, 상기 확산은 바람직하게는 외부 1/2 부분(109)에서 알칼리 도펀트의 상기 피크 농도는 내부 1/2 부분(107)의 피크 농도(중량%)의 50% 미만이다.
상기 확산 공정은, 상기 알칼리 금속 산화물이 손실되는 것을 통하여 내부 표면 면적이 감소되는 것 및 상기 알칼리 금속 산화물이 확산되어 유리의 층이 두꺼워 지는 것 모두를 위한 종래 기술로 알려진 통상의 방법에 의하여(또는 여기에 설명된 건조 방법에 의하여) 튜브(106)의 부분적이 붕괴를 촉진하기 위한 튜브(106)의 추가 가열 단계 다음에 이어진다. 일단 상기 확산 도핑 단계, 또는 튜브(106)의 부분적 붕괴가 완료되면, 튜브의 확산 표면(122)는 선택적으로 실리카 유리의 제거에 적합한 식각액(etchant)으로, 튜브의 확산 표면(122)를 통하여 확산 될수 있는 원치않는 불순물의 제거를 위하여, 충분한 깊이로 식각될 수 있다. 예를들어 HF 수용액이 식각액으로 사용될 수 있다. 더욱 바람직하게는, 예를들어, CF4, SF6, NF3, C2F6 또는 이들의 혼합물과 같은 불화물 가스가 사용된다. 내부 표면(122)로부터 제거된 재료의 양은 확산 및 튜브 일부분의 붕괴동안의 공정조건에 따라 달리지나, 식각 조건은 바람직하게는 표면(122)로부터 상기 알칼리 금속 산화물의 전체 확산 깊이의 약 5퍼센트를 초과하는 유리를 제거하기에 충분하다. 일단 식각이 마무리되면, 실리카 유리 튜브(106)는 열원(124)에 의하여 더 가열되어 알칼리 금속 산화물 제공 화합물(110)의 하류 튜브(106)를 붕괴하고, 알칼리 금속 산화물이 도핑된 고체 유리 막대(rod)(132)를 형성한다. 튜브(106)의 붕괴는 적합한 열원(예를들어 토치와 같은)에 의한 가열과 같은 기술분야에 알려진 종래의 방법에 따라 이루어진다. 상기 고체 알칼리-도핑된 유리 막대(132)는 그 이후 알칼리 금속 제공 화합물 저장소(108)을 포함하는 유리의 부분으로부터 잘려진다. 바람직하게는, 상기 고체 알칼리 금속 산화물이 도핑된 유리 막대(132)는 적합한 식각액으로 식각되어 튜브(106)의 붕괴동안 토치에으하여 형성된 수화된(hydrated) 유리 일부 또는 전부를 제거한다. 만일 예를들어, 유도 또는 저항 가열기, 플라즈마 토치, 또는 CO와 같이 수소를 포함하지 않는 연료를 사용하는 건조 열원과 같은 건조 열원이 붕괴에 사용된다면, 식각은 필요하지 않을 것이다. 건조 열원을 도핑 및/또는 붕괴 단계에 이용하는 것은 튜브 외부의 재습윤(re-wetting), 즉, OH(수분)의 외부로부터 튜브로의 확산을 최소화한다고 생각되고, 그러므로 섬유 감쇠를 더 감소시킬 것이라고 생각된다. 건조 열원은 감지할수 있을 만큼의 OH(수분)을 튜브에 포함하지 않는 것이다.
붕괴될때 상기 알칼리가 도핑된 막대(132)는 바람직하게는 (상기 튜브(106)과 비슷하게) 반경에 따라 변하는 알칼리 금속 산화물의 농도를 포함하고, 상기 내부 1/2 부분(107)에 대응하는 부분은 알칼리 토판트의 가장 높은 피크 농도(중량%)를 가지고, 외부 1/2 부분(109)에 대응하는 부분은 더 낮은 피크 농도를 갖는다. 가장 바람직하게는, 알칼리 도펀트의 피크 농도는 상기 막대의 중앙에서 형성되고, 반경의 절반에서의 농도는 피크 농도의 50% 미만, 더 바람직하게는 25%미만이다.
도핑된 유리 막대(132)는 재연신(redraw) 로(136)에서 가열될 수 있고, 더 작은 직경의 유리 막대(144)로 연신될 수 있다. 이 재연신 공정은 도 6에 도시되어 있다. 유리 핸들(130)이 상기 설명된 붕괴 단계로부터 만들어진 알칼리가 도핑된 막대(132)에 부착되고, 상기 알칼리가 도핑된 막대(132)는 종래의 재연신 로(136)위의 무빙 다운피드 지지대(moving downfeed support)에 장착된다. 알칼리가 도핑된 유리 막대(132)의 하부에 부착된 희생 유리 막대(sacrificial glass rod)(138)는 모터구동 트랙터(motor-driven tractors)(140)에 의하여 당겨지고, 이에 의하여 상기 알칼리가 토핑된 유리 막대(132)가 적합한 속도로 연신된다. 15 내지 23 cm/min의 속도가 적합하고, 상기 속도는 센서(142)에 의하여 측정된 직경에 따라 넓게 조절될 수 있다. 연신공정에서 생성된 작은 직경의 유리 막대(144)의 외부 직경의 크기(d1)은 3 mm 내지 10 mm 범위인 것이 바람직하고, 더욱 바람직하게는 6 mm미만의 직경 크기를 갖는것이 바람직하다. 만일 붕괴 단계(426)에서 생성된 막대(132)의 직경 크기가 원하는 범위내에 있다면, 붕괴 단계(126)으로부터의 생성된 막대(132)는 유리 막대(144)로서 사용될 수 있다. 상기 작은 직경의 유리 막대(144)는 상기 섬유의 연신동안 알칼리 도펀트의 현저한 이동을 상쇄하기 위하여, 상기 광섬유가 연신될때 상기 광섬유의 코어에서 요구되는 K2O의 피크 농도의 약 5배 내지 10배 사이의 K2O의 피크 농도를 갖는다. 예를들어,상기 광섬유 코어에서 K2O의 피크 농도가 0.4 중량%가 요구된다면, 작은 직경의 유리 막대(144)는 바람직하게는 약 2 중량% 및 4 중량% 사이의 K2O의 피크 농도를 가져야한다. 특히, 알칼리가 도핑된 막대가 매우 직은 직경을 갖는 것은, 이러한 것이 부정적인 영향이 최소화될 수 있는 섬유의 중앙선과 매우 근접한 막대에 존재하는 전 금속 불순물을 모으기때문에, 장점을 지닌다. 도핑된 클래드(clad)에 첨가되는 많은 양의 물질에서, 상기 섬유에서 피크 농도는 상기 작은 직경의 유리 막대에서 피크 농도보다 100배 이상 작을 수 있다는 것을 인식하여야 한다. 방법(402)의 단계(429)가 가리키는 것처럼, 일단 이 방법에 따라 형성된 작은 직경의 유리 막대(144)는 더 오버클래드(overclad)된다.
예를들어, 도 4에서 도시된 것처럼, 작은 직경의, 알칼리가 도핑된 유리 막대(144)는 어셈블리(160)을 형성하기위하여, 추가적인 다공성 유리 수트(162)가 본 기술분야에 알려진 OVD 방법을 이용하여 오버클래드가 쌓이는 시작 막대로서 사용될 수 있다. 전형적인 외부 기상 증착법이 도 4에 도시되었다. 도 4에서 보듯이, 유리 핸들(154)는 지금까지 설명된 방법에 의하여 제조된 작은 직경의, 알칼리가 도핑된 유리 막대(144)에 부착되고, 생성된 프리폼의 중요한(integral) 부분이 된다. 핸들(154)은 이후의 공정 동안, 증착 공정으로부터 생성된 상기 실리카 유리 프리폼의 지지 방법을 제공한다. 부착된 핸들(154)를 갖는 상기 유리 막대(144)는, 예를 들어 미국 특허 제4,165,223에서 개시된 것이 사용될 수 있는 버너(156)에 대하여 회전하고 이동하는 선반에 장착된다. 연료 가스 및 산소, 또는 공기는 공급원(나타나있지 않음)으로부터 버너(156)로 공급된다. 이 혼합물은 연소되어 버너(156)으로부터 방출되는 플레임(flame)을 생산한다. 실리카 전구체 가스-기체 혼합물은 상기 플레임 내에서 산화되어 유리 막대(144)를 향한 방향의 실리카-함유 수트 스트림(158)을 형성한다. 상기 가스-기체 혼합물을 버너(156)으로 전달하는 적합한 방법은 기술분야에 잘 알려져 있다; 이러한 방법의 참고자료의 도해로서 미국 특허 제3,826,560호, 제4,148,621호 및 제4,173,305호가 있다. 합성물 수트 프리폼(160)은 유리 막대(144)를 버너(156)에 대하여 여러 번 움직임에 의하여 형성되어 다수의 실리카 수트-함유층의 형성을 일으켜 수트 코팅(162)를 형성한다. 상기 선회하는 모션은 또한 버너(156)를 회전하는 유리 막대(144)를 따라 앞 뒤로 움직이는 것 또는 버너(156) 및 유리 막대(144) 모두의 선회하는 모션의 조합에 의하여 이룰 수 있다. 수트 코팅(162)은 바람직하게는 실질적으로 순수 실리카를 포함하는 상기 합성물 프리폼(160)의 코어 유리의 적어도 일부에 형성한다. 바람직하게는, 상기 수트 코팅은 0.35 g/cc 초과, 더 바람직하게는 약 0.350.35 g/cc 및 0.5 0.35 g/cc 사이의 밀도를 갖는다. 상기 합성물 프리폼(160)은 그이후 로에서 약 1000 ℃의 온도로 가열되는 동안 염소-함유 가스에 노출시킴에 의하여 건조된다. 상기 프리폼(160)은 그리고 나서 불소로 도핑된다. 상기 불소 도핑 단계동안, 상기 프리폼(160)은 바람직하게는 상기 프리폼을 수트가 불소로 도핑되는 것을 일으키기에 적합한 온도(예를들어 약 1000℃)에서 불소-함유 가스에 노출시킴으로서 불소로 도핑된다. 이런식으로, 상기 광섬유의 외부 코어 영역이 형성된다. 그러나, 예를 들면 상기 불소 도핑 단계는 단지 상대적으로 적은 양의 불소(0.1 내지 0.4 중량%)가 적용되도록 충분히 길게 수행되어야한다. 상기 프리폼은 그 이후 상기 프리폼(160)을 상기 프리폼이 고결되기에 적합한 온도로 가열함으로서 고결(consolidated)된다. 생성된 클리어 유리(clear glass) 코어 프리폼은 그 이후 재연실되어 제2코어 막대, 즉 이로부터 연실된 광섬유의 코어의 적어도 일부를 포함하는 유리 막대를 형성할 수 있다. 상기 제2코어 막대는 그 이후 광섬유로 연실되기 위하여 준비된 완전한 광섬유 프리폼을 형성하기 위하여, 화학적 기체 증착에 의한 유리 수트의 증착을 통하여, 예를들어, 슬리빙 및 화학적 증착 모두에 의하여, 또는 기술분야에 알려진 다른 방법을 통하여, 추가적인 유리의 첨가나 유리 튜브(아니면 유리 튜브 또는 수트 튜브)로 슬리빙(sleeving)에 의하여 더 가공될 수 있다. 상기 추가적인 유리는 코어 유리, 클래딩 유리 또는 코어 및 클래딩 유리 모두를 포함할 수 있다. 또한, 상기 추가적인 유리는 원하는 두께를 얻기위하여 몇몇의 추가적인 증착 단계를 거칠 수 있다. 여기서 식각 단계 이후, 상기 수트는 건조되고, 불소 도핑되고, 고결되고 더 작은 직경의 막대로 재연실된다. 바람직하게는 상기 코어에 인접한 가장 바깥쪽의 클래딩은 상기 광섬유의 글래딩영역을 형성하기 위해 플러드 도핑(flood doping)(미국 특허 제4,629,485참조)에 의하여 불소로 충분히 다운 도핑된(down doped) 실리카이다. 상기 도핑은 바람직하게는 상기 코어와 상기 클래딩 사이에서 예를들어 0.2% 초과, 더 바람직하게는 0.30% 및 0.40% 사이의 상대 굴절률 델타%를 이루기에 충분하다. 특히, 모트 실리카(moat silica)(상기 섬유의 클래딩에 대응하는 추가적인 유리)가 증착에의하여 제2 막대에 첨가되는 각각의 추가적인 단계에서, 이러한 모트 실리카는 불소로 도핑된다. 상기 모트 수트는 먼저 불소-함유 가스에 노출시켜 건조되고, 그 이후 불소 함유 가스(예를 들어, SiF4 or CF4)에 60-120분동안 1225℃에서 노출시키고, 그 이후에 바람직하게는 불소-함유 가스의 존재하에서, 7-10 mm/min으로 고온 영역(1450-1500℃의)을 통한 다운드라이빙(downdriving)에 의하여 고결된다. 이 프리폼은 제3 막대의 형성을 위해 재연실되고, 상기 단계, 다시말해서, 증착, 건조, 불소 도핑, 및 고결이 적절한 직경의 최종 프리폼이 얻어질때까지 반복될 수 있다. 바람직하게는, 상기 클래딩에서 추가적인 유리의 각각의 연속적인 층에서 불소의 중량%는 거의 동일하거나, 또는 바람직하게는 스트레스의 영향을 최소화하기 위해 가장바깥쪽 클래딩에서 약간 적다(거의 0.1 내지 0.5 중량%). 단계(467)의 상기 완성된 광섬유 프리폼이 제조된 후에, 상기 완성된 광섬유 연실 프리폼은 알칼리 금속 산화물이 도핑된 광섬유로 연실된다. 여기에 설명된 각각의 재연실 단계 이후, 상기 막대는 바람직하게는 중수소(deuterium) 대기에 막대를 노출함에 의하여 처리된 D2이다. 중수소 처리는 영국특허 제2,149,392호 및 미국특허 제4,515,612호 및 제4,504,297호에 설명되어 있다.
섬유를 만드는 다른 방법은 미국 특허 공개 제2005/0063663호에서 공개되어있고, 이 특허 공개의 상세한 설명은 본 명세서에 인용문헌으로 인용된다.
여기에 공개된 모든 구체예에서, 상기 광섬유는 바람직하게는 상기 클래딩의 가장 바깥쪽 직경에 직접적으로 접촉하고 이를 둘러싼 일차 코팅, 및 상기 일차 코팅을 둘러싸고 이에 직접적으로 접촉한 이차 코팅을 포함한다.
다양한 변형 및 변경이 본 발명의 범위와 사상을 벗어나지 않고 이루어질 수 있음은 당업자에게 자명하다. 따라서, 첨부되는 청구항 및 이의 동등한 범위 내에서 이루어지는 본 발명의 이러한 변형 및 변경을 포함한다.
도 1은 광섬유의 반경에 따라 변하는 알칼리 금속 산화물 농도를 갖는 광섬유의 굴절률 프로파일의 스텝 인덱스의 일부를 나타낸 것이다.
도 2는 코어에서 K, Cl, 및 F의 농도 및 광섬유의 클래딩의 일부를 도시하는 본 발명에 따른 광섬유의 실시예를 나타낸 것이다.
도3은 본 발명에 따른 알칼리 금속 산화물이 도핑된 광섬유의 제조 방법을 나타낸 것이다.
도 4는 유리 수트의 증착 방법을 나타낸 것이다.
도 5는 알칼리 금속 산화물을 유리 튜브에 도핑하는 방법을 나타낸 것이다.
도 6은 유리 막대의 연실 공정을 나타낸 것이다.

Claims (18)

  1. 실리카계 코어에 있어서, 상기 코어는 상기 코어에서 50 중량ppm 내지 500중량ppm의 평균 농도를 갖는 K2O, Na2O, LiO2, Rb2O, Cs2O 및 이들의 혼합물로 이루어진 그룹에서 선택된 알칼리 금속 산화물을 포함하고, 염소 및 불소를 더 포함하며, 상기 코어에서 불소의 평균 농도는 코어에서 알칼리 금속 산화물의 평균 농도를 초과하고, 코어에서 염소의 평균 농도는 코어에서 알칼리 금속 산화물의 농도를 초과하는 실리카계 코어; 및
    상기 코어를 둘러싸며 직접적으로 코어에 인접한 실리카계 클래딩(cladding)
    을 포함하는 광섬유.
  2. 청구항 1에 있어서, 상기 코어는 본질적으로 게르마늄을 더 포함하지 않는 것을 특징으로 하는 광섬유.
  3. 청구항 2에 있어서, 상기 코어에서 상기 염소의 평균 농도는 500 중량ppm을 초과하는 것을 특징으로 하는 광섬유.
  4. 청구항 2에 있어서, 상기 코어에서 상기 불소의 평균 농도는 500 중량ppm을 초과하는 것을 특징으로 하는 광섬유.
  5. 청구항 2에 있어서, 상기 코어에서 상기 염소의 평균 농도는 500 중량ppm을 초과하며, 상기 코어에서 상기 불소의 평균 농도는 500 중량ppm을 초과하는 것을 특징으로 하는 광섬유.
  6. 청구항 2에 있어서, 상기 섬유의 코어는 100 중량ppm 미만의 최소양의 염소를 포함하는 코어의 중앙선을 따라 위치하는 제1영역, 및 상기 제1영역을 둘러싼 500 중량ppm을 초과하는 염소 농도 피크를 포함하는 제2영역을 포함하는 것을 특징으로 하는 광섬유.
  7. 청구항 5에 있어서, 상기 섬유의 코어는 100 중량ppm 미만의 최소량의 염소를 포함하는 코어의 중앙선을 따라 위치하는 제1 영역, 및 상기 제1영역을 둘러싼 500 중량ppm을 초과하는 염소 농도 피크를 포함하는 제2영역을 포함하는 것을 특징으로 하는 광섬유.
  8. 청구항 6에 있어서, 상기 제2 코어 영역에서 상기 염소 농도 피크는 상기 제2영역에서 불소 농도 피크 보다 높은 것을 특징으로 하는 광섬유.
  9. 청구항 6에 있어서, 상기 섬유는 상기 코어에서 1000 ppm을 초과하는 피크 농도량을 갖는 염소를 포함하는 것을 특징으로 하는 광섬유.
  10. 청구항 6에 있어서, 상기 섬유는 상기 코어에서 1500 ppm을 초과하는 피크 농도량을 갖는 염소를 포함하는 것을 특징으로 하는 광섬유.
  11. 청구항 2에 있어서, 상기 섬유는 상기 코어에서 1500 ppm을 초과하는 피크 농도량을 갖는 염소를 포함하는 것을 특징으로 하는 광섬유.
  12. 청구항 11에 있어서, 상기 코어는 5000 ppm 미만의 피크 농도량을 갖는 불소를 포함하는 것을 특징으로 하는 광섬유.
  13. 청구항 2에 있어서, 1550 nm에서 상기 광섬유의 감쇠(attenuation)는 0.18 dB/km 미만인 것을 특징으로 하는 광섬유.
  14. 청구항 1에 있어서, 1550 nm에서 상기 광섬유의 감쇠는 0.17 dB/km 미만인 것을 특징으로 하는 광섬유.
  15. 청구항 6에 있어서, 상기 제1영역의 외반경은 2 마이크론 미만인 것을 특징으로 하는 광섬유.
  16. 청구항 2에 있어서, 상기 클래딩은 10000 ppm을 초과하는 평균 농도의 불소 로 도핑된 것을 특징으로 하는 광섬유.
  17. 청구항 16에 있어서, 상기 클래딩은 500 ppm을 초과하는 양의 염소로 도핑된 것을 특징으로 하는 광섬유.
  18. 청구항 2에 있어서, 상기 알칼리 금속 산화물은 K2O인 것을 특징으로 하는 광섬유.
KR1020097001210A 2006-06-21 2007-06-15 알칼리 금속 산화물을 포함하는 광섬유 KR20090024271A (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US81573206P 2006-06-21 2006-06-21
US60/815,732 2006-06-21
US84080706P 2006-08-29 2006-08-29
US60/840,807 2006-08-29
US11/801,472 2007-05-10
US11/801,472 US7536076B2 (en) 2006-06-21 2007-05-10 Optical fiber containing alkali metal oxide

Publications (1)

Publication Number Publication Date
KR20090024271A true KR20090024271A (ko) 2009-03-06

Family

ID=38833728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097001210A KR20090024271A (ko) 2006-06-21 2007-06-15 알칼리 금속 산화물을 포함하는 광섬유

Country Status (6)

Country Link
US (1) US7536076B2 (ko)
EP (1) EP2035869B1 (ko)
JP (1) JP5489713B2 (ko)
KR (1) KR20090024271A (ko)
CN (1) CN101495893B (ko)
WO (1) WO2007149344A1 (ko)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066281B1 (ko) * 2003-08-29 2011-09-20 코닝 인코포레이티드 알칼리 금속 산화물을 함유하는 광섬유, 및 그 제조 방법및 장치
US20080050086A1 (en) * 2006-08-24 2008-02-28 Scott Robertson Bickham Optical fiber containing alkali metal oxide
US7844155B2 (en) * 2007-05-07 2010-11-30 Corning Incorporated Optical fiber containing alkali metal oxide
US8558207B2 (en) * 2009-09-29 2013-10-15 Carestream Health, Inc. Photostimulable plate reading device
JP5656469B2 (ja) 2010-06-23 2015-01-21 株式会社フジクラ ガラス母材の製造装置および製造方法
US7929818B1 (en) 2010-06-30 2011-04-19 Corning Incorporated Large effective area fiber with graded index GE-free core
US9139466B2 (en) 2011-01-20 2015-09-22 Sumitomo Electric Industries, Ltd. Optical fiber preform, optical fiber, and method of manufacturing optical fiber preform
JP5817462B2 (ja) * 2011-01-27 2015-11-18 住友電気工業株式会社 光ファイバ母材製造方法
JP5545236B2 (ja) * 2011-02-03 2014-07-09 住友電気工業株式会社 光ファイバ母材製造方法
JP2012162410A (ja) * 2011-02-03 2012-08-30 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
JP5974488B2 (ja) 2011-04-15 2016-08-23 住友電気工業株式会社 光ファイバおよび光ファイバ母材
EP2535319A3 (en) * 2011-06-15 2014-09-10 Sumitomo Electric Industries, Ltd. Method for producing optical fiber
DE102011052197B4 (de) * 2011-07-27 2019-08-01 J-Plasma Gmbh Lichtwellenleiter mit biegeoptimierten Eigenschaften
JP2013032241A (ja) * 2011-08-01 2013-02-14 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
JP5974455B2 (ja) 2011-11-21 2016-08-23 住友電気工業株式会社 光ファイバ母材、光ファイバ製造方法および光ファイバ
JP5903896B2 (ja) 2012-01-11 2016-04-13 住友電気工業株式会社 光ファイバ母材製造方法
JP6136261B2 (ja) 2012-01-23 2017-05-31 住友電気工業株式会社 光ファイバ
DK2808310T3 (en) 2012-01-25 2017-10-02 Sumitomo Electric Industries Method of producing fiber optic preform
CN104159858B (zh) 2012-02-09 2016-08-24 住友电气工业株式会社 光纤母材制造方法、光纤母材以及光纤
DK2829522T3 (en) 2012-03-21 2018-11-05 Sumitomo Electric Industries PROCEDURE FOR MANUFACTURING OPTICAL FIBERS
DE102012007520B3 (de) * 2012-04-17 2013-08-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung eines zylinderförmigen Bauteils aus Fluor enthaltendem synthetischem Quarzglas
JP2014043378A (ja) * 2012-08-27 2014-03-13 Sumitomo Electric Ind Ltd 光ファイバ製造方法および光ファイバ
JP6048105B2 (ja) 2012-12-12 2016-12-21 住友電気工業株式会社 光ファイバ製造方法および光ファイバ
CN104981440B (zh) * 2013-02-04 2017-08-29 住友电气工业株式会社 光纤母材以及光纤母材的制造方法
DE102013204815A1 (de) 2013-03-19 2014-09-25 Heraeus Quarzglas Gmbh & Co. Kg Fluorierung von dotiertem Quarzglas
JP2014214079A (ja) * 2013-04-30 2014-11-17 住友電気工業株式会社 光ファイバ母材
US9618692B2 (en) 2014-07-10 2017-04-11 Corning Incorporated High chlorine content low attenuation optical fiber
JP6579107B2 (ja) 2014-07-22 2019-09-25 住友電気工業株式会社 光ファイバ母材製造方法および光ファイバ母材
JP6551109B2 (ja) * 2014-11-20 2019-07-31 住友電気工業株式会社 光ファイバ
US9611169B2 (en) * 2014-12-12 2017-04-04 Corning Incorporated Doped ultra-low expansion glass and methods for making the same
JP6817957B2 (ja) 2015-04-15 2021-01-20 コーニング インコーポレイテッド フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
JP6613604B2 (ja) 2015-04-30 2019-12-04 住友電気工業株式会社 光ファイバ母材
US20170097465A1 (en) 2015-06-30 2017-04-06 Corning Incorporated Optical fiber with large effective area and low bending loss
US9919955B2 (en) 2015-07-24 2018-03-20 Ofs Fitel, Llc Optical fiber with low loss and nanoscale structurally homogeneous core
JP6551137B2 (ja) * 2015-10-15 2019-07-31 住友電気工業株式会社 光ファイバ
JP7013697B2 (ja) 2017-07-12 2022-02-01 住友電気工業株式会社 光ファイバ母材
EP3677556A4 (en) * 2017-08-31 2021-05-26 Sumitomo Electric Industries, Ltd. METHOD FOR MANUFACTURING A GLASS FIBER STARTING MATERIAL AND METHOD FOR MANUFACTURING A GLASS FIBER
US10571628B2 (en) * 2017-11-20 2020-02-25 Corning Incorporated Low loss optical fiber with core codoped with two or more halogens
US10775558B2 (en) * 2018-02-05 2020-09-15 Corning Incorporated Low loss wide bandwidth optical fiber
JP7119531B2 (ja) 2018-04-20 2022-08-17 住友電気工業株式会社 光ファイバ
CN112400127B (zh) 2018-04-30 2023-05-23 康宁股份有限公司 小直径低衰减光纤
JP2021523397A (ja) 2018-04-30 2021-09-02 コーニング インコーポレイテッド 小外径低減衰光ファイバ
WO2019212801A1 (en) 2018-04-30 2019-11-07 Corning Incorporated Small diameter low attenuation optical fiber
JP2020012933A (ja) * 2018-07-17 2020-01-23 住友電気工業株式会社 光ファイバ
EP3896502A4 (en) 2018-12-13 2022-01-05 Sumitomo Electric Industries, Ltd. OPTICAL FIBER
US11036000B2 (en) 2019-01-16 2021-06-15 Corning Incorporated Optical fiber cable with high fiber count
US11194107B2 (en) 2019-08-20 2021-12-07 Corning Incorporated High-density FAUs and optical interconnection devices employing small diameter low attenuation optical fiber
WO2021141721A1 (en) 2020-01-07 2021-07-15 Corning Incorporated Reduced radius optical fiber with high mechanical reliability
WO2021231083A1 (en) 2020-05-12 2021-11-18 Corning Incorporated Reduced diameter single mode optical fibers with high mechanical reliability
US20220283363A1 (en) 2021-03-03 2022-09-08 Corning Incorporated Optical fiber with reduced attenuation due to reduced absorption contribution
JP2022190555A (ja) 2021-06-14 2022-12-26 古河電気工業株式会社 光ファイバ
CN117581128A (zh) 2021-07-16 2024-02-20 住友电气工业株式会社 光纤以及光纤母材
WO2023157505A1 (ja) * 2022-02-16 2023-08-24 住友電気工業株式会社 光ファイバ
US20240043313A1 (en) 2022-08-05 2024-02-08 Corning Incorporated Alkali doped optical fiber with reduced attenuation
US20240053531A1 (en) 2022-08-12 2024-02-15 Corning Incorporated Uncoupled multicore optical fiber with alkali doped, off-set trench cores
US20240069271A1 (en) 2022-08-26 2024-02-29 Corning Incorporated Uncoupled-core multicore optical fiber with reduced cross talk

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826560A (en) 1972-03-30 1974-07-30 Corning Glass Works Method of forming a light focusing fiber waveguide
DE2546162B1 (de) 1975-10-15 1976-09-23 Jenaer Glaswerk Schott & Gen Lichtleitfaser mit Brechungsindexgradient zur Nachrichtenuebertragung
US4173306A (en) * 1977-01-17 1979-11-06 Telsco Industries, Inc. Rotary sprinkler impact arm spring adjustment
US4165223A (en) 1978-03-06 1979-08-21 Corning Glass Works Method of making dry optical waveguides
US4173305A (en) 1978-03-10 1979-11-06 Corning Glass Works System for delivering materials to deposition site on optical waveguide blank
US4515612A (en) 1982-04-19 1985-05-07 At&T Bell Laboratories Method for optical fiber fabrication including deuterium/hydrogen exchange
US4504297A (en) 1983-07-06 1985-03-12 At&T Bell Laboratories Optical fiber preform manufacturing method
US4629485A (en) 1983-09-26 1986-12-16 Corning Glass Works Method of making fluorine doped optical preform and fiber and resultant articles
GB2149392A (en) 1983-11-11 1985-06-12 Central Electr Generat Board Surface treatment of glass
US5146534A (en) 1991-11-12 1992-09-08 At&T Bell Laboratories SiO2 -based alkali-doped optical fiber
AU715509B2 (en) 1996-07-16 2000-02-03 Toyota Jidosha Kabushiki Kaisha Ultralow-loss silica glass and optical fibers using the same
US6268303B1 (en) * 1998-07-06 2001-07-31 Corning Incorporated Tantalum containing glasses and glass ceramics
US20040057692A1 (en) 2002-08-28 2004-03-25 Ball Laura J. Low loss optical fiber and method for making same
KR101066281B1 (ko) 2003-08-29 2011-09-20 코닝 인코포레이티드 알칼리 금속 산화물을 함유하는 광섬유, 및 그 제조 방법및 장치
US7088900B1 (en) * 2005-04-14 2006-08-08 Corning Incorporated Alkali and fluorine doped optical fiber

Also Published As

Publication number Publication date
US20070297735A1 (en) 2007-12-27
US7536076B2 (en) 2009-05-19
CN101495893B (zh) 2012-01-25
EP2035869A4 (en) 2011-04-20
JP5489713B2 (ja) 2014-05-14
JP2009541796A (ja) 2009-11-26
EP2035869B1 (en) 2016-04-13
WO2007149344A1 (en) 2007-12-27
CN101495893A (zh) 2009-07-29
EP2035869A1 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR20090024271A (ko) 알칼리 금속 산화물을 포함하는 광섬유
JP5722838B2 (ja) アルカリ金属酸化物を含有する光ファイバの製造方法
KR101212884B1 (ko) 알카리 및 불소가 도핑된 광섬유
US7844155B2 (en) Optical fiber containing alkali metal oxide
KR20090042992A (ko) 알칼리 금속 산화물을 함유하는 광섬유
US20050201699A1 (en) Low loss optical fiber and method for making same
JP2010526749A5 (ko)
EP3359498B1 (en) Method for manufacturing a glass core preform for optical fibres
US7391946B2 (en) Low attenuation optical fiber and its producing method in MCVD
JP2005181414A (ja) 光ファイバの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right