KR20090004487A - 유량계 - Google Patents

유량계 Download PDF

Info

Publication number
KR20090004487A
KR20090004487A KR1020080050921A KR20080050921A KR20090004487A KR 20090004487 A KR20090004487 A KR 20090004487A KR 1020080050921 A KR1020080050921 A KR 1020080050921A KR 20080050921 A KR20080050921 A KR 20080050921A KR 20090004487 A KR20090004487 A KR 20090004487A
Authority
KR
South Korea
Prior art keywords
flow
flow path
flow rate
fluid
sensor
Prior art date
Application number
KR1020080050921A
Other languages
English (en)
Other versions
KR100998293B1 (ko
Inventor
코이치로 니이카와
야스하루 오오이시
마사키 세오
Original Assignee
가부시키가이샤 야마다케
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 야마다케 filed Critical 가부시키가이샤 야마다케
Publication of KR20090004487A publication Critical patent/KR20090004487A/ko
Application granted granted Critical
Publication of KR100998293B1 publication Critical patent/KR100998293B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/12Cleaning arrangements; Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

본 발명은 가스 누설 등의 미소 유량으로부터 가스의 통상 사용 상태에 있어서의 대유량까지를 간이하고도 정밀도 좋게 검출할 수 있는 유량계를 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위하여, 본 발명의 유량계는, 병렬로 설치되어, 주 유로를 통류하는 유체를 분류해서 통류하는 동시에 상기 주 유로를 통류하는 유체의 유량에 따라서 분류비가 수동적으로 변화되는 제1 및 제2유로; 및 이들 제1 및 제2유로의 적어도 한쪽에 설치된 유량 센서를 구비한다. 예를 들어, 상기 제1 및 제2유로는 유로 단면적이 다른 유로로서, 혹은 메쉬체의 일부에 형성된 메쉬 결손부에 의해 형성된다. 또는, 상기 제1 및 제2유로는 그 한쪽에 패들 기구를 설치해넣음으로써 실현된다.
유량계, 제1유로, 제2유로, 유량 센서.

Description

유량계{FLOWMETER}
본 발명은 유로 구조를 연구함에 있어 미소 유량에 대한 유량 센서의 검출 감도를 높게 하는 동시에, 대유량에 대한 검출 감도를 억제함으로써 상기 유량 센서에 의한 계측 다이내믹 레인지(dynamic range)를 넓게 한 유량계에 관한 것이다.
열식(熱式)의 유량 센서를 이용한 유량계에 있어서, 그 검출 감도를 높여서 미소 유량을 검출하기 위해, 유량 센서를 벽면에 부착한 유로의 내부를, 그 유체 통류(通流) 방향을 따라서 복수의 평행한 미소 유로로 구획함으로써 상기 벽면 위치에서의 유속을 높이는 것이나, 그 유로의 도중에 노즐부를 설치함으로써 해당 노즐부에서의 유속을 높이는 것이 제창되어 있다(예를 들어, 특허문헌 1 및 2 참조).
[특허문헌 1] 일본국 공개 특허 평4-69521호 공보
[특허문헌 2] 일본국 공개 특허 평11-173896호 공보.
그러나, 전술한 바와 같이 해서 미소 유량에 대한 검출 감도를 높게 한 경우, 이것에 수반해서 대유량에 대한 검출 감도도 높아지므로, 대유량의 통류 시에는 유량 센서의 출력이 포화되어, 그 계측을 할 수 없게 된다고 하는 문제가 있다. 그 때문에, 예를 들어 최대 계측 유량이 30,000[L/h] 정도인 가스메터 등에 있어서, 5[L/h] 정도의 미소한 누설 유량까지를 정밀도 좋게 검출하는 것이 곤란하였다.
본 발명은 이러한 사정을 고려해서 이루어진 것으로, 그 목적은 가스 누설 등의 미소 유량으로부터 가스의 통상 사용 상태에 있어서의 대유량까지를 간이하고도 정밀도 좋게 검출하는 것이 가능한 유량계를 제공하는 데 있다.
전술한 목적을 달성하기 위해, 본 발명에 관한 유량계는, 그 유로 구조를 연구함으로써 유량 센서의 출력을 포화시키는 일 없이, 예를 들어, 5[L/h] 정도의 미소 유량으로부터 30,000[L/h] 정도의 대유량까지를 계측할 수 있도록 한 것으로, 기본적으로는
<a> 병렬로 설치되어, 주(主) 유로를 통류하는 유체를 분류해서 통류하는 동시에 상기 주 유로를 통류하는 유체의 유량에 따라서 분류비가 수동적으로 변화되는 제1 및 제2유로; 및
<b> 이들 제1 및 제2유로 중의 적어도 한쪽에 설치된 유량 센서
를 구비한 것을 특징으로 하고 있다. 또한, 「분류비가 변화된다」란, 분류비를 변화시키기 위해서 외부로부터 전류 등의 에너지의 공급을 필요로 하지 않는 것을 의미한다.
덧붙여서, 상기 제1 및 제2유로는 상기 주 유로의 유로 단면을 해당 주 유로의 유체 통류 방향을 따라서 공간적으로 구획해서 형성되는 것이며, 예를 들면 상기 제1 및 제2유로 중의 적어도 한쪽은 상기 주 유로를 통류하는 유체의 유량에 따라서, 상기 유체에 대한 유로 저항을 수동적으로 변화시켜, 상기 제1 및 제2유로 간에서의 분류비를 변화시키도록 구성된다.
구체적으로는, 상기 제1 및 제2유로를, 예를 들어, 상기 주 유로의 유체 통류 방향을 따라서 설치된 격벽체에 의해 해당 주 유로의 유로 단면을 구획해서 형성하고, 특히 상기 제1유로를 상기 제2유로에 비교해서 미소한 유로 단면을 가지는 유로공간으로서 형성하는 것이 바람직하다. 특히, 상기 제1유로에 유체의 흐름에 대한 소정 길이의 보조 주행 구간을 확보하고, 이 보조 주행 구간의 하류측에 그 유로 단면적을 좁힌 협폭부(즉, 폭이 좁은 부분)를 형성하고, 이 협폭부에 상기 유량 센서를 설치해 넣는 것이 바람직하다.
혹은, 상기 제1유로는 상기 주 유로의 유로 단면의 전체를 덮어서 설치되는 메쉬체의 일부에, 예를 들어, 상기 주 유로의 유로 단면에 비교해서 미소한 영역부로서 형성한 메쉬 결손부의 하류측에 형성되는 층류 영역으로 이루어진다. 그리고, 상기 제2유로는 상기 층류 영역과의 사이에서 상기 주 유로의 유로 단면을 등가적으로 구획해서 형성되는, 상기 메쉬체의 하류측에 있어서의 상기 층류 영역 이 외의 영역으로서 실현된다. 또한, 상기 메쉬 결손부를 구비한 메쉬체를, 유체의 통류 방향에 상기 메쉬 결손부의 위치를 맞추어서 복수매 설치하도록 해도 된다.
또, 상기 제1 및 제2유로를, 상기 주 유로의 유체 통류 방향을 따라서 설치된 격벽체에 의해 해당 주 유로의 유로 단면을 구획해서 형성하고, 유체의 유속에 따라서 상기 유체에 대한 유로 저항이 변화되는 패들(paddle) 기구를 상기 제2유로에 설치함으로써, 상기 패들 기구의 개방도에 의해서 변화되는 해당 제2유로의 유로 저항에 따라서 상기 제1 및 제2유로 간에서의 분류비가 가변하도록 구성하는 것도 가능하다.
또한, 바람직하게는, 상기 제2유로에, 유체의 흐름에 따라서 해당 유로를 복수의 평행한 미세유로로 구획하는 격자형상의 칸막이판을 설치하도록 해도 된다. 게다가, 상기 격자형상의 칸막이판을 소정의 길이의 격자체를 형성한 것으로서 실현하고, 상기 제2유로에 상기 격자체를 상기 유체의 통류 방향에 복수개 직렬로 배열하는 동시에, 이들 격자체 사이에 각각 메쉬체를 개재시키는 것도 바람직하다. 또, 상기 제2유로에 제2유량 센서를 설치하고, 이 제2유량 센서를 병용해서 유량계측을 행함으로써 대유량에 대한 계측 정밀도의 저하를 보상하는 것도 유용하다.
전술한 기본 구성의 유량계에 따르면, 병렬로 설치된 제1유로와 제2유로와의 분류비가 주 유로를 통류하는 유체의 유량에 따라서 수동적으로 변화된다. 따라서, 예를 들어, 주 유로를 통류하는 유체의 유량이 적을 때에는 제1유로에 대한 분류비가 높고, 상기 주 유로를 통류하는 유체의 유량이 많아짐에 따라서 상기 제1유 로에 대한 분류비가 낮아질 경우에는, 상기 제1유로에 유량 센서를 설치해둠으로써, 해당 유량 센서에서 미소 유량으로부터 대유량까지를 검출하는 것이 가능해진다.
즉, 전술한 경우, 주 유로를 통류하는 유량이 미소할 경우에는, 상기 유체의 대부분을 제1유로에 통류시킴으로써 그 미소 유량을 확실하게 검출시키고, 대유량의 경우에는 그 유량의 대부분을 제2유로에 통류시켜, 제1유로를 통류하는 유체의 유량을 억제할 수 있다. 따라서, 주 유로를 통류하는 유체의 유량이 증대함에 따라서, 제1유로를 통류하는 유량을 전술한 분류비에 따라서 억제할 수 있으므로, 유량 센서를 포화시키는 일 없이 미소 유량으로부터 대유량까지를 일괄해서 검출하는 것이 가능해진다.
또, 상기 제1유로에, 상기 유체의 흐름에 대한 보조 주행 구간을 확보한 후, 그 유로 단면적을 좁히는 협폭부를 형성해두고, 이 협폭부에 상기 유량 센서를 설치해넣도록 하면, 제1유로에 유도된 미소 유량의 유속을 상기 협폭부에 있어서 빠르게 할 수 있다. 이 결과, 유량 센서에 인한 검출 감도를 실질적으로 향상시킬 수 있어, 미소 유량을 용이하게 검출하는 것이 가능해진다. 특히, 상기 협폭부는 대유량에 대한 유로 저항으로서 작용하므로, 제1 및 제2유로 간의 분류비를 수동적으로 변화시키기 위해서 극히 유효하게 작용한다. 또한, 전술한 메쉬체나 격자체, 나아가서는, 패들 기구는 소유량에 대한 유로 저항으로서 작용하므로, 이들도 또 제1 및 제2유로 간의 분류비를 수동적으로 변화시키기 극히 유효하게 작용한다.
이하, 도면을 참조해서 본 발명에 관한 유량계에 대해서 설명한다.
이 유량계는 가스메터로서 적합한 것이며, 예를 들어 통류 가스의 질량유량을 검출하는 열식 유량 센서를 이용해서 구성된다. 특히 도시하지 않았지만 상기 열식 유량 센서는, 예를 들어 실리콘 기판이나 유리 기판 위에 형성된 두께가 얇은 격막(diaphragm) 위에 발열 저항 소자를 사이로 해서 유체의 통류 방향에 1쌍의 감온(感溫) 저항 소자를 설치한 것으로 이루어지고, 그 센서면을 따라서 통류하는 유체에 의한 해당 센서면 근방의 온도분포의 변화로부터 상기 유체의 유량(유속)을 검출하도록 구성된다.
도 1은 본 발명에 관한 유량계의 기본 구성을 나타낸 도면으로, 유체(예를 들어, 가스)를 통류하는 주 유로(1)의 도중에 상기 유체를 분류해서 통류하는 제1 및 제2유로(2), (3)를 병렬로 설치해서 구성된다. 특히 상기 제1 및 제2유로(2), (3)는 주 유로(1)를 통류하는 유체의 유량(유속)(V)에 따라서, 상기 제1유로(2)의 유로 저항(R1)과, 제2유로(3)의 유로 저항(R2)을 수동적으로 변화시키고, 이것에 의해 제1 및 제2유로(2), (3) 사이의 분류비를 변화시키는 것으로 이루어지고, 등가적으로는 도 2에 나타낸 바와 같은 저항 회로를 이룬다. 즉, 제1 및 제2유로(2), (3)는, 예를 들어, 주 유로(1)를 통류하는 유체의 유량(유속)(V)에 따라서 그 유로 저항(R1), (R2)이 도 3에 나타낸 바와 같이 수동적으로 변화되는 것이며, 상기 유로 저항(R1), (R2)에 응해서 유체를 유량(I1), (I2)으로 분류해서 각각 통류시키고, 그 분류비[I1/(I1+I2)]가 도 4에 나타낸 바와 같이 상기 유체의 유량(유속)(V)에 의해 변화되는 유로 구조를 이룬다.
또, 제1 및 제2유로(2), (3) 중 한쪽만이 주 유로(1)를 통류하는 유체의 유량(유속)(V)에 따라서 그 유로 저항(R1) 또는 유로 저항(R2)을 수동적으로 변화시키는 것이어도 된다. 이 경우에는, 유로 저항(R1) 또는 (R2)의 변화에 따라서 상기 제1 및 제2유로(2), (3) 사이의 분류비[I1/(I1+I2)]가 변화되게 된다. 그리고, 이러한 유로 구조를 가지는 유량계의, 전술한 제1 및 제2유로(2), (3) 중의 적어도 한쪽에 전술한 열식 유량 센서(4)가 설치된다.
또한, 전술한 제1 및 제2유로(2), (3)는, 예를 들어, 도 5(a) 및 도 5(b)에 나타낸 바와 같이 주 유로(1)를 형성하는 배관(대직경 파이프)(5)의 내부에, 그 유체 통류 방향을 따라서 설치한 격벽체로서의 소직경 파이프(6)에 의해, 상기 배관(5)의 내부 공간을 유로 단면 방향으로 구획하는 것에 의해 형성된다. 또, 도 5(a)는 유로의 종단면 구조를 나타내고 있고, 도 5(b)는 상기 유로의 횡단면 구조를 나타내고 있다.
그래서, 이 경우에는, 상기 소직경 파이프(6)에 의해 배관(5)의 내부 공간을 구획해서 형성되는 제1 및 제2유로(2), (3)의 유로 단면적의 차이나, 배관(5)의 내부에 있어서의 층류의 속도분포의 차이, 또한, 소직경 파이프(6)의 벽면에 의한 유속 구배(기울기)의 변화 등에 의해, 제1 및 제2유로(2), (3)의 유로 저항(R1), (R2)이, 해당 배관(5)을 통류하는 유체의 유량(유속)(V)에 의해 다른 변화를 보인다.
구체적으로는, 배관(5)을 통류하는 유체의 유량(유속)(V)이 적을 경우에는, 소직경 파이프(6)의 내부 공간으로서 형성되는 유로 단면적이 미소한 제1유로(2)의 유로 저항(R1)은, 상기 소직경 파이프(6)의 외부 공간으로서 형성되는 유로 단면적이 큰 제2유로(3)의 유로 저항(R2)보다도 약간 클 뿐이다. 단, 소직경 파이프(6)를 배관(5)의 중심부에 설치한 경우, 원래 배관(5)의 중심부에 있어서의 유속이 그 주변부보다도 약간 빠른 속도분포를 보이므로, 상기 제1 및 제2유로(2), (3)에 각각 흐르는 유체의 속도는 대략 동등하고, 실질적으로는 제1 및 제2유로(2), (3)의 유로 저항(R1), (R2)은 대략 같은 정도인 것으로 간주할 수 있다.
그러나, 상기 유량(유속)(V)이 증가하면, 이것에 따라서 소직경 파이프(6)의 벽면에 있어서의 유체와의 접촉 저항에 기인하는 속도 구배가 증대하고, 유로 단면적이 미소한 상기 제1유로(2)의 유로 저항(R1)이 증대한다. 즉, 유량에 따라서, 유로 저항(R1)이 수동적으로 변화된다. 이 결과, 배관(5)을 통류하는 유체의 유량(유속)(V)이 증대함에 따라서 제1유로(2)에 유체가 흐르기 곤란해져, 제2유로(3)와의 사이의 분류비가 변화되게 된다.
따라서, 제1유로(2)에 유량 센서(4)를 설치해두면, 배관(5)을 통류하는 유체의 유량(유속)(V)이 미소한 경우에는, 그 유량이 제1 및 제2유로(2), (3)의 유로 단면적에 따라서 분류될 뿐이므로, 상기 유량 센서(4)에서 상기 미소 유량을 확실하게 검출할 수 있다. 또, 배관(5)을 통류하는 유체의 유량(유속)(V)이 증대한 경우에는, 제1유로(2)의 유로 저항(R1)의 증대에 따라서 제1 및 제2유로(2), (3) 사이에 있어서의 분류비가 변화되어, 제1유로(2)를 통류하는 유체의 유량의 증대가 억제되므로, 상기 유량 센서(4)를 포화시키는 일 없이, 그 유량을 검출하는 것이 가능해진다.
이때, 제2유로(3)에, 대유량을 고정밀도로 검출할 수 있는 제2유량 센서(4a)를 설치해 두면, 제1유로(2)에 설치한 유량 센서(4)에 있어서의 대유량의 검출 정밀도의 저하를 보완할 수 있다. 단, 상기 제2유량 센서(4a)에 따르면 미소 유량을 고정밀도로 검출할 수 없으므로, 미소 유량의 검출은 전술한 바와 같이 제1유로(2)에 설치한 유량 센서(4)가 맡게 된다.
또, 도 6(a) 및 도 6(b)에 각각 나타낸 바와 같이 소직경 파이프(6)의 도중에, 그 관 직경(유로 단면적)을 좁힌 협폭부(노즐부)(6a)를 형성해두면, 배관(5)을 통류하는 유체의 유량(유속)(V)의 증대에 따라서 제1유로(2)의 유로 저항(R1)을 더욱 크게 변화시킬 수 있다. 즉, 소직경 파이프(6)의 도중에 협폭부(노즐부)(6a)가 존재하면, 해당 소직경 파이프(6)에 유입된 유체는 해당 소직경 파이프(6) 내를 압축되면서 통류하여, 그 유속이 높아진 상태에서 상기 협폭부(6a)를 통과하게 된다. 이때, 배관(5)을 통류하는 유체의 유량(유속)(V)이 적을 경우에는, 소직경 파이프(6) 내에 있어서의 유체의 압축도는 적고, 상기 유량(유속)(V)이 증가함에 따라서 상기 소직경 파이프(6) 내에 있어서의 유체의 압축도는 커진다. 이것은 소유량일 때에는 유로 단면적이 작은 제1유로(2)의 유로 저항(R1)이 작고, 그 유량이 증가함에 따라서 상기 제1유로(2)의 유로 저항(R1)이 점차로 커지는 것을 의미한다. 이에 대해서, 유로 단면적이 큰 제2유로(3)의 유로 저항(R2)은 그 유량(유속)(V)의 변화에도 불구하고 거의 변화하는 일은 없다.
따라서, 상술한 유로 구조의 제1유로(2)에 유량 센서(4)를 설치해둠으로써, 유량에 따라서 제1 및 제2유로(2), (3) 사이의 분류비를 변화시켜, 대유량 때에 있 어서의 제1유로(2)를 통류하는 유량을 억제할 수 있으므로, 유량 센서(4)를 포화시키는 일 없이 소유량으로부터 대유량까지를 확실하게 검출하는 것이 가능해진다. 특히, 전술한 협폭부(6a)에 유량 센서(4)를 설치해두면, 해당 협폭부(6a)에서 제1유로(2)를 통류하는 유체의 속도를 빠르게 할 수 있으므로, 미소한 유량이어도 이것을 고감도로 검출하는 것이 가능해진다.
또, 종래 기술과 같이 유로의 길이 방향을 따라서 다른 유량 영역을 마련하지 않고, 상기 유량 센서(4)와 상기 제2유량 센서(4a)는 유로 둘레면의 동일 둘레 방향에 설치되어 있다. 이 때문에, 종래 기술에서는 유량 영역마다 필요한 유로 길이가 대유량 영역과 소유량 영역 각각에 대해서 그 길이 방향을 따라서 필요했지만, 본원 발명에서는, 다른 유량 영역을 마련함에 있어서, 각 유량 센서를 유로 둘레면의 동일 둘레 방향에 설치했으므로, 유량 영역에 필요한 유로 길이가 하나면 된다. 따라서, 종래 기술에 비해서 유로 길이가 장대하게 되지 않으므로, 유량계를 소형화할 수 있는 구성으로 할 수 있었다.
그런데, 상기 제1 및 제2유로(2), (3)를, 예를 들어, 도 7(a) 및 도 7(b)에 나타낸 바와 같이 주 유로(1)를 형성하는 배관(5)의 내부에, 그 유로 단면을 덮도록 해서 설치되는 메쉬체(7)에 의해, 해당 메쉬체(7)의 하류 측의 공간을 상기 배관(5)의 유로 단면 방향으로 구획해서 형성할 수도 있다. 또한, 도 7(a)는 유로의 종단면 구조를 나타내고 있고, 도 7(b)는 상기 유로의 횡단면 구조를 나타내고 있다.
상기 메쉬체(7)는, 그 일부에 메쉬 결손부(절결부)(7a)를 형성한 것으로, 상 기 메쉬 결손부(7a)가 상기 배관(5)의 유로 단면의 일부에 위치될 수 있도록 해서 상기 배관(5)의 유체 통류 방향에 직교시켜서 설치된다. 이와 같이 해서 배관(5)에 구비되는 메쉬체(7)는, 상기 메쉬 결손부(7a)를 그 유로 저항(R1)이 영[0]인 영역으로서 작용시키며, 해당 메쉬체(7) 자체는 배관(5)을 통류하는 유체의 유량(유속)(V)에 따라서 그 유로 저항(R2)이 변화되는 수동체로서 기능한다.
이러한 메쉬체(7)에 의해 해당 메쉬체(7)의 하류측의 영역에 형성되는 유체의 흐름이 다른 부위로서 상기 제1 및 제2유로(2), (3)가 배관(5)의 내부를 등가적으로 구획해서 형성된다. 구체적으로는, 제1유로(2)는 상기 메쉬 결손부(7a)를 통과해서 해당 메쉬 결손부(7a)의 하류측에 형성되는 층류 영역으로서 실현된다. 그리고, 상기 제2유로(3)는 상기 메쉬체(7)의 하류측에 있어서의 상기 층류 영역 이외의 영역, 즉, 메쉬체(7)를 통과한 유체의 통류 영역으로서 실현된다.
이와 같은 메쉬체(7)를 구비한 유로 구조에 따르면, 해당 배관(5)을 통류하는 유체가 메쉬 결손부(7a)를 통과하거나 혹은 메쉬체(7)를 통과하거나에 따라서 다른 유로 저항을 받게 된다. 바꾸어 말하면, 배관(5)을 통류하는 유체의 유량(유속)(V)이 미소할 경우에는, 메쉬체(7)에서의 유로 저항(압력 손실)이 크므로 상기 유체의 대부분이 유로 저항이 없는 메쉬 결손부(7a)를 통해서 흐른다. 따라서, 메쉬 결손부(7a)의 하류측인 제1유로(2)의 형성 영역을 통류하는 유량이 많아지고, 이것에 대해서 메쉬체(7)의 하류측인 제2유로(3)의 형성 영역을 통류하는 유량은 거의 없어진다. 그러나, 배관(5)을 통류하는 유체의 유량(유속)(V)이 증대하면, 상기 메쉬체(7)에서의 유로 저항(압력 손실)을 극복해서 해당 메쉬체(7)를 통해서 흐르는 유체의 양이 점차로 증대하여, 메쉬체(7) 및 메쉬 결손부(7a)를 각각 통과하는 유체의 분류비, 즉, 제1 및 제2유로(2), (3)에 유입되는 유체의 분류비가 변화된다.
따라서, 제1유로(2)에 유량 센서(4)를 설치해두면, 배관(5)을 통류하는 유체의 유량(유속)(V)이 미소할 경우에는, 그 미소한 유량의 대부분이 제1유로(2)(메쉬 결손부(7a))에 흐르므로, 상기 유량 센서(4)에서 상기 미소 유량을 확실하게 검출할 수 있다. 또, 배관(5)을 통류하는 유체의 유량(유속)(V)이 증대했을 경우에는, 상기 유체가 메쉬체(7)를 통해서 제2유로(3)에 흐르므로, 그만큼, 상기 제1유로(2)(메쉬 결손부(7a))에 흐르는 유량을 억제할 수 있다. 그리고, 제1유로(2)의 유로 저항(R1)의 증대에 따라서 제1 및 제2유로(2), (3) 사이의 분류비가 변화되고, 제1유로(2)를 통류하는 유체의 유량의 증대가 억제되므로, 전술한 실시형태와 마찬가지로 상기 유량 센서(4)를 포화시키는 일 없이, 그 유량을 검출하는 것이 가능해진다.
이때, 제2유로(3)에 대유량을 고정밀도로 검출할 수 있는 제2유량 센서(4a)를 설치해두면, 제1유로(2)에 설치한 유량 센서(4)에 있어서의 대유량의 검출 정밀도의 저하를 보완할 수 있다. 단, 유량(유속)(V)이 미소할 경우, 제2유로(3)에는 거의 유체가 흐르는 일이 없는 것과 더불어 상기 제2유량 센서(4a)에 의한 상기 미소 유량의 검출은 거의 불가능하다. 따라서, 미소 유량의 검출은 제1유로(2)(메쉬 결손부(7a)의 하류)에 설치한 유량 센서(4)가 맡게 된다.
그런데, 전술한 제1 및 제2유로(2), (3)를, 예를 들어 도 8(a) 및 도 8(b)에 나타낸 바와 같이 실현할 수도 있다. 또한, 도 8(a)는 유로의 종단면 구조를 나타내고 있고, 도 8(b)는 상기 유로의 횡단면구조를 나타내고 있다. 이 유로 구조는, 주 유로(1)를 구성하는 배관(5)의 내부에 그 유체 통류 방향을 따라서 판형상의 격벽체(8)를 설치해서 상기 주 유로(1)의 내부 공간을 제1 및 제2유로(2), (3)로 구획하는 동시에, 더욱 제2공간(3)을 그 유체 통류 방향으로 칸막이하도록 패들 기구(9)를 설치해서 구성된다.
이 패들 기구(9)는, 예를 들어 힌지(hinge)를 개재해서 경도(傾倒) 자유롭게 지지되어서 제2유로(3)를 폐쇄하도록 설치된 밸브체(9a)를 구비한 것으로, 제2유로(3)를 통류하는 유체의 압력을 받아서 기울어져서 해당 제2유로(3)에 틈새를 형성하고, 이 틈새를 통해서 유체를 통류하도록 기능하는 유로 저항체로 이루어진다. 특히, 이 패들 기구(9)는, 제2유로(3)를 통류하는 유체의 유량(유속)(V)에 따라서 상기 밸브체(9a)에 의해 형성되는 틈새의 크기(개방도)를 변화시켜서, 그 유로 저항을 수동적으로 변화시키는 가변형의 저항 소자로서 기능을 발휘한다.
이러한 패들 기구(9)를 구비한 유로 구조를 가지는 유량계에 따르면, 주 유로(1)를 통류하는 유체의 유량이 미소할 경우에는, 제2유로(3)에 설치된 패들 기구(9)가 해당 제2유로(3)를 폐쇄하므로, 상기 미소 유량의 유체는 오로지 제1유로(2)를 통류한다. 그리고, 주 유로(1)를 통류하는 유체의 유량이 증대함에 따라서, 그 유체 압력을 받아서 상기 패들 기구(9)의 밸브체(9a)가 열려 그 유로 저항이 저하하므로, 상술한 유체는 제1 및 제2유로(2), (3)에 분류되어 통류하게 된다.
따라서, 제1유로(2)에 유량 센서(4)를 설치해두면, 미소 유량일 때에는 그 유체의 대부분이 제1유로(2)를 통류하므로 상기 미소 유량을 확실하게 검출하는 것이 가능해진다. 또, 유량이 증대했을 때에는, 그 유량증대에 따라서 패들 기구(9)의 밸브체(9a)가 열리고, 이것에 의해 유체가 제1 및 제2유로(2), (3)에 분류되므로, 제1유로(2)를 통류하는 유체의 유량의 증대가 억제된다. 이 결과, 유량 센서(4)의 포화를 억제하면서 그 유량 검출을 행하는 것이 가능해지므로, 전술한 미소 유량으로부터 대유량까지를 일관해서 검출하는 것이 가능해진다.
또, 대유량의 통류 시에는, 전술한 바와 같이 제1유로(2)를 통류하는 유량이 억제되므로, 그만큼 유량 센서(4)에 의한 유량 검출 정밀도가 저하한다. 따라서, 제2유로(3)에 대유량을 고정밀도로 검출할 수 있는 제2유량 센서(4a)를 설치해두면, 제1유로(2)에 설치한 유량 센서(4)에 있어서의 대유량의 검출 정밀도의 저하를 보완할 수 있다. 단, 유량(유속)(V)이 미소한 경우에는, 제2유로(3)에는 거의 유체가 흐르는 일이 없으므로, 해당 제2유량 센서(4a)에 의한 상기 미소 유량의 검출은 거의 불가능하다. 따라서, 미소 유량의 검출은 제1유로(2)에 설치한 유량 센서(4)가 맡게 된다.
이상, 도 5(a) 및 도 5(b) 내지 도 8(a) 및 도 8(b)를 각각 참조해서 유체의 유량에 따라서 분류비가 변화되는 제1 및 제2유로(2), (3)의 구성예에 대해서 설명한 바와 같이, 본 발명에 관한 유량계는, 미소 유량의 통류 시와 대유량의 통류 시 그 분류비가 수동적으로 변화되는 제1 및 제2유로(2), (3) 중의 적어도 한쪽에 유량 센서(4)를 설치해넣어서 구성된다. 특히, 미소 유량 시 분류비가 높아지고, 대유량 시 분류비가 낮아지는 쪽의 유로에 유량 센서(4)를 설치해넣음으로써, 해당 유량 센서(4)에서 미소 유량으로부터 대유량까지를 일관해서 검출할 수 있도록 하고 있다.
구체적으로는 미소 유량의 대부분을 유량 센서(4)가 설치된 유로(전술한 예에서는 제1유로(2))에 유도함으로써 실질적으로 그 유속(겉보기 상의 유량)을 높게 하고, 이것에 의해서 미소 유량을 확실하게 검출할 수 있도록 하고 있다. 한편, 대유량에 대해서는 상기 유량 센서(4)가 설치된 유로(제1유로(2))에 유도되는 유량을 억제함으로써 그 유속의 증대를 억제하고, 이것에 의해서 상기 유량 센서(4)를 포화시키는 일 없이 그 유량 검출을 행하게 하는 것으로 되어 있다. 따라서, 본 발명에 관한 유량계에 따르면, 예를 들어, 배관(5)의 균열이나 상흔에 기인하는 가스 누설에 의한 5[L/h] 정도의 미소 유량으로부터 통상의 가스 사용 상태에 있어서의 최대 30,000[L/h] 정도의 대유량까지를, 1개의 유량 센서(4)에서 일관해서 계측하는 것이 가능해져, 그 실용적 이점이 크다. 또 다른 쪽의 유로(전술한 예에서는 제2유로(3))에, 통상의 가스 사용 상태에 있어서의 유량을 고정밀도로 검출할 수 있는 대유량용의 제2유량 센서(4a)를 설치해두면, 전술한 유량 센서(4)의 검출 정밀도가 대유량 시 엉성해지는 것을 보완하는 것이 가능해지므로, 실용상, 문제없이 가스 유량의 계측을 행하는 것이 가능해진다.
또, 종래와 같이 대유량 영역과 소유량 영역을 길이 방향을 따라서 개별로 설치하는 일 없이, 상기 유량 센서(4)와 상기 제2유량 센서(4a)를 유로 둘레면의 동일 둘레 방향에 설치하고, 정해진 유로 길이에 있어서 대유량 영역과 소유량 영역을 각각 형성하고 있다. 따라서, 대유량 계측 영역과 소유량 계측 영역을 각각 형성하는 데 필요한 유로 길이를 공통화할 수 있다. 그러므로, 유량계를 소형화할 수 있는 구성으로 할 수 있다.
다음에, 본 발명에 관한 유량계의 구체적인 구성예에 대해서 설명한다.
도 9는 본 발명의 제1실시형태에 관한 유량계의 유로 구조를, 그 유체 통류 방향으로 분해해서 모식적으로 나타낸 도면이고, 도 10은 그 요부의 단면구조를 모식적으로 나타낸 도면이다. 이 유량계는, 직사각형 형상의 유로 단면을 가지는 배관(11)의 내부 공간을, 그 유로 단면 방향으로 복수의 미소한 유로로 구획하는 격자체(12)를 주체로 해서 구성된다. 상기 격자체(12)는 배관(11)의 유체 통류 방향을 따라서 평행하게 설치된 복수의 판형상의 격벽체를 격자형상으로 조합시켜서 구성된다. 특히, 이 실시형태에서 이용되는 격자체(12)는, 예를 들어 후술하는 바와 같이 유량 센서가 구비되는 센서 격자체(12a)와, 이 센서 격자체(12a)의 상류측에 설치되는 제1 및 제2 앞격자체(12b), (12c) 및 상기 센서 격자체(12a)의 하류측에 설치되는 제1 및 제2 뒤격자체(12d), (12e)로 이루어진다.
덧붙여서, 이들 격자체(12)(12a, 12b∼12e)는, 예를 들어 대략 정방형의 유로 단면 형상을 이루는 복수(다수)의 미소 유로(13)를 매트릭스(matrix) 형상으로 배열 형성하는 동시에, 대략 직사각형의 유로 단면 형상을 이루어, 상기 미소 유로(13)의 대략 2배의 유로 단면적을 이루는 2개의 미소 유로(14)를 형성한 것으로 이루어진다. 이들 2개의 미소 유로(14)는, 예를 들어, 격자체(12)의 변 부분에 있어서, 인접하는 2개의 미소 유로(13)를 구획하는 판형상의 격벽체를 제거함으로써 형성된다. 그래서, 이들 격자체(12)(12a, 12b∼12e)는, 도 9에 나타낸 바와 같이 각 격자체(12)(12a, 12b∼12e) 사이에 메쉬체(철망)(15)(15a, 15b, 15c, 15d)를 각각 끼워 넣어서 유체의 통류 방향으로 포갤 수 있어서, 유체의 통류 방향으로 늘어선 복수의 유로를 형성한다. 또한, 상기 각 메쉬체(철망)(15)는 오로지 전술한 격자체(12)를 통해서 통류하는 유체를 정류하는 역할을 담당한다.
덧붙여서, 격자체(12)(12a, 12b∼12e)에 의해 구획된 상기 복수(다수)의 미소 유로(13)는 이들의 통합으로서 파악함으로써 유로 단면적이 큰 유로를 형성하고 있는 것으로 간주할 수 있다. 또한, 이들 미소 유로(13), (14)는, 각각 그 유로 단면적의 차이에 의해 유체의 흐름에 대하여 다른 유로 저항을 나타낸다. 따라서, 예를 들어, 미소 유로(13)의 통합이 전술한 제2유로(3)에 상당하고, 상기 2개의 미소 유로(14)는 각각 전술한 제1유로(2)에 상당하는 것으로 간주할 수 있다.
또, 센서 격자체(12a)에 형성된 2개의 미소 유로(14)의 한쪽에는, 도 10에 나타낸 바와 같이 그 유로의 대략 중간위치에 노즐부(14a)가 설치되어, 그 유로 단면적이 좁혀져 있다. 이 노즐부(14a)가 설치된 미소 유로(14)는 미소 유량 검출용(저속용)으로서 이용되며, 상기 노즐부(14a)에서 유로 단면적을 좁힌 위치에는 저속용 유량 센서(16a)가 구비된다. 또 다른 쪽의 미소 유로(14)는 대유량 검출용(고속용)으로서 이용되며, 그 대략 중간위치에는 고속용 유량 센서(16b)가 설치된다. 이들 2개의 미소 유로(14)는, 전술한 미소 유로(13)의 통합으로부터 분리된 유로로서 간주함으로써, 전술한 유량에 따라서 분류비가 변화되는 제1 및 제2유로(3)로서 파악될 수도 있다.
이러한 격자체(12)를 이용해서 유로를 구획한 유로 구조를 가지는 유량계에 따르면, 제2유로(3)를 형성하는 복수의 미소 유로(13)의 각 유로 단면적이 유량 센서(16a), (16b)가 설치되는 미소 유로(14)에 비교해서 좁고, 그 유로 저항이 크므로, 배관(11)을 통류하는 유체가 미소 유량일 경우에는, 그 유체는 주로 유로 저항이 작은 미소 유로(14)에 유입된다. 그래서, 배관(11)을 통류하는 유체의 유량이 증대함에 따라서, 상기 미소 유로(13)의 유로 저항을 극복해서 해당 미소 유로(13)에도 유체가 유입되게 된다.
이 결과, 유체 유량의 증대에 따라 상기 미소 유로(13)에 유입되는 유체 유량과, 미소 유로(14)에 유입되는 유체 유량과의 분류비가 변화된다. 그래서, 유량 센서(16a), (16b)가 설치된 미소 유로(14)를 통류하는 유체의 유량은, 그 유량의 증대에 따라서 점차로 억제되게 된다. 따라서, 미소 유로(14)에 설치된 유량 센서(16a), (16b)의 미소 유량에 대한 검출 감도를 높게 하고, 또 대유량의 통류 시에는 미소 유로(14)에 분류되어서 유입되는 유량을 억제할 수 있으므로, 상기 유량 센서(16a), (16b)의 포화를 억제하면서 유량 검출을 행하게 하는 것이 가능해진다.
또, 상기 유로 구조를 가지는 유량계에 있어서는, 전술한 바와 같이 저속용 유량 센서(16a)가 설치되는 한쪽의 미소 유로(14)의 대략 중앙위치에는, 그 유로 단면적을 좁힌 노즐부(14a)가 설치되어 있다. 그래서, 이 노즐부(14a)가 설치된 센서 격자체(12a)의 상류측에 설치된 상기 제1 및 제2 앞격자체(12b), (12c)는, 미소 유로(14)에 유빙되는 유체에 대한 보조 주행 구간을 형성하고 있어, 이 보조 주행 구간에 유입된 유체 전체를 상기 노즐부(14a)에 보내주는 것으로 되어 있다. 이 결과, 미소 유로(14)에 유입된 유체는, 상기 노즐부(14a)에 의한 유로 단면적의 좁아짐에 의해 그 유속이 높아질 수 있으므로, 해당 미소 유로(14)의 노즐부(14a)에 설치된 저속용 유량 센서(16a)는, 보다 고정밀도로 미소 유량을 검출하는 것이 가능해진다. 특히, 상기 저속용 유량 센서(16a)는 노즐부(14a)를 형성하지 않고 있는 다른 쪽의 미소 유로(14)에 설치된 고속용 유량 센서(16b)보다도 고감도로 미소 유량을 검출하는 것이 가능해진다.
도 11은 전술한 바와 같이 격자체(12)를 설치해서 그 유로를 복수의 미소 유로(13), (14)로 구획한 유로 구조에 있어서의 유량 검출 감도의 향상을 확인한 실험 데이터이며, 격자체(12)를 설치하지 않은 경우와 격자체(12)를 설치한 경우에 있어서의 유량 센서 출력의 변화를 대비해서 나타내고 있다. 이 실험 데이터로부터, 격자체(12)를 설치하지 않은 경우보다도 격자체(12)를 설치해서 유로를 미소 유로(13), (14)로 구획한 쪽이 유량 센서(16a), (16b)에 의한 유량 검출 감도가 향상하는 것을 뒷받침할 수 있었다. 또한, 특히 도시하지 않았지만, 격자체(12)의 길이를 길게 한 쪽이 검출 감도의 향상을 도모할 수 있는 것도 명확하게 되었다. 이것은 격자체(12)의 길이(유로 길이)가 길어질수록, 유량에 대한 전술한 복수의 미소 유로(13), (14) 사이의 유로 저항의 변화의 차이가 커지기 때문인 것으로 여겨진다.
또, 도 12는 격자체(12)에 의해서 형성되는 복수의 미소 유로(13), (14)의 유로 단면적(개구폭)의 비율을 변화시켰을 때의, 미소 유량에 대한 유량 센서 출력의 변화를 나타내고 있다. 또한, 도 11에 있어서 기준이란, 유량 센서(16)가 설치되는 미소 유로(14)의 개구폭(유로 단면적)과, 그 밖의 미소 유로(13)의 개구폭(유 로 단면적)을 동등하게 한 경우를 나타내고 있다. 그리고, 4배 및 8배로서 표시되는 파라미터는, 각각 유량 센서(16)가 설치되는 미소 유로(14)의 개구폭(유로 단면적)을 미소 유로(13)의 개구폭(유로 단면적)의 4배 및 8배로 설정한 경우를 나타내고 있다.
이 도 12에 나타낸 실험 데이터로부터, 유량 센서(16)가 설치되는 미소 유로(14)의 개구폭(유로 단면적)을, 그 밖의 미소 유로(13)의 개구폭(유로 단면적)보다도 크게 함으로써, 미소 유량 영역에 있어서의 유체가 상기 미소 유로(13)에 유입되기 어려워져서, 그만큼 상기 유량 센서(16)가 설치되는 미소 유로(14)에 많은 유량이 유입되어, 유량 센서(16)에 의한 미소 유량의 검출 감도가 높아지는 것을 뒷받침할 수 있다.
또, 도 13은 전술한 메쉬체(철망)(15)의 유무에 의한 효과를 확인한 것이며, 미소 유량으로부터 대유량에 걸친 센서 출력의 변화를 대비해서 나타내고 있다. 또한, 메쉬체(철망)(15)를 설치하지 않은 경우란, 전술한 도 9에 나타낸 유로 구조로부터 메쉬체(철망)(15)를 생략한 구조, 즉 격자체(12)만으로 유로 구조를 구성한 경우를 나타내고 있다. 이 도 13에 나타낸 특성으로부터 명확한 바와 같이, 메쉬체(철망)(15)를 설치하는 것에 의해서 미소 유로(13), (14)를 각각 통류하는 유체에 대한 정류 효과가 커져, 안정한 유량 검출이 가능해지는 것뿐만 아니라, 순시의 유량 계측 정밀도도 높일 수 있는 것을 알 수 있다. 또, 상기 도 13에 나타낸 실험 데이터로부터, 미소 유량 영역에서의 유량의 변화에 대한 센서 출력의 변화가 급준하여, 해당 미소 유량 영역에서의 상기 유량 센서(16)에 의한 검출 감도가 높 은 것을 알 수 있다. 또한, 동시에 유량이 증대함에 따라서 유량의 변화에 대한 센서 출력의 변화가 브로드(broad)하게 되어 있는 것으로부터, 대유량 영역에서의 상기 유량 센서(16)에 의한 검출 감도가 서서히 낮게 억제되고 있는 것을 알 수 있다.
이 대유량 영역에서의 상기 유량 센서(16)의 검출 감도의 억제는, 전술한 노즐부(14a)에서의 압력손실이 그 유속(유량)의 2승에 비례해서 증대하고, 이 결과, 노즐부(14a)(미소 유로(14))를 통과하는 유량이 제한되어서 미소 유로(13)에 유입되는 유량이 늘어나기 때문이다. 그래서, 상기 유로 구조를 채용한 유량계에 따르면, 유량 센서(16)를 포화시키는 일 없이, 미소 유량으로부터 대유량까지를 일관해서 계측가능한 것을 뒷받침할 수 있다.
또, 도 14는 전술한 2개의 미소 유로(14)에 각각 설치된 저속용 유량 센서(16a) 및 고속용 유량 센서(16b)의 유량에 대한 센서 출력의 변화를 나타내고 있다. 이 도 14에 나타낸 데이터로부터 명확한 바와 같이, 노즐부(14a)를 설치해서 유로 단면적을 좁힌 미소 유로(14)에 설치한 저속용 유량 센서(16a)의 출력은, 유량이 증가함에 따라서, 그 변화의 비율이 억제되고 있어, 브로드한 변화를 보인다. 이 현상은 상기 노즐부(14a)에서의 압력 손실에 따라서 해당 노즐부(14a)를 통과하는 유체의 유량이 억제되기 때문이다. 이것에 대해서, 고속용 유량 센서(16b)가 설치된 쪽의 미소 유로(14)에는 노즐부(14a)가 설치되어 있지 않으므로, 유량의 증대에 따르는 센서 출력의 변화 비율의 억제는 해당 미소 유로(14)와 전술한 미소 유로(13)와의 사이의 분류비의 변화에 의존한 분만큼으로 되어 있다.
이 실험 결과로부터 미소 유로(13)와의 사이에서 분류비가 변화되는 미소 유로(14)에서의 유량을, 그 미소 유로(14)에 노즐부(14a)를 설치하는지의 여부에 의해 더욱 변화시킬 수 있고, 노즐부(14a)를 설치하는 것에 의해 상기 분류비의 변화의 비율을 더욱 크게 해서 미소 유량 영역에서의 검출 감도를 보다 높일 수 있는 것을 알 수 있다. 따라서, 전술한 2개의 미소 유로(14)에 저속용 유량 센서(16a)와 고속용 유량 센서(16b)를 각각 설치해두면, 서로 다른 검출 특성으로 미소 유량 영역에서부터 대유량 영역까지를 각각 일관해서 계측하는 것이 가능해지고, 이들 각 유량 센서(16a), (16b)에서의 저유량 영역측 및 고유량 영역측에서의 계측 정밀도의 부족을 서로 보완하는 것이 가능해진다.
또, 도 15는 격자체(12)의 길이(유로 길이)의 차이에 의해 변화되는 센서 출력 특성을 나타내고 있다. 이 실험 데이터로부터 격자체(12)의 길이를 길게 할수록, 노즐부(14a)에서의 압력 손실의 영향을 받기 어려워져, 센서 출력을 높일 수 있는 것을 알 수 있다. 이 현상은, 격자체(12)에 의해 구획된 미소 유로(13), (14)의 유로 길이가 길수록, 특히 노즐부(14a)의 상류측의 보조 주행 구간이 길수록, 유체(가스)의 압축성에 의해 주 유로를 통류하는 유량의 변화에 비교해서 미소 유로(14)에 유입되는 유량이 그다지 크게 변화되지 않기 때문인 것으로 여겨진다. 따라서, 미소 유로(14)에서의 보조 주행 구간을 어느 정도 길게 확보하고, 그 유로 저항을 안정화시키기 위해 격자체(12a)의 길이를 길게 한 쪽이 미소 유로(13), (14) 사이에서의 분류비를, 노즐부(14a)의 존재에 관계없이, 배관(11)을 통류하는 유체의 유량(유속)에 따라서 변화시키는 것이 가능해지므로, 미소 유량을 고감도로 검출하기 위해서 매우 바람직하다고 말할 수 있다.
그런데, 먼저 유로 단면을 덮도록 설치된 메쉬체(7)의 일부에 메쉬 결손부(7a)를 형성해두면, 메쉬 결손부(7a)를 통과하는 유체와 메쉬체(7)를 통과하는 유체와의 사이에 흐름의 차이가 생겨, 해당 메쉬체(7)의 하류측에 유량(유속)이 다른 영역(제1 및 제2유로(2), (3))이 형성되는 것을 기술하였다. 따라서, 도 9에 나타낸 격자체(12)를 이용해서 2종류의 미소 유로(13), (14)를 형성한 유로 구조에, 더욱 메쉬 결손부를 구비한 메쉬체(철망)를 설치해넣음으로써, 미소 유량에 대한 검출 정밀도를 더욱 높게 하는 것도 가능하다.
도 16은 이러한 관점에 입각해서 실현되는 본 발명의 제2실시형태에 관한 유량계의 유로 구조를, 그 유체 통류 방향으로 분해해서 모식적으로 나타낸 도면이고, 도 17은 그 요부의 단면 구조를 모식적으로 나타낸 도면이다. 또한, 이 실시형태에 나타낸 격자체(12)(12a, 12b∼12e)는 전술한 실시형태와 마찬가지의 것이다. 또한, 이 제2실시형태는, 상기 각 격자체(12)(12a, 12b∼12e) 사이에 각각 삽입되는 메쉬체로서, 특히 노즐부(14a)를 설치한 쪽의 미소 유로(14)의 형성 위치에 대응시켜서 직사각형 형상의 메쉬 결손부(17a)를 형성한 메쉬체(철망)(17)를 이용한 점을, 전술한 제1실시형태와 달리하고 있다.
전술한 유로 구조를 형성해서 실현되는 유량계에 따르면, 메쉬 결손부(17a)에 위치되어서 메쉬체(철망)가 존재하지 않는 미소 유로(14)에서의 유로 저항(압력손실)이 작은 만큼, 미소 유량 영역에 있어서 상기 미소 유로(14)에 유입되는 유량이 늘어나므로, 미소 유량에 대한 검출 감도를 앞서의 실시형태 이상으로 높이는 것이 가능해진다. 이러한 효과를 확인하기 위해, 메쉬 결손부(17a)를 형성한 메쉬체(철망)(17)를 이용하지 않은 경우(제1실시형태), 메쉬 결손부(17a)를 형성한 메쉬체(철망)(17)를 1매만 이용한 것, 마찬가지로 해서 2매 이용한 것, 또한 3매 이용한 것, 그 전체에 메쉬 결손부(17a)를 형성한 경우에 대해서, 미소 유량 영역에 있어서의 센서 출력에 대해서 조사한 바, 도 18에 나타낸 바와 같은 실험 결과를 얻을 수 있었다.
이 도 18에 나타낸 실험 데이터로부터 명확한 바와 같이, 메쉬 결손부(17a)를 형성한 메쉬체(17)를 많이 이용할수록, 센서 출력이 증가하고 있어, 메쉬체(17)에 의한 통류 저항(압력 손실)이 미소 유로(13), (14) 사이에서의 분류비를 높여서, 미소 유량의 대부분을 유량 센서(16)를 설치해넣은 미소 유로(14)에 유도하기 위해서 유효하게 기능하고 있는 것을 알 수 있다. 따라서, 누설에 기인하는 5[L/h] 정도의 미소 유량을 고감도로 검출할 수 있는 것을 뒷받침할 수 있었다.
또, 도 19는 전술한 바와 같이 구성된 유량계에 있어서의 저속용 유량 센서(16a) 및 고속용 유량 센서(16b)의 출력 특성을 나타내고 있다. 이들 각 센서(16a), (16b)의 출력 특성에 나타낸 바와 같이, 노즐부(14a)가 설치되어, 메쉬 결손부(17a)의 형성 위치에 위치된 미소 유로(14)에 설치해 넣은 저속용 유량 센서(16a)에 따르면, 미소 유량 영역에 있어서의 검출 감도를 충분히 크게 할 수 있다. 단, 미소 유량 영역에 있어서의 검출 감도를 충분히 크게 한 만큼, 대유량 영역에서의 검출 감도가 낮아진다.
이것에 대해서, 노즐부(14a)가 없고, 그 유로에 메쉬체(17)가 설치된 미소 유로(14)에 설치해넣은 고속용 유량 센서(16b)에 있어서는, 미소 유량 영역에서의 검출 감도를 그다지 높게 할 수는 없지만, 미소 유량 영역에서부터 대유량 영역까지의 전체 계측 범위에 걸쳐서 그 검출 감도를 거의 일정하게 할 수 있다. 따라서, 이들 저속용 유량 센서(16a) 및 고속용 유량 센서(16b)의 각 출력을 각각 모니터하는 것에 의해, 누설에 기인하는 5[L/h] 정도의 미소 유량으로부터, 보통 사용 상태에 있어서의 최대 30,000[L/h]의 대유량까지의 전체 계측 범위에 걸쳐서, 그 유량을 정밀도 좋게 검출하는 것이 가능해져, 실용적 이점이 크다. 또한, 이들 각 유량 센서(16a), (16b)의 출력을 대비함으로써, 센서 특성의 경년 변화를 모니터하는 것이 가능해지는 등의 효과도 발휘한다.
또, 본 발명은 전술한 실시형태로 한정되는 것이 아니다. 예를 들면, 제1 및 제2유로(2), (3)의 유로 단면적의 비는 계측 사양 등에 따라서 정하면 좋은 것이며, 또 유체의 종별에 따라서 다른 점성 등에 따라서 정하도록 해도 된다. 또한, 도 8 및 도 17에 각각 나타낸 실시형태에 있어서는, 센서 격자체(12a)의 상류측과 하류측에 각각 격자체를 설치하여, 유체 통류 방향에 대칭한 유로 구조로 하고 있다. 이러한 대칭인 유로 구조는, 유체의 통류 방향이 정·역방향으로 반전할 가능성이 있는 것을 배려한 것이지만, 유체의 통류 방향이 일원적으로 결정되는 것과 같은 경우에는, 센서 격자체(12a)의 상류측에만 격자체(12b), (12c)를 설치하도록 해도 된다. 또한, 이와 같이 해서 격자체(12)에 의해 형성하는 유로의 길이도, 그 사양에 따라서 정하면 좋은 것이다.
전술한 메쉬체(7), (15), (17)로서는, 철망뿐만 아니라, 벌집형상 구조체나 펀칭 메탈과 같은 것이어도 된다. 나아가서는, 전술한 격자체(12)는, 직사각형 형상의 유로 단면을 형성하는 것 대신에, 소위 벌집형의 육각형상의 유로 단면이나 삼각형상의 유로 단면을 형성하는 것이어도 된다. 그 외, 본 발명은 그 요지를 일탈하지 않는 범위에서 여러 가지 변형해서 실시할 수 있다.
도 1은 본 발명에 관한 유량계의 기본 구성을 나타낸 도면;
도 2는 도 1에 나타낸 유량계의 유로 구조를 등가적으로 나타낸 도면;
도 3은 도 1에 나타낸 유량계의 제1 및 제2유로의 유량에 대한 유로 저항의 변화 특성을 나타낸 도면;
도 4는 도 1에 나타낸 유량계에 있어서의 제1 및 제2유로 간의 분류비의 변화를 나타낸 도면;
도 5는 도 1에 나타낸 유량계에 있어서의 유로 구조의 제1실현예를 나타낸 도면;
도 6은 도 1에 나타낸 유량계에 있어서의 유로 구조의 제2실현예를 나타낸 도면;
도 7은 도 1에 나타낸 유량계에 있어서의 유로 구조의 제3실현예를 나타낸 도면;
도 8은 도 1에 나타낸 유량계에 있어서의 유로 구조의 제4실현예를 나타낸 도면;
도 9는 본 발명의 제1실시형태에 관한 유량계의 유로 구조를, 그 유체 통류 방향으로 분해해서 모식적으로 나타낸 도면;
도 10은 도 9에 나타낸 유량계에 있어서의 유로의 요부의 단면 구조를 모식적으로 나타낸 도면;
도 11은 도 9에 나타낸 유량계의 미소 유량에 대한 검출 감도의 향상을 확인 한 실험의, 미소 유량에 대한 유량 센서 출력의 변화를 나타낸 도면;
도 12는 유로 단면적(개구폭)의 비율을 변화시켰을 때의, 미소 유량에 대한 유량 센서 출력의 변화를 나타낸 도면;
도 13은 메쉬체의 유무에 의해 변화되는 센서 출력을 대비해서 나타낸 도면;
도 14는 제1실시형태에 있어서의 저속용 유량 센서 및 고속용 유량 센서의 유량에 대한 센서 출력의 변화를 나타낸 도면;
도 15는 격자체의 길이의 차이에 의해서 변화되는 센서 출력 특성을 나타낸 도면;
도 16은 본 발명의 제2실시형태에 관한 유량계의 유로 구조를, 그 유체 통류 방향으로 분해해서 모식적으로 나타낸 도면;
도 17은 도 16에 나타낸 유량계에 있어서의 유로의 요부의 단면 구조를 모식적으로 나타낸 도면;
도 18은 메쉬 결손부의 유무에 의해서 변화되는 미소 유량 영역에 있어서의 센서 출력의 변화를 나타낸 도면;
도 19는 제2실시형태에 있어서의 저속용 유량 센서 및 고속용 유량 센서의 유량에 대한 센서 출력의 변화를 나타낸 도면.
<도면의 주요 부분에 대한 부호의 설명>
1: 주 유로 2: 제1유로
3: 제2유로 4: 유량 센서
5: 배관 6: 소직경 파이프(격벽체)
7: 메쉬체(철망) 7a: 메쉬 결손부
8: 격벽체 9: 패들 기구
9a: 밸브체 11: 배관
12: 격자체 13, 14: 미소 유로
14a: 노즐부 15: 메쉬체(철망)
16a: 저속용 유량 센서 16b: 고속용 유량 센서
17: 메쉬체(철망) 17a: 메쉬 결손부

Claims (12)

  1. 병렬로 설치되어, 주 유로를 통류하는 유체를 분류해서 통류하는 동시에 상기 주 유로를 통류하는 유체의 유량에 따라서, 분류비가 수동적으로 변화되는 제1 및 제2유로; 및
    이들 제1 및 제2유로 중의 적어도 한쪽에 설치된 유량 센서를 구비한 것을 특징으로 하는 유량계.
  2. 제1항에 있어서, 상기 제1 및 제2유로는 상기 주 유로의 유로 단면을 해당 주 유로의 유체 통류 방향을 따라서 공간적으로 구획해서 형성되는 것인 유량계.
  3. 제1항에 있어서, 상기 제1 및 제2유로 중의 적어도 한쪽은 상기 주 유로를 통류하는 유체의 유량에 따라서 상기 유체에 대한 유로 저항을 수동적으로 변화시켜서, 상기 제1 및 제2유로 간에서의 분류비를 변화시키는 것인 유량계.
  4. 제1항에 있어서, 상기 제1 및 제2유로는 상기 주 유로의 유체 통류 방향을 따라서 설치된 격벽체에 의해 해당 주 유로의 유로 단면을 구획해서 형성되는 것이며,
    상기 제1유로는 상기 제2유로에 비교해서 미소한 유로 단면을 가지는 유로공간으로서 형성되는 것인 유량계.
  5. 제4항에 있어서, 상기 제1유로는 유체의 흐름에 대한 보조 주행 구간을 확보한 후에 그 유로 단면적을 좁힌 협폭부를 가지고, 이 협폭부에 상기 유량 센서를 설치해 넣은 것인 유량계.
  6. 제1항에 있어서, 상기 제1유로는 상기 주 유로의 유로 단면의 전체를 덮어서 설치되는 메쉬체의 일부에 형성된 메쉬 결손부의 하류측에 형성되는 층류 영역으로 이루어지고,
    상기 제2유로는 상기 메쉬체의 하류측에 있어서의 상기 층류 영역 이외의 영역으로서 상기 층류 영역과의 사이에서 상기 주 유로의 유로 단면을 등가적으로 구획해서 형성되는 것인 유량계.
  7. 제5항에 있어서, 상기 메쉬체의 일부에 형성된 메쉬 결손부는 상기 주 유로의 유로 단면과 비교해서 미소한 영역부로서 형성한 것인 유량계.
  8. 제6항에 있어서, 상기 메쉬 결손부를 구비한 메쉬체는 유체의 통류 방향에 상기 메쉬 결손부의 위치를 맞추어 복수매 설치되는 것인 유량계.
  9. 제1항에 있어서, 상기 제1 및 제2유로는 상기 주 유로의 유체 통류 방향을 따라서 설치된 격벽체에 의해 해당 주 유로의 유로 단면을 구획해서 형성되는 것이 며,
    상기 제2유로에는, 유체의 유속에 따라서 상기 유체에 대한 유로 저항이 변화되는 패들 기구가 설치되어, 이 패들 기구의 개방도에 의해서 변화되는 해당 제2유로의 유로 저항에 따라서 상기 제1 및 제2유로 간에서의 분류비가 가변되는 것인 유량계.
  10. 제3항에 있어서, 상기 제2유로는 유체의 흐름에 따라서 해당 제2유로를 복수의 평행한 미세유로로 구획하는 격자형상의 칸막이판을 구비한 것인 유량계.
  11. 제10항에 있어서, 상기 격자형상의 칸막이판은, 소정의 길이의 격자체를 형성한 것이며,
    상기 제2유로는 상기 격자체를 상기 유체의 통류 방향에 복수개 직렬로 배열하는 동시에, 이들 격자체 사이에 각각 메쉬체를 개재시킨 것인 유량계.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 제2유로에 제2유량 센서를 더 포함하는 것인 유량계.
KR1020080050921A 2007-07-06 2008-05-30 유량계 KR100998293B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007178359A JP2009014601A (ja) 2007-07-06 2007-07-06 流量計
JPJP-P-2007-00178359 2007-07-06

Publications (2)

Publication Number Publication Date
KR20090004487A true KR20090004487A (ko) 2009-01-12
KR100998293B1 KR100998293B1 (ko) 2010-12-03

Family

ID=39776423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080050921A KR100998293B1 (ko) 2007-07-06 2008-05-30 유량계

Country Status (5)

Country Link
US (1) US7614295B2 (ko)
EP (1) EP2012095A3 (ko)
JP (1) JP2009014601A (ko)
KR (1) KR100998293B1 (ko)
CN (1) CN100595524C (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014178B2 (ja) * 2008-01-24 2012-08-29 アズビル株式会社 ガスメータ
JP2010207394A (ja) * 2009-03-10 2010-09-24 Shimizu Corp 防煙設備の風量計測装置
CN105125246B (zh) 2009-10-28 2019-04-09 史密夫和内修有限公司 带螺纹缝合线锚定器
JP5458820B2 (ja) * 2009-11-16 2014-04-02 富士通株式会社 感温抵抗素子の計測値を風速に変換する方法及び風速センサシステム
EP2455724B1 (de) * 2010-11-18 2016-09-21 Axetris AG Flusssensor
US9273986B2 (en) * 2011-04-14 2016-03-01 Trane International Inc. Water flow measurement device
CN102322907B (zh) * 2011-05-17 2012-10-31 重庆梅安森科技股份有限公司 双流量测量头一体化智能气体流量计
AU2014225705B2 (en) 2013-03-06 2018-08-30 Smith & Nephew, Inc. Microanchor
US10260775B2 (en) * 2013-03-15 2019-04-16 Green Matters Technologies Inc. Retrofit hot water system and method
DE102013006670A1 (de) * 2013-04-18 2014-10-23 Hydrometer Gmbh Durchflussmesser
US9080908B2 (en) 2013-07-24 2015-07-14 Jesse Yoder Flowmeter design for large diameter pipes
CN103528635A (zh) * 2013-11-01 2014-01-22 苏州市凯业金属制品有限公司 一种工业水表检测用分流道金属折弯管
US10139259B2 (en) * 2014-12-05 2018-11-27 General Electric Company System and method for metering gas based on amplitude and/or temporal characteristics of an electrical signal
CN104819751A (zh) * 2015-04-01 2015-08-05 宁波杭州湾新区祥源动力供应有限公司 压缩空气流量测试装置
CN105300460A (zh) * 2015-11-19 2016-02-03 卓度计量技术(深圳)有限公司 气体流量计及气体流量显示方法
CN105698885B (zh) * 2016-04-19 2019-09-17 九江市杰尼新材料有限公司 还原炉流量监控方法
CN105651350B (zh) * 2016-04-19 2019-03-19 成都瑞途电子有限公司 一种远程还原炉流量监控系统
WO2018180387A1 (ja) * 2017-03-30 2018-10-04 株式会社フジキン 質量流量センサ、その質量流量センサを備えるマスフローメータ及びその質量流量センサを備えるマスフローコントローラ
US10520344B2 (en) * 2017-04-20 2019-12-31 Itron, Inc. Proportional flow comparative metering
JP6885803B2 (ja) 2017-06-27 2021-06-16 ゼネラル・エレクトリック・カンパニイ 放射線撮影装置及び撮影方法
JP6533878B1 (ja) * 2017-08-09 2019-06-19 Ckd株式会社 流量計
KR102268452B1 (ko) * 2017-12-19 2021-06-25 주식회사 원익아이피에스 유량 제어 장치
CN108759969B (zh) * 2018-05-24 2024-04-26 新疆中元天能油气科技股份有限公司 气液两相流量计
CN110727294A (zh) * 2018-07-17 2020-01-24 北京七星华创流量计有限公司 流体传感器及质量流量控制器
CN109211349B (zh) * 2018-08-31 2020-10-30 温州福鑫仪表有限公司 一种基于势能分流水流量自动检测水表装置
CN109855691B (zh) * 2019-01-14 2020-06-09 中国计量大学 一种差分式层流流量测量方法及装置
US11280655B2 (en) * 2019-01-16 2022-03-22 Flo Technologies, Inc. Use of multiple flow metering devices in parallel to monitor and control fluids through a pipe
US10982985B2 (en) * 2019-03-04 2021-04-20 Hitachi Metals, Ltd. High flow tubular bypass
US11307068B2 (en) * 2019-10-23 2022-04-19 Larry C. Sarver Flow valve system with ultrasonic flow sensor
CN111881599A (zh) * 2020-06-24 2020-11-03 江苏大学 一种基于有限元法的流量测量装置与方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710414A (en) * 1980-06-23 1982-01-20 Toshiba Corp Thermal type flow meter
JPS6047973B2 (ja) * 1981-01-26 1985-10-24 株式会社豊田中央研究所 流量計
JPS60183825U (ja) * 1984-04-28 1985-12-06 トヨタ自動車株式会社 感熱抵抗型流量検出装置
US4936144A (en) * 1986-05-23 1990-06-26 Djorup Robert Sonny Directional thermal anemometer transducer
JP2552320B2 (ja) * 1988-02-25 1996-11-13 株式会社ユニシアジェックス 内燃機関の熱線式空気流量検出装置
JPH01257221A (ja) * 1988-04-06 1989-10-13 Japan Electron Control Syst Co Ltd 内燃機関の熱線式空気流量検出装置
US4981035A (en) * 1989-08-07 1991-01-01 Siemens Automotive L.P. Dust defelector for silicon mass airflow sensor
JP2571720B2 (ja) 1990-07-10 1997-01-16 山武ハネウエル株式会社 流量計
JP2538852B2 (ja) * 1991-03-20 1996-10-02 三菱電機株式会社 感熱式流量センサ
JP2956805B2 (ja) * 1991-12-28 1999-10-04 東京瓦斯株式会社 超音波流量計
NL9201906A (nl) * 1992-11-02 1994-06-01 Huiberts Albertus T Werkwijze en inrichting voor het meten van het debiet van een mediumstroom.
DE4340882A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
JPH0953966A (ja) * 1995-08-17 1997-02-25 Hitachi Ltd 発熱抵抗体式空気流量測定装置
JP3874515B2 (ja) * 1997-12-15 2007-01-31 東京瓦斯株式会社 流量計
DE19827375A1 (de) * 1998-06-19 1999-12-23 Bosch Gmbh Robert Vorrichtung zum Messen der Masse eines strömenden Mediums
DE19959159A1 (de) * 1999-12-08 2001-06-21 Siemens Ag Luftmassenmesser
US6352011B1 (en) * 2000-08-11 2002-03-05 Fruehm Hermann Two-ended screwdriver bits
DE102004019521B4 (de) * 2004-04-22 2011-05-12 Abb Ag Durchflussmessgerät
US7107834B2 (en) * 2004-11-12 2006-09-19 Mks Instruments, Inc. Thermal mass flow rate sensor including bypass passageways and a sensor passageway having similar entrance effects
JP4341645B2 (ja) * 2006-06-06 2009-10-07 株式会社日立製作所 流量測定装置,流量測定通路及び空気流量測定装置

Also Published As

Publication number Publication date
CN101339063A (zh) 2009-01-07
CN100595524C (zh) 2010-03-24
EP2012095A2 (en) 2009-01-07
US20090007654A1 (en) 2009-01-08
US7614295B2 (en) 2009-11-10
EP2012095A3 (en) 2011-03-02
JP2009014601A (ja) 2009-01-22
KR100998293B1 (ko) 2010-12-03

Similar Documents

Publication Publication Date Title
KR100998293B1 (ko) 유량계
JP5014178B2 (ja) ガスメータ
JP5974307B2 (ja) 超音波流量計
US9453748B2 (en) Flow meter device
JP2012233776A5 (ko)
JP6533878B1 (ja) 流量計
JP5422015B2 (ja) 流量計
CN106918428B (zh) 用于过滤器的测试探头
JP5465703B2 (ja) 流量センサ
JP4048964B2 (ja) 超音波流量計
JP5669583B2 (ja) 流量算出システム、集積型ガスパネル装置及びベースプレート
JP6229144B2 (ja) 流量計測装置
JPH06137914A (ja) 流量測定装置
JPH11316144A (ja) 差圧式流量計
JP3530645B2 (ja) 流量計の流路構造
JPH08136313A (ja) 流量計測器
JP2017181231A (ja) 流量計測装置
SU870939A1 (ru) Датчик текущих значений быстроизмен ющихс малых расходов жидкости в трубопроводе
JP2021009094A (ja) 層流素子および層流型流量計
JPH11258020A (ja) 流量計
JP2020148486A (ja) 層流素子および層流型流量計
JPH11304554A (ja) 多層型流体振動形流量計

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee