KR20080023338A - 마이크로리소그래피 노출 장치용 펠리클 - Google Patents

마이크로리소그래피 노출 장치용 펠리클 Download PDF

Info

Publication number
KR20080023338A
KR20080023338A KR1020087000478A KR20087000478A KR20080023338A KR 20080023338 A KR20080023338 A KR 20080023338A KR 1020087000478 A KR1020087000478 A KR 1020087000478A KR 20087000478 A KR20087000478 A KR 20087000478A KR 20080023338 A KR20080023338 A KR 20080023338A
Authority
KR
South Korea
Prior art keywords
pellicle
transmittance
angle
incidence
exposure apparatus
Prior art date
Application number
KR1020087000478A
Other languages
English (en)
Inventor
악셀 괴너마이어
알렉산드라 파지디스
Original Assignee
칼 짜이스 에스엠테 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠테 아게 filed Critical 칼 짜이스 에스엠테 아게
Publication of KR20080023338A publication Critical patent/KR20080023338A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

마이크로리소그래피 노출 장치(10)용 펠리클은, 장치의 동작 파장에 대해, 펠리클(34, 134, 234)에 비스듬히 충돌하는 광선(56)에 대한 최대 투과율을 가진다. 이는 매우 높은 수치 구경의 프로젝션 렌즈에서 일어나기 때문에, 넒은 범위의 입사각에 대해 투과율의 변화가 더 작아지도록 한다.

Description

마이크로리소그래피 노출 장치용 펠리클{Pellicle For Use In A Microlithographic Exposure Apparatus}
본 발명은 마이크로리소그래피 노출 장치에 사용되는 마스크에 먼지나 다른 입자가 부착되는 것을 방지하기 위한 광학 펠리클(pellicle)에 관한 것이다.
포토리소그래피로 불리기도 하는, 마이크로리소그래피(microlithography)는 집적 회로, 액정 디스플레이(LCD) 그리고 다른 마이크로 구조화된 장치의 제조를 위한 기술이다. 더 자세히는, 마이크로리소그래피의 프로세스가 에칭 프로세스와 함께, 기판(예를 들면, 실리콘 웨이퍼) 상에 형성된 박막 적층 구조물 내의 형상을 패턴화하는 데 사용된다. 제조되는 각각의 막에서, 복사선(radiation)(예, DUV(deep ultraviolet) 광선)에 민감한 포토레지스트나 다른 물질로 웨이퍼가 먼저 코팅된다. 다음으로, 포토레지스트(photoresist)로 덮인 웨이퍼가 프로젝션 노출 장치에서 마스크를 통해 프로젝션(projection) 된 빛에 노출된다. 진폭 마스크(Amplitude mask)가, 입사 광에 대응하게 패턴화된 부분의 전사(transmission)를 방지하는 투명 구조물로 이루어진 패턴을 포함한다. 마스크의 프로젝션 동작 중에, 마스크 패턴의 역 패턴이 포토레지스트 상에, 일반적으로 줄어든 스케일로 영사된다. 노출 후에, 마스크에 포함된 패턴에 대응하는 이미지를 생성하도록, 포토레지 스트가 현상 된다(develop). 이후에, 에칭 프로세스가 회로 패턴을 웨이퍼 상의 박막 적층 구조물(stacks)로 전사된다. 마지막으로, 포토레지스트가 제거된다. 서로 다른 마스크를 이용하여 이러한 공정을 반복하는 것은 다중 막 구조의 미세 구조화된 구성요소를 생성한다.
포토레지스트 상의 마스크 패턴의 정확한 재생이 이러한 미세구조화된 구성요소의 제조를 위해 가장 중요하다. 따라서, 반복 사용 되도록 마스크의 상태가 보호되어야 한다. 작은 입자(가령, 공기 중의 먼지나 섬유(fiber))가 마스크 패턴 재생의 정확도를 떨어뜨리는 중요한 원인이다. 마스크의 초점 평면 가까이에 배치될 때, 매우 작은 입자조차 광 전사를 변경시킬 수 있다. 결과적으로, 이러한 입자가 생산될 구성요소에 결함을 일으킬 수 있다.
마스크 패턴의 상태를 보호하기 위해, 종종 펠리클(pellicle) 만으로 불리는, 광학 펠리클을 사용하는 방법이 알려져 있다. 펠리클은 균일한 두께를 가지는 얇은 막(membrane)을 포함한다. 전형적으로, 광학 펠리클이 프레임(frame)에 의해 마스크 표면 상부에 지지 된다. 얇은 막이, 마스크의 표면으로부터 입자가 분리되게 하는, 먼지 커버로 작용한다. 대신에, 입자가 펠리클 표면에서 수집되나, 마스크로부터의 일정한 거리(프레임의 높이에 의해 결정됨)에 유지된다. 따라서, 입자가 프로젝션 렌즈의 전방 초점 평면(즉, 마스크 평면)으로부터 상대적으로 멀리 배치되며, 이에 따라 포토레지스트 상으로 마스크 패턴의 영사를 방해하는 입자의 역할이 눈에 띄게 감소한다.
펠리클은 이와 같이 전사된 빛에 영향을 미치지 않아야 한다. 이는 특히, 펠 리클이 매우 높은 투과율을 가져야 하며, 왜곡을 일으키지 않아야 한다는 것을 포함한다. 높은 투고율을 얻기 위해서, 펠리클이 일반적으로, 마이크로리소그래피 프로세스를 위해 선택된 빛의 파장에서 매우 소량의 빛을 흡수하는 물질로 구성된다. 약 0.5um 에서 2um 사이의 특정 값에서 매우 균일한 두께를 보장함으로써, 왜곡(distortion) 현상이 방지된다.
더 긴 파장의 UV 광을 생성하는 광원이 프로젝션 노출 장치에 사용될 때, 니트로셀룰로오스(nitrocelulose) 또는 셀룰로오스 아세테이트가 높은 투과율을 가지는 펠리클 막을 제공한다. 그러나, 이러한 물질의 상대적으로 높은 굴절율 때문에, 비 반사 코팅(AR 코팅)이 필요하다. DUV(deep ultraviolet) 스펙트럼 범위(가령, 248nm, 193nm 또는 157nm)에서 더 짧은 파장에 대해, 상용가능한 불소 중합체 레진으로 구성된 얇은 막이 성공적으로 사용되어 왔다. 예를 들어, 아사히 글라스의 불소 중합체(CYTOP) 및 듀폰사의 AF-1600가 적합한 것으로 밝혀졌다. 이러한 불소 중합체로 구성된 펠리클이 이러한 파장에 대한 높은 투과율을 가지고, AR 코팅이 배제될 수 있는 낮은 굴절률을 가진다.
그럼에도 AR 코팅은 종종 다양한 이유로 얇은 막(membrane)에 부가된다. 가장 중요한 동기는 펠리클의 투과율 개선과 얇은 막의 두께 변화에 대한 투과율 민감도의 감소이다. AR 코팅의 디자인에 대한 다른 목적은 파장 변화에 따라 투과율이 변경되는 것을 방지하도록 하는 것이다.
예를 들어, 미국 특허 5,741,576호는 얇은 막과 AR 코팅을 포함하는 펠리클에 대해 기술한다. 펠리클은 361nm에서 369nm 범위의 제 1 파장 범위에 대해, 그리 고 430nm에서 442 nm의 제 2 파장 범위에 대해 99% 이상의 투과율을 가진다.
얇은 막에 AR 코팅을 적용하는 데 적합한 물질 및 제조 방법이 미국 특허 US 5,674,624호에 기술된다.
미국 공개 특허 US 2002/0181092호는, 정전기 방지 효과를 얻기 위해, 전기적으로 전도성이 있는 펠리클을 포함한다.
코팅된 얇은 막을 포함하는 펠리클이 미국 특허 US 4,657,805호, US 5,008,156호, US 4,759,990호 및 유럽특허 0,488,788호에 포함된다.
미세 구조화된 구성요소 내의 최소 형상의 크기를 줄이는 하나의 방법은, 상측(image side)의 프로젝션 렌즈의 마지막 렌즈 소자 및 포토레지스트 사이의 공간으로 침투액을 삽입하는 개념에 기반한다. 이는 '1'보다 큰 값에 대한 프로젝션 렌즈의 상측 수치 구경(image side numerical aperture, NAi)을 증가시킨다.
그러나, 일반적인 펠리클을 '1'을 초과하는 상측 수치 구경을 가지는 프로젝션 노출 장치에 사용하는 것이 이미지의 질의 떨어뜨린다는 것을 알 수 있다.
따라서, 본 발명의 목적은 '1' 이상의 상측 수치 구경을 가지는 프로젝션 노출 장치에 사용되기에 적합한 펠리클을 제공하는 것이다.
본 발명의 제 1 측면에 따르면, 이러한 목적은, 마이크로리소그래피 노출 장치에 사용되는 펠리클에 의해 성취될 수 있다. 여기서, 이 펠리클은 마이크로리소그래피 노출 장치의 동작 파장에 대하여, 2도 및 25도 사이의 입사 각으로 펠리클에 충돌하는 광선에 대해 투과율 최대값을 가진다.
투과율 최대값은 지역(local) 또는 전역(global) 값일 수 있다. "지역 투과율 최대값"이라는 용어는, 지정된 각 범위 내의 또는 범위 외에서 더 큰 투과율을 가지는 추가적인 최대값이 존재하는 상태에서, 투과율 최대값을 나타낸다. 예를 들면, 수직 입사에 대해, 또는 25도보다 큰 입사각에서 더 큰 투과율이 얻어진 경우에, 이러한 상황이 발생할 수 있다.
"전역" 이라는 용어는 다른 투과율 최대값이 전혀 존재하지 않거나, 지정된 각 범위 내 또는 범위 외의 추가 최대값이 존재하나, 이러한 추가적인 최대값이 전역 최대값에 비해 작은 경우를 말한다.
이러한 새로운 방법은 전형적인 디자인 규칙(투과율 최대값을 얻고자 할 때, 수직 입사를 가정함)으로부터 벗어난다. 이러한 본 발명의 제 1 측면에 따라, 일반적으로 수직 입사시 얻어지는 투과율 최대값이 비스듬히 입사되는 방향으로 조심스럽게 이동된다. 이는 높은 상측 수치 구경(NAi)을 가지는 프로젝션 렌즈가 큰 물측 수치 구경(NA0, NA0 = M ㆍ NAi)을 가지기 때문이다. 여기서, M은 프로젝션 렌즈의 배율이다.
예를 들어, NAi = 1.4이고, 프로젝션 렌즈의 배율(M)이 1/4인 경우에, 물측 수치 구경(NA0)은 0.35이다. 이는 약 20도의 최대 각에 대응한다. 비교를 위해, 침투 동작(immersion operation)을 위해 디자인되지 않은 일반적인 프로젝션 렌즈가, 0.8의 상측 수치 구경을 가지며, 이때, 프로젝션 렌즈의 물측(onject side)에서의 최대 각은 11.5도이다.
침투 시스템 내의 프로젝션 렌즈의 물측(object side)에서 발생하는 최대 각의 상당한 증가가, 펠리클을 가로지르는 광선이 더 큰 입사각을 가지는 결과를 나타낸다. 일반적인 펠리클에서, 투과율 최대값이 수직 입사시 획득되며, 투과율이 약 12도에 이르기까지는, 입사 각을 상당히 감소시키지 않는다. 그러나, 더 큰 입사각에서, 펠리클의 투과율이 90% 이하의 값으로 현격히 떨어진다. 예를 들면, 20도의 입사 각에 대하여, 투과율이 90% 만큼 낮아질 수 있다. 입사각에 대한 크기 의존도가, 일반적인 펠리클을 사용할 때, 프로젝션 렌즈의 침투에서 관찰되어 온 이미지 손상에 기여한다.
본 발명의 일 측면에 따르면, 그러나, 펠리클의 디자인 목적이, 2도와 25도 사이의 입사각에서 지역 또는 전역 투과율 최대값이 획득되도록 변경된다. 결과적으로, 투과율의 급격한 하락이, 프로젝션 렌즈의 물측에서 실제로 발생하는 각 범위를 넘어 더 큰 입사각 쪽으로 이동된다. 물론 이는 일반적인 펠리클과 비교될 때, 수직 입사에 대한 투과율이 감소하는 것을 의미한다. 그러나, 웨이퍼 상의 마스크에 포함된 패턴의 훌륭한 재생산이 특정 각도에서의 최대 투과율을 요구하지 않으나, 한편으로는 높은 평균 투과율과 다른 한 편으로는 높은 최소 투과율을 모두 요구한다. 더 구체적으로, 평균 투과율이 프로젝션 렌즈에 의해 결정되는 입사각의 지정된 범위에 대하여, 95%보다 크며 바람직하게는 98%보다 크도록 펠리클이 디자인되어야 한다. 이러한 범위에 걸친 투과율의 변화가 한편으로, 5% 미만이어야 하며, 바람직하게는 2.5% 미만이다.
NA0가 프로젝션 렌즈의 물측 수치 구경인 경우에, 입사각의 범위가 0도와 arcsin(NA0) 사이이다. 실제로, 이는 매우 높은 물측 수치 구경(NA0)을 가지는 프로젝션 렌즈에 대해 0도와 약 25도 사이의 입사각 범위를 가지도록 한다. NA0 보다 작은 값에 대해, 입사각의 범위가 예를 들면, 0도와 15도 사이에서 더 작을 수 있다. 특정 조명 장치에 대해, 예를 들면, arcsin(NA0/2) 및 arcsin(NA0) 사이의 비 연속적인 입사각의 범위가 존재할 수 있다.
5도 및 20도 사이의 입사각에 대해 그리고 바람직하게는 10도 및 15 사이의 입사각에 대해 투과율 최대값이 획득되는 경우에, 높은 평균 투과율 및 작은 투과율 변화가 획득된다는 것이, 계산 및 실험을 통해 입증되었다.
이러한 광학적 성질을 획득하기 위해, 펠리클이 비반사 코팅에 의해 덮이지 않는 하나의 얇은 막(membrane)에 의해 형성될 수 있다. 얇은 막이 비 반사 코팅에 의해 덮이지 않아 주변 가스와 직접 접촉하는 상태인 경우에, 펠리클의 광학 속성 및 특히 입사각에 대한 투과율 의존도가 온전히, 얇은 막의 굴절률 및 두께에 의해 결정된다. 코팅되지 않은 얇은 막을 펠리클로 사용하는 것은 비용면에서 유리한다.
펠리클이 얇은 막뿐 아니라 얇은 막에 적용되는 비 반사 코팅을 포함하는 경우에, 펠리클의 특정한 광학적 속성이 밝혀질 것이다. 이러한 코팅은 둘 이상의 막을 포함하며, 얇은 막의 일측 또는 양측에 적용된다. 비 반사 코팅의 광학적 효과는 다양한 광학적 속성의 관점에서 선택적으로 정해진다. 예를 들면, 펠리클에 비스듬히 충돌하는 광선에 대한 펠리클의 투과율 최대값이 서로 다른 동작 파장에 대해 획득되도록, 비 반사 코팅이 디자인된다. 본 발명이 속하는 기술분야에 알려진 바와 같이 정전기 방지 효과 도한 획득될 수 있다. 나아가, 코팅의 최외각 막이 먼지나 다른 입자의 부착을 줄이도록 디자인될 수 있다. 최외각 막이 유기 구성요소(organic component)를 포함하는 경우에, 이러한 속성을 획득할 수 있다.
다른 실시예에서, 펠리클의 투과율이, 종래기술에 따른 펠리클과 마찬가지로, 감소하지 않으나, 입사각의 증가에 따라 지속적으로 증가하도록 디자인될 수 있다. 예를 들면, 프로젝션 노출 장치가 광학 축(예, 두꺼운 양면 오목 렌즈)으로부터의 거리가 증가함에 따라, 더 낮은 투과율을 가지는 대안 평면에 광학 소자를 포함하는 경우에, 이러한 의존도가 유리한 효과를 나타낼 수 있다. 이후에, 일반적으로 바람직하지 않은 의존도를 보상하기 위해 펠리클이 사용될 수 있다. 프로젝션 렌즈가 침투 동작에 대해 디자인된 경우에, 비스듬한 광선의 침투 용액 내 흡수도가 실질적으로 보상되는 방식으로, 투과율이 입사각의 증가와 더불어 증가할 수 있다. 침투 용액이 프로젝션 렌즈의 후방 초점 평면에 매우 가까이 존재하기 때문에, 펠리클에서의 입사각이 포토레지스트에 대한 입사각으로 직접 변환된다. 공지된 침용액의 투과율이 무시될 수 없기 때문에, 침투액 내에서 더 긴 거리를 이동하는 비스듬한 광선이 특정한 광선보다 더 강한 흡수도를 가진다. 이러한 효과는 펠리클 내의 투과율의 역 의존도(opposite dependence)에 의해 보상될 수 있다.
더 균일한 각 크기 분포( angular intensity distribution)가 요구되는 경우에, 프로젝션 렌즈의 대안 평편 내 또는 이에 매우 인접한 위치에 추가적인 흡수 필터를 배치하는 것을 고려할 수 있다. 필터 소자가, 입사각에 대한 펠리클의 투과율 의존도가 실질적으로 보상될 수 있도록 결정된, 지역적으로 변하는 투과율을 가진다. 침투액이 존재하는 경우에, 입사각에 대한 펠리클의 투과율 의존도와 광 감지 막에 관한 제 2 입사각에 대한 침투액의 투과율 의존도 모두가 함께 (실질적으로) 보상되도록, 필터 소자의 지역적으로 변하는 투과율이 결정된다. 이러한 흡수 필터 소자를 대안 평면 내에 또는 인접한 위치에 배치하는 대신에 또는 이에 더하여, 각에 따라 변하는 투과율을 가지는 흡수 필터 소자가 예를 들면, 마스크 평면, 워터 평면 또는 게재된 이미지 평면(image plane) 내에 또는 인접한 위치에 배치될 수 있다.
본 발명의 제 2 측면에 따르면, 위에 언급한 목적이 얇은 막 및 얇은 막에 적용되는 비 반사 코팅을 포함하는 펠리클에 의해 성취된다. 마크로리소그래피 노출 장치의 동작 파장에 관해, 0도 및 15도 사이, 바람직하게는 0도 및 25도 사이의 입사각에 대해, 2% 미만으로 펠리클의 입사각이 편하도록, 얇은 막과 비 반사 코팅이 디자인된다. 더 바람직하게는, 이러한 각 범위에서 1% 미만으로 투과율이 변한다. 이러한 본 발명의 측면은 다음과 같은 발견에 근거한다. 즉, 비 반사 코팅의 적합한 디자인에 대해, 15도까지의 넓은 각 범위에서 거의 일정한 투과율을 획득하는 것이 가능하다는 것이다. 투과율 최대값은 98%이거나 99.5%이다.
결과적으로, 입사각에 대한 펠리클의 투과율 의존도를 보상할 수 있는 대안 평면에서 추가적인 흡수 필터가 필요하지 않다.
요구되는 각 범위에 대해 입사각에 거의 독립적인 투과율을 가지는 것이, 이미지 속성의 면에서, 선호되는 해결책이 된다. 그러나, 얇은 막의 일 측면 또는 바람직하게는 양쪽 측면 상에 복수의 박막을 적용하는 것은 복잡하고 비싼 프로세스를 포함할 수 있다. 펠리클이 물질 품질 하락에 따라 제한된 수명을 가지기 때문에, 비싼 펠리클이 프로젝션 노출 장치의 전체 동작 비용을 상당히 증가시킬 수 있다.
도 1은 본 발명에 따른 프로젝션 노출 장치를 통한 자오선 단면을 일정하지 않은 비율로 간략히 나타낸다.
도 2는 본 발명의 일 실시예에 따라, 도 1에 도시된 프로젝션 노출 장치에 사용된 펠리클을 나타내는 확대 단면도이다.
도 3은 도 2에 도시된 펠리클의 투과율의 각 의존도를 나타내는 그래프이다.
도 4는 본 발명의 제 2 실시예에 따라 도 1에 도시된 프로젝션 노출 장치에 사용된 펠리클을 나타내는 확대 단면도이다.
도 5는 도 4에 도시된 펠리클의 투과율의 각 의존도를 나타내는 그래프이다.
도 6은 본 발명의 제 3 실시예에 따라 도 1에 도시된 프로젝션 노출 장치에 사용된 펠리클을 나타내는 확대 단면도이다.
도 7은 도 6에 도시된 펠리클의 투과율의 각 의존도를 나타내는 그래프이다.
도 8은 본 발명의 제 4 실시예에 따라 도 1에 도시된 프로젝션 노출 장치에 사용된 펠리클을 나타내는 확대 단면도이다.
도 9는 도 1에 도시된 프로젝션 노출 장치에 포함된 프로젝션 렌즈의 말단 부분을 나타내는 확대 단면도이다.
도 10은 프로젝션 렌즈에 포함된 흡수 필터 소자를 나타내는 상면도이다.
도 1은 본 발명에 따른 프로젝션 노출 장치를 통한 자오선 단면을 일정하지 않은 비율로 간략히 나타낸다. 프로젝션 노출 장치(명세서 전체에 걸쳐 '10'으로 표시됨)가 프로젝션 광(13)을 발생하기 위한 조명 시스템(12)을 포함한다. 조명 시스템(12)이 광원(14)과, 조명 광학 장치(16) 및 칸막이 판(18)을 포함한다. 실시예에서, 프로젝션 광이 193nm의 파장을 가진다. 물론, 157nm 또는 248nm와 같은 다른 파장도 마찬가지로 고려될 수 있다.
프로젝션 노출 장치(10)가 다수의 렌즈 소자를 포함하는 프로젝션 렌즈(20)를 추가로 포함한다. 간략히 하기 위해, 매우 소우의 렌즈 소자(L1 내지 L5) 만이 도 1에 개략적으로 도시된다. 프로젝션 렌즈(20)가 포토레지스트(26) 상의 프로젝션 렌즈(20)의 대상 평면(24)에 배열되는 마스크(22)를 영사하는 데 사용된다. 이러한 실시예에서, 프로젝션 렌즈(20)가 배율(M=1/4_을 가지므로, 포토레지스트(26)에 형성된 패턴이 마스크(20)에 포함된 패턴보다 4배 더 작다. 포토레지스트(26)가 기판(30)상에 지지 되고, 프로젝션 렌즈(20)의 이미지 평면(28)에 정확하게 배치된다.
포토레지스트(26)와 프로젝션 렌즈(20)의 마지막 렌즈 소자(L5) 사이에 형성된 공간이 침투액(immersion liquid, 32)으로 채워진다. 물이나 기름일 수 있는, 침투액(32)의 굴절률이, 예를 들면, 포토레지스트(26)의 굴절률과 거의 일치하도록 선택된다. 침투 동작이, 물측 수치 구경(object side numerical aperture) (NA0 >1)을 가지는 프로젝트 렌즈(20)를 디자인할 수 있도록 한다. 도 1에 도시된 실시예에서, NA0 =1.2 인 것으로 가정한다. 프로젝션 렌즈(20)의 높은 수치 구경이 분해능(resolution)를 줄이고, 이에 따라 제작될 구성요소의 최소 형상 크기를 더 작게 할 수 있다.
마스크(22)가, 먼지와 다른 입자로부터, 패턴화된 마스크 표면 상부의 프레임(36)에 의해 지지 되는 펠리클(pellicle, 34)에 의해 보호된다.
도 2는 마스크(22)와, 펠리클(34) 및 프레임(36)을 나타내는 확대 단면도이다. 마스크(22)는 수정 글라스로 만들어진 평판으로 구현될 수 있는 마스크 기판(38)을 포함한다. 마스크 기판(38)의 하부(40)가 프로젝션 렌즈(20)의 대물 평면(24)에 정확히 배치된 패턴화된 크롬 막(42)을 지지한다. 크롬 구조물 상에 충돌하는 프로젝션 광(13)이 완전히 차단되며, 이때 인접한 크롬 구조물 사이의 공간을 통과하는 프로젝션 광(13)이 서로 다른 회절 순서로 회절 된다.
프레임(36)에 펠리클(34)을 부착하기 위해, 마스크 기판(38)의 하부(40)에 프레임(36)을 부착하기 위해 접착제(44)가 사용된다. 따라서, 패턴화된 크롬 막(42)이 공동(cavity)에 수용되므로, 입자가 패턴화된 크롬 막(42)에 부착되지 않으며, 포토레지스트(26)에 투영되지 않는다.
프로젝션 노출 장치(10)가 일반적으로 클린 룸에 장착되나, 주변 대기에 현저한 크기를 가지는 입자(48)가 존재할 수 있다. 이러한 입자(48)가 펠리클(34)의 하부에 부착되며, 프로젝션 렌즈(20)의 대물 평면(24) 외부에 상당히 존재한다. 결과적으로, 이러한 입자(48)가 포토레지스트(26)에 영사되지 않는다. 입자(48)가, 패턴화된 크롬 막(42)을 통과하는 프로젝션 광의 일부를 차단할지라도, 이미지 질에 대해 현저한 역효과를 가지지 않는다.
도 2에 도시된 실시예에서, 펠리클(34)이 얇은 막(49)을 포함하며, 740nm의 두께 및 1.45의 굴절률(nm)을 가진다. 동작 파장(λ=193nm)에 대해, 이는 100%에 가까운 매우 높은 투과율을 보장한다.
토 3은 펠리클 상에 충돌하는 광선(50)에 대한 입사각(α)의 함수로 투과율(T)을 나타낸다. 도 3에 도시된 바와 같이, 0도(즉, 특정한 입사각) 및 각(αmax = 17.5도) 사이의 입사각에 대해 97.8% 및 100% 사이에서 투과율(T)이 변하도록 얇은 막(49)의 두께(dm)와 그 물질이 결정된다. 각(αmax )이 프로젝션 렌즈(20)의 물측(object side)에서의 최대 각이다. 각(αmax )이 αmax = arcsin(NAiㆍM)로 주어지며, 여기서 M은 프로젝션 렌즈(20)의 배율이고, NAi는 상측 수치 구경이다. 도시된 실시예에서 M=1/4 이고, NAi = 1.2이면, αmax = 17.5도이다. 광학 축(54)의 중심에 위치한 마스크 포인트(52)로부터 αmax 로 방출되는 구경 광선(ray)이"56"으로 도 1에 도시된다.
투과율 최대값(Tmax=99.9%)이 약 12.2도의 입사각에 대해(즉, 펠리클(34)에 비스듬히 충돌하는 광선에 대해) 획득된다. 이는 유리한 효과가 아니며, 모든 가능 한 입사각(α)에 대해, 투과율(T)의 변화가 약 2% 이하로, 매우 작다는 것을 보증한다. 대부분은, 서로 다른 입사각에 대한 투과율(T)의 이러한 변화가 용인되며, 이미지 질을 현저히 떨어뜨리지 않는다.
평균 투과율(Tm)이 감소하는 경우에, 투과율(T)이 더 조금 변하는 것도 가능하다. 도 3에서, 입사각의 지정된 범위에서, 평균 투과율(Tm)이 99%에 가깝다.
도 4는 도 2와 유사하게 펠리클의 선택적인 실시예를 나타낸다. 이러한 실시예에서, 펠리클(134)이 얇은 막(149)을 포함하고, 얇은 막(149) 상에 비 반사 코딩(160)이 배치된다. 비 반사 코팅이 일정하지 않은 비율로 도시되며, 도시된 실시예에서, 도 4에 "1621 내지 1625"로 도시된 다섯 개의 막(i=1, 2, ..., 5)을 포함한다. 막 두께가 도 4에 "d1 내지 d5"로 표현된다. 표 1은 막(i=1, 2, ..., 5)의 두께(di)와, 이들의 굴절률(ni)와 특정 막(i)에 사용될 수 있는 적합한 물질을 열거한다.
얇은 막의 일 측에 네 개의 막을 포함하는 실시예
막 번호(i) 두께(di)[nm] ni 적합한 물질
얇은 막 464.29 1.39 Teflon AF, Cytop
1 31.75 1.70 LaF3, NdF3, GdF3
2 32.17 1.35 Chiolith, Kryolith, WR3
3 62.46 1.70 LaF3, NDF3, GdF3
4 60.58 1.60 SiO2
5 65.90 1.38 Teflon AF, Cytop, WR1, WR3, AlF3, MgF2, Chiolith, Kryolith
도 5는 도 3의 그래프와 유사하게, 펠리클(134)의 투과율(T)을 나타내는 그래프이다. 두 그래프를 비교하면, 비 반사 코팅(160)의 제공으로, 0도 17.5도 사이의 입사각 범위에서 0.5% 이하의 값으로 투과율(T)의 변화를 줄인다는 것을 알 수 있다. 도 1에 나타낸 사양을 가지는 비 반사 코딩(160)의 제공은 추가로, 약 17.5도 이상의 입사각에 대해 투과율(T)의 가파른 저하가 억제된다. 결과적으로, 펠리클(134)이 여전히 더 큰 수치 구경(예를 들면, NAi=1.4 또는 1.6)을 가지는 프로젝션 렌즈(20)를 이용할 수 있다. 후자의 경우에, 최대 입사각(αmax )이 M= 1/4인 배율에 대해 약 23.6도이다.
도 6은 펠리클(234)이 두께(dm)를 가지는 얇은 막(249)과, 얇은 막(249)의 반대 표면에 적용되는 비 반사 코팅(2601, 2602)을 포함하는 추가 실시예를 나타낸다. 더 구체적으로, 각각 두께(d1, d2)를 가지는 두 개의 막(2621, 2622)이 얇은 막(249)의 상부 표면에 적용되고, 두께(d3, d4)를 가지는 두 개의 막(2623, 2324)이 얇은 막(249)의 바닥 표면에 적용된다. 펠리클(234)의 사양이 아래의 표 2에 정해진다.
네 개의 막(얇은 막의 양측에 분포됨)
막 번호(i) 두께(di)[nm] ni 적합한 물질
1 42.05 1.39 Teflon AF, Cytop, AlF3,Chiolith, Kryolith
2 18.79 1.70 LaF3, NdF3, GdF3
얇은 막 944.31 1.39 Teflon AF, Cytop
4 16.14 1.80 Al2O3
5 41.90 1.45 WR1, MgF2
도 7은 도 3 및 5에 도시된 그래프와 유사하게, 투과율(T)에 따른 각을 나타낸다.
도 5 및 7을 비교하면, 얇은 막(249)의 양측에 위치한 비 반사 코팅(2601, 2602)의 존재가 추가적으로 투과율 변화를 감소시킨다는 것이 확실해 진다. 약 28도의 입사각 이상으로 떨어진, T(α)
Figure 112008001410019-PCT00001
99.9%의 완벽히 평평한 각 투과율 분포가 얻어진다. 따라서, 펠리클(234)이, 투과율(T)의 미세한 변화도 허용될 수 없는, 매우 높은 NA의 프로젝션 렌즈에 특히 적합하다. 얇은 막의 양쪽 표면에 막(2621, 2624)을 배치하는 것은 더 복잡한 제조 프로세스를 요하기 때문에, 펠리클(234)이 더 우수하나, 도 2 및 4에 각각 도시된 펠리클(34, 또는 134)에 대해 더 비싸다.
위에 설명된 펠리클의 투과율 속성이 서로 다른 물질 및 두께 사양에 대해 획득될 수 있다. 상용 가능한 소프트웨어를 기반으로, 유사한 결과를 얻는 다양한 다른 사양을 정할 수 있다. 특정 디자인에 대한 선택이 제조 프로세스에 관한 고려에 의해 후에 영향을 받을 수 있다.
도 8은, 얇은 막(49)의 두께(dm)에 관하여, 도 2에 도시된 실시예와 다른 또 다른 실시예에 대해, 투과율(T)에 따른 각을 나타내는 그래프이다. 여기서,투과율 최대값(Tmax)이 입사각(α)의 가능한 범위 외에서 얻어지도록, 두께(dm)가 결정된다. 결과적으로, 투과율(T)은, α = 0도 및 αmax = 17.5도 사이의 입사각(α)의 단조 증가 함수이다. 이러한 펠리클이, 침투액(32)의 흡수에 의해 발생되는 이미지 결함의 일부 이상을 보상하는 데 적합하다.
이는, 프로젝션 렌즈(20)의 확대된 말단 부분을 나타내는 도 9를 참조하여 설명된다. 명확성을 위해, 도 9가 일정한 비율로 표현되는 것은 아니다. 이는 특히, 도시된 소자 및 구성요소의 상대적인 크기가 정확하지 않을 수 있음을 암시한다.
프로젝션 렌즈(20)의 마지막 렌즈(L5)가 포토레지스트(26)를 덮는 침투액(32)에 잠긴다. 도 9로부터, 포토레지스트(26) 상의 이미지 포인트(80)에 비스듬히 충돌하는 광선(56)이 침투액(32) 내에서 거리(αβ)를 이동한다. 이는 이미지 포인트(80)에 수직으로 충돌하는 광선(81)의 이동 거리(d0)보다 더 크다. 침투액(32)의 흡수 상수(k)가 균일하고 이방성(isotropic)이라고 가정하면, 침투액(32) 내에서 이동하는 더 긴 거리(αβ)에 기인하여, 비스듬한 광선(56)이 침투 용액(32) 내에서 더 강하게 감쇄된다. 이는 다음으로, 포토레지스트(26)에서 생성되는 이미지의 콘트래스트(contrast)를 감소시킨다.
대물 평면(24) 및 이미지 평면(28)이 연결된 평면이기 때문에, 한편으로 펠리클에서 입사각(α)과 다른 편으로 포토레지스트(26)에서의 입사각(β) 사이에 직접적인 관계가 있다. 따라서, 최대 입사각(αmax )을 가지는 구경 광선이 펠리클에서의 최소 감쇄와 침투액에서의 최대 감쇄를 겪는다. 반면에, 펠리클을 수직으로 이동하는 광선(81)이 펠리클 내에서 가장 강한 감쇄를 겪으나, 침투액(32) 내에서 아주 적은 감쇄를 겪는다. 입사각에 대한 투과율(T)의 의존성을 신중히 정함으로써, 펠리클 및 침투 용액 내에서 일어나는 전체 감쇄가 입사각에 독립적이라는 의미에서, 실질적인 또는 완전한 보상을 하는 것이 가능하다.
그러나 일반적으로, 엄격한 의미에서 완전한 보상을 이루는 것은 어려울 것이다. 감쇄의 현격한 잔여 각 의존도가 남아 있는 경우에, 도 1에 도시된 바와 같이, 프로젝션 렌즈(20)의 대안 평면(pupil plane, 84)에 그레이 필터(82)가 삽입된다. 이러한 목적으로 위해, 그레이 필터(82)가 교환 홀더(86)에 수용되어, 서로 다른 필터 특성이 있는 다른 그레이 필터에 의해 교체될 수 있다. 필드 평면의 각이 대안 평면 내의 위치로 그리고 그 역으로 이동되기 때문에, 그레이 필터(82)가, 감쇄의 잔여 각 의존도가 완전히 보상되는, 지역적(local)으로 변경되는 투과율을 가질 수 있다. 예를 들면, 펠리클의 투과율(T)이 입사각이 커짐에 따라 매우 심하게 증가하면, 투과 필터(82)가 반대의 필터 특성(즉, 광학 축(54)으로부터 증가하는 거리(r) 만큼 감소하는 투과율)을 포함하게 디자인된다. 도 10은 이러한 레이아웃에 따라 그레이 필터를 나타내는 평면도이다. 서클(circle)의 밀도가 그레이 필터(82)의 투과율에 비례한다.
프로젝션 렌즈(20)가 침투 동작에 대해 디자인되지 않은 경우에, 또는 감쇄에 대한 각 의존도가 개입되지 않게 침투액(32)이 작은 양을 흡수하는 경우에, 그레이 필터가 이점을 가진다. 이러한 경우에, 도 3 및 5에 도시된 바와 같이, 펠리클의 투과율 변화가 완전히 보상되도록 필터(82)가 디자인된다.

Claims (24)

  1. 얇은 막; 그리고
    상기 막에 부가되는 비 반사 코팅을 포함하되,
    상기 막과 상기 비 반사 코팅이, 마이크로리소그래피 노출 장치의 동작 파장에 대해, 펠리클의 투과율이 0도와 15도 사이의 입사각의 2% 이하로 변경되도록 디자인되는 것을 특징으로 하는 마이크로리소그래피 노출 장치용 펠리클.
  2. 제 1 항에 있어서,
    상기 펠리클의 투과율이 0도 및 25도 사이의 입사각에 대해 2% 이하로 변하는 것을 특징으로 하는 마이크로리소그래피 노출 장치용 펠리클.
  3. 제 2 항에 있어서, 상기 펠리클의 투과율이 0도 및 25도 사이의 입사각에 대해 1% 이하로 변하는 것을 특징으로 하는 마이크로리소그래피 노출 장치용 펠리클.
  4. a) 프로젝션 광을 생성하는 조명 시스템과;
    b) 광 감지 막상의 마스크에 포함되는 패턴을 영사하는 프로젝션 렌즈와;
    c) 상기 프로젝션 광에 대해, 2도와 프로젝션 노출 장치의 동작 중에 발생하는 펠리클에 관한 최대 입사각 사이의 입사각을 가지는 펠리클에 충돌하는 광선에 대한 투과율 최대값을 가지는 펠리클
    을 포함하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  5. 제 4 항에 있어서,
    투과율 최대값이 전역 또는 지역 최대값인 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  6. 제 4 항에 있어서,
    펠리클이 95%보다 큰 평균 투과율을 가지며,
    상기 평균이 프로젝션 노출 장치의 동작 중에 발생하는 펠리클에 대한 전체 입사각에 대해 구해지는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  7. 제 6 항에 있어서,
    상기 평균 투과율이 98%보다 큰 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  8. 제 4 항에 있어서,
    상기 펠리클이, 상기 프로젝션 노출 장치의 동작 중에 발생하는 펠리클에 대한 전체 입사각에 대해 5% 이하로 변하는 투과율을 가지는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  9. 제 8 항에 있어서,
    상기 투과율이 2.5% 이하로 변하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  10. 제 4 항에 있어서,
    0도와 arcsin(NA0) 사이의 입사각이 프로젝션 노출 장치의 동작 중에 발생하고,
    상기 NA0가 프로젝션 렌즈의 물측 수치 구경인 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  11. 제 4 항에 있어서,
    0도와 25도 사이의 입사각이 프로젝션 노출 장치의 동작 중에 발생하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  12. 제 4 항에 있어서,
    상기 펠리클이 비 반사 코팅에 의해 덮이지 않은 얇은 막을 포함하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  13. 제 4 항에 있어서,
    상기 펠리클이 얇은 막과 상기 막에 적용되는 비 반사 코팅을 포함하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  14. 제 13 항에 있어서,
    상기 비 반사 코팅이, 서로 다른 동작 파장에 대해 투과율 최대값이 획득되도록 디자인되는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  15. 제 4 항에 있어서,
    상기 프로젝션 렌즈가, 침투액이 상기 광 감지 막을 덮는 침투 동작을 위해 디자인되는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  16. 제 4 항에 있어서,
    투과율 최대값에 도달할 때까지, 상기 펠리클의 투과율이 입사각의 증가에 따라 지속적으로 증가하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  17. 제 16 항에 있어서,
    상기 프로젝션 렌즈가, 침투액이 상기 광 감지 막을 덮는 침투 동작을 위해 설계되고,
    상기 침투액 내에서 비스듬한 광선의 흡수가 보상되도록, 상기 투과율이 증가하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  18. 제 4 항에 있어서,
    상기 프로젝션 렌즈의 대안 평면에 배치되거나 인접한 흡수 필터 소자를 포함하되,
    상기 필터 소자가 지역적으로 변하는 투과율을 가지고, 상기 투과율은, 상기 입사각에 대한 펠리클의 투과율 의존도가 보상되도록 정해지는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  19. 제 18 항에 있어서,
    상기 광 감지 막에 관한 제 2 입사각에 대한 침투액의 투과율 의존도가 추가로 보상되도록, 상기 지역적으로 변하는 투과율이 결정되는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  20. 제 4 항에 있어서,
    프로젝션 렌즈의 필드 평면에 배치되거나 인접한 흡수 필터 소자를 포함하되,
    상기 필턴 소자가, 상기 입사각에 대한 펠리클의 투과율 의존도가 보상되도록 결정된, 각에 대해 변하는 투과율을 가지는 것을 특징으로 하는 마이크로리소그 래피 프로젝션 노출 장치.
  21. 제 20 항에 있어서,
    상기 각에 대해 변화는 투과율이, 상기 광 감지 막에 관한 제 2 입사각에 대한 침투액의 투과율 의존도가 추가로 보상되도록 결정되는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  22. 제 18 항에 있어서,
    상기 필터 소자가 필터 홀더에 교환가능하게 배치되는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  23. 제 4 항에 있어서,
    상기 프로젝션 렌즈가 1보다 큰 상측 수치 구경(NAi)을 가지는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
  24. a) 프로젝션 광을 생성하는 조명 시스템과;
    b) 광 감지 막으로 마스크에 포함된 패턴을 영사하는 프로젝션 렌즈와; 그리고
    c) 상기 광 감지 막에 관한 입사각에 대한 침투액의 투과율 의존도가 보상되도록하는 투과율 분포를 가지는 펠리클
    을 포함하는 것을 특징으로 하는 마이크로리소그래피 프로젝션 노출 장치.
KR1020087000478A 2005-07-18 2006-06-19 마이크로리소그래피 노출 장치용 펠리클 KR20080023338A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70014205P 2005-07-18 2005-07-18
US60/700,142 2005-07-18

Publications (1)

Publication Number Publication Date
KR20080023338A true KR20080023338A (ko) 2008-03-13

Family

ID=37116040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087000478A KR20080023338A (ko) 2005-07-18 2006-06-19 마이크로리소그래피 노출 장치용 펠리클

Country Status (4)

Country Link
US (1) US20090059189A1 (ko)
EP (1) EP1904894A1 (ko)
KR (1) KR20080023338A (ko)
WO (1) WO2007009543A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042107A1 (en) * 2006-02-01 2009-02-12 Mitsui Chemicals Inc. Pellicle for high numerical aperture exposure device
KR101164460B1 (ko) * 2006-04-07 2012-07-18 신에쓰 가가꾸 고교 가부시끼가이샤 리소그래피용 펠리클
JP2007293036A (ja) * 2006-04-25 2007-11-08 Shin Etsu Chem Co Ltd リソグラフィー用ペリクル
JP5299937B2 (ja) 2006-05-18 2013-09-25 カール・ツァイス・エスエムティー・ゲーエムベーハー 光近接効果を補正する方法
US7969549B2 (en) * 2006-06-30 2011-06-28 Asml Netherlands B.V. Liquid filled lens element, lithographic apparatus comprising such an element and device manufacturing method
JP2008122718A (ja) * 2006-11-13 2008-05-29 Toshiba Corp フォトマスクユニット、露光方法及び半導体装置の製造方法
WO2012041341A1 (en) 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Projection exposure system and projection exposure method
NL2010242A (en) * 2012-03-30 2013-10-01 Asml Netherlands Bv A lithography apparatus, a device manufacturing method, a method of manufacturing an attenuator.
WO2019011552A1 (en) * 2017-07-10 2019-01-17 Asml Netherlands B.V. LITHOGRAPHIC METHOD AND APPARATUS
KR20190038369A (ko) * 2017-09-29 2019-04-08 아사히 가세이 가부시키가이샤 펠리클
US10802395B2 (en) * 2018-09-19 2020-10-13 Taiwan Semiconductor Manufacturing Company Ltd. Lithographic mask, a pellicle therein and method of forming the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083032A (ja) * 1983-10-13 1985-05-11 Asahi Chem Ind Co Ltd 光透過性に優れたフオトマスク用防塵カバ−
US4861402A (en) * 1984-10-16 1989-08-29 Du Pont Tau Laboratories, Inc. Method of making a cellulose acetate butyrate pellicle
US4759990A (en) * 1985-11-27 1988-07-26 Yen Yung Tsai Composite optical element including anti-reflective coating
US5008156A (en) * 1986-11-07 1991-04-16 Exion Technology, Inc. Photochemically stable mid and deep ultraviolet pellicles
EP0482821B1 (en) * 1990-10-16 1998-09-30 Mitsui Chemicals, Inc. Use of a highly light-transmitting dust protective film, process for preparation thereof and dust protective member
JP3037745B2 (ja) * 1990-11-29 2000-05-08 三井化学株式会社 ペリクル構造体
JPH06347999A (ja) * 1993-06-11 1994-12-22 Hitachi Ltd 露光用マスク
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5741576A (en) * 1995-09-06 1998-04-21 Inko Industrial Corporation Optical pellicle with controlled transmission peaks and anti-reflective coatings
KR20000057324A (ko) * 1996-12-16 2000-09-15 나까니시 히로유끼 펠리클의 제조 방법 및 펠리클 제조용 지그
US7271950B1 (en) * 2000-02-16 2007-09-18 Toppan Photomasks, Inc. Apparatus and method for optimizing a pellicle for off-axis transmission of light
US6594073B2 (en) * 2001-05-30 2003-07-15 Micro Lithography, Inc. Antistatic optical pellicle
US6803159B2 (en) * 2002-03-28 2004-10-12 Intel Corporation Method of keeping contaminants away from a mask with electrostatic forces
DE10218989A1 (de) * 2002-04-24 2003-11-06 Zeiss Carl Smt Ag Projektionsverfahren und Projektionssystem mit optischer Filterung
DE10351607B4 (de) * 2003-11-05 2005-12-22 Infineon Technologies Ag Anordnung zur Projektion eines auf einer Photomaske gebildeten Musters auf einen Halbleiterwafer
WO2005069078A1 (en) * 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
US20070285643A1 (en) * 2004-03-05 2007-12-13 Carl Zeiss Smt Ag Method For Manufacturing Reflective Optical Element, Reflective Optical Elements, Euv-Lithography Apparatus And Methods For Operating Optical Elements And Euv-Lithography Apparatus, Methods For Determining The Phase Shift, Methods For Determining The Layer Thickness, And Apparatuses For Carrying Out The Methods

Also Published As

Publication number Publication date
US20090059189A1 (en) 2009-03-05
EP1904894A1 (en) 2008-04-02
WO2007009543A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
KR20080023338A (ko) 마이크로리소그래피 노출 장치용 펠리클
KR101199076B1 (ko) 강도 변동이 보상된 투사 시스템 및 이를 위한 보상 요소
US7492510B2 (en) Optical element having antireflection film, and exposure apparatus
TWI591446B (zh) 高透射、高孔徑折反射投影物鏡及投影曝光裝置
TWI410676B (zh) 多層膜反射鏡、多層膜反射鏡的製造方法、光學系統、曝光裝置以及元件的製造方法
US7812926B2 (en) Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8294991B2 (en) Interference systems for microlithgraphic projection exposure systems
US10353285B2 (en) Pellicle structures and methods of fabricating thereof
JP2008502127A5 (ko)
WO2006080212A1 (ja) 投影光学系、露光装置、および露光方法
US9146475B2 (en) Projection exposure system and projection exposure method
JP7003055B2 (ja) 投影レンズのための減衰フィルタ、投影露光装置のための減衰フィルタを有する投影レンズ、及び投影レンズを有する投影露光装置
WO2001013177A1 (fr) Photomasque et son procede de fabrication, graveur a projection utilisant ledit photomasque, et procede d'exposition pour projection
TW201544844A (zh) 對紫外線損傷具低感受性之Wynne-Dyson投射透鏡
US7416820B2 (en) Pellicle film optimized for immersion lithography systems with NA>1
US20090042107A1 (en) Pellicle for high numerical aperture exposure device
US7271950B1 (en) Apparatus and method for optimizing a pellicle for off-axis transmission of light
EP3428723A1 (en) Optical element, exposure apparatus based on the use of the same, exposure method and method for producing microdevice
TWI402892B (zh) 使用光罩護膜以圖案化一層之方法
US20100201959A1 (en) Projection objective for microlithography
US8092929B2 (en) Optical element and exposure apparatus
WO2020016626A1 (en) Method and apparatus for determining an effect of one or more pixels to be introduced into a substrate of a photolithographic mask
EP1906253A1 (en) Projection objective of a microlithographic projection exposure apparatus
JP2002131486A (ja) 多層膜反射鏡、多層膜反射鏡の波面収差制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application