KR20070085117A - 피라니 진공계 - Google Patents

피라니 진공계 Download PDF

Info

Publication number
KR20070085117A
KR20070085117A KR1020067026419A KR20067026419A KR20070085117A KR 20070085117 A KR20070085117 A KR 20070085117A KR 1020067026419 A KR1020067026419 A KR 1020067026419A KR 20067026419 A KR20067026419 A KR 20067026419A KR 20070085117 A KR20070085117 A KR 20070085117A
Authority
KR
South Korea
Prior art keywords
filament
cylinder
envelope
pressure
temperature
Prior art date
Application number
KR1020067026419A
Other languages
English (en)
Other versions
KR101255564B1 (ko
Inventor
타케시 미야시타
나오키 타카하시
Original Assignee
가부시키가이샤 아루박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아루박 filed Critical 가부시키가이샤 아루박
Publication of KR20070085117A publication Critical patent/KR20070085117A/ko
Application granted granted Critical
Publication of KR101255564B1 publication Critical patent/KR101255564B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/12Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured measuring changes in electric resistance of measuring members, e.g. of filaments; Vacuum gauges of the Pirani type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

필라멘트 온도의 기체 압력 변동에 대한 의존도를 높여 기체 압력을 정밀도 높게 측정할 수 있는 피라니 진공계를 제공하는 것. 내부가 피 측정공간(s)에 임하는 엔벨로프(2)와, 이 엔벨로프(2) 내부에 수용된 필라멘트(1)와, 엔벨로프(2) 내부에서 필라멘트(1)를 둘러싸 설치되고, 필라멘트(1)를 끼워 대향하는 내벽 사이의 최소거리가 6㎜ 이내로, 또, 필라멘트(1) 길이의 80% 이상을 덮는 통(7)을 구비한다.
피라니, 피라니 진공계, 피라니 게이지, 진공 측정기

Description

피라니 진공계{PIRANI GAUGE}
본 발명은 기체 압력의 측정을 행하는 피라니 진공계에 관한 것으로, 상세하게는 피 측정공간에 임하는 측정자 부분의 구조를 고안한 피라니 진공계에 관한 것이다.
피라니 진공계는 피 측정공간에 설치된 필라멘트에 전류를 흘리는 것에 의해 그 필라멘트를 가열하고, 이때 필라멘트에서 빼앗는 열량이, 필라멘트 주위의 기체 압력에 따라 변화하는 것을 이용해 기체 압력을 측정하는 것이다. 필라멘트로써는 코일상의 것이 사용해지는 것도 있다. 예컨대 특허문헌 1 참조.
특허문헌 1: 특개평 7-120339호 공보
도 7에 종래의 피라니 진공계의 개략구조를 보인다. 필라멘트(1)는 엔벨로프(2)의 내부에 수용되어 있다. 엔벨로프(2)는 일단이 개구되고, 타단이 절연부재(4)에 의해 기밀하게 밀봉된 원통상을 나타낸다. 엔벨로프(2)의 개구단측은 진공조(11) 내부의 피 측정공간(s) 내에 넣어지고, 엔벨로프(2) 내부는 피 측정공간(s)과 연통되고, 필라멘트(1)는 피 측정공간(s) 내의 기체와 접한 상태로 된다. 엔벨로프(2)는 피 측정공간(s)과 진공조(11) 외부의 대기와의 격벽 역할을 하고 있다.
필라멘트(1)의 일단은 절연부재(4)를 기밀하게 관통하고 엔벨로프(2) 내부에 위치하는 도전단자(5b)의 일단에 접속되어 있다. 필라멘트(1)의 타단은 엔벨로프(2) 내부에 위치하는 도전성 필라멘트 서포트(6)의 일단에 접속되어 있다. 필라멘트 서포트(6)의 타단은 절연부재(4)를 기밀하게 관통하고 엔벨로프(2) 내부에 위치하는 도전단자(5a)의 일단에 접속되어 있다. 따라서, 필라멘트(1)는 도전단자(5a, 5b)와 전기적으로 접속되어 있다. 도전단자(5a, 5b)는, 엔벨로프(2) 외부의 대기압하에 배설된 도시하지 않은 제어회로에 접속되고, 그들 도전단자(5a, 5b)를 매개로 필라멘트(1)에 전력이 공급된다.
필라멘트(1)는 도시하지 않은 브리지 회로의 일부에 조립되고, 필라멘트(1)의 온도변화에 수반하는 저항변화가 검출된다. 현재 시판되고 있는 피라니 진공계로서는 정전류형(혹은 정전압형)과 정온도형이라 불리는 2종의 동작 모드가 사용되고 있다. 정전류형(정전압형) 피라니 진공계는, 브리지 회로에 일정의 전류(전압)를 가해 두고, 기체압력변화에 동반하는 필라멘트의 온도변화 즉 저항변화를 브리지 회로의 비평균전압에 의해 검출한다. 정온도형 피라니 진공계는, 브리지 회로의 비평균 전압을 검출하면, 필라멘트의 저항(온도)이 소정의 값으로 유지되도록 브리지 회로로의 전류에 피드 백을 걸어 브리지 회로의 평균을 유지한다. 즉, 기체에 의해 빼앗은 열량을 보충하도록 가하는 전력을 자동제어하여 필라멘트 온도가 항상 일정하게 되도록 동작시킨다. 따라서, 그 가한 전력에서 기체 압력을 알 수 있다. 피라니 진공계에 있어서 통상 이용되는 전압범위(3×103㎩이하)에서의 일반적인 측정 정밀도는 ±30% 정도이다.
종래의 피라니 진공계에서는, 104㎩ 부근 이상에서 대기압까지의 기체압력영역에 있어서, 취부자세, 즉 필라멘트(1)가 수직(연직방향으로 평행)이나 수평(연직방향으로 수직)인가에 의해, 측정압력값에 큰 차이가 발생한다{같은 압력의 기체를 측정하고 있음에도 불구하고, 필라멘트(1) 자세의 차이에 의해 측정압력값이 50% 이상 다름}는 문제가 있었다. 필라멘트(1)가 수평자세로 있는 경우가 수직자세의 경우에 비하여, 엔벨로프(2) 내부 기체의 대류에 의한 열전달의 영향을 강하게 받고, 필라멘트(1)에서 열이 많이 빼앗아지기 쉬운 경향이 있어, 예컨대 정온도형 피라니 진공계에서는 필라멘트(1)에 역입하는 전력이 더 크게 되고, 그 결과 측정압력값이 실제 기체압력보다 높게 되기 쉽다.
또한, 엔벨로프(2) 내부의 기체온도는 엔벨로프(2)의 온도와 거의 같게 되지만, 엔벨로프(2)는 진공조(11) 외부의 환경 온도의 변동에 영향을 받기 때문에, 이에 반하여 엔벨로프(2) 내부의 기체 온도도 변동한다. 필라멘트(1) 온도는, 필라멘트 주위의 기체 압력 외에도, 필라멘트 온도와 그 주위의 기체 온도와의 차에도 의존한다. 따라서, 기체 온도의 변동이 발생하면 기체 압력의 변화에 기인한 필라멘트 온도의 변화 외에도, 필라멘트 온도와 기체 온도와의 차에 기인하는 필라멘트 온도의 변화도 생기고, 측정 압력의 정밀도가 나쁘게 되어 버린다.
본 발명은 상술의 문제를 감안하여 그 목적으로 하는 것은, 필라멘트 온도의, 기체 압력 변동에 대한 의존도를 높여 기체 압력을 정밀도 높게 측정할 수 있는 피라니 진공계를 제공하는 것에 있다.
본 발명은 상기 과제를 해결하기 위해 이하의 구성을 채용했다.
즉, 본 발명의 피라니 진공계는, 내부가 피 측정공간에 임하는 엔벨로프와, 엔벨로프 내부에 수용된 필라멘트와, 엔벨로프 내부에서 필라멘트를 둘러싸 설치되고, 필라멘트를 끼워 대향하는 내벽 사이의 최소 거리가 6㎜ 이내이고, 또 필라멘트 길이의 80% 이상을 덮는 통을 구비한다.
상기 치수의 통에서 필라멘트를 둘러싸는 것으로 필라멘트 주위의 공간을 제한하고, 자세의 차이에 의한 대류 열 전달의 영향의 방법에 큰 차이가 나기 어렵게 된다. 이에 따라, 자세의 차에 의한 측정압력값의 흩어짐을 작게 하여 측정 정밀도를 향상시킬 수 있다. 또, 상기 통이 있는 것으로, 통 내부의 기체 온도가 엔벨로프의 온도 변동의 영향을 받기 어렵게 되고, 따라서 기체 온도의 변동에 기인하는 필라멘트 온도의 변화를 억제할 수 있다. 이것도, 기체 압력의 측정 정밀도 향상에 기여한다.
또, 통에 온도센서를 취부하고, 이 온도센서 출력에 기해 압력지시값을 보정하는 온도 보정을 행하면, 필라멘트 주위의 기체 온도 변동의 영향을 더욱 억제하여 측정 정밀도의 가일층 향상을 꾀할 수 있다. 이 경우, 특히 104㎩ 이상의 압력에 있어서, 기체 압력의 변동에 대한 압력지시값의 응답성을 향상시킬 수 있다.
도 1은 본 발명의 제1 실시형태에 관한 피라니 진공계의 개략도이다.
도 2는 본 발명의 제2 실시형태에 관한 피라니 진공계의 개략도이다.
도 3은 피라니 진공계의 취부자세의 차(수평인가 수직인가)에 의한 측정압력 차와, 통 내경과의 관계를 도시한 도이다.
도 4는 취부자세의 차에 의한 측정압력차가, 통 내경과, 통/필라멘트 길이 비율에 따라 어떻게 바뀌는가를 도시한 도이다.
도 5는 취부자세의 차에 의한 측정압력차와, 통/필라멘트 길이 비율과의 관계를 도시한 도이다.
도 6은 진공에서 대기압으로의 압력이행시의 압력지시값의 경시 변화를 도시한 도이다.
도 7은 종래의 피라니 진공계의 개략도이다.
*부호의 설명*
1: 필라멘트 2: 엔벨로프
4: 절연부재 6: 필라멘트 서포트
7: 통 8: 통 서포트
9: 온도센서 11: 진공조
s: 피 측정공간
이하, 본 발명을 적용한 구체적인 실시형태에 대해서, 도면을 참조하면서 상세에 설명한다. 또, 본 발명은 이하의 실시형태에 한정되는 것은 아니고, 본 발명의 기술적 사상에 기하여 여러 가지 변형이 가능하다.
[제1 실시형태]
도 1은 본 발명의 제1 실시형태에 관한 피라니 진공계의 개략구성도를 도시한다. 엔벨로프(2) 내부에는 필라멘트(1)가 수용되어 있다. 필라멘트(1)는 백금선 등의 금속 세선으로 되고, 그 형상은 도 1에 도시한 바와 같은 직선상의 것에 한하지 않는 코일상의 것이어도 좋다. 엔벨로프(2)는 일단이 개구되고, 타단이 절연부재(4)에 의해 기밀하게 밀봉된 원통상을 나타낸다. 필라멘트(1)는, 엔벨로프(2)의 축중심 또는 그 근방 위치에 엔벨로프(2)의 축방향에 거의 평행하게 배설되어 있다.
엔벨로프(2)의 개구단측은 진공조(11) 내부의 피 측정공간(s) 내에 넣어져 엔벨로프(2) 내부는 피 측정공간(s)에 임해지고, 필라멘트(1)가 피 측정공간(s) 내의 기체와 접한 상태로 된다. 엔벨로프(2)는 피 측정공간(s)과, 진공조(11) 외부의 대기와의 격벽의 역할을 담당하고 있다.
필라멘트(1) 일단은 절연부재(4)를 기밀하게 관통하고 엔벨로프(2) 내부에 위치하는 도전단자(5b) 일단에 접속되어 있다. 필라멘트(1) 타단은 엔벨로프(2) 내부에 위치하는 도전성 필라멘트 서포트(6) 일단에 접속되어 있다. 필라멘트 서포트(6) 타단은 절연부재(4)를 기밀하게 관통하고 엔벨로프(2) 내부에 위치하는 도전단자(5a) 일단에 접속되어 있다. 따라서, 필라멘트(1) 양단은 각각 도전단자(5a, 5b)와 전기적으로 접속되어 있다. 도전단자(5a, 5b)는 엔벨로프(2) 외부에서 대기압하에 설치된 도시하지 않은 제어회로에 접속되고, 그들 도전단자(5a, 5b)를 매개로 필라멘트(1)에 전력이 공급된다.
필라멘트(1) 주위에는 필라멘트(1)를 둘러싸도록, 양단이 개구된 통(7)이 배 설되고, 필라멘트(1)는 그 통(7) 내부의 축중심 위치 또는 이 근방 위치를 통과하고 있다. 통(7)과 필라멘트(1)는 접촉하지 않고 있다. 통(7) 내부는, 통(7) 양단의 개구를 통해, 엔벨로프(2) 내부 및 피 측정공간(s)에 연통된다.
통(7)에 있어서 절연부재(4)에 가까운 일단측 외벽면은 통 서포트(8)에 고정되고, 통(7)은 축방향을 필라멘트(1)의 연재(길이)방향 및 엔벨로프(2)의 축방향에 대략 평행하게 한 상태로 통 서포트(8)에 지지되어 있다. 통 서포트(8)는 절연부재(4)를 관통하는 단자(5c)의 엔벨로프(2) 내부에 위치하는 부분에 취부되어 있다. 통(7)은 필라멘트 서포트(6)에는 접촉하지 않고 있다.
통(7)은 원통이고, 그 내경은 6㎜ 이내이다. 또, 통(7)은 필라멘트 길이의 80% 이상을 덮고 있다. 가열된 필라멘트(1)에서의 열이 통(7) 내부에 가득 참에 의해 통(7) 내의 기체 온도의 상승이, 필라멘트(1)의 온도 변동에 영향을 미쳐 버리는 것을 막기 위해, 통(7)은 열 전도성이 뛰어난 예컨대 금속재료로 구성하는 것이 바람직하다.
필라멘트(1)는 도시하지 않은 브리지 회로의 일부로 조립되고, 필라멘트(1)의 온도 변화에 동반하는 저항 변화가 검출된다. 예컨대 정온도형 피라니 진공계로 설명하면, 기체에 의해 빼앗긴 열량을 보충하도록 가하는 전력을 자동 제어하여 필라멘트 온도가 항상 일정하게 되도록 동작되고, 그 가한 전력에서 기체 압력을 알 수 있다.
이 제1 실시형태에 기반하고 피라니 진공계를 제작하고, 각종 성능의 평가를 행했다.
필라멘트(1)로써는, 직경 25㎛, 길이 56㎜의 백금선을 사용했다. 통(7)은 원통형상으로, 두께 60㎛의 스텐레스제의 것을 사용하고, 내경과 길이는 다양하게 바꾼 것을 사용했다. 엔벨로프(2), 서포트(6, 8)는 스텐레스제로 했다.
도 4는 횡축에 도시한 통(7) 내경과, 종축에 도시한 통/필라멘트 길이 비율{필라멘트(1) 길이에 대한 통(7) 길이의 비율}을 다양하게 바꾸고, l×105㎩의 기체 (질소) 압력을 측정한 경우의, 필라멘트(1)의 취부자세(수평이나 수직이나)의 차이에 의한 압력지시값(표시부에 표시되는 값)의 차를 도시한다.
도 4에서 명확한 바와 같이, 통(7) 내경을 6㎜ 이내, 또, 통/필라멘트 길이 비율을 80% 이상으로 하면{즉 통(7)이 필라멘트(1) 길이 80% 이상을 덮으면}, 필라멘트(1) 취부자세의 차이에 의한 압력지시값의 차를 40% 이하로 억제할 수 있고, 종래의 통(7)을 설치하지 않는 경우는 50% 이상이었으므로, 취부자세의 차이에 의한 측정오차의 감소가 달성할 수 있다.
더욱, 통(7) 내경을 5㎜ 이내, 또, 통/필라멘트 길이 비율을 80% 이상으로 하면, 취부자세의 차이에 의한 압력지시값의 차는 30% 이하로 되고, 피라니 진공계로써 통상 허용되는 측정 정밀도가 확보될 수 있다.
도 3은 필라멘트(1)와 통(7) 길이를 같게(56㎜) 한 경우에 있어서, 통(7) 내경(횡축)과, 필라멘트(1) 취부자세의 차이에 의한 압력지시값의 차(종축)의 관계를 도시한다. 피 측정공간(s) 내의 기체(질소) 압력을, 6×103㎩, 1×104㎩, 1×105㎩로 한 각각의 경우에 대해서 도시한다.
이 도 3의 결과에서도, 통(7) 내경을 6㎜ 이내, 또, 통/필라멘트 길이 비율을 80% 이상(도 3에서는 통/필라멘트 길이 비율 = 100%)으로 함에 의해, 기체 압력 1×105㎩ 이하에 있어서, 취부자세의 차이에 의한 압력지시값의 차를 대개 30% 이하로 억제할 수 있다는 것을 이해하였다. 더욱, 통(7) 내경을 4㎜ 이내로 함에 의해, 기체 압력 1×105㎩ 이하에서의 취부자세의 차이에 의한 압력지시값의 차를 대개 10% 이하로 억제할 수 있고, 게다가 통(7) 내경을 3㎜ 이내로 함에 의해, 기체 압력 1×105㎩ 이하에서의 취부자세의 차이에 의한 압력지시값의 차를 수% 이하로 억제할 수 있다.
도 5는 통/필라멘트 길이 비율의, 취부자세의 차이에 의한 압력지시값의 차이로의 영향을 도시하기 위해, 도 4에서의 취득 데이터에 의해, 횡축을 통/필라멘트 길이 비율, 길이 종축을 취부자세의 차이에 의한 압력지시값의 차로써 표시한 것이다. 통(7) 내경은 3㎜로 했다. 이 도 5에 의해, 통(7)이 필라멘트(1) 길이 80% 이상을 덮으면, 취부자세의 차이에 의한 압력지시값의 차는 10% 이하로 억제할 수 있어, 굉장히 뛰어나다는 것이 밝혀진다.
이상의 결과에 의해, 본 실시형태에 의하면, 종래는 취부자세의 차이에 의한 압력지시값의 차가 크게 되는 경우가 많아 대기압(1×105㎩) 부근의 비교적 높은 압력 영역에 있어서, 취부자세의 차이에 의한 영향을 크게 받지 않고 기체 압력을 정밀도 높게 측정가능하다. 본 실시형태에 의하면, 종래의 피라니 진공계에 비해, 정밀도 높게 측정가능한 압력측정범위를 한자릿수 이상 향상시킬 수 있다.
역시, 통(7) 재료는 스텐레스에 한하지 않는다. 하지만, 통(7) 내부 열의 채워짐에 기인하는 필라멘트 온도의 변화를 회피하는 점에서 단열성 재료의 사용은 피하고, 열전도성이 좋은 재료를 사용하는 것이 바람직하다.
또, 통(7) 두께는 60㎛에 한하지 않는다. 통(7) 두께는, 통 재료의 열전도성에 응하여, 통(7)의 양호한 열전도성을 손상하지 않도록 설계하면 좋다. 예컨대, 스텐레스와 알루미늄 합금에서는, 알루미늄 합금쪽이 열전도율이 크기 때문에, 알루미늄 합금쪽을 두께 범위로 하여 보다 큰 두께까지 허용할 수 있다. 기타, 통(7) 재료에 적합한 열전도율이 높은 재료로써, Mo, W, Al, Cu, Ni 등이 예로서 들어진다.
다음, 통(7)의 횡단면 형상은 원에 한하지 않고, 삼각형과 사각형, 기타 다각형, 더욱이는 장원상 또는 타원상이어도 좋다. 그 경우, 상술한 내경 치수를, 필라멘트(1) 끼워 대향하는 내벽 사이의 최소 거리로 옮겨 놓아 실시하면 좋다.
[제2 실시형태]
다음에, 본 발명의 제2 실시형태에 대해서 설명한다. 역시, 상기 제1 실시형태와 같은 구성부분에는 동일의 부호를 부여하고 그 상세한 설명은 생략한다.
상술한 통(7)이 없는 종래의 경우에 있어서, 특히 104㎩ 이상의 기체 압력하에서는 필라멘트(1)로부터의 열에 따라 엔벨로프(2)가 가열되고, 엔벨로프(2)의 온도가 정해지지 않는다. 따라서, 엔벨로프(2) 내부의 기체 온도가 변동하여, 이에 기인하는 필라멘트(1)의 온도변화가 생기기 쉽고, 기체 압력의 변화에 대한 압력지시값의 응답성이 나쁘게 된다는 문제가 있다.
그래서, 제2 실시형태에서는, 도 2에 도시한 바와 같이, 통(7)의 외벽면에 온도센서(9)를 취부하고, 이 온도센서(9)의 출력(즉 검출온도)에 기하여 압력지시값의 보정을 행하고 있다. 온도센서(9)는 배선(10) 및 도전단자(5a, 5e)를 매개로 해 도시하지 않은 온도보상회로에 접속되고, 그 온도보상회로는, 온도센서(9)의 검출온도에 기반하여, 통(7) 내의 기체 온도의 변동에 의한 필라멘트 온도의 변동분을 삭제하여 압력지시값으로써 출력한다.
이 제2 실시형태에 기하여 피라니 진공계를 제작하고, 응답성에 관한 평가를 행했다. 온도센서(9)로써는 백금측온저항체를 사용했다. 통(7) 내경은 3㎜로 하고, 통/필라멘트 길이 비율은 100%로 했다. 기타 조건은 제1 실시형태와 같다. 또, 온도센서(9)로써는 다이오드 등을 사용해도 좋다.
도 6은 압력 1㎩ 이하의 상태에서 대기압까지 피 측정공간(s) 내에 기체(질소)를 도입한 때의 압력지시값의 경시 변화를 도시한다. 실선은 상기 온도센서(9)의 검출 온도에 기해 압력지시값의 보정을 행한 경우를, 파선은 온도센서(9)를 설치하지 않고 압력지시값의 온도 보정을 행하지 않았던 경우를 도시한다. 온도 보정을 행하지 않은 경우에는 200초 이상 경과 후에 압력지시값이 안정되는 데 대하고, 온도 보정을 행한 경우에는 약 30초 경과시에 압력지시값이 안정하여 응답성이 좋다.
예컨대 반도체 프로세스에 있어서는, 압력지시값을 모니터하면서 처리실 내 로의 프로세서 가스의 도입 밸브의 개폐 제어를 행하는 일이 있고, 압력지시값의 응답성이 좋다 라는 것은, 처리실 내의 기체 압력의 변동에 대해서 밸브의 개폐 제어의 늦음을 막아서, 처리실 내의 기체 압력을 정확하게 제어할 수 있다.
본 발명의 피라니 진공계에 의하면, 취부자세의 차와, 필라멘트 주위의 기체온도변동이라고 하는 기체압력의 변동 이외에 필라멘트 온도를 변화시키는 요인의 영향을 억제하고, 필라멘트 온도의, 기체 압력에 대한 의존도를 크게 해 정확한 압력 측정을 행할 수 있다.

Claims (5)

  1. 내부가 피 측정공간에 임하는 엔벨로프와,
    상기 엔벨로프의 내부에 수용된 필라멘트와,
    상기 엔벨로프 내부에서 상기 필라멘트를 둘러싸 설치되고, 상기 필라멘트를 끼워 대향하는 내벽 사이의 최소거리가 6㎜ 이내로, 또, 상기 필라멘트 길이의 80% 이상을 덮는 통을 구비하는 것을 특징으로 하는 피라니 진공계.
  2. 제1항에 있어서,
    상기 통은 열전도성을 가지는 것을 특징으로 하는 피라니 진공계.
  3. 제1항 또는 제2항에 있어서,
    상기 통에 온도센서가 취부되고, 이 온도센서의 출력에 기해 압력지시값이 보정되는 것을 특징으로 하는 피라니 진공계.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 필라멘트가 백금선으로 되고, 또 상기 통이 스텐레스제인 것을 특징으로 하는 피라니 진공계.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 필라멘트가 백금선으로 되고, 또 상기 통이 니켈제인 것을 특징으로 하는 피라니 진공계.
KR1020067026419A 2004-11-24 2005-11-07 피라니 진공계 KR101255564B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004339239 2004-11-24
JPJP-P-2004-00339239 2004-11-24
PCT/JP2005/020351 WO2006057148A1 (ja) 2004-11-24 2005-11-07 ピラニ真空計

Publications (2)

Publication Number Publication Date
KR20070085117A true KR20070085117A (ko) 2007-08-27
KR101255564B1 KR101255564B1 (ko) 2013-04-17

Family

ID=36497888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067026419A KR101255564B1 (ko) 2004-11-24 2005-11-07 피라니 진공계

Country Status (7)

Country Link
US (1) US7607356B2 (ko)
JP (1) JP4878289B2 (ko)
KR (1) KR101255564B1 (ko)
CN (1) CN100549648C (ko)
DE (1) DE112005002501B4 (ko)
TW (1) TWI388814B (ko)
WO (1) WO2006057148A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7322248B1 (en) * 2006-08-29 2008-01-29 Eastman Kodak Company Pressure gauge for organic materials
JP4316007B2 (ja) 2007-09-13 2009-08-19 キヤノンアネルバテクニクス株式会社 ピラニ真空計
JP5248218B2 (ja) * 2008-06-17 2013-07-31 株式会社アルバック 圧力測定装置、圧力測定方法
WO2011099238A1 (ja) * 2010-02-12 2011-08-18 株式会社アルバック トランスデューサ型真空計
JP5349366B2 (ja) * 2010-02-26 2013-11-20 キヤノンアネルバ株式会社 複合型圧力計、及び複合型圧力計の製造方法
US9335231B2 (en) * 2014-03-25 2016-05-10 Mks Instruments, Inc. Micro-Pirani vacuum gauges
CN106153246B (zh) * 2015-05-15 2019-08-30 株式会社爱发科 皮拉尼真空计
JP6595945B2 (ja) * 2015-05-15 2019-10-23 株式会社アルバック ピラニ真空計
KR101799531B1 (ko) 2017-04-20 2017-11-20 재단법인 한국탄소융합기술원 금속코팅 탄소섬유 진공게이지
CN109425463A (zh) * 2017-08-31 2019-03-05 苏州润桐专利运营有限公司 一种高精度抗震皮拉尼真空传感器
CN107894300A (zh) * 2017-12-29 2018-04-10 李涛 一种真空度测量装置
US10845263B2 (en) * 2018-04-17 2020-11-24 Mks Instruments, Inc. Thermal conductivity gauge
CN110186613A (zh) * 2019-06-04 2019-08-30 上海集迦电子科技有限公司 一种基于荧光法的热传导真空计
JP7290545B2 (ja) * 2019-10-25 2023-06-13 株式会社アルバック ピラニ真空計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1993063A (en) * 1930-03-28 1935-03-05 Paul E Klopsteg Gauge
US3411362A (en) * 1965-12-20 1968-11-19 Sparton Corp Direct drive pressure transducer
JPS4841093Y1 (ko) * 1968-09-16 1973-12-01
JPS61240135A (ja) * 1985-04-17 1986-10-25 Yamatake Honeywell Co Ltd 真空計
ATE94642T1 (de) * 1989-01-23 1993-10-15 Balzers Hochvakuum Gasdruck-messgeraet.
JP3045559B2 (ja) * 1991-04-05 2000-05-29 日本真空技術株式会社 ピラニ真空計
JP3188752B2 (ja) * 1992-04-27 2001-07-16 日本真空技術株式会社 ピラニ真空計
JPH07120339A (ja) * 1993-10-25 1995-05-12 Ulvac Japan Ltd ピラニ真空計
JP4264156B2 (ja) * 1999-03-02 2009-05-13 株式会社アルバック ピラニ真空計
US6185351B1 (en) * 1999-10-15 2001-02-06 Lucent Technologies, Inc. All-dielectric, self-supporting, loose-tube cable with optical fiber ribbons

Also Published As

Publication number Publication date
DE112005002501T5 (de) 2007-10-11
JP4878289B2 (ja) 2012-02-15
JPWO2006057148A1 (ja) 2008-06-05
CN100549648C (zh) 2009-10-14
KR101255564B1 (ko) 2013-04-17
US20080115585A1 (en) 2008-05-22
CN1969175A (zh) 2007-05-23
TWI388814B (zh) 2013-03-11
WO2006057148A1 (ja) 2006-06-01
US7607356B2 (en) 2009-10-27
TW200624788A (en) 2006-07-16
DE112005002501B4 (de) 2014-10-09

Similar Documents

Publication Publication Date Title
KR101255564B1 (ko) 피라니 진공계
JP4316007B2 (ja) ピラニ真空計
EP0153661A2 (en) Temperature probe
US20190353528A1 (en) Thermometer
EP2420807B1 (en) Temperature sensor
US20020129657A1 (en) Combination pressure sensor with capactive and thermal elements
US5864282A (en) Unique strain relief junction
US9003876B2 (en) Thermal mass flowmeter with a metal-encapsulated sensor system
US4646406A (en) Welded edge bourdon strip thermometer-manometer
JP4590100B2 (ja) 圧力センサ、圧力測定装置およびチャンバで圧力をモニタするための方法
JP2018084478A (ja) ガス濃度検出方法及び固体電解質センサ
JP2008507708A6 (ja) ピラニ圧力計
JP2008507708A (ja) ピラニ圧力計
US20070170926A1 (en) Method and device for measuring ultrahigh vacuum
JPH07120339A (ja) ピラニ真空計
US20090056464A1 (en) Pirani pressure gauge
GB2609414A (en) Vacuum gauge assembly with orientation sensor
JPH01307631A (ja) 高温用容量型圧力計
JPH1048061A (ja) 熱電対
JPH05281072A (ja) ピラニ真空計
JP2023553296A (ja) 熱伝導真空計組立体
JP2023554089A (ja) 熱伝導真空計組立体
KR20020022621A (ko) 벤딩 모멘트 센서
KR20000002989A (ko) 고온 액체금속용 수위 측정기
JPH07318440A (ja) ロードセル

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170217

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 7