KR20060060535A - 빔 공간전하 보상장치 및 이를 구비한 이온 주입 시스템 - Google Patents

빔 공간전하 보상장치 및 이를 구비한 이온 주입 시스템 Download PDF

Info

Publication number
KR20060060535A
KR20060060535A KR1020050062576A KR20050062576A KR20060060535A KR 20060060535 A KR20060060535 A KR 20060060535A KR 1020050062576 A KR1020050062576 A KR 1020050062576A KR 20050062576 A KR20050062576 A KR 20050062576A KR 20060060535 A KR20060060535 A KR 20060060535A
Authority
KR
South Korea
Prior art keywords
magnetic field
plasma
chamber
energy filter
ion beam
Prior art date
Application number
KR1020050062576A
Other languages
English (en)
Other versions
KR101126324B1 (ko
Inventor
히로시 가와구치
다카노리 야기타
다카시 니시
쥰이치 무라카미
미츠쿠니 츠키하라
미츠아키 가바사와
Original Assignee
스미토모이튼노바 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모이튼노바 가부시키가이샤 filed Critical 스미토모이튼노바 가부시키가이샤
Publication of KR20060060535A publication Critical patent/KR20060060535A/ko
Application granted granted Critical
Publication of KR101126324B1 publication Critical patent/KR101126324B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Landscapes

  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

본 발명은 이온 빔을 웨이퍼에 조사하여 처리를 수행하는 이온 빔 처리 시스템에 구비된 각도 에너지 필터에 적용되는 빔 공간전하 보상장치에 관한 것이다. 이 빔 공간전하 보상장치는 각도 에너지 필터의 빔 가이드 챔버에 설치된 플라즈마 샤워기를 포함한다. 플라즈마 샤워기는 플라즈마용 열전자를 생성하는 필라멘트를 구비한 아크 챔버를 포함한다. 아크 챔버는 열전자를 인출하기 위한 인출홀을 구비한다. 플라즈마 샤워기는, 인출홀이 자계의 이온 빔 진행 방향에 수직인 자계의 자력선상에 위치하며, 필라멘트의 중심축과 상기 인출홀의 중심축이 자계의 이온 빔 진행 방향에 수직인 자력선과 일치하도록 설치된다.
플라즈마, 이온 빔, 공간전하, 보상장치

Description

빔 공간전하 보상장치 및 이를 구비한 이온 주입 시스템{Beam space-charge compensation device and ion implantation system having the same}
도 1은 일괄 이온 주입 시스템에 사용되는 종래의 플라즈마 샤워기의 예시적인 도면.
도 2a 및 도 2b는 본 발명이 적용된 이온 주입 시스템의 개략 구조를 각각 도시하는 평면도와 측면도.
도 3은 본 발명이 적용된 이온 주입 시스템에서 각도 에너지 필터의 구조와 그 주변 구조를 나타내는 수직 단면도.
도 4는 도 3에 도시된 각도 에너지 필터의 내부 구조를 확대하여 나타내는 수직 단면도.
도 5는 각도 에너지 필터의 동작을 설명하기 위해 도 3에 도시된 각도 에너지 필터의 구조를 예시적으로 나타내는 도면.
도 6a 및 도 6b는 도 3에 도시된 각도 에너지 필터의 내부 구성요소들이 함께 일체화 되어, 각도 에너지 필터의 챔버에 대하여 착탈가능한 구조를 설명하는 도면.
도 7은 각도 에너지 필터의 내부 구성요소가 빔 가이드 챔버에 대하여 착탈 가능하도록 하는 도 6a 및 도 6b에 도시된 유닛 구조를 설명하기 위한 도면.
도 8은 본 발명이 도 3에 도시된 각도 에너지 필터에 적용된 제 1 실시예를 예시적으로 나타내는 횡단면도.
도 9는 도 8에 도시된 실시예와는 다른 본 발명의 제 2 실시예를 예시적으로 나타내는 횡단면도.
도 10은 도 9에 도시된 실시예와는 다른 본 발명의 제 3 실시예를 예시적으로 나타내는 횡단면도.
도 11은 본 발명의 제 4 실시예의 플라즈마 샤워기 부근만을 예시적으로 나타내는 횡단면도.
<도면 주요 부분에 대한 부호의 설명>
10, 10´: 플라즈마 샤워기 10-1, 10-2, 10-4 : 아크 챔버
10-3 : 필라멘트 10-5 : 인출홀
10-9 : 제 2 인출홀 17 : 각도 에너지 필터(AEF)
20 : 제한 자계 형성 자석 22 : 편향 자석
23 : 빔 가이드 챔버 (AEF 챔버) 24-1, 24-2 : 편향 전극
31-1, 31-2 :억제 전극 32-1 내지 32-4 : 접지 전극
본 발명은 전계와 자계 중 적어도 하나를 사용함으로써 이온 빔을 편향시키는 각도 에너지 필터를 가진 이온 주입 시스템에 관한 것이며, 나아가 이온 주입 시스템에 적용하기에 적합한 빔 공간전하 보상장치에 관한 것이다.
이온 주입 시스템은 처리 대상의 표면의 미세 영역 내로 불순물을 고 정밀도로 주입할 수 있는 능력 때문에, 반도체 집적 회로를 제조하는 공정에 널리 사용되고 있다. 이러한 이온 주입 시스템에서는 전하를 가진 이온이 처리 대상인 웨이퍼에 주입되므로, 웨이퍼에 전하의 축적(대전현상; charge-up)이 문제로 된다. 나아가, 빔 라인 내에 생성된 공간전하로 인해 이온 빔이 발산하는 문제도 발생된다.
주입되는 이온은 통상적으로 양의 전하를 가지고 있으므로, 음의 전하(전자)가 대전현상을 제거하고 이온 빔의 발산을 억제하기 위해 공급된다. 일예로서, 빔 라인의 벽에 이온을 충돌시킴으로써 생성된 전자를 적극적으로 공급하는 방법이 있다. 대안적으로, 웨이퍼 부근에 전자총을 사용하여 제 2 차 전자를 생성하고 이 전자를 공급하는 방법이 있다. 이들과 같은 다양한 방법 중에서, 상대적으로 낮은 에너지 전자를 공급할 수 있는 방법으로서 플라즈마 샤워기(plasma shower)(또는 플라즈마 플러드 건(plasma flood gun))가 널리 사용된다.
일괄 이온 주입 시스템에 있어서, 웨이퍼는 직선왕복운동이 가능한 회전 디스크 상에 설치됨으로써 각각의 웨이퍼의 전면에 걸쳐 이온 주입이 가능하게 된다. 이 경우에, 이온 빔의 궤적은 빔 라인에 대하여 고정되어 있다. 플라즈마 샤워기는 이온 빔의 궤적 부근에 설치되어 이온 빔의 전위에 의해 플라즈마 샤워기로부터 전자가 인출된다.
도 1은 대전현상을 제거하기 위해 일괄 이온 주입 시스템에 사용되는 종래의 플라즈마 샤워기의 예시적인 도면이다.
도 1에 있어서, 플라즈마 형성 가스(216)는 아크 챔버(215) 내로 유입된다.필라멘트(217)와 아크 챔버(215) 사이에 아크 전압(219)을 인가하는 동안, 전원(218)으로부터의 전원을 사용하여 필라멘트(217)를 가열함으로써 플라즈마가 형성된다. 이온 빔(228)이 아크 챔버(215) 부근에 설치되도록 구성함으로써, 이온 빔(228)에 의해 생성된 전위로 인해 전자가 인출되어 이온 빔(228)에 의해 발생된 대전현상이 억제된다. 여기서 이온 빔(228)은 도 1의 종이 앞면으로부터 종이 뒷면 쪽으로 진행하는 것으로 가정된다. 아크 챔버(215)에서 이온 빔(228)으로의 전자의 공급은 이온 빔(228)을 둘러싸기 위해 분사 튜브(237)를 배치하여 전위(238)를 분사 튜브(237)에 인가함으로써 용이하게 이루어질 수 있다.
한편, 이온 빔 자체를 직선왕복운동시킴으로써 주사하는 빔 편향을 수행하는 주사용 편향 메커니즘을 가지는 이온 주입 시스템에서, 이온 빔과 플라즈마 샤워기 사이의 상대적 위치는 항상 변화하여 전자의 안정적인 공급이 어려워진다. 이런 점에서, 플라즈마 샤워기로부터 인출된 전자를 주사를 위해 편향되는 이온 빔에 공급하는 다양한 방법이 제안되어 있다.
일예로서, 이온 빔의 편향 영역에 자계를 인가하고 이온 빔의 궤도를 넓은 범위로 변화시켜 전자를 이온 빔 전하 보상장치(예를 들면, 일본국 공개특허공보 평09-147785호)내에 이온 빔에 용이하게 공급하는 방법이 제안되어 있다. 이 방법에 있어서, 플라즈마 아크 챔버는 빔에 수직하도록 빔 편향 영역의 중심에 배치되 며, 전체 빔 편향 영역에 걸쳐 플라즈마 아크 챔버의 중심으로부터 발산하는 자계가 코일에 의해 인가된다.
그러나, 자계를 사용하여 이온 빔의 편향 영역에 걸쳐 하나의 부분으로부터 인출된 전자를 발산시키는 방법에서는, 누설 자계가 빔 라인에 존재하는 것으로 인해, 이온 빔이 굴절되어, 이온 빔의 분배 및 주입 각도에 악영향을 미친다.
종래의 플라즈마 샤워기에는 다음과 같은 방법들이 채용되고 있다.
(a) 전자들이 자력선 주위를 감도록 운동하므로, 이온 빔에 전자의 공급이나 전자의 인출을 배제하는 플라즈마 샤워기 주위에 자계가 존재할 때, 자기 차폐가 제공되어 자계를 감소시킨다.
(b) 자계 발생수단을 설치함으로써, 자계를 생성하며, 이 자계는 아크 챔버로부터 전자 인출 효율이나 아크 챔버에서 플라즈마 생성 효율을 증가시키는 역할을 한다.
(c) 자계 생성부는 빔 라인에 더 제공되어 빔 라인 내로 인출된 전자를 효과적으로 제한하는 자계를 발생시킨다.
또한, 이러한 이온 주입 시스템에서는, 각도 에너지 필터(이후 간략하게 "AEF(Angular Energy Filter)"라 함)라 불리우는 편향부는 통상적으로 전술된 주사용 편향 메커니즘의 하류측에 제공된다. 후술되는 바와 같이, 이 AEF는 AEF 챔버를 가지고 있다. 이 AEF 챔버에서, 강한 전계 또는 자계(이후, "AEF 자계"라 함)는 이온 빔을 굴절시키기 위해 생성된다.
플라즈마 샤워기는 AEF 자계의 존재 하에서 플라즈마를 생성하기 위한 AEF 챔버 내에 설치된다고 가정하면, 전술된 방법 (a)에서와 같이 AEF 자계를 상쇄시키는 메커니즘이나 전술된 방법 (b) 또는 (c)에서와 같이 플라즈마 샤워기에 효과적인 자계를 생성하기 위한 메커니즘을 구비하는 것이 필요하다. 그러나, 어느 경우이든, 이온 주입 시스템의 복잡성, AEF 자계의 교란 등에 관한 염려 때문에 새로운 메커니즘을 제공하는 것은 바람직하지 않다.
따라서, 본 발명의 목적은, 플라즈마 샤워기에 의해 플라즈마를 생성할 때 전자의 인출과 전자의 제한을 개선하여 특정 자계 생성 장치나 특정 자계 차폐 장치를 사용함이 없이 빔 공간전하 보상을 효과적으로 수행할 수 있도록 AEF 자계를 실제적으로 사용하는 것이다.
본 발명의 특정 목적은 이온 빔의 발산을 억제하여 빔 전달 보상 효율을 개선시켜 빔 전류를 증가시키도록 빔 공간전하를 중화시킬 수 있는 빔 공간전하 보상장치를 제공하는 것이다.
본 발명의 다른 목적은 전술된 빔 공간전하 보상장치를 구비하는 이온 주입 시스템을 제공하는 것이다.
본 발명에 따른 빔 공간전하 보상장치는, 웨이퍼를 이온 빔으로 조사함으로써 처리를 수행하는 이온 빔 처리 시스템에서 빔 경로 도중에 제공된 각도 에너지 필터에 적용된다. 이 각도 에너지 필터는 전계와 자계 중에서 적어도 자계를 사용하여 이온 빔으로부터 필요한 에너지를 가지는 이온 종류만을 선택한다. 본 발명의 일 측면에 따르면, 빔 공간전하 보상장치는, 빔 공간전하 보상을 위한 각도 에너지 필터의 챔버에 설치된 플라즈마 샤워기를 포함한다. 이 플라즈마 샤워기는 플라즈마를 위한 열전자를 생성하기 위한 필라멘트를 내부에 구비하는 아크 챔버를 포함한다. 이 아크 챔버는 생성된 플라즈마에서 열전자를 인출하기 위한 인출홀을 포함한다. 이 플라즈마 샤워기는, 인출홀이 이온 빔 진행 방향에 수직인 자력선 상에 위치하고 필라멘트의 중심축과 인출홀의 중심축이 자계의 이온 빔 진행 방향에 수직인 자력선과 일치하도록 설치된다.
빔 공간전하 보상장치에 있어서, 플라즈마 샤워기는 각도 에너지 필터의 빔 가이드 챔버의 양쪽 내측면에 설치되며, 여기서 이온 빔은 양쪽 내측면 사이에 주입되는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 각도 에너지 필터의 빔 가이드 챔버는 플라즈마 샤워기 챔버로서 역할을 병행하는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 각도 에너지 필터의 빔 가이드 챔버의 이온 빔에 대하여 상하좌우측 내벽에 플라즈마 제한 자계를 형성하기 위해, 복수의 자석이 상하좌우측 내벽 각각에 설치되는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 각도 에너지 필터의 빔 가이드 챔버에 좌우측 내벽에 형성된 제한 자계는 각도 에너지 필터에 의해 편향된 이온 빔을 따라 복수의 자석을 배치하여 형성되는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 각도 에너지 필터의 빔 가이드 챔버에서 상하부 내벽에 형성된 제한 자계는 이온 빔 진행 방향에 한정된 간격을 두어 상하부 내벽에 복수의 자석을 배치함으로써 형성되는 것이 바람직하다. 이 상하부 내벽에 있는 복수의 자석 각각은 좌우 방향으로 연장되어 있다.
빔 공간전하 보상장치에 있어서, 플라즈마 샤워기는 각도 에너지 필터에 의해 야기된 이온 빔의 편향점 부근에 대응하는 위치에 설치되는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 자계가 존재하는 각도 에너지 필터의 빔 가이드 챔버 내에 플라즈마가 생성되는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 각도 에너지 필터는, 자계와 전계를 사용함으로써 이온 빔으로부터 필요한 에너지를 가지는 이온 종류만을 선택하며, 전계를 생성하기 위해 이온 빔에 대해 상부 및 하부 측면에 배열된 한 쌍의 편향 전극과, 이온 빔 진행 방향에 대해 상류 및 하류 측에 배열된 억제 전극과 접지 전극을 포함하는 것이 바람직하다. 플라즈마 샤워기는 한쌍의 편향 전극 사이와, 상류측의 억제 전극 및 접지 전극과 하류측의 억제 전극과 접지 전극 사이에 한정된 위치에 설치된다. 각도 에너지 필터가 자계에 의해 동작하는 동안, 아크 챔버와, 한쌍의 편향 전극 및 접지 전극 사이에 아크 전압이 인가된다.
빔 공간전하 보상장치에 있어서, 플라즈마 생성 영역은 플라즈마 샤워기의 상류측과 하류측에 배열된 접지 전극을 사용함으로써 각도 에너지 필터의 빔 가이드 챔버 내부를 분할하여 형성되며 각각은 필요한 최소 개구를 구비하는 것이 바람직하다.
빔 공간전하 보상장치에 있어서, 플라즈마 샤워기, 한쌍의 편향 전극, 상류측의 억제 전극 및 접지 전극과, 하류측의 억제 전극 및 접지 전극은 상기 각도 에너지 필터의 빔 가이드 챔버에 대하여 일체형으로 부착가능하고 탈거가능하도록 구 성되는 것이 바람직하다.
본 발명에 따르면, 전술된 빔 공간전하 보상장치를 포함하는 이온 주입 시스템이 제공된다.
도 2a 및 도 2b를 참조하면, 본 발명에 따른 빔 공간전하 보상장치가 채용된 일 실시예에 대해 먼저 상세한 설명을 한다. 본 실시예에 있어서, 본 발명은 대전 입자 빔을 각각 사용하는 빔 처리 시스템 중에서 단일 웨이퍼 이온 주입 시스템에 특히 적용된다. 도 2a 및 도 2b는 단일 웨이퍼 이온 주입 시스템의 개략 구조를 각각 나타내는 평면도와 측면도이다.
예시된 이온 주입 시스템은, 이온 소스(11)와, 질량 분석 자석 장치(12)와, 빔 성형기(13)와, 주사용 편향기(14)와, P(평행) 렌즈(15)와, 가속/감속 전극(A/D 컬럼)(16)과, 각도 에너지 필터(AEF)(17)와, 공정 챔버(18)를 포함한다.
이러한 이온 주입 시스템에서, 이온 소스(11)에서 생성된 이온은, 이온 빔(이하 “빔”이라고 칭함)으로서 인출 전극(미도시)을 통해 인출된다. 이 인출된 빔은 질량 분석 자석 장치(12)에서 질량 분석되어, 필요한 이온 종류만이 선택된다. 이 필요한 이온 종류만으로 구성된 빔은 빔 성형기(13)에 의해 횡단면이 성형된다. 빔 성형기(13)는 Q(사분면이나 4극)렌즈 등으로 형성된다. 성형된 횡단면을 가지는 빔은 편향기(14)에 의해 도 2a에서 상하방향으로 편향된다. 편향기(14)는, 상류측 및 하류측의 각각의 편향 스캐너(14) 부근에 배치된, 적어도 하나의 차폐 전극(14-1)과 적어도 하나의 차폐 전극(14-2)을 구비한다. 편향 주사 전극이 본 실시예에서 편향기(14)로서 사용되고 있지만, 이 편향 주사 전극 대신에 편향 주사 자석이 사용될 수도 있다.
주사용 편향기(14)에 의해 편향된 빔은 0°의 편향각으로 축에 평행하도록 자석이나 전극에 의해 형성된 P-렌즈(15)에 의해 재평행하게 된다. 도 2a에 있어서, 편향기(14)에 의한 빔의 주사 범위는 굵은 실선과 이중 파선으로 나타나 있다. P-렌즈(15)로부터의 빔은 하나 이상의 가속/감속 전극(16)에 의해 가속 또는 감속되며, 이후 각도 에너지 필터(17)에 송신된다. 이 각도 에너지 필터(17)는 빔의 에너지에 관한 분석을 수행하여 필요한 에너지를 가지는 이온 종류만을 선택한다. 도 2b에 도시된 바와 같이, 선택된 이온 종류만이 각도 에너지 필터(17)에서 약간 아래 방향으로 편향된다. 이렇게 선택된 이온 종류만으로 구성된 빔은 공정 챔버(18)에 도입된 피조사물인 웨이퍼(19)에 조사된다. 웨이퍼(19)에 조사되지 않은 빔은 공정 챔버(18)에 설치된 빔 스토퍼(18-1)로 입사해서 빔의 에너지가 소비된다.
도 2a에 있어서, 웨이퍼(19)에 인접하게 도시된 화살표는 빔이 이들 화살표 방향으로 편향되는 것을 나타내는 반면, 도 2b에 있어서 웨이퍼(19)에 인접하게 도시된 화살표는 웨이퍼(19)가 이들 화살표 방향으로 이동된다는 것을 나타낸다. 구체적으로, 예를 들어 빔이 x축 방향으로 왕복 편향된다고 가정하면, 웨이퍼(19)는 x축 방향에 수직인 y축 방향으로 왕복되도록 구동 메커니즘(미도시)에 의해 구동된다. 이것에 의해 웨이퍼(19)의 표면 전체에 빔을 조사할 수 있게 된다.
전술된 바와 같이, 도 2a 및 도 2b에 도시된 이온 주입 시스템에 있어서, 일 방향으로 길이가 긴 타원형이나 달걀형의 연속하는 횡단면을 가지는 빔은 원형의 횡단면이나 타원형 또는 달걀형의 횡단면을 가지는 빔을 편향시켜 얻을 수 있으며 이후 후단계 에너지 분석기로서 동작하는 각도 에너지 필터를 사용하여 빔의 주사 영역 내 임의의 위치에서 균일한 각도로 굴절될 수 있으며 그 다음에 웨이퍼(19) 내에 주입될 수 있다.
이제 도 3 내지 도 7을 참조하면, 본 발명이 적용된 각도 에너지 필터(17)에 대해 상세히 설명한다.
도 3에 도시된 바와 같이, 각도 에너지 필터(17)는, 한쌍의 자기 실드(magnetic shield; 21-1, 21-22)와, 자기 실드(21-1)와 자기 실드(21-2) 사이에 배치된 편향 자석(분석 전자석)(22)과, 편향 자석(22)의 중공부에 배치된 AEF 챔버("진공 챔버" 또는 "빔 가이드 챔버"라고도 칭함)(23)와, 이 AEF 챔버(23)에 배치된 한 쌍의 편향 전극(24-1, 24-2)을 포함한다.
자기 실드(21-1, 21-2)는 빔을 통과시키기 위한 중심부에서 개구(예를 들어, 도 3의 종이면에 수직인 방향으로 길이가 긴 직사각형 개구)를 각각 가지며, 가속/감속 전극(16)과 공정 챔버(18)에 각각 고정되어 있다. 자기 실드 (21-1, 21-2)는 편향 자석(22)에 의해 생성된 자계를 차폐하는 역할을 하며, 이에 의해 빔에 가해지는 자계의 영향을 조정한다.
후술되는 바와 같이, 편향 자석(22)은, 일반적으로 사각형(프레임 형상) 코어와, 코어 부분을 각각 형성하는 상부 요크(22-1)와 하부 요크(22-2)에 각각 감겨있는 하나 이상의 코일(22-3)과, 하나 이상의 코일(22-4)을 포함한다. 나아가, 도 3에 파선으로 도시된 바와 같이, 누설 자계 상쇄를 위해 보정 코일(단 하나만 도시 됨)(22-5)이 상부 및 하부 요크(22-1, 22-2)의 양 측면을 커버하기 위하여 (도 3의 종이 앞면과 뒷면에 있는) 코일(22-3, 22-4) 외부의 코어에 감겨 있을 수 있다. 누설 자계 상쇄를 위한 보정 코일(22-5)은 코일(22-3, 22-4)에 의해 생성된 자계의 원치 않는 부분(누설 자계)을 상쇄시키는데 사용된다.
편향 자석(22)은 동작시에 도 3에서 좌측에서 우측으로 진행하는 빔이 약간 아래 방향으로 편향하도록 도 3의 종이면에 수직인 방향으로 (예를 들면, 도 3의 종이면의 뒷면 쪽으로 향하는) 그의 중공부 내에 자계를 생성한다. 그 결과, 이 빔은 편향 자석(22)의 하류측(도 3의 우측)에 배치된 고정 챔버(18)에 제공된 에너지 슬릿(18-2)을 통과하여, 공정 챔버(18) 내에 장착되어 유지된 웨이퍼(19)에 주입된다. 이 빔이 도 3의 종이면에 수직인 방향으로 길이가 긴 타원형이거나 달걀형의 연속하는 횡단면을 가지고 있다는 것을 주의하여야 한다.
편향 자석(22)의 중공부 내에 설치된 AEF 챔버(23)는 자기 실드(21-2)와 함께 하류측에서 지지 볼트(25-1, 25-2)를 사용하여 공정 챔버(18)에 고정되어 있다. AEF 챔버(23)의 상류측(도 3의 좌측)은 하류측으로부터 지지 로드(26)에 의해 보조적으로 지지되어 있다. 이런 방식으로, AEF 챔버(23)가 필요에 따라 지지 로드(26)에 의해 지지되면서 공정 챔버(18)에 고정되어 있는 지지 및 고정 구조를 사용함으로써, AEF 챔버(23)는 코어와 편향 자석(22)의 코일에 의해 그리고 다른 부품에 의해 둘러싸여 있긴 하지만 제 위치에 확실히 고정될 수 있다.
도 4에 확대되어 도시된 바와 같이, AEF 챔버(23)에 있어서, 전술한 편향 전극(24-1, 24-2) 이외에, 편향 전극(24-1,24-2)의 상류측과 하류측에 각각 위치된 억제 전극(31-1, 31-2)과, 이 억제 전극(31-1)의 상류측과 하류측에 각각 위치된 접지 전극(32-1, 32-2)과, 이 억제 전극(31-2)의 상류측과 하류측에 각각 위치된 접지 전극(32-3, 32-4)과, 가장 하류측에 위치된 빔 덤프(33; beam dump)가 구비된다.
편향 전극(24-1, 24-2)과, 억제 전극(31-1, 31-2)과, 접지 전극(32-1 내지 32-4)은, 이들 전극을 사용하여 생성된 전계에 의해 빔이 편향될 때 얻어지는 편향점(궤적)이 편향 자석(22)을 사용하여 빔이 편향될 때 얻어지는 편향점(궤적)과 거의 일치하거나 중복되도록 배치되고 전원이 공급된다. 구체적으로, 도 5에 예시적으로 도시된 바와 같이, 이들 전극은, 생성된 전계에 의해 편향된 빔의 궤적(41)이 AEF 챔버(23), 즉 각도 에너지 필터(17)의 적어도 입사측과 출사측에 편향 자석(22)을 사용하여 생성된 자계에 의해 편향된 빔의 궤적(42)과 중복하도록 배열된다. 억제 전극(31-1, 31-2)과, 접지 전극(32-1 내지 32-4)을 구비함으로써, 편향 전극(24-1, 24-2) 사이에 더 높은 전압을 인가할 수 있어, 빔의 에너지가 더 커지는 경우에도, 원하는 궤적을 실현할 수 있다. 나아가, 각각의 편향 전극(24-1, 24-2)의 횡단면의 형상은, 빔의 곡률 반경과 일치하도록 굴곡되어(편향 전극(24-1)은 오목한 형상을 가지는 반면, 편향 전극(24-2)은 볼록한 형상을 가짐), 빔이 효과적으로 편향될 수 있다.
빔 덤프(33)는 자계나 전계에 의해 편향된 빔을 통과시키기 위한 개구를 가지고 있으며, 이 개구를 통해 필요한 에너지와 전하수를 가지는 각각의 이온이 통과할 수 있다. 한편, 빔 덤프(33)는 중화된 빔 또는 소정의 값과 다른 에너지나 전 하수를 가진 빔을 수용한다.
편향 전극(24-1, 24-2)과, 억제 전극(31-1, 31-2)과, 접지 전극(32-1 내지 32-4)과, 빔 덤프(33)를 포함하는 AEF 챔버(23) 내의 부품은 후술되는 플라즈마 샤워기와 함께 하나의 유닛(AEF 유닛)으로 형성된다. 구체적으로, 플라즈마 샤워기, 전극(24-1, 24-2, 31-1, 31-2, 및 32-1 내지 32-4) 및 빔 덤프(33)는 다른 부품과 함께 공통 플레이트 등에 고정되어 일체화 된다.
AEF 유닛의 일 실시예는 도 7에 도시되어 있다. 도 7은 각각의 편향 전극(24-1, 24-2)의 중심선을 포함하는 평면을 따라 절단한 횡단면도이며, AEF 유닛(50)의 빔 출사측에서 본 도면이다.
도 7에 도시된 바와 같이, AEF 유닛(50)은 상부 지지부(51)와, 하부 지지부(52)와, AEF 챔버(23)의 부분(커버)으로 동작하는 전면판(53)과, 후면판(54)을 포함한다. 편향 전극(24-1, 24-2)은 절연 장착판(55, 56)에 각각 장착되며 복수의 절연체(57)를 통해 상부 및 하부 지지부(51, 52)에 고정된다.
억제 전극 등을 포함한 AEF 챔버(23) 내의 플라즈마 샤워기 및 다른 부품들도 상부 지지부(51), 하부 지지부(52), 전면판(53) 및 후면판(54)에 직접 또는 보조 지지부(58-1, 58-2) 등을 개재해서 각각 고정되어 일체화 된다.
나아가, 도 6b에 도시된 바와 같이, AEF 챔버(23)의 외측 상면에 위치된 한쌍의 슬라이드 레일(36)의 전단(front end)은 상측 에지부에서 전면판(53)에 고정된다. 이러한 배열에 의해서, AEF 유닛(50)은 AEF 챔버(23)에 대하여 안밖으로 이동가능하게 지지된다. AEF 유닛(50)이 AEF 챔버(23) 내에 삽입될 때, 소정의 위치 에 AEF 유닛(50)을 위치시키도록 하기 위해, 후면판(54)에 위치지정부(예를 들어, 돌출부)를 설치해도 된다.
이제, 편향 자석(22)에 대해서 설명한다. 도 6a 및 도 6b를 참조하면, 편향 자석(22)은 대략 "コ" 형상의 제 1 코어(61)와 대략 "I" 형상의 제 2 코어(62)를 포함한다. 중심부에 중공부가 형성된 대략 사각형(프레임 형상)의 코어는 제 1 및 제 2 코어(61, 62)가 서로 맞닿은 상태에서 제 1 및 제 2 코어(61, 62)를 고정시켜 구성된다. 제 1 코어(61)의 일부가 상부 요크(22-1)와 하부 요크(22-2)를 각각 구성하며, 코일(22-3, 22-4)이 이들 요크 주위에 각각 감겨, 전자석을 구성하게 된다.
도 3으로부터 이해되는 바와 같이, 상부 요크(22-1)는 빔 진행 방향(도 3의 좌우방향)으로 길이가 긴 형상을 갖는 반면, 하부 요크(22-2)는 빔 진행 방향에 수직인 방향(도 3의 상하방향)으로 긴 형상을 갖는다. 코어의 각각의 측면은, 상부 요크(22-1)의 측면이 넓고 하부 요크(22-2)의 측면이 좁은, 표면각(facial angle)이 없는 일반적인 팬(fan) 형상을 가진다. 상부 요크(22-1)의 횡단면 영역과 하부 요크(22-2)의 횡단면 영역은 자계의 설계를 용이하게 한다는 측면에서 서로 동일한 것이 바람직하다.
다시 도 6a 및 도 6b를 참조하면, 제 1 코어(61)는 복수의 지지 컬럼(64-1 내지 64-3)을 개재해서 베이스(63)에 고정된다. 제 1 선형 가이드(65)는 수평 방향으로 이동가능하며, 제 2 선형 가이드(66)는 제 1 선형 가이드(65) 위에 장착되고 수직 방향으로 이동가능하다. 제 2 코어(62)는 제 1 선형 가이드(65)에 제공된 제 2 선형 가이드(66)에 부착된다. 제 1 및 제 2 선형 가이드(65, 66)를 동작시킴으로써, 제 2 코어(62)는 제 1 코어(61)에 대하여 수평방향과 수직 방향으로 이동(슬라이딩)되어, 도 6a에 도시된 상태로부터 도 6b에 도시된 상태로 변경할 수 있으며 또 이와 역으로 도 6b에 도시된 상태로부터 도 6a에 도시된 상태로 변경할 수 있다.
한편, 플라즈마 샤워기, 편향 전극(24-1, 24-2) 및 다른 전극 등은, 전술된 바와 같이, 서로 일체화되어 AEF 유닛(50)을 구성하게 된다. AEF 유닛(50)은 슬라이드 레일(36)을 사용하여 AEF 챔버(23) 내로 밀리거나 이 AEF 챔버(23)로부터 당겨질 수 있도록 지지된다.
제 2 코어(62)가 도 6a에 도시된 상태에서 선형 가이드(65, 66)를 동작시켜서 제 1 코어(61)로부터 분리될 때, 전면판(53)은 외부에 노출된다. 이 AEF 유닛(50)을 이 상태에서 당기면, 도 6b에 도시된 상태, 즉 편향 전극(24-1, 24-2) 등이 AEF 챔버(23) 외부에 위치되어 노출되는 상태를 이를 수 있다. 본 실시예에 있어서, 이러한 방식으로 편향 전극(24-1, 24-2) 등을 AEF 챔버(23)로부터 용이하게 꺼내어 외부에 노출시킬 수 있기 때문에, 이 편향 전극의 유지보수 및 교체가 용이하게 수행될 수 있다.
이들 부품의 유지보수와 교체를 수행한 후, AEF 유닛(50)을 AEF 챔버(23) 내로 밀어넣고 전면판(53)을 AEF 챔버(23)에 밀봉되게 고정시켜, 편향 전극(24-1, 24-2) 등이 AEF 챔버(23) 내의 소정의 위치에 설치될 수 있게 된다.
전술된 바와 같이 구성된 각도 에너지 필터(17)에 대하여, 이온 주입 시스템 내 제어부(미도시)는 웨이퍼에 주입되는 이온 빔의 특성에 따라 선택적으로 편향 자석(22)이나 편향 전극(24-1, 24-2) 중 어느 하나에 전원을 공급한다. 즉, 이온 주입 시스템의 제어부는 각도 에너지 필터(17)의 자계/전계의 전환 장치로서 역할을 한다. 전원을 편향 전극(24-1, 24-2)에 공급할 때, 이온 주입 시스템의 제어부는 억제 전극(31-1, 31-2)에도 전원을 동시에 공급한다는 것을 주의해야 한다.
이온 주입 시스템의 제어부가 전원을 편향 자석(22)에 공급할지 아니면 편향 전극(24-1, 24-2)에 공급할지는 이온 종류(이온 소스) 등에 따라 달라진다. 그러나, 빔의 에너지가 대략 십 내지 수십 KeV 범위에 있는 특정 임계값보다 더 낮아진다면 편향 자석(22)에 전원을 공급하는 반면, 빔이 소정의 값보다 더 높아진다면, 편향 전극(24-1, 24-2)(및 억제 전극(31-1, 31-2))에 전원을 공급하는 것으로 생각할 수 있다.
전술된 바와 같이, 이온 주입 시스템에서, 빔 조건(특성)에 따라 각도 에너지 필터(17)에서 빔의 편향 방법으로서 자계를 사용할지 아니면 전계를 사용할 지 여부를 선택하는 것도 가능하다. 나아가, 자계나 전계가 각도 에너지 필터(17)에서 빔의 편향 방법으로서 선택되는 경우에도, 빔의 궤적은 변하지 않는다. 그래서, 특정 궤적 보정 수단이 필요치 않고 구조가 간단해진다.
AEF 챔버(23)의 내부 구조를 위에서부터 바라본 예시적인 도면으로서 도 8을 참조하여, 이하 본 발명에 따른 빔 공간전하 보상장치의 제 1 실시예에 대해 상세히 설명한다.
전술된 바와 같이, AEF 챔버(23)는 내부에 편향 전극(24-1, 24-2)(도 8에서 상부 편향 전극(24-1)은 도시생략), 억제 전극(31-1, 31-2) 및 접지 전극(32-1 내지 32-4)을 포함한다. 이 편향 전극은 빔 진행 방향에 대하여 상부측과 하부측에 적어도 1쌍으로 설치된다. 억제 전극과 접지 전극은 빔 진행 방향에 대하여 상류측과 하류측에 설치된다.
본 실시예에 있어서, 플라즈마 샤워기(10)가 AEF 챔버(23) 내에 더 설치되며, 본 실시예의 일 특징은 플라즈마 샤워기(10)가 이하와 같은 방식으로 설치된다는 점에 있다. 이 플라즈마 샤워기(10)는 편향 전극(24-1, 24-2) 사이에 그리고 상류측 억제 전극(31-1) 및 접지 전극(32-1, 32-2)과 하류측 억제 전극(31-2) 및 접지 전극(32-3, 32-4)과의 사이에 한정된 위치에 배치된다. 특히, 플라즈마 샤워기(10)에 있어서, 필라멘트(10-3)의 중심축과 아크 챔버(10-4)의 인출홀(10-5)의 중심축은 서로 일치한다. 나아가, 이들 축은 플라즈마 샤워기(10) 쪽으로 향한 AEF 자계(10-6)의 자력선 중에서 빔 진행 방향에 수직인 자력선과 일치하는 위치(10-7)에 위치된다. 한편, 아크 챔버(10-4)의 인출홀(10-5)의 중심축이 AEF 자계(10-6)의 빔 진행 방향에 수직인 자력선과 일치하지 않는다면, 전자의 인출 효율이 저감한다. 아크 챔버(10-4)에 하나 이상의 인출홀이 설치되어 있다. 나아가, 도 3으로부터 명백한 바와 같이, 플라즈마 샤워기(10)는 AEF(17)에 의해 야기된 빔 편향점 부근에 대응하는 위치에 설치되는 것이 바람직하다.
나아가, 본 실시예에 따른 빔 공간전하 보상장치는 AEF 챔버(23)에 전자를 제한하는 효율을 향상시키기 위해 이하와 같은 방식으로 개선되었다. 도 8에 화살표로 부분적으로 도시된 바와 같이, 제한 자계를 형성하기 위한 복수의 영구 자석 (20)은 AEF 챔버(23)의 내부 벽(빔 진행 방향에 평행한 좌우상하면)에 설치된다. 제한 자계를 형성하기 위해, 이 영구 자석(20)은 자극이 AEF 챔버(23)의 내부 쪽으로 향하도록 배치되고, 이와 인접한 영구 자석(20)의 자극은 서로 반대로 배치된다. 도 4에 도시된 바와 같이, AEF 챔버(23)의 상하부 내벽 각각에 배치된 영구 자석(20)은 빔 진행 방향으로 중간 구간에 배열되며, 이 영구 자석 각각은 빔 진행 방향에 수직인 측면 방향 (좌우측 방향)으로 연장한다. 한편, 도 8에 도시된 바와 같이, AEF 챔버(23)의 좌우측 내벽 각각에 배치된 영구 자석(20)은 빔 진행 방향사이에 간격을 두어 배열되어, 편향된 빔을 따르도록 상하방향으로 연장한다. 그러나, 이들 영구 자석(20)은 생략될 수 있다.
나아가, 도 8에서 명백한 바와 같이, AEF 챔버(23)의 내부는 필요한 최소 개구를 각각 가지고 있는 접지 전극(32-1 내지 32-4)(또는 억제 전극(31-1, 31-2))에 의해 아크 챔버(10-4)에 대하여 상류 측과 하류 측으로 분할된다. AEF(17)가 생성된 자계에서 동작될 때, 이러한 배열에 의해서 플라즈마 샤워기(10)에 의해 형성된 플라즈마 생성영역의 가스 압력은 상대적으로 높게 유지될 수 있다. 다시 말해, AEF 챔버(23)는 플라즈마 샤워기 챔버로도 동작한다.
도 9는 본 발명의 제 2 실시예에 따른 빔 공간전하 보상장치를 도시한다. 제 2 실시예에 따른 빔 공간전하 보상장치에 있어서, 다른 하나의 플라즈마 샤워기(10´)는 AEF 챔버(23) 내에 플라즈마 샤워기(10)가 위치된 측에 반대 측의 위치에 설치되며, 여기서 빔의 주사 영역(SA)은 플라즈마 샤워기(10, 10´) 사이에 삽입된다. 앞서 언급된 도 3 및 도 4는 제 2 실시예가 적용된 일례를 도시한다. 대안적으 로, 반발(repeller) 전극이 다른 플라즈마 샤워기(10´) 대신에 제공될 수 있다. 잘 알려진 바와 같이, 반발 전극은 전자를 반사시키는 전극이다. 반발 전극은 절연 상태에 있는 AEF 챔버(23)의 내벽에 배치되거나, 음의 전압으로 인가될 수 있다. 도 9에 있어서, AEF 전극, 억제 전극, 접지 전극 및 제한 자계를 형성하기 위한 영구 자석 등에 대한 도시는 생략되어 있다.
간단하게 하기 위해 도 8에서 도시는 생략되어 있지만, 플라즈마 샤워기(10)에 대하여 전원을 연결하는 방식은 도 9에 도시된 것과 동일하다. 구체적으로, 도 9에 도시된 바와 같이, 필라멘트 전압은 필라멘트 전원(E17)으로부터 필라멘트(10-3)에 인가된다. 필라멘트(10-3)와 아크 챔버(10-4) 사이에는 제 1 아크 전원(E18)으로부터 제 1 아크 전압이 인가된다. 나아가, 전원(E19)은 아크 챔버(10-4)로부터 빔 측에 전자의 공급을 용이하기 위해 아크 챔버(10-4)와 접지 사이에 접속된다. 이러한 접속방식은 다른 플라즈마 샤워기(10´)에 대해서도 동일하다.
도 10은 본 발명의 제 3 실시예에 따른 빔 공간전하 보상장치를 도시한다. 제 3 실시예에 있어서, 2개의 변형이 도 9에 도시된 제 2 실시예에 추가된다. 제 1 변형은 아크 챔버(10-4)로부터 전자의 인출 효율을 향상시키기 위해 편향 전극(24-1(도 3 참조), 24-2) 및 접지 전극(32-2, 32-3)과 아크 챔버(10-4)와의 사이에 제 2 아크 전원(E14)으로부터 제 2 아크 전압이 새로이 인가된다는 것이다. 이 제 1 변형에 있어서, 편향 전극(24-1, 24-2)과 접지 전극(32-2, 32-3)은 제 2 아크 전원(E14)의 양의 측과 접지에 연결된다. 제 1 변형의 변형으로서, 편향 전극(24-1, 24-2)과 접지 전극(32-2, 32-3)은 음의 전압이 인가될 수 있도록 제 2 아크 전원 (E14)의 음의 측에만 연결될 수도 있다.
제 2 변형은 플라즈마 샤워기(10)에 있어서, 인출홀(10-5)에 대응하는 홀을 가진 인출 전극(15)이 인출홀(10-5)의 출구 측 부근에 배치된다는 것이다. 인출 전압은 인출 전원(E16)으로부터 인출 전극(15)과 아크 챔버(10-4) 사이에 인가된다. 이러한 연결 방식은 다른 플라즈마 샤워기(10´)에 대한 것과 동일한 것이다. 당연히, 제 1 및 제 2 변형은 도 9에 도시된 제 2 실시예에 개별적으로 적용될 수 있다. 도 10에 있어서도, 제한 자계를 형성하기 위한 영구 자석(20)의 도시는 생략되어 있다.
도 11은 본 발명의 제 4 실시예에 따른 빔 공간전하 보상장치를 도시한다. 제 4 실시예에 있어서, 플라즈마 샤워기(10)는 제 1 아크 챔버(10-1)(도 8의 아크 챔버(10-4)와 동일함)와, 제 2 아크 챔버(10-2)를 구비한다. 제 1 아크 챔버(10-1)는 필라멘트(10-3), 가스 유입 포트(미도시) 및 하나 이상의 인출홀(10-5)을 구비한다. 제 1 및 제 2 아크 챔버(10-1, 10-2) 사이에 경계 부분에는, 인출홀(10-5)에 대응하는 위치에 홀을 가지는 인출 전극(15)이 설치된다. 필라멘트(10-3), 제 1 아크 챔버(10-1) 및 인출 전극(15)에 대한 전원 접속 방식은 도 9 및 도 10을 참조하여 설명된 연결 방식 중 어느 하나일 수 있다. 한편, 아크 전압은 제 2 아크 챔버(10-2)에 플라즈마를 생성하기 위해 제 1 및 제 2 아크 챔버(10-1, 10-2) 사이에 인가되는 것이 바람직하다. 제 2 아크 챔버(10-2)는 AEF 챔버(23) 내부 쪽으로 향한 제 2 인출홀(10-9)을 가진다. 특히, 제 2 인출홀(10-9)은 도 8을 참조하여 설명된 플라즈마 샤워기(10)의 위치와 동일한 위치에 설치된다.
이제, 도 8 또는 도 9에 도시된 제 1 또는 제 2 실시예에 따른 빔 공간전하 보상장치의 동작에 대해서 설명한다.
아르곤(Ar) 등의 가스가 아크 챔버(10-4)에 유입된다.
필라멘트 전원(E17)으로부터의 전류가 아크 챔버(10-4)에 설치된 필라멘트(10-3)에 공급되어 필라멘트(10-3)를 고온으로 가열시켜 열전자를 발생시킨다.
열전자는 제 1 아크 전원(E18)으로부터 필라멘트(10-3)와 아크 챔버(10-4) 사이에 인가된 제 1 아크 전압에 의해 가속되어, 주입된 가스와 충돌하며, 이에 의해 아크 챔버(10-4) 내에서 플라즈마를 생성한다.
빔이 아크 챔버(10-4)의 인출홀(10-5) 부근을 통과할 때, 빔의 양의 전위에 의해 아크 챔버(10-4)로부터 전자가 인출된다.
인출된 전자는 아크 챔버(10-4)에서 이온화하지 않고 인출홀(10-5)로부터 배출된 중성 가스와 충돌하여, 플라즈마(플라즈마 브리지)가 인출홀(10-5)과 빔 사이에 형성된다.
아크 챔버(10-4) 내의 전자는 빔의 양의 전하를 중화시키기 위해 플라즈마 브리지를 통해 빔에 자발적으로 공급된다.
전술된 동작은 종래의 플라즈마 샤워기의 동작과 동일하다.
본 발명에 있어서, 플라즈마 샤워기(10)는 필라멘트(10-3)의 중심축과 인출홀(10-5)의 중심축이 플라즈마 샤워기(10) 쪽으로 향한 AEF 자계(10-6)(도 8 참조)의 자력선 중에서 빔 진행 방향에 수직인 자력선과 일치하도록 설치된다.
전자는 자계 둘레에 감기도록 운동한다. 그러므로, 아크 챔버(10-4)에서 플 라즈마의 생성, 아크 챔버(10-4) 내의 플라즈마로부터 전자의 인출, 플라즈마 브리지의 형성 및 플라즈마 브리지의 제한은 AEF 자계에 의해 강화된다. 빔이 주사용 편향기에 의해 편향되어, 빔과 아크 챔버(10-4)의 인출홀(10-5) 사이의 거리가 증가하는 경우, 인출되는 전자의 양은 저감한다. 그러나, 다른 플라즈마 샤워기(10´)의 아크 챔버를 배치하여, 빔의 주사 영역(SA)이 도 9에 도시된 바와 같이 플라즈마 샤워기(10, 10´)의 아크 챔버 사이에 배치되게 함으로써, 빔과 일측에 있는 아크 챔버(10-4) 사이의 거리가 증가함에 따라, 빔과 타측에 있는 아크 챔버 사이의 거리가 저감한다. 그 결과, 인출 전자량의 편향 위치 의존성을 저감할 수 있다. 나아가, AEF 챔버(23)의 내부 벽면에 대한 전자의 손실은 AEF 챔버(23)의 내부 벽에 형성된 제한 자계에 의해 억제된다.
AEF 챔버(23)에 입사한 이온 빔에 대해 전자가 AEF 챔버(23) 내의 플라즈마로부터 자발적으로 공급되므로, 빔의 공간전하는 중화(보상)되어, 빔의 발산이 억제된다.
이제, 도 10에 도시된 제 3 실시예의 동작에 대해서 설명한다.
제 2 아크 전압이 제 2 아크 전원(E14)으로부터 아크 챔버(10-4)와 편향 전(24-1(도 3 참조), 24-2) 및 접지 전극(32-2, 32-3) 사이에 공급되어, 전자가 아크 챔버(10-4)로부터 인출된다. 여기서, 빔 가이드를 위해 AEF 챔버(23) 내 상부 및 하부 편향 전극(24-1, 24-3)과 상류측 및 하류측 접지 전극(32-2, 32-3)으로 둘러싸인 영역은, 임시 아크 챔버로서 동작하여 전자량이 증가될 수 있다. 이 경우에, AEF 자계는 소스 자석으로서 사용된다. 플라즈마 샤워기가 사용되는 경우, AEF 및 억제 전계를 생성하기 위해 편향 전극(24-1, 24-2), 억제 전극(31-1, 31-2) 및 접지 전극(32-1 내지 32-4)을 사용하지 않는 것이 바람직하다. 이것은 도 8 및 도 9에 도시된 실시예에도 적용된다.
부가적으로, 인출 전극(15)이 아크 챔버(10-4)의 인출홀(10-5) 부근에 배치되고, 인출 전압이 인출 전원(E16)으로부터 인출 전극(15)과 아크 챔버(10-4) 사이에 인가되기 때문에, 전자의 인출 효율이 향상된다.
아크 챔버(10-4)로부터 AEF 챔버(23) 내로 인출된 전자는 제 2 아크 전압에 의해 가속되며 아크 챔버(23) 내에 이온화를 유발시키지 않고 인출홀(10-5)로부터 배출된 중성 가스와 충돌한다. 결국 AEF 챔버(23) 내에서 플라즈마가 다시 생성된다.
플라즈마 생성 영역에 있는 가스 압력은 AEF 챔버(23) 내의 상류측 및 하류측에 위치된 접지 전극(32-3, 32-3)의, 필요한 최소 사이즈를 가진 각각의 개구에 의해 비교적 높게 유지되어, 플라즈마 생성 효율이 향상된다.
AEF 챔버(23)에 입사한 이온 빔에 대해 전자가 AEF 챔버(23) 내의 플라즈마로부터 자발적으로 공급된다. 따라서, 이온 빔의 공간전하는 중화되어 이온 빔의 발산이 억제된다.
이제, 도 11에 도시된 제 4 실시예의 동작에 대해서 설명한다.
아르곤(Ar) 등의 가스가 가스 유입 포트로부터 제 1 아크 챔버(10-1) 내로 유입된다. 필라멘트 전원으로부터 전류가 제 1 아크 챔버(10-1)에 설치된 필라멘트(10-3)에 공급되어 필라멘트(10-3)를 고온으로 가열하며 이에 의해 열전자를 생성 한다. 열전자는 필라멘트(10-3)와 제 1 아크 챔버(10-1) 사이에 제 1 아크 전원으로부터 인가된 제 1 아크 전압에 의해 가속된다. 가속된 열전자는 유입된 가스와 충돌하여 제 1 아크 챔버(10-1) 내에 플라즈마(이온과 전자로 구성됨)가 생성된다. 제 1 아크 챔버(10-1)는 하나 이상의 인출홀(10-5)을 구비하며, 인출 전극(15)은 제 1 아크 챔버(10-1)의 외부에 설치된다. 인출 전극(15)과 제 1 아크 챔버(10-1) 사이에 제 1 인출 전원으로부터 제 1 인출 전압을 인가함으로써, 생성된 플라즈마 내의 전자는 제 1 아크 챔버(10-1)로부터 인출된다.
제 2 아크 챔버(10-2)에는, 제 1 아크 챔버(10-1)에 이온화를 야기하지 않고 인출홀(10-5)로부터 배출된 중성 가스와, 제 1 아크 챔버(10-1)로부터 인출된 전자가 유입된다. 필라멘트(10-3)의 재료가 증발 등에 의해 비산된 경우에도, 인출홀(10-5)의 사이즈가 작기 때문에, 제 1 아크 챔버(10-1) 내에 비산된 재료가 남아있어 제 2 아크 챔버(10-2) 내로 유입되지 않는다.
제 2 아크 챔버(10-2)로 유입된 전자는 제 2 아크 전원으로부터 인출 전극(15)과 제 2 아크 챔버(10-2) 사이에 인가된 제 2 아크 전압에 의해 가속된다. 가속된 전자는 제 1 아크 챔버(10-1)로부터 유입된 가스와 충돌하여 제 2 아크 챔버(10-2) 내에 고밀도의 플라즈마를 생성한다.
제 2 아크 챔버(10-2)에는 이온 빔 통과 영역에 대응하는 위치에 제 2 인출홀(10-9)을 구비한다. 제 2 아크 챔버(10-2)는 제 2 인출홀(10-9) 이외로부터 가스의 누출이 없도록 구성되며, 이에 의해 제 2 아크 챔버(10-2) 내의 가스 압력의 저감을 방지하고, 플라즈마 생성 효율을 향상시킨다.
이온 빔이 제 2 인출홀(10-9) 부근을 통과할 때, 전자는 이온 빔의 양 전위에 의하여 제 2 아크 챔버(10-2)로부터 인출된다. 인출된 전자는 제 1 및 제 2 아크 챔버(10-1, 10-2) 내에서 이온화를 야기하지 않고 제 2 인출홀(10-9)로부터 배출된 중성 가스와 충돌한다. 그 결과, 이온 빔과 제 2 아크 챔버(10-2)(정확하게는 제 2 인출홀(10-9)) 사이에 플라즈마(플라즈마 브리지)를 형성한다. 제 2 아크 챔버(10-2) 내의 전자는 플라즈마 브리지를 통해 이온 빔에 자발적으로 공급된다.
제 2 아크 챔버(10-2)는 제 2 인출 전원으로부터 접지 전위와 제 2 아크 챔버 사이에 제 2 인출 전압을 인가하도록 구성된다. 이러한 구성에 의해 이온 빔에 공급되는 전자의 양과 에너지를 조정하는 것이 가능하다.
전술된 바와 같이, 제 1 아크 챔버(10-1)에 의거한 플라즈마 생성과 제 2 아크 챔버(10-2)에 의거한 플라즈마 생성의 공동 작용에 의해 플라즈마는 이온 빔에 효과적으로 공급되어, 이온 빔의 발산을 보다 효과적으로 억제할 수 있게 된다.
본 발명의 각각의 실시예를 전계와 자계에 의거하여 빔 편향을 수행하는 AEF에 적용한 경우에 대해 상세한 설명을 제공하였지만, 본 발명은 자계 만에 의거하여 빔 편향을 수행하는 AEF에도 적용할 수 있다는 것을 용이하게 이해할 수 있을 것이다. 이 경우에, 도 3에 도시되어 있는 편향 전극, 억제 전극 및 접지 전극 등은 생략된다. 나아가, 전술된 각 실시예에서, 빔의 연속적인 횡단면을 주사에 의해 타원형이나 달걀형으로 형성하는 실시예에 대해 상세한 설명을 제공하였지만, 본 발명은 주사가 수행되지 않을 때나 빔의 횡단면 형상을 원형, 타원형, 또는 달걀형일 때에도 적용될 수 있다.
본 발명에 따라, 플라즈마 샤워기에 의해 플라즈마의 생성, 전자의 인출 및 전자의 제한을 향상시키는 AEF 자계를 명확히 사용함으로써, 특정 자계 생성 장치나 특정 자계 차폐 장치를 사용하지 않고 빔 공간전하 보상을 효과적으로 수행하는 것도 가능하다. 이러한 구성에 의하면, 공간전하에 의해 유발된 이온 빔의 발산을 억제시켜 빔 전달 효율을 향상시킴으로써 빔 전류를 증가시키는 것이 가능하다.
지금까지 본 발명을 바람직한 실시예와 연관하여 설명하였지만, 이 기술 분야에 숙련된 자라면 본 발명을 다양한 다른 방식으로 실시하는 것도 용이하게 할 수 있을 것이다.
전술된 바와 같이, 본 발명은, 공간전하에 의해 유발된 이온 빔의 발산을 억제시켜 빔 전달 효율을 향상시킴으로써 빔 전류를 증가시킬 수 있는 등의 효과를 제공한다.

Claims (12)

  1. 이온 빔으로 웨이퍼를 조사함으로써 처리를 수행하는 이온 빔 처리 시스템의 빔 경로 중에 설치된 각도 에너지 필터(angular energy filter)에 적용된 빔 공간전하 보상장치로서, 상기 각도 에너지 필터는 전계와 자계 중에서 적어도 자계를 사용하여 상기 이온 빔으로부터 필요한 에너지를 가지는 이온 종류만을 선택하는, 빔 공간전하 보상장치에 있어서,
    상기 빔 공간전하 보상장치는 빔 공간전하 보상을 위한 상기 각도 에너지 필터의 빔 가이드 챔버 내에 설치된 플라즈마 샤워기를 포함하며,
    상기 플라즈마 샤워기는 플라즈마를 위한 열전자를 생성하는 필라멘트를 내부에 가진 아크 챔버를 포함하며,
    상기 아크 챔버는 생성된 플라즈마에서 열전자를 인출하기 위한 인출홀을 포함하며,
    상기 플라즈마 샤워기는, 상기 인출홀이 이온 빔 진행 방향에 수직인 상기 자계의 자력선 상에 위치되고, 상기 필라멘트의 중심축과 상기 인출홀의 중심축이 상기 이온 빔 진행 방향에 수직인 상기 자계의 자력선과 일치하도록 설치되어 있는 것을 특징으로 하는 빔 공간전하 보상장치.
  2. 제 1 항에 있어서,
    상기 플라즈마 샤워기는 상기 이온 빔을 사이에 삽입한, 상기 각도 에너지 필터의 빔 가이드 챔버의 양쪽 내측면에 설치된 것을 특징으로 하는 빔 공간전하 보상장치.
  3. 제 2 항에 있어서,
    상기 각도 에너지 필터의 빔 가이드 챔버는 플라즈마 샤워기 챔버로서도 병행하는 것을 특징으로 하는 빔 공간전하 보상장치.
  4. 제 3 항에 있어서,
    상기 이온 빔에 대해 상기 각도 에너지 필터의 빔 가이드 챔버의 상하좌우측 내벽에서 플라즈마 제한 자계를 형성하기 위하여, 상기 상하좌우측 내벽 각각에 복수의 자석이 설치된 것을 특징으로 하는 빔 공간전하 보상장치.
  5. 제 4 항에 있어서,
    상기 각도 에너지 필터의 빔 가이드 챔버 내의 상기 좌우측 내벽에서의 상기 제한 자계는 상기 각도 에너지 필터에 의해 편향된 이온 빔을 따라서 상기 복수의 자석을 설치함으로써 형성되는 것을 특징으로 하는 빔 공간전하 보상장치.
  6. 제 4 항에 있어서,
    상기 각도 에너지 필터의 상기 빔 가이드 챔버 내의 상기 상하측 내벽에서의 상기 제한 자계는 상기 이온 빔 진행 방향으로 제한된 간격을 두어 상기 상하측 내 벽에 상기 복수의 자석을 배치함으로써 형성되며, 상기 상하측 내벽에 있는 상기 복수의 자석 각각은 좌우측 방향으로 연장되어 있는 것을 특징으로 하는 빔 공간전하 보상장치.
  7. 제 6 항에 있어서,
    상기 플라즈마 샤워기는 상기 각도 에너지 필터에 의해 야기된 상기 이온 빔의 편향점 부근에 대응하는 위치에 설치된 것을 특징으로 하는 빔 공간전하 보상장치.
  8. 제 7 항에 있어서,
    상기 자계가 존재하는 상기 각도 에너지 필터의 빔 가이드 챔버 내에서 플라즈마가 생성되는 것을 특징으로 하는 빔 공간전하 보상장치.
  9. 제 8 항에 있어서,
    상기 각도 에너지 필터는, 상기 자계와 전계를 사용함으로써 상기 이온 빔으로부터 필요한 에너지를 가지고 있는 이온 종류만을 선택하며, 상기 전계를 생성하기 위해 이온 빔에 대하여 상측 및 하측에 배치된 한 쌍의 편향 전극과, 이온 빔 진행 방향에 대하여 상류 측과 하류 측에 배열된 접지 전극을 포함하며,
    상기 플라즈마 샤워기는, 상기 한쌍의 편향 전극 사이와, 상류 측의 상기 억제 전극 및 접지 전극과 하류 측의 상기 억제 전극 및 접지 전극과의 사이에서 규 정된 위치에 배치되며,
    상기 각도 에너지 필터가 상기 자계에 의해 동작하는 동안, 상기 아크 챔버와 상기 한 쌍의 편향 전극 및 접지 전극과의 사이에 아크 전압이 인가되는 것을 특징으로 하는 빔 공간전하 보상장치.
  10. 제 9 항에 있어서,
    상기 플라즈마 샤워기의 상류 측과 하류 측에 배열된 상기 접지 전극을 사용하여 상기 각도 에너지 필터의 빔 가이드 챔버 내부를 분할함으로써 필요한 최소의 개구를 가진 플라즈마 생성 영역이 형성되는 것을 특징으로 하는 빔 공간전하 보상장치.
  11. 제 10 항에 있어서,
    상기 플라즈마 샤워기, 상기 한 쌍의 편향 전극, 상류 측의 상기 억제 전극 및 접지 전극, 하류 측의 상기 억제 전극과 접지 전극은, 하나의 유닛으로서 연결되며, 상기 각도 에너지 필터의 빔 가이드 챔버에 대하여 일체형으로 부착가능하며 탈거가능하도록 구성된 것을 특징으로 하는 빔 공간전하 보상장치.
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 기재된 빔 공간전하 보상장치를 포함하는 것을 특징으로 하는 이온 주입 시스템.
KR1020050062576A 2004-11-30 2005-07-12 빔 공간전하 중화장치 및 이를 구비한 이온주입장치 KR101126324B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004345163A JP5042451B2 (ja) 2004-11-30 2004-11-30 ビーム空間電荷中和装置及びこれを備えたイオン注入装置
JPJP-P-2004-00345163 2004-11-30

Publications (2)

Publication Number Publication Date
KR20060060535A true KR20060060535A (ko) 2006-06-05
KR101126324B1 KR101126324B1 (ko) 2012-03-23

Family

ID=36045369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050062576A KR101126324B1 (ko) 2004-11-30 2005-07-12 빔 공간전하 중화장치 및 이를 구비한 이온주입장치

Country Status (5)

Country Link
US (1) US7276711B2 (ko)
EP (1) EP1662541B1 (ko)
JP (1) JP5042451B2 (ko)
KR (1) KR101126324B1 (ko)
TW (1) TWI371054B (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420815B1 (ko) * 2007-01-12 2014-07-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 주입 위치의 자장을 축소하기 위한 기술
KR20170101884A (ko) * 2014-12-26 2017-09-06 액셀리스 테크놀러지스, 인크. 이온 주입을 위해 결합된 정전 렌즈 시스템
KR102337327B1 (ko) * 2021-05-18 2021-12-09 (주)거성 전하 교환 셀용 챔버

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533112B2 (ja) * 2004-11-30 2010-09-01 株式会社Sen ウエハ帯電抑制装置及びこれを備えたイオン注入装置
JP4954465B2 (ja) * 2004-11-30 2012-06-13 株式会社Sen イオンビーム/荷電粒子ビーム照射装置
JP5100963B2 (ja) * 2004-11-30 2012-12-19 株式会社Sen ビーム照射装置
JP5329050B2 (ja) * 2007-04-20 2013-10-30 株式会社Sen ビーム処理装置
US8124946B2 (en) * 2008-06-25 2012-02-28 Axcelis Technologies Inc. Post-decel magnetic energy filter for ion implantation systems
US8309935B2 (en) * 2009-04-03 2012-11-13 Varian Semiconductor Equipment Associates, Inc. End terminations for electrodes used in ion implantation systems
US8278634B2 (en) * 2009-06-08 2012-10-02 Axcelis Technologies, Inc. System and method for ion implantation with improved productivity and uniformity
US8841631B1 (en) * 2013-06-26 2014-09-23 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for controlling ion angular spread
JP6257411B2 (ja) * 2014-03-27 2018-01-10 住友重機械イオンテクノロジー株式会社 イオン注入装置、最終エネルギーフィルター、及びイオン注入方法
JP6480534B1 (ja) * 2017-09-26 2019-03-13 株式会社ニューフレアテクノロジー 荷電粒子ビーム照射装置及び基板の帯電低減方法
JP7132828B2 (ja) * 2018-11-13 2022-09-07 住友重機械イオンテクノロジー株式会社 イオン注入装置およびビームパーク装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466929A (en) * 1992-02-21 1995-11-14 Hitachi, Ltd. Apparatus and method for suppressing electrification of sample in charged beam irradiation apparatus
JPH05234562A (ja) * 1992-02-21 1993-09-10 Hitachi Ltd イオンビーム中性化装置
JP3624566B2 (ja) * 1996-07-11 2005-03-02 日新電機株式会社 イオン照射装置
GB2326971B (en) 1997-07-03 2001-12-12 Applied Materials Inc Electron flood apparatus for neutralising charge build up on a substrate during ion implantation
US6313428B1 (en) * 1999-10-12 2001-11-06 Advanced Ion Beam Technology, Inc. Apparatus and method for reducing space charge of ion beams and wafer charging
JP2002289106A (ja) * 2001-03-23 2002-10-04 Sony Corp イオン注入装置
JP3869680B2 (ja) * 2001-05-29 2007-01-17 株式会社 Sen−Shi・アクセリス カンパニー イオン注入装置
JP3690517B2 (ja) * 2002-02-28 2005-08-31 住友イートンノバ株式会社 イオン注入方法及びイオン注入装置
JP3680274B2 (ja) * 2002-03-27 2005-08-10 住友イートンノバ株式会社 イオンビームの電荷中和装置とその方法
US6762423B2 (en) * 2002-11-05 2004-07-13 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for ion beam neutralization in magnets
US6881966B2 (en) * 2003-05-15 2005-04-19 Axcelis Technologies, Inc. Hybrid magnetic/electrostatic deflector for ion implantation systems
US7402816B2 (en) * 2004-11-19 2008-07-22 Varian Semiconductor Equipment Associates, Inc. Electron injection in ion implanter magnets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420815B1 (ko) * 2007-01-12 2014-07-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 주입 위치의 자장을 축소하기 위한 기술
KR20170101884A (ko) * 2014-12-26 2017-09-06 액셀리스 테크놀러지스, 인크. 이온 주입을 위해 결합된 정전 렌즈 시스템
KR102337327B1 (ko) * 2021-05-18 2021-12-09 (주)거성 전하 교환 셀용 챔버

Also Published As

Publication number Publication date
EP1662541A3 (en) 2010-12-15
JP5042451B2 (ja) 2012-10-03
JP2006156137A (ja) 2006-06-15
EP1662541A2 (en) 2006-05-31
US20060113491A1 (en) 2006-06-01
KR101126324B1 (ko) 2012-03-23
TW200618026A (en) 2006-06-01
EP1662541B1 (en) 2012-08-22
US7276711B2 (en) 2007-10-02
TWI371054B (en) 2012-08-21

Similar Documents

Publication Publication Date Title
KR101126324B1 (ko) 빔 공간전하 중화장치 및 이를 구비한 이온주입장치
JP5329050B2 (ja) ビーム処理装置
KR101190115B1 (ko) 웨이퍼 대전 억제장치 및 이를 구비한 이온 주입 장치
US7315034B2 (en) Irradiation system with ion beam/charged particle beam
JP4239116B2 (ja) イオンビーム中和器及びその中和方法
US6815697B2 (en) Ion beam charge neutralizer and method therefor
US7800083B2 (en) Plasma electron flood for ion beam implanter
KR101169963B1 (ko) 이온 빔, 하전입자 빔 조사 시스템
US7755067B2 (en) Ion implantation apparatus and method of converging/shaping ion beam used therefor
JP2007531968A (ja) イオン注入システムにおいて引き出されたイオンビームの選択的プレディスパージョンのための方法及び装置
JP2019537816A (ja) イオン源
CN108695129B (zh) 离子注入装置及离子注入方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 8