KR20060046467A - 데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스노드 및 라우터 - Google Patents

데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스노드 및 라우터 Download PDF

Info

Publication number
KR20060046467A
KR20060046467A KR1020050051741A KR20050051741A KR20060046467A KR 20060046467 A KR20060046467 A KR 20060046467A KR 1020050051741 A KR1020050051741 A KR 1020050051741A KR 20050051741 A KR20050051741 A KR 20050051741A KR 20060046467 A KR20060046467 A KR 20060046467A
Authority
KR
South Korea
Prior art keywords
packet
received packet
protected
network
received
Prior art date
Application number
KR1020050051741A
Other languages
English (en)
Other versions
KR101120322B1 (ko
Inventor
마크 에이 보도그나
크리스토퍼 더블유 해밀톤
디팩 가타리아
프라빈 케이 파색
마크 비 심킨스
Original Assignee
에이저 시스템즈 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이저 시스템즈 인크 filed Critical 에이저 시스템즈 인크
Publication of KR20060046467A publication Critical patent/KR20060046467A/ko
Application granted granted Critical
Publication of KR101120322B1 publication Critical patent/KR101120322B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/122Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]

Abstract

본 발명은 하나 이상의 패킷 네트워크에서 퍼-서비스 흐름(per-service flow) 보호 및 데이터 복구를 위한 방법 및 장치를 개시한다. 개시된 보호 및 복구 기법은 트래픽을 우선 순위화하고 집합 레벨(aggregate level)로부터 마이크로-흐름 레벨(micro-flow level)까지 보호할 수 있다. 따라서 보호는 장애 민감 서비스(fault sensitive services)로 제한될 수 있다. 보호 데이터는 주 경로와 하나 이상의 백업 데이터 경로상에 복제된다(duplicate). 링크 고장후에, 보호 데이터는 큰 서비스 중단없이도 신속하고 효율적으로 복구될 수 있다. 수신 패킷은 수신 패킷을 보호해야 하는 지의 여부를 판정하는 하나 이상의 규칙을 사용하여, 패킷의 헤더부의 정보를 기반으로 각 종단점에서 분류된다. 진입 노드에서, 패킷 분류가 수신 패킷을 보호해야 한다고 판정한 경우에, 수신 패킷은 적어도 두 경로상으로 전송된다. 출구 노드에서, 패킷 분류가 수신 패킷이 보호된다고 판정한 경우에, 다수 버전의 수신 패킷이 예상되며, 단지 일 버전(one version)의 수신 패킷만이 전송된다.

Description

데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스 노드 및 라우터{METHOD AND APPARATUS FOR PER-SERVICE FAULT PROTECTION AND RESTORATION IN A PACKET NETWORK}
도 1은 본 발명이 동작할 수 있는 전형적인 네트워크 환경을 도시하는 도면,
도 2는 도 1의 전형적인 가입자 환경을 보다 상세히 도시하는 도면,
도 3은 도 1의 멀티서비스 액세스 노드와 라우터 사이에 전형적인 가입자 허브의 연결을 도시하는 도면,
도 4는 진입 네트워크 프로세서에 의해 수행되는 송신 처리의 전형적인 구현을 도시하는 흐름도,
도 5는 출구 네트워크 프로세서에 의해 수행되는 수신 처리의 전형적인 구현을 도시하는 흐름도,
도 6은 도 4 및 도 5의 각 송신 처리 및 수신 처리에 의해 야기되는 패킷 분류 서브루틴의 전형적인 구현을 도시하는 흐름도,
도 7은 본 발명의 일 실시예에 따라서 보호 패킷의 스케줄링 및 큐잉을 도시하는 도면,
도 8은 본 발명의 일 실시예에 따라서 보호 패킷에 대한 장애 검출을 도시하는 도면,
도 9는 본 발명의 특정 실시예에 따라서 보호 패킷에 대한 장애 검출을 도시하는 흐름도,
도 10은 본 발명의 특징을 사용하는 전형적인 장애 검출 처리를 도시하는 흐름도,
도 11은 링크 고장후에 소스 노드와 목적지 노드 사이의 트래픽을 백업 경로상에 재경로 배정하는 것을 도시하는 도면.
도면의 주요 부분에 대한 부호의 설명
110, 170: MSAN 120, 160: 액세스 네트워크
130, 150: 라우터 200: 가입자 허브
210: 가입자 장치 360: 주 경로
370: 2차 경로
본 발명은 장애 방지 및 복구 기법에 관한 것으로, 특히 통합 액세스 네트워크(converged access network)와 같은 패킷 네트워크에서 장애 방지 및 복구에 관한 것이다.
액세스 네트워크에서 서비스 통합을 원하는 경향이 강하다. 이러한 네트워 크는 전형적으로 "통합 네트워크(converged networks)"로 언급된다. 이러한 통합은 서비스를 단일 액세스 플랫폼으로 통합하고, 개별 네트워크를 단일 멀티서비스 네트워크로 통합함으로 인하여 설비 및 작동 비용의 감소를 약속함으로써 적어도 일부분은 동기화된다.
네트워크 운영자는 현재 멀티서비스를 지원하기 위하여 각종 액세스 "박스(boxes)" (설비)를 유지보수할 필요가 있다. 예를 들면, 음성 서비스(voice services)가 DLC(Digital Loop Carrier)를 통하여 전개되는 동안에, 데이터 서비스는 DSLAM(DSL Access Mux)을 통하여 전개될 수 있다. 또한 이 트래픽(traffic)이 전송되는 네트워크는 완전히 별개일 수 있다. 설비와 네트워크의 통합은 비용을 절약시킬 수 있다는 점을 알았다. 또한 (본 명세서에서 멀티서비스 액세스 노드(MSAN)로 언급되는) 단일 플랫폼으로부터 모든 서비스를 제공함으로써 이전에 경제적으로 혹은 기술적으로 불가능했던 향상된 서비스가 가능해질 수 있다. 그러나 통합의 한가지 장벽은 역사상 데이터 네트워크가 음성(voice) 및 영상(video)과 같은 타임 센시티브(time sensitive) 및 미션 크리티컬(mission critical) 서비스에 대해 만족스러운 서비스 품질(QoS)을 제공하지 못했었다는 사실이였다.
임의 QoS 방안의 주요 요소는 신뢰할만한 접속을 제공하는 능력이다. 환언하면, 네트워크는 광섬유 절단 또는 노드 고장과 같은 네트워크 장애일 시에 장애복구 메카니즘(resiliency mechanisms)을 제공해야 한다. 타임 센시티브 서비스의 경우, 네트워크는 전형적으로 약 수십 밀리초로 피해 서비스(affected service)를 신속히 복구시켜야 한다. 또한 시감성(time sensitivity)에 부가적으로, 다양한 이유(패킷 손실 감도등)로 인한 장애에 민감한 서비스가 있을 수 있다. 이러한 장애에 민감한 서비스는 일반적으로 본 명세서에서 "장애 민감 서비스(fault sensitive services)"로 언급된다. 통합 플랫폼(converged platform)을 전개할려면 "캐리어급(carrier-grade)" 서비스 레벨을 가진, 주 음성과 같이 타임 센시티브 서비스를 제공할 수 있어야 한다. 동시에, 이것은 이 서비스가 공급자에게 실용적이도록 경제적으로 행해져야만 한다.
패킷 지향 액세스 네트워크에서 현재 장치는 사용가능한 보호 메카니즘에서 선택의 여지가 있다해도 거의 없다. 이 대신에, 액세스 데이터 장치는 전형적으로, 트래픽을 보호하기 위하여 인접한 라우터(router), 스위치 또는 SONET ADM(add-drop multiplexer)에 의존한다. 그러나 이들 방안은 필요한 만큼 항상 융통성있거나, 효율적이거나 혹은 경계적이지 못하다. 예를 들면, 네트워크 중심부에 제공되는 총 데이터 트래픽중의 작은 양만을 보호하는 것이 바람직할 수 있다. 이러한 경우에, 데이터의 일부만을 신속히 복구할 필요가 있으므로, (예를 들면, SONET UPSR(uni-directional path switching ring)을 기반으로 한 보호 방안을 사용하여) MSAN으로부터 모든 데이터를 보호하는 것은 비경제적일 수 있다.
또한 패킷 네트워크에 대한 장애 검출 및 네트워크 복구를 위해 현재 사용가능한 방법은 종종 충분히 신속하지 못하다. 예를 들면, 이더넷 네트워크(Ethernet network)는 장애 경로 주위로 경로배정(routing)하기 위해 STP(Spanning Tree Protocol) 또는 신속한 STP를 사용할 수 있지만, 프로토콜의 수렴 시간(convergence time)의 상부 경계가 너무 높아질 수 있다. 또한 이러한 STP 메카니 즘은 포트 또는 가상 국부 네트워크(VLAN)의 세분화된 부분에서만 동작할 수 있는 반면에, VLAN상의 일부 데이터만이 보호 및 복구를 요구할 수 있다.
따라서 집합(aggregated) 또는 개별 서비스 흐름 레벨상에서 데이터를 선택적으로 보호 및 복구하기 위한 방법 및 장치가 필요하다. 또한 장애 민감 서비스의 요건을 만족시키기 위하여 피해 서비스를 충분히 신속하게 복구할 수 있는 데이터를 보호 및 복구하는 방법 및 장치가 필요하다. 또한, 패킷 전송 프로토콜 또는 물리적 전송 토폴로지(physical transport topology)에 독립적인 기존 네트워크에서 데이터를 보호 및 복구하는 방법 및 장치가 필요하다.
일반적으로, 본 발명은 하나 이상의 패킷 네트워크에서 데이터의 퍼-서비스 흐름(per-service flow) 보호 및 복구를 위한 방법 및 장치를 제공한다. 개시된 보호 및 복구 기법은 트래픽을 우선 순위화하고, 집합 레벨로부터 마이크로-흐름 레벨까지 보호할 수 있다. 따라서 보호는 장애 민감 서비스로 제한될 수 있다. 보호 데이터(protected data)는 주 경로와 하나 이상의 백업 데이터 경로(backup data paths)상에 복제된다(duplicate). 보호 데이터는 링크 고장후에 큰 서비스 중단(service interruption)없이도 신속하고 효율적으로 복구될 수 있다.
진입 노드(ingress node)에서, 수신 패킷은 패킷의 헤더부에서의 정보를 근거로 분류된다. 분류는 패킷을 보호해야 하는 지의 여부를 판정하는 하나 이상의 규칙을 기반으로 한다. 패킷 분류가 수신 패킷을 보호해야 한다고 판정시에, 수신 패킷은 적어도 두 경로상으로 전송된다. 출구 노드(egress node)에서, 수신 패킷은 하나 이상의 규칙을 사용하여 패킷의 헤더부에서의 정보를 근거로 다시 분류된다. 패킷 분류가 수신 패킷이 보호된다고 판정한 경우, 다수 버전의 수신 패킷이 예상되며, 단지 일 버전(one version)의 수신 패킷만이 전송된다.
따라서 본 발명은 높은 신뢰도로써 음성 및 영상 서비스와 같은 중대 가입자 서비스(critical subscriber services)를 전송하고, 만약 있다면 낮은 레벨의 네트워크 보호로써 인터넷 액세스 또는 텍스트 메시징과 같은 보다 덜 중대한 서비스를 전송한다. 본 발명의 보호 및 복구 기법을 구현하는 데는 네트워크 연결의 종단점(endpoints)만이 필요하다. 따라서 본 발명의 보호 및 복구 기법은 기존 네트워크에서 구현될 수 있고, 패킷 전송 프로토콜 또는 물리적 전송 토폴로지에 관계없이 다수의 이종 네트워크를 이동하는 흐름을 보호할 수 있다.
본 발명의 다른 특징 및 장점뿐만 아니라 본 발명을 보다 완벽히 이해하기 위해서는 다음의 상세한 설명과 도면을 참조하면 될 것이다.
본 발명은 하나 이상의 패킷 네트워크에서 데이터의 퍼-서비스 흐름 보호 및 복구를 위한 방법 및 장치에 관한 것이다. 개시된 퍼-서비스 흐름 보호 및 복구 기법은 동일한 기본 메카니즘을 사용하여 트래픽을 우선 순위화하고 집합 레벨로부터 마이크로-흐름 레벨까지 보호할 수 있다. 따라서 장애 민감 서비스가 보호될 수 있으면서, 덜 중대한 서비스는 예를 들면, "최대 노력(best efforts)" 접근방안 을 사용하여 처리될 수 있다. 일반적으로, 본 발명의 퍼-서비스 흐름 보호 및 복구 기법은 주 경로와 하나 이상의 백업 데이터 경로상에 보호 데이터를 복제한다. 따라서 보호 데이터만이 네트워크의 액세스측을 통하여 개별 물리적 경로상으로 복제된다. 후술되는 바와 같이, 보호 데이터는 링크 고장후에 신속하고 효율적으로 복구될 수 있고, 서비스는 접속된 채로 유지된다.
본 발명은 높은 신뢰도로써 음성 및 영상 서비스와 같은 중대 고객 서비스의 전송을 제공하면서, 예를 들어 이더넷 통신을 위한 STP를 기반으로 기본 네트워크에 의해 제공되는 낮은 레벨의 네트워크 보호로써 혹은 보호없이 인터넷 액세스 또는 텍스트 메시징과 같은 보다 덜 중대한 서비스를 전송한다. 모든 데이터의 보호를 요구하는 기법과는 반대로, 보호 트래픽의 서비스기반 선택은 사용가능한 대역폭을 효율적으로 활용하게 한다. 본 발명의 퍼-서비스 흐름 보호 및 복구 기법은 장애 민감 서비스의 요건을 만족시키기 위하여 피해 서비스를 충분히 신속하게 복구한다. 이런 방식으로, SONET형 신뢰도가 효율적인 방식으로 제공된다.
일 전형적인 구현에서, 본 발명의 퍼-서비스 흐름 보호 및 복구 기법은 계층 4(layer 4)에서 작동한다. 따라서 본 발명의 보호 및 복구 기법을 구현하는데 네트워크 연결의 종단점만이 필요하다. 결과적으로, 본 발명은 기존 네트워크에 구현될 수 있고, 다수의 이종 네트워크를 이동하는 흐름을 보호할 수 있다. 따라서 본 발명의 다른 양상에 따라서, 본 발명은 인터넷 프로토콜(IP), 이더넷, 동기 전송 모드(ATM) 또는 MPLS(Multi Protocol Label Switching)와 같은 패킷 전송 프로토콜, 혹은 고리형 또는 그물형 네트워크(ring or mesh network)와 같은 물리적 전 송 토폴로지에 관계없이 기존 네트워크에서 데이터를 보호 및 복구할 수 있다. 또한 본 발명은 ATM PNNI(Private Network-Network Interface), MPLS 고속 재경로배정(fast reroute) 또는 SONET BLSR(Bi-directional Line Switched Ring)/UPSR(Uni-directional Path Switched Ring) 재경로배정 메카니즘과 같은 기존 네트워크 장애복구 메카니즘과 함께 결합하여, 혹은 독립적으로 작동할 수 있다. 따라서 복구 능력이 없거나 혹은 최소일 수 있는 기존 시스템은 선택적으로, 증분 원리("증가분만큼 지불(pay as you grow)")로 장애복구력을 추가하도록 본 발명에 의해 갱신될 수 있다. 예를 들면, 보호 라인 카드가 레거시 DSLAM(legacy DSLAM)에 추가될 수 있다.
도 1은 본 발명이 작동할 수 있는 전형적인 네트워크 환경을 도시한다. 도 1에 도시된 바와 같이, 도 2와 함께 참조하여 후술되는 대응하는 가입자 허브(subscriber hub)(200-1 내지 200-N)를 각각 가진 한 사람 이상의 가입자가 네트워크(100)상에서 통신할 수 있다. 각 가입자는 하나 이상의 가입자 장치(210-11 내지 210-1N, 그리고 210N1 내지 210-NN)를 사용할 수 있는 데, 이는 도 2를 함께 참조하여 기술된다. 통상적으로, 음성, 영상 및 캐이블과 같은 모든 가입자 서비스는 홈(home) 또는 비즈니스 허브(200)를 통하여 집중화된다. 통합 데이터(consolidated data)가 단일 광대역 링크상에서 송신 또는 수신된다.
도 1에 도시된 바와 같이, 네트워크(100)는 하나 이상의 액세스 네트워크(120, 160)로 구성될 수 있다. 액세스 네트워크(120, 160)는 예를 들면, 고리형 또는 그물형 네트워크에 의해 구현될 수 있다. 본 발명의 퍼-서비스 흐름 보호 및 복구 기법은 독립적으로 하나 이상의 액세스 네트워크(120, 160)에 제공될 수 있다. 소정 가입자는 대응하는 멀티서비스 액세스 노드(MSAN)에 의해 관련 액세스 네트워크(120, 160)를 액세스한다. 멀티서비스 액세스 노드(110,170)는 예를 들면, Calix C7 시스템을 포함한 다수의 차세대 BLC(broadband loop carriers)중에서 사용하여 구현될 수 있다. 후술되는 바와 같이, 멀티서비스 액세스 노드(110, 170)는 본 발명이 보호해야 할 고장에 장애 민감 서비스를 검출하고 구별할 수 있다. 각 액세스 네트워크(120, 160)는 기지의 방식으로 제각기 라우터(130, 150)에 의해 핵심 네트워크(140)로 연결된다. 멀티서비스 액세스 노드(170)와 라우터(150) 사이에 전형적인 가입자 허브(200-N)을 연결하는 것은 도 3을 함께 참조하여 후술할 것이다.
핵심 네트워크(140)는 예를 들면, PSTN(Public Switched Telephone Network)또는 인터넷(또는 이들의 조합)을 구비할 수 있는 통합 무선 또는 유선 광대역 네트워크상에서 예를 들면, 음성, 영상 및 데이터를 전송하는 통합 네트워크이다. 통합 서비스(converged services)를 전달하기 위한 단일 통합된 광대역 네트워크는 명시된 서비스 품질 및 중대 정보의 신뢰할만한 전달을 지원할 수 있어야 한다. 따라서 본 발명에 따라, 액세스 네트워크(120, 160)는 중대 정보를 검출, 관리, 우선 순위화 및 보호할 수 있는 능력을 제공하는 트래픽 관리 기법을 이행한다.
전술한 바와 같이, 본 발명은 장애 방지 및 복구 메카니즘을 제공한다. 네트워크 환경(100)과 같은 네트워크 환경에서, 물리적 연결해제는 노드 또는 카드내 에 포트 오류 뿐만 아니라, 실수로 캐이블 또는 카드를 잡아당기는 것과 같은 기술자 오류, 물리적 광섬유 또는 동선의 파손을 포함한 다수의 이유로 인해 발생될 수 있다.
도 2는 도 1의 전형적인 가입자 환경을 보다 상세히 도시한다. 가입자는 예를 들어 가정 고객 또는 상용 고객일 수 있다는 점에 주목한다. 도 2에 도시된 바와 같이, 가입자는 단일 가입자 허브(200)에 연결된 하나 이상의 가입자 장치(210-1 내지 210-N)를 사용할 수 있다. 예를 들면, 가입자는 휴대용 계산장치(210-1), 무선전화(210-2), 광대역 전화(210-3), 그리고 이메일 또는 텍스트 메시지 장치(210-4)를 사용할 수 있다. 전술한 바와 같이, 이들 장치(210-1 내지 210-4)의 각각으로부터의 데이터는 허브(200)에 의해 집합되고, MSAN(170)을 통하여 액세스 네트워크로 단일 물리적 광대역 연결부상에 제공된다.
도 3은 멀티서비스 액세스 노드(170)와 라우터(150) 사이에서 전형적인 가입자 허브(200)에 대한 연결을 보다 상세히 기술한다. 일반적으로, 본 발명은 보호 흐름의 두 종단점에서 동작한다. 우측에서 좌측 방향으로의 도 3의 데이터 흐름을 고려한다(반대 방향으로의 데이터 흐름도 동일한 방식으로 행해지지만, 여기서는 단지 한 방향만 고려할 것이다). 가입자 허브(200)로부터 MSAN(170)을 통하여 라우터(150)로 이동하는 모든 서비스(예를 들면, 음성, 인터넷 액세스, 스트리밍 오디오(streaming audio))의 결합된 데이터 흐름은 주 경로(360)로 참조되며 실선으로 표시된다. 전술한 바와 같이, 본 발명의 퍼-서비스 흐름 보호 및 복구 기법은 주 경로(360)와 (도 3에서 점선으로 표시된) 하나 이상의 백업 또는 2차 데이터 경 로(370)상에 보호 데이터를 복제한다.
가입자로부터의 데이터는 MSAN(170)으로 이동하고, 이 때 집합 흐름의 서브셋은 보호 흐름이 식별되고 복제되어 개별 포트로 송신되는 것과 같이 제공된다. 이것은 네트워크를 통해 개별적이며 연결되지 않은 보호 및 2차 경로(360, 370)의 시작을 나타낸다. 전체 집합 흐름중에서 흐름의 서브셋이 보호 흐름이 되도록 제공되는 데, 이는 점선으로 표시된 2차 경로(370)상에 전송되어 지는 대각 해싱(diagonal hashing)을 가진 패킷에 의해 도시된다. 복제 보호 흐름은 전체 트래픽이 이동하는 주 경로(360)로부터 공간적으로 다양한 물리적 경로를 따라 경로배정된다. 주 및 2차 경로의 일부가 복제 보호 트래픽을 전송하는 전용이 될 수 있고, 나머지 대역폭은 (그리드 해싱(grid hashing)에 의해 도 3에 표시된) "최대 노력" 데이터를 전송할 수 있다. 예를 들면, 총 트래픽의 10%가 보호되고 주 및 2차 경로가 동일한 대역폭을 가질 때, 주 및 2차 경로의 각각은 트래픽 서비스 레벨에서 구별할 수 없어서 100%의 트래픽을 보호할 것을 요구하는 기법(예를 들면, SONET UPSR)인 경우의 50%에 비하여 95%의 총 대역폭 사용율로 복제 보호 트래픽의 10%와 비보호 트래픽의 90%를 전송할 수 있다.
도 3에 도시된 바와 같이, MSAN(170)과 라우터(150)는 보호 흐름의 "종단점"이다. MSAN(170)과 라우터(150)의 각각은 네트워크 프로세서(340, 310)를 포함하여 본 발명의 특징 및 기능을 구현한다. MSAN(170)은 액세스 네트워크(160) 및 가입자 허브(200)와 각각 인터페이스하는 다수의 물리층 인터페이스(PHY)(330, 350)를 포함한다. 라우터(150)는 액세스 네트워크(160) 및 핵심 네트워크(140)와 인터 페이스하기 위한 다수의 물리층 인터페이스(PHY)(320)을 포함한다.
진입 및 출구 경로에 적절하도록 네트워크 프로세서(310, 340)에 의해 구현된 처리는 도 4 내지 도 6을 함께 참조하여 더 후술된다. 통상적으로, 네트워크 프로세서(310, 340)는 검출, 관리, 복제 및 보호 기능을 구현한다. 네트워크 프로세서(310, 340)는 예를 들면, 펜실바니아 알링톤의 Agere Systems사의 상업용 Agere APP 계열 프로세서를 사용하여 구현될 수 있다.
예를 들어, 도 4와 함께 더 후술되는 바와 같이, 분류 기법은 가입자 에지 액세스 시스템(MASN 170)에서 예를 들면, IP 주소, UDP 포트 또는 RTP/TCP 세션 정보와 같은 계층 4 속성에 따라 보호 서비스 흐름을 선택하는 데 사용된다. 이 흐름은 두 다양한 논리 연결(360, 370)에 걸쳐 복제되고, 액세스 네트워크를 통한 전송을 위해 유사한 서비스와 선택적으로 집합된다. 트래픽 관리는 장애 민감 트래픽이 아닌 트래픽 보다 장애 민감 서비스를 우선할 것을 보장한다. 네트워크는 (네트워크 요건에 따라) 전체적으로 혹은 부분적으로 분리된 주 및 2차 경로를 설정할 수 있기에 적당한 기본 메카니즘을 가진다고 가정한다. 예를 들면 DSLAM에서, 두 개별 네트워크 경로상에서 (예를 들어, 로드-공유(load-sharing)를 통하여) 데이터를 전송하는 기존 능력은 복제 데이터를 전송하게 될 수 있고, 각 경로의 나머지는 비보호 트래픽을 전송하는 데 사용될 수 있다.
유사하게 도 5와 함께 더 후술되는 바와 같이, 분류는 서비스 에지 액세스 시스템에서 흐름 그룹내 보호 서비스를 검출하는 데 사용된다. 트래픽 관리 및 정책 엔진(policing engines)은 OA&M(Operation, Administration & Management), 패 킷 카운트, 시퀀스 번호 및 타임스탬프(timestamp)를 포함한 계층 3 및 계층 4 정보를 사용하여 "양질의(good)" 서비스를 선택하는 데 사용된다. 그러면 "양질의" 흐름은 진행되지만, 복제 패킷은 버려진다. 따라서 보호 흐름의 종단에서, 라우터(150)는 일반적으로 주 흐름(360)으로부터 트래픽을 수신하고 2차 흐름(370)으로부터의 트래픽을 버린다. 그러나 네트워크 고장이 발생되면, 라우터는 주 경로(360)에서 붕괴(disruption)를 검출하여 신속하게 2차 경로(370)로 전환(switch over)할 수 있다.
중간 네트워크 및 그의 구성 요소는 연결의 각 단부(170, 150)상에서 실행중인 보호 방안을 "인식(aware)"하지 못한다는 점에 주목한다. 따라서 네트워크 종단점을 UA로 업그레이드하기 위해 이들 요소에 필요한 변경은 없다. 네트워크는 개별 주 및 2차 경로(360, 370)를 수용하도록 제공될 수 있다(예를 들면, MPLS 레벨 교환 경로 또는 ATM 가상 회로). 따라서 주 및 2차 흐름을 위한 종단-종단(end-to-end) 경로를 제공하는 방식이 있는 한, 본 발명의 프로토콜 및 전송 불가지론 기법은 다수의 이종 네트워크에 걸쳐 적용될 수 있다.
네트워크 프로세서(340)는 프로토콜 캡슐화(protocol encapsulation) 및 전송(forwarding)과 같은 데이터 경로의 처리를 수행한다. (도시되지 않은) 제어 프로세서는 제어 경로의 대응하는 기능을 처리한다. 네트워크 프로세서(310, 340)는 제어 프로세서와 집적될 수 있다는 점에 주목한다. 도 4와 함께 후술되는 바와 같이, 네트워크 프로세서(340)는 MSAN(170)에서 몇몇 중요한 데이터 경로 기능을 제공한다. 먼저, 네트워크 프로세서(340)는 흐름을 보호해야 하는 지의 여부를 판정 하기 위하여 입력되는 가입자 데이터를 분류한다. 여기서, 분류는 패킷 흐름을 고유하게 식별하는 검사 비트, 전형적으로는 패킷 헤더부를 의미한다(예를 들면, IP 헤더 및 UDP 포트번호). 일단 보호 흐름이 확인되면, 네트워크 프로세서(340)는 그 흐름에 적절한 우선 순위를 배정해야 하고, 그 흐름을 주 및 제 2 경로(360, 370)로 예정되도록 버퍼링해야 한다. 우선 순위화는 보호 패킷을 비보호 패킷보다 우선이도록 할 수 있으므로 중요하다.
보호 흐름의 주 및 2차 경로(360, 370)는 흐름 보호가 종료하는 곳에서 대응하는 네트워크 요소(150)에 도달할 때 까지 투명하게(즉, 중간 설비를 알 필요없이) 두 물리적 개별 경로상에서 전송된다. 이 시점에서, 네트워크 프로세서(310)는 다시 보호 흐름을 식별하기 위하여 분류를 사용해야만 한다. 정상 동작 조건하에서, 네트워크 프로세서(310)는 주 흐름만을 유지하고 2차 흐름은 버릴것이다. 네트워크 프로세서(310)가 주 흐름(360)상에 네트워크 장애를 검출하면, 즉시 2차 흐름(370)으로 전환하고, 전형적으로 네트워크 관리 시스템으로 통지되고 장애가 수리된 후에 (본 발명의 범주밖의) 네트워크 관리 메카니즘이 시스템을 주 흐름으로 다시 전환할 때 까지, 이들 흐름상에 도착한 모든 데이터를 유지하고, 주 흐름에 도달할 수 있는 임의 복제 데이터를 버린다.
전환이 발생될 때, 다음 단계는 선택적으로, 2차 경로로 전환할 수 있도록 동일한 흐름상에 원단(far end) 수신기에 통지할 것이다. 이론상, 장애가 단지 한 방향인 경우에 그의 주 경로상에서 계속 동작할 수 있다. 그러나 대부분 네트워크 운영시스템은 네트워크를 통해 동일한 경로상에 나타날 능동 흐름"쌍"(active flow "pairs")을 기대한다. 장애의 원단을 통지하기에 적당한 다양한 선택사양이 있다. 예를 들면, 보호 스위치가 만들어지는 기준이 패킷의 시퀀스 번호부여에 의존하는 경우, 시퀀스 번호는 전환을 위해 부정확한 값으로 "잼(jammed)"될 수 있다. 이 대신에, 보호 스위치가 주 흐름상의 패킷 존재에 의존하는 경우, 근단(near-end) 송신기는 원단 수신기를 전환시키기 위하여 일시적으로 주 흐름상의 패킷을 "차단(block)"할 수 있다.
전술한 두 메카니즘은 (전형적으로 가장 신속한 선택사양인) 데이터 경로 통지를 이용한다. 이 대신에, 제어/관리면 메시지는 그의 수신 경로상에 전환을 수행해야 하는 원단을 통지하기 위하여 네트워크 관리 시스템으로 전달될 수 있다. 전환은 (사용된 알고리즘에 따라) 데이터 흐름의 붕괴를 일으키므로, 실제 고장이 없는 한 전환되지 않는 것이 바람직할 수 있다. 또한 네트워크 운영자는 그들의 특정 요건을 기반으로 결정해야만 한다. 네트워크 프로세서(310, 340)의 프로그램가능 특성은 이들 임의 메카니즘을 쉽게 지원할 수 있게 한다.
도 4는 진입 네트워크 프로세서(340)에 의해 수행되는 송신 처리(400)의 전형적인 구현을 도시하는 흐름도이다. 도 4에 도시된 바와 같이, 송신 처리(400)는 패킷이 도착하는 단계(410)동안 개시된다. 송신 처리(400)는 수신 패킷을 보호해야 하는 지의 여부를 판정하기 위한 단계(420)동안에 패킷 분류 서브루틴(600)(도 6)을 야기한다. 단계(430)동안에 패킷 분류 서브루틴(600)이 수신 패킷을 보호해야 한다고 판정했는 지를 결정하기 위한 테스트를 실시한다. 수신 패킷을 보호해야 하는 경우, 송신 처리(400)는 단계(440) 동안에 (예를 들면, 멀티캐스트 (multicast)를 다수의 위치로 유발하도록 플래그를 설정함으로써) 수신 패킷을 하나 이상의 보호 경로로 복제한다.
그러면, 단계(450)동안에 멀티캐스트 또는 유니캐스트 패킷을 큐잉(queuing)한다. 그 후, 송신 처리(400)는 단계(460) 동안에 스케줄링 서브루틴을 이행하여, 사전정의된 우선 순위 기준을 기반으로 다음 패킷을 선택한다. 그 후 단계(470)동안에 패킷을 액세스 네트워크(160)로 송신한다. 보호 패킷의 스케줄링 및 큐잉은 도 7과 함께 더 후술될 것이다.
도 5는 출구 네트워크 프로세서(310)에 의해 수행되는 수신 처리(500)의 전형적인 구현을 도시하는 흐름도이다. 도 5에 도시된 바와 같이, 수신 처리(500)는 패킷이 도착시에 단계(510)동안에 개시된다. 수신 처리(500)는 수신 패킷이 보호되는 지의 여부를 판정하기 위하여 단계(520)동안에 패킷 분류 서브루틴(600)(도 6)을 야기한다. 패킷 분류 서브루틴(600)이 수신 패킷이 보호된다고 판정했는 지를 결정하기 위해 단계(530)동안에 테스트를 시행한다. 수신 패킷이 보호되는 경우, 수신 처리(500)는 단계(540)동안에 장애가 발생했는 지를 검출하기 위하여 고장 검출 절차를 이행한다. 예를 들면, 수신 처리(500)는 고장을 검출하기 위하여 패킷 헤더에서 타임스탬프 및 시퀀스 번호를 평가할 수 있다. 또다른 변경에서, 수신 처리(500)는 주 및 2차 흐름의 각각에 대한 패킷 카운트를 유지관리할 수 있고, 카운트들간의 차이가 사전정의된 임계치를 초과하는 경우에 장애를 검출할 수 있다.
단계(550)동안에, 수신 패킷들중에 일 패킷 또는 경로를 선택한다. 예를 들 면, 단계(540)동안에 장애를 검출한 경우, 2차 경로로의 전환이 유발될 수 있다. 또다른 변경에서, 다양한 흐름들중에서 가장 먼저 도착한 패킷을 선택할 수 있다. 그 후 단계(560)동안에 선택한 패킷을 큐잉한다. 그 후, 수신 처리(500)는 단계(570)동안에 스케줄링 루틴을 이행하여, 사전정의된 우선 순위 기준을 기반으로 다음 패킷을 선택한다. 단계(580)에서, 패킷을 핵심 네트워크(140)로 전송한다.
도 6은 도 4 및 도 5의 각 송신 처리(400) 및 수신 처리(500)에 의해 야기되는 패킷 분류 서브루틴(600)의 전형적인 구현을 도시하는 흐름도이다. 도 6이 입력 패킷을 분류하고, 입력 패킷을 보호해야하는 지의 여부를 판정하기 위한 전형적인 기법을 도시하지만, 당업자라면 부가적인 분류 기법을 사용할 수 있다는 것을 명백히 알 수 있을 것이다. 도 6에 도시된 바와 같이, 패킷 분류 서브루틴(600)은 먼저 단계(610)동안에 물리적 포트 정보, 이더넷 MAC 주소, ATM 가상회로 식별자, (예를 들면, 캡슐화된 프로토콜을 위한) 프로토콜 식별자 또는 포트 번호와 같은, 패킷과 관련된 패킷 분류 정보를 얻는다. 일 변경에서, 소켓(포트 번호 및/소스/드레인 정보)을 사용하여 서비스 및 가입자를 기술하고, 서비스 흐름을 보호해야 하는 지를 판정한다.
그 후 패킷 분류 서브루틴(600)은 단계(620)동안에 예를 들면, 정확한 매칭, 최장 프리픽스 매칭 또는 범위 검사와 같은 하나 이상의 기법을 기반으로, 패킷을 분류한다. 일 도시된 구현에서, 분류는 입력/출력 물리적 인터페이스 번호, 이더넷 MAC 소스/목적지 주소, IP 소스/목적지 주소, 프로토콜 식별자 및 TCP/UDP 포트번호와 같은 패킷 헤더 정보를 기반으로 한다. 단계(630) 동안에 패킷을 보호해야 하는 지를 판정하고, 단계(640) 동안에 그 결과를 호출 처리부(400, 500)로 송신한다.
도 7은 본 발명의 일 실시예에 따른 보호 패킷의 스케줄링 및 큐잉을 도시한다. 도 7에 도시된 바와 같이, 스테이지(710)에서 패킷을 본 발명에 의해 보호해야 하는 지의 여부를 판정하기 위하여 패킷 분류 서브루틴(600)이 입력 패킷을 분류한다. 보호하지 않아도 되는 패킷인 경우, 이 패킷은 단순히, 실선에 의해 도시되는 유니캐스트를 위해 큐로 적용된다. 보호해야 하는 패킷인 경우, 복제 스테이지(720)는 점선에 의해 도시된 바와 같이 적어도 두 개별 흐름으로 보호 패킷을 멀티캐스트한다. 이런 방식으로, 보호 패킷은 멀티캐스트 큐쌍으로 복제된다.
도 8은 본 발명의 일 실시예에 따라 보호 패킷의 고장을 검출하는 것을 도시한다. 도 8에 도시된 바와 같이, 스테이지(810)에서 수신 처리(500)는 패킷을 본 발명에 의해 보호해야 하는 지의 여부를 판정하기 위하여, 패킷 분류 서브루틴(600)을 사용하여 입력 패킷을 분류한다. 보호하지 않아도 될 입력 패킷인 경우, 실선으로 도시된 바와 같이 큐로 직접 적용될 수 있다. 보호해야할 패킷의 경우, 스테이지(820)에서 복제 버전의 보호 패킷을 적절한 흐름과 관련된 큐로 적용한다. 선택 및 스케줄링 스테이지(830)는 송신할 일 버전의 각 패킷을 선택한다. 스테이지(840)에서 장애가 검출되면, 주 경로로부터 2차 경로로의 전환이 유발될 수 있다.
도 9는 본 발명의 일 특정 실시예에 따라서 보호 패킷에 대한 장애를 검출하는 것을 도시하는 흐름도이다. 도 9에 도시된 바와 같이, 하트비트 모니터(heart beat monitor)(카운터)(910, 920)는 두 패킷 흐름 Q, PQ의 각각에 대해 관리된다. 하트비트 모니터(910, 920)는 패킷이 수신될 때 마다 대응하는 카운터를 증분시킨다. 비교기(930)는 주기적으로 혹은 연속적으로 두 카운터들간의 차이값을 평가하고, 패킷이 각 경로상에 수신되는 한 능동 흐름 표시(예를 들면, 플래그)를 설정한다. 장애가 검출될시에, 능동 흐름 표시가 제거되고 검출된 장애 표시가 제공된다.
도 10은 본 발명의 특징을 사용하는 전형적인 장애 검출 처리(1000)를 도시하는 흐름도이다. 도 10에 도시된 바와 같이, 장애 검출 처리(1000)는 패킷이 도착시에 단계(1010) 동안에 개시된다. 단계(1020) 동안에 수신 흐름의 하트비트 카운터를 재설정한다. 단계(1030) 동안에는 관련된 대체(또는 복제) 흐름에 대한 하트비트 카운터를 확인하고, 단계(1040) 동안에 증분한다. 단계(1050) 동안에는 카운터들간의 차이를 평가한다.
단계(1060)동안에, 차이가 사전정의된 임계치를 초과하는 지를 판정하는 테스트가 수행된다. 단계(1060) 동안에 차이가 사전정의된 임계치를 초과한다고 판정한 경우, 단계(1070) 동안에 고장 표시를 송신한다. 그러나, 단계(1060) 동안에 차이가 사전정의된 임계치를 초과하지 않는 다고 판정한 경우, 프로그램 제어를 종료한다. 이런 방식으로, 흐름 Q에 대한 카운터는 단지, 흐름 Q와 관련된 하트비트 모니터에 의해 재설정될 수 있고, 단지 대체 흐름 PQ에 의해 증분될 수 있다. 장애 검출 처리(1000)는 패킷이 수신되면 경로는 여전히 유효하다고 가정한다.
네트워크 장애복구력 및 보호
장애복구력(resilience)은 고장에도 불구하고 서비스를 계속 실행할 수 있도록 하는 네트워크의 능력을 말한다. 장애복구력을 가진 네트워크는 자동으로 스스로 수리함으로써 고장으로부터 복구된다. 특히, 고장 복구는 네트워크의 고장난 부분으로부터의 트래픽을 네트워크의 또다른 부분으로 재경로배정(rerouting)함으로써 성취된다. 재경로배정은 몇몇 제한조건을 가진다. 단말 사용자는 링크 장애로 인한 서비스 시간의 중단(interruption)을 알아채지 못하거나 혹은 최소이도록 충분히 신속한 재경로배정을 원한다. 재경로배정된 트래픽이 취하는 새로운 경로는 장애 검출시 혹은 그 이전에 계산될 수 있다. 앞의 경우에, 재경로배정을 사전 계획한다고 말한다. 재경로배정을 사전계획하지 않은 회복 메카니즘과 비교하여, 사전계획된 재경로배정 메카니즘은 서비스 시간의 중단을 감소시키지만, 네트워크에서 리던던지(redundancy)를 제공하기 위한 부가적인 하드웨어를 요구하며, 백업 경로를 계산하기 위한 계산 사이클과 같은 유용한 자원을 소비할 수 있다. 서전계획에 의해 발생되는 복구 속도와 비용간의 균형이 요구된다.
도 11은 링크(C-D)가 지점(1130)에서 고장날 때, 소스와 목적지 노드(A 및 B)간에 트래픽을 백업 경로(1110)상에 재경로배정하는 것을 도시한다. 재경로배정은 회선 교환 및 패킷 교환망에 사용될 수 있다. 네트워크에서 링크가 고장날 때, 고장난 링크를 사용하던 트래픽은 그의 목적지에 도달하기 위해 그의 경로를 변경해야만 한다. 트래픽은 주 경로(1120)로부터 백업 경로(1110)로 재경로배정된다. 주 경로(1120) 및 백업 경로(1110)는 전체적으로 해체되거나 혹은 부분적으로 합병 될 수 있다.
도 11은 소스 노드(A)가 트래픽을 목적지 노드(F)로 송신하고, 주 경로상의 링크(C-D)가 고장난 예를 제공한다. 완전한 재경로배정 기법은 다음의 7 단계로 구성된다:
1) 고장 검출,
2) 고장 통지,
3) (고장 이전 혹은 이후) 백업 경로 계산,
4) 주 경로로부터 2차 경로로 "라이브(live)" 트래픽의 전환,
5) 링크 수리 검출,
6) 복구 통지,
7) "라이브" 트래픽을 주 경로로 전환
단계 1 내지 4는 링크가 고장난 후에 주 경로(1120)로부터 백업 경로(1110)로 트래픽을 전환시키기 위한 재경로배정과 관련있다.
먼저, 네트워크는 링크 고장을 검출할 수 있어야 한다. 링크 고장 검출은 고장난 링크의 단말노드(C 및 D)에 의해, 전용 하드웨어 또는 소프트웨어에 의해 수행될 수 있다. 두번째, 링크 고장을 검출한 노드는 네트워크에서 고장난 소정 노드를 통지해야만 한다. 노드가 실제로 고장났음을 통지하는 것은 재경로배정 기법에 의존한다. 세번째, 백업 경로를 계산해야 한다. 그러나 사전계획된 경로배재정 방안에서, 이 단계는 링크 장애 검출 이전에 수행되어야 한다. 네번재, 주 경로상에 트래픽을 송신하는 대신에, 경로 스위칭 노드(Path switching Node)로 불 리는 노드가 백업 경로상에 트래픽을 송신해야 한다. 재경로배정 처리에서의 이 단계가 전환(switchover)으로 언급된다. 전환은 링크 고장 이후에 네트워크의 수리를 완료한다.
고장난 링크가 물리적으로 수리될 때, 트래픽은 주 경로로 재배정되거나 혹은 계속 백업 경로상에서 송신될 수 있다. 전자의 경우에서 재경로배정을 완료하는 데 부가적인 세 단계를 필요로 하는 것과 달리, 후자의 경우에는 트래픽을 주 경로로 재배정하는 데 부가적인 메카니즘을 필요로 하지 않는다. 먼저, 메카니즘은 링크 수리를 탐지해야 한다. 두번째, 네트워크의 노드는 복구를 통지해야하고, 세번째, 경로 스위칭 노드는 소위 스위치백 단계(switchback step)에서 트래픽을 주 경로상에 송신해야 한다.
유니캐스트 통신을 고려한다. 송신자와 수신자간의 경로 링크가 고장나면, 사용자는 경로가 수리될 때까지 서비스 중단을 경험한다. 서비스 중단의 길이는 고장전에 고장난 링크를 통해 가는 마지막 비트가 수신되는 순간과, 고장후에 백업 경로를 사용하는 첫 데이터 비트가 수신기에 도달할 때의 순간 사이의 시간이다. TDetect는 고장을 검출하는 시간, TNotify는 통지시간, Tswitchover는 전환시간, 그리고 dij는 두 노드 i와 j 사이에 데이터 비트를 송신하는 데 필요한 큐잉, 전송 및 전달 지연의 합으로 표기한다고 하자. 그러면, 도 11에 주어진 예에서, 통신 Tservice를 위한 총 서비스 중단 시간은 다음과 같이 주어진다:
Figure 112005031783719-PAT00001
양 (dBE-dEF)-(dDE-dEF)는 재경로배정 기법이 아니라 고장의 위치에 의존한다. 따라서 다음의 수학식에 의한 재경로배정 메카니즘만을 따른 총 수리시간 TRepair를 정의한다:
Figure 112005031783719-PAT00002
총 수리시간은 링크가 고장난 후에 통신을 복구하기 위하여 재경로배정 메카니즘에 의해 실제 소비되는 서비스 중단 시간의 일부이다.
MAC 및 물리층에서 보호: 자동복구 링(Self-Healing Rings)
고리형 네트워크는 모든 노드가 동일한 물리적 링크집합에 부착되는 네트워크 토폴로지이다. 각 링크는 루프를 형성한다. 교차 회전링 토폴로지(counter rotating ring topologies)에서, 모든 링크는 단방향이며, 트래픽은 링크의 한 절반상에서 한 방향으로 흘러가고, 다른 절반상에서 반대 방향으로 흘러간다. 자동복구 링은 다음과 같이 재경로배정을 수행하는 특정한 교차 회전링 네트워크이다. 정상 동작에서, 트래픽은 한 방향만으로 소스에서 목적지로 송신된다. 링크가 고장나면, 고장난 링크를 피하기 위하여 목적지에 도달하는 데 다른 방향을 사용한다. 자동복구 링은 고가의 특정 하드웨어를 요구하며, 풀 리던던시를 제공하기 위 하여 사용가능한 대역폭의 절반까지 소비한다. 다른 한편으로, 하위층 보호 메카니즘은 자동복구 링이 50 밀리초보다 적은 시간에 트래픽을 재경로배정할 수 있으므로 사용가능한 최고속 재경로배정 메카니즘이다. 이러한 자동복구 링의 예는 교차 회전링 토폴로지에 모두 의존하는 다음의 4 MAC 및 물리적 경로배정 메카니즘을 포함한다:
- SONET UPSR 자동 보호 스위칭
- SONET BLSR 자동 보호 스위칭
- 광섬유 분산 데이터 인터페이스(FDDI) 보호 스위칭
- RPR 지능 보호 스위칭
네트워크층 보호
인터넷과 같은 패킷 교환 네트워크는 고유하게 링크 장애에 복구력이 있다. 경로배정 프로토콜은 링크 고장과 같은 토폴로지 변동을 고려하고, 최단 경로 알고리즘을 사용하여 이에 따른 경로배정표(routing tables)를 재계산한다. 네트워크의 모든 경로배정표가 재계산되고 통합될 때, 고장난 링크를 사용했던 모든 경로는 다른 링크로 재경로배정된다. 그러나, 통합(convergence)은 상당히 느리며, 보통 몇십초가 걸린다. 이것은 적어도 일부분은, 하위층 재경로배정 메카니즘에 비해 수학식 2의 TDetect 항을 크게 만드는 조잡한 세분성(1초)을 가지고 링크 고장을 검출하기 위하여 경로배정 프로토콜에 의해 사용되는 타이머로 인한 것이다. 두번째, 네트워크의 모든 라우터에게 고장이 통지되어야 한다는 것이다. 통지 메시지의 전달은 TDetect와 비하여 TNotify를 무시할만큼 작게 만드는 약 수십밀리초 크기로 행해진다. 진실로, 라우터는 단지 부가적인 처리없이 메시지를 전달할 필요가 있다. 마지막으로, 경로배정표는 경로가 전환되기 전에 재계산되어야 한다. 경로배정표를 재계산하는 것은 큰 네트워크에서 TSwitchover를 수백 밀리초 걸리게 만들 수 있는 CPU 인텐시브 최단 경로 알고리즘을 사용한다는 것을 의미한다.
최근에, 수학식 2의 TDetect와 TSwitchover 항을 축소시킴으로써 1초 보다 적은 시간에 IP 재경로배정을 수행하는 것이 가능하다고 주장되어 왔다. 이 방법은 고장을 검출하는 데 서브세컨드 타이머(subsecond timers)를 사용하고 TDetect 항의 값을 감소시킬것을 제안한다. 또한 경로배정 컨버전스(routing convergence)는 보다 신속하고 보다 현대적인 알고리즘이 사용되었을 경우에 밀리초 스케일로 경로배정표를 재계산할 수 있는 현 경로배정 프로토콜에 사용되는 진부한 최단 경로 알고리즘으로 인하여 저속이 된다는 것을 시사했다. 변형된 경로배정 프로토콜을 사용한 네트워크에서 예상되는 재경로배정 시간은 선호할만할 조건하에서 아마 1초 보다 적은 시간이 걸릴 수 있지만, 밀리초 복구 시간에 도달하도록 요구되는 지침을 구현할려면 현 경로배정 알고리즘 및 라우터를 크게 변형해야 한다.
제조 상세사항 조항 및 시스템
본 기술분야에 알려진 바와 같이, 본 명세서에서 기술한 방법 및 장치는 그 자체가, 컴퓨터 판독가능 코드 수단이 구현된 컴퓨터 판독가능 매체를 포함한 제조 품목으로서 공급될 수 있다. 컴퓨터 판독가능 프로그램 코드수단은 본 방법을 수행하거나 혹은 본 명세서에 기술된 장치를 생성하기 위하여 모든 단계 또는 소정 단계를 수행하도록, 컴퓨터 시스템과 함께 실시될 수 있다. 컴퓨터 판독가능 매체는 기록가능 매체(예를 들면, 플로피 디스크, 하드 드라이브, 컴팩 디스크 또는 메모리 카드)이거나, 혹은 전송 매체(예를 들면, 광섬유, 월드 와이드 웹(world wide web), 캐이블 또는 시분할 다중액세스, 코드분할 다중액세스 또는 다른 무선주파수 채널을 사용한 무선 채널)일 수 있다. 컴퓨터 시스템과 사용하기에 적당한 정보를저장할 수 있는 알려지거나 혹은 개발된 임의 매체가 사용될 수 있다. 컴퓨터-판독가능 코드수단은 자기매체상의 자기 변동 또는 컴팩 디스프의 표면상의 높이 변동과 같이, 컴퓨터가 인스트럭션 및 데이터를 판독할 수 있도록 해주는 임의 메카니즘이다.
본 명세서에 기술된 컴퓨터 시스템 및 서버의 각각은 본 명세서에 개시된 방법, 단계 및 기능을 구현하기 위하여 관련 프로세서를 구성할 메모리를 포함한다. 메모리는 분산되거나 혹은 로컬일 수 있고, 프로세서는 분산되거나 혹은 단일일 수 있다. 메모리는 전기, 자기 또는 광학 메모리이거나, 혹은 이들의 임의 조합이거나, 다른 유형의 저장장치로서 구현될 수 있다. 또한 용어 "메모리"는 관련 프로세서에 의해 액세스되는 주소지정가능한 공간 주소로부터 판독 또는 기록될 수 있는 임의 정보를 포함하기에 충분하도록 광범위하게 구성되어야 한다. 이 정의와 함께, 관련 프로세서는 네트워크로부터 정보를 검색할 수 있으므로, 네트워크상의 정보는 여전히 메모리내에 있다.
본 명세서에 도시되고 기술된 실시예 및 변경은 단지 본 발명의 원리를 설명하기 위한 것이며, 당업자라면 본 발명의 사상 및 범주를 벗어나지 않고서도 다양한 변형을 구현할 수 있을 것이다.
집합(aggregated) 또는 개별 서비스 흐름 레벨상에서 데이터를 선택적으로 보호 및 복구할 수 있고, 장애 민감 서비스의 요건을 만족시키기 위하여 피해 서비스를 충분히 신속하게 복구할 수 있는 데이터를 보호 및 복구할 수 있다.

Claims (10)

  1. 패킷 네트워크(packet network)에서 데이터를 보호하기 위한 방법에 있어서,
    패킷의 헤더부에서의 정보를 기반으로 수신 패킷을 분류하며, 상기 수신 패킷을 보호해야 하는 지의 여부를 판정하는 데 하나 이상의 규칙을 사용하는 단계와,
    상기 패킷 분류가 상기 수신 패킷을 보호해야 한다고 판정한 경우에, 상기 수신 패킷을 적어도 두 경로상으로 전송하는 단계
    를 포함하는 데이터 보호 방법.
  2. 제 1 항에 있어서,
    상기 하나 이상의 규칙은 상기 수신 패킷와 관련된 서비스를 보호해야 하는지의 여부를 판정하는 데이터 보호 방법.
  3. 제 1 항에 있어서,
    상기 하나 이상의 규칙은 상기 수신 패킷과 관련된 가입자(subscriber)를 보호해야 하는 지의 여부를 판정하는 데이터 보호 방법.
  4. 패킷 네트워크에서 데이터를 보호하기 위한 방법에 있어서,
    수신 패킷의 헤더부에서의 정보를 기반으로 상기 수신 패킷을 분류하고, 상기 수신 패킷이 적어도 하나의 추가 버전을 가진 보호 패킷(protected packet)인 지의 여부를 판정하기 위하여 하나 이상의 규칙을 사용하는 단계와,
    상기 패킷 분류가 상기 수신 패킷을 보호 패킷으로 판정한 경우에, 단지 일 버전(one version)의 상기 수신 패킷을 전송하는 단계
    를 포함하는 데이터 보호 방법.
  5. 제 4 항에 있어서,
    상기 일 버전의 수신 패킷은 주 경로상으로 수신되고, 상기 적어도 하나의 추가 버전은 제 2 경로상으로 수신되고, 상기 방법은 상기 주 경로상에서 장애를 검출한 경우에 상기 제 2 경로로 전환(switching over)하는 단계를 더 포함하는 데이터 보호 방법.
  6. 제 4 항에 있어서,
    상기 일 버전의 수신 패킷과 관련된 경로상에서 장애를 검출하는 단계를 더 포함하는 데이터 보호 방법.
  7. 수신 패킷을 보호해야 하는 지의 여부를 판정하기 위하여 하나 이상의 규칙을 기반으로 하여, 상기 패킷의 헤더부에서의 정보를 근거로 상기 수신 패킷을 분류하고,
    상기 패킷 분류가 상기 수신 패킷을 보호해야 한다고 판정한 경우에, 상기 수신 패킷을 적어도 두 경로상으로 전송하도록 동작하는
    네트워크 프로세서.
  8. 수신 패킷이 적어도 하나의 추가 버전을 가진 보호 패킷인지의 여부를 판정하기 위하여 하나 이상의 규칙을 기반으로 하여, 상기 수신 패킷의 헤더부에서의 정보를 근거로 상기 수신 패킷을 분류하고,
    상기 패킷 분류가 상기 수신 패킷을 보호 패킷으로 판정한 경우에, 단지 일 버전의 상기 수신 패킷을 전송하도록 동작하는
    네트워크 프로세서.
  9. 한 명 이상의 가입자로부터 패킷을 수신하기 위한 하나 이상의 포트(ports)와,
    네트워크 프로세서
    를 구비하고,
    상기 네트워크 프로세서는
    수신 패킷을 보호해야 하는 지의 여부를 판정하기 위하여 하나 이상의 규칙을 기반으로 하여, 상기 패킷의 헤더부에서의 정보를 근거로 상기 수신 패킷을 분류하고,
    상기 패킷 분류가 상기 수신 패킷을 보호해야 한다고 판정한 경우에, 상기 수신 패킷을 적어도 두 경로상으로 전송하도록 동작하는
    멀티서비스 액세스 노드(multi-service access node).
  10. 패킷 네트워크에서의 라우터(router)에 있어서,
    패킷을 수신하기 위한 하나 이상의 포트와,
    네트워크 프로세서
    를 구비하고,
    상기 네트워크 프로세서는
    수신 패킷이 적어도 일 추가 버전을 가진 보호 패킷인지의 여부를 판정하기 위하여 하나 이상의 규칙을 기반으로 하여, 상기 수신 패킷의 헤더부에서의 정보를 근거로 상기 수신 패킷을 분류하고,
    상기 패킷 분류가 상기 수신 패킷을 보호 패킷으로 판정한 경우에, 단지 일 버전의 상기 수신 패킷을 전송하도록 동작하는
    라우터.
KR1020050051741A 2004-06-18 2005-06-16 데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스노드 및 라우터 KR101120322B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/871,440 US20060013210A1 (en) 2004-06-18 2004-06-18 Method and apparatus for per-service fault protection and restoration in a packet network
US10/871,440 2004-06-18

Publications (2)

Publication Number Publication Date
KR20060046467A true KR20060046467A (ko) 2006-05-17
KR101120322B1 KR101120322B1 (ko) 2012-03-06

Family

ID=34940430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050051741A KR101120322B1 (ko) 2004-06-18 2005-06-16 데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스노드 및 라우터

Country Status (5)

Country Link
US (1) US20060013210A1 (ko)
EP (2) EP1608116A1 (ko)
JP (1) JP2006005941A (ko)
KR (1) KR101120322B1 (ko)
CN (1) CN1710887B (ko)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469282B2 (en) * 2003-01-21 2008-12-23 At&T Intellectual Property I, L.P. Method and system for provisioning and maintaining a circuit in a data network
US8203933B2 (en) 2003-12-23 2012-06-19 At&T Intellectual Property I, L.P. Method and system for automatically identifying a logical circuit failure in a data network
US7646707B2 (en) 2003-12-23 2010-01-12 At&T Intellectual Property I, L.P. Method and system for automatically renaming logical circuit identifiers for rerouted logical circuits in a data network
US7639623B2 (en) * 2003-12-23 2009-12-29 At&T Intellectual Property I, L.P. Method and system for real time simultaneous monitoring of logical circuits in a data network
US7639606B2 (en) 2003-12-23 2009-12-29 At&T Intellectual Property I, L.P. Method and system for automatically rerouting logical circuit data in a virtual private network
US7609623B2 (en) * 2003-12-23 2009-10-27 At&T Intellectual Property I, L.P. Method and system for automatically rerouting data from an overbalanced logical circuit in a data network
US8223632B2 (en) 2003-12-23 2012-07-17 At&T Intellectual Property I, L.P. Method and system for prioritized rerouting of logical circuit data in a data network
US8199638B2 (en) 2003-12-23 2012-06-12 At&T Intellectual Property I, L.P. Method and system for automatically rerouting logical circuit data in a data network
US7768904B2 (en) * 2004-04-22 2010-08-03 At&T Intellectual Property I, L.P. Method and system for fail-safe renaming of logical circuit identifiers for rerouted logical circuits in a data network
US7460468B2 (en) 2004-04-22 2008-12-02 At&T Intellectual Property I, L.P. Method and system for automatically tracking the rerouting of logical circuit data in a data network
US8339988B2 (en) * 2004-04-22 2012-12-25 At&T Intellectual Property I, L.P. Method and system for provisioning logical circuits for intermittent use in a data network
US7466646B2 (en) 2004-04-22 2008-12-16 At&T Intellectual Property I, L.P. Method and system for automatically rerouting logical circuit data from a logical circuit failure to dedicated backup circuit in a data network
JP4397292B2 (ja) * 2004-07-09 2010-01-13 富士通株式会社 制御パケットループ防止方法及びそれを用いたブリッジ装置
US20060039697A1 (en) * 2004-08-19 2006-02-23 International Business Machines Corporation Autonomous optical path management device
ATE388556T1 (de) * 2004-11-30 2008-03-15 Alcatel Lucent Ethernet digital subscriber line access multiplexer dslam mit durchflusskontrolle
US7903546B2 (en) * 2005-01-14 2011-03-08 Cisco Technology, Inc. Detecting unavailable network connections
DE102005003060A1 (de) * 2005-01-22 2006-08-03 Hirschmann Electronics Gmbh Verfahren zur Handhabung von Unterbrechungen in einem Ethernet-Ring
US7674364B2 (en) 2005-03-11 2010-03-09 Chevron U.S.A. Inc. Hydraulic fluid compositions and preparation thereof
US20070293408A1 (en) 2005-03-11 2007-12-20 Chevron Corporation Hydraulic Fluid Compositions and Preparation Thereof
US20060215567A1 (en) * 2005-03-25 2006-09-28 Arun Raghunath Method and apparatus for monitoring path statistics
US7876758B2 (en) * 2005-04-08 2011-01-25 Agere Systems Inc. Method and apparatus for improved voice over Internet protocol (VoIP) transmission in a digital network
WO2006121378A1 (en) * 2005-05-11 2006-11-16 Telefonaktiebolaget L M Ericsson (Publ) Synchronization of vodsl for dslam connected only to ethernet
US8171238B1 (en) 2007-07-05 2012-05-01 Silver Peak Systems, Inc. Identification of data stored in memory
US8392684B2 (en) 2005-08-12 2013-03-05 Silver Peak Systems, Inc. Data encryption in a network memory architecture for providing data based on local accessibility
US8095774B1 (en) 2007-07-05 2012-01-10 Silver Peak Systems, Inc. Pre-fetching data into a memory
US8370583B2 (en) * 2005-08-12 2013-02-05 Silver Peak Systems, Inc. Network memory architecture for providing data based on local accessibility
US8811431B2 (en) 2008-11-20 2014-08-19 Silver Peak Systems, Inc. Systems and methods for compressing packet data
US8929402B1 (en) 2005-09-29 2015-01-06 Silver Peak Systems, Inc. Systems and methods for compressing packet data by predicting subsequent data
US8489562B1 (en) 2007-11-30 2013-07-16 Silver Peak Systems, Inc. Deferred data storage
US7706390B2 (en) * 2005-11-07 2010-04-27 Meshnetworks, Inc. System and method for routing packets in a wireless multihopping communication network
US7693047B2 (en) * 2005-11-28 2010-04-06 Cisco Technology, Inc. System and method for PE-node protection
US8699354B2 (en) * 2005-12-21 2014-04-15 Rockstar Consortium Us Lp Method and apparatus for detecting a fault on an optical fiber
CN1992707B (zh) * 2005-12-29 2012-05-23 上海贝尔阿尔卡特股份有限公司 一种组播业务快速恢复方法及网络设备
US7602700B1 (en) * 2006-01-23 2009-10-13 Juniper Networks, Inc. Fast re-route in IP/MPLS networks and other networks using SONET signaling
JP4583312B2 (ja) * 2006-01-30 2010-11-17 富士通株式会社 通信状況判定方法、通信状況判定システム及び判定装置
US8271643B2 (en) * 2006-02-01 2012-09-18 Ca, Inc. Method for building enterprise scalability models from production data
US7676569B2 (en) * 2006-02-01 2010-03-09 Hyperformix, Inc. Method for building enterprise scalability models from production data
US7965771B2 (en) 2006-02-27 2011-06-21 Cisco Technology, Inc. Method and apparatus for immediate display of multicast IPTV over a bandwidth constrained network
US8218654B2 (en) 2006-03-08 2012-07-10 Cisco Technology, Inc. Method for reducing channel change startup delays for multicast digital video streams
US8295162B2 (en) * 2006-05-16 2012-10-23 At&T Intellectual Property I, L.P. System and method to achieve sub-second routing performance
US8885632B2 (en) 2006-08-02 2014-11-11 Silver Peak Systems, Inc. Communications scheduler
US8755381B2 (en) 2006-08-02 2014-06-17 Silver Peak Systems, Inc. Data matching using flow based packet data storage
US8031701B2 (en) 2006-09-11 2011-10-04 Cisco Technology, Inc. Retransmission-based stream repair and stream join
US7937531B2 (en) 2007-02-01 2011-05-03 Cisco Technology, Inc. Regularly occurring write back scheme for cache soft error reduction
US8769591B2 (en) 2007-02-12 2014-07-01 Cisco Technology, Inc. Fast channel change on a bandwidth constrained network
US7940644B2 (en) 2007-03-14 2011-05-10 Cisco Technology, Inc. Unified transmission scheme for media stream redundancy
JP4808187B2 (ja) * 2007-06-28 2011-11-02 富士通株式会社 経路切替方法及び装置
US20090062166A1 (en) 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Slideway Lubricant Compositions, Methods of Making and Using Thereof
CN101170494B (zh) * 2007-11-21 2010-06-02 中兴通讯股份有限公司 自动交换光网络中的软重路由方法
KR100920518B1 (ko) * 2007-11-27 2009-10-09 한국전자통신연구원 패킷 분류 장치 및 방법
US8307115B1 (en) 2007-11-30 2012-11-06 Silver Peak Systems, Inc. Network memory mirroring
US8787153B2 (en) * 2008-02-10 2014-07-22 Cisco Technology, Inc. Forward error correction based data recovery with path diversity
US8442052B1 (en) 2008-02-20 2013-05-14 Silver Peak Systems, Inc. Forward packet recovery
CN101262298B (zh) * 2008-04-25 2012-05-23 东北大学 一种wdm网中的多种服务等级的多故障保护方法
WO2009151863A2 (en) * 2008-06-10 2009-12-17 Myers Wolin, Llc A network gateway for time-critical and mission-critical networks
US10805840B2 (en) 2008-07-03 2020-10-13 Silver Peak Systems, Inc. Data transmission via a virtual wide area network overlay
US10164861B2 (en) 2015-12-28 2018-12-25 Silver Peak Systems, Inc. Dynamic monitoring and visualization for network health characteristics
US9717021B2 (en) 2008-07-03 2017-07-25 Silver Peak Systems, Inc. Virtual network overlay
US8743683B1 (en) 2008-07-03 2014-06-03 Silver Peak Systems, Inc. Quality of service using multiple flows
CN101656651A (zh) * 2008-08-19 2010-02-24 华为技术有限公司 流量工程隧道的关联保护方法及装置
EP2319192B1 (en) * 2008-08-29 2015-10-07 Telefonaktiebolaget LM Ericsson (publ) Efficient working standby radio protection scheme
CN101741703B (zh) * 2008-11-25 2012-01-25 华为技术有限公司 多业务传送网传输通道实现方法及系统
US8116336B2 (en) * 2009-01-27 2012-02-14 Sony Corporation Distributed IP address assignment protocol for a multi-hop wireless home mesh network with collision detection
US7961674B2 (en) * 2009-01-27 2011-06-14 Sony Corporation Multi-tier wireless home mesh network with a secure network discovery protocol
KR101543803B1 (ko) * 2009-04-14 2015-08-12 엘지전자 주식회사 멀티캐스트 프레임 처리 방법 및 장치
US9125175B2 (en) * 2009-04-29 2015-09-01 Alcatel Lucent Method and apparatus for transmitting MBMS services
US8455406B2 (en) 2010-10-28 2013-06-04 Chevron U.S.A. Inc. Compressor oils having improved oxidation resistance
KR20140035357A (ko) 2011-04-05 2014-03-21 셰브런 오로나이트 컴퍼니 엘엘씨 저점도 선박 실린더 윤활유 조성물
JP5619681B2 (ja) * 2011-06-10 2014-11-05 日本電信電話株式会社 パケット転送システム、パケット送信装置およびパケット受信装置
EP2568673A1 (en) * 2011-08-30 2013-03-13 ABB Technology AG Parallel Redundancy Protocol, PRP, packet duplication over VLANs based on Spanning Tree instances.
EP2571190B1 (en) * 2011-09-19 2016-07-20 Alcatel Lucent System and method for selective protection switching
US9130991B2 (en) 2011-10-14 2015-09-08 Silver Peak Systems, Inc. Processing data packets in performance enhancing proxy (PEP) environment
US9380005B2 (en) * 2011-11-03 2016-06-28 Cisco Technology, Inc. Reliable transportation of a stream of packets using packet replication
US9626224B2 (en) 2011-11-03 2017-04-18 Silver Peak Systems, Inc. Optimizing available computing resources within a virtual environment
US9206374B2 (en) 2011-12-16 2015-12-08 Chevron Oronite Sas Trunk piston engine lubricating oil compositions
US8819513B2 (en) * 2012-01-13 2014-08-26 Microsoft Corporation Lost real-time media packet recovery
CN103428016B (zh) * 2012-05-17 2017-10-24 上海天旦网络科技发展有限公司 基于网络数据的主机业务中断保障方法及系统
FR2992755A1 (fr) * 2012-06-29 2014-01-03 France Telecom Procede de securisation de flux de classes de service differentes, dispositif et programme
US9054974B2 (en) 2012-07-30 2015-06-09 Cisco Technology, Inc. Reliably transporting packet streams using packet replication
US8891357B2 (en) 2012-08-31 2014-11-18 Cisco Technology, Inc. Switching to a protection path without causing packet reordering
JP6102383B2 (ja) * 2013-03-18 2017-03-29 富士通株式会社 情報処理システム、情報処理装置、データ転送装置及び情報処理システムの制御方法
KR102111330B1 (ko) * 2013-06-28 2020-05-15 주식회사 케이티 통신 네트워크에서 경로 장애 처리 방법
JP6221449B2 (ja) * 2013-07-18 2017-11-01 富士通株式会社 ネットワーク設計装置、ネットワーク設計方法、及びネットワーク設計プログラム
SG11201603378WA (en) 2013-11-06 2016-05-30 Chevron Oronite Technology Bv Marine diesel cylinder lubricant oil compositions
CN105814180B (zh) 2013-11-06 2019-12-10 雪佛龙奥伦耐技术有限责任公司 船用柴油机汽缸润滑剂油组合物
JP6196150B2 (ja) * 2013-12-26 2017-09-13 株式会社東芝 無線通信装置、無線通信システム、及び無線通信方法
DE102014212037A1 (de) * 2014-06-24 2015-12-24 Qsc Ag Netzwerksystem
US9948496B1 (en) 2014-07-30 2018-04-17 Silver Peak Systems, Inc. Determining a transit appliance for data traffic to a software service
US9875344B1 (en) 2014-09-05 2018-01-23 Silver Peak Systems, Inc. Dynamic monitoring and authorization of an optimization device
EP3278480A4 (en) * 2015-04-02 2018-10-03 Sedonasys Systems Ltd. Systems and methods for managing multi-layer communication networks
SG10202101161UA (en) 2015-07-22 2021-03-30 Chevron Oronite Tech Bv Marine diesel cylinder lubricant oil compositions
CN107171820B (zh) * 2016-03-08 2019-12-31 北京京东尚科信息技术有限公司 信息传输、发送、获取方法和装置
US10673581B2 (en) * 2016-04-11 2020-06-02 Enyx Sa Low latency packet recovery
US10432484B2 (en) 2016-06-13 2019-10-01 Silver Peak Systems, Inc. Aggregating select network traffic statistics
US9967056B1 (en) 2016-08-19 2018-05-08 Silver Peak Systems, Inc. Forward packet recovery with constrained overhead
US10771394B2 (en) 2017-02-06 2020-09-08 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows on a first packet from DNS data
US10257082B2 (en) 2017-02-06 2019-04-09 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows
US11044202B2 (en) 2017-02-06 2021-06-22 Silver Peak Systems, Inc. Multi-level learning for predicting and classifying traffic flows from first packet data
US10892978B2 (en) 2017-02-06 2021-01-12 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows from first packet data
US10757005B2 (en) 2017-04-09 2020-08-25 Barefoot Networks, Inc. Execution of packet-specified actions at forwarding element
EP4329272A2 (en) * 2017-04-24 2024-02-28 Motorola Mobility LLC Duplicating pdcp pdus for a radio bearer
US11212210B2 (en) 2017-09-21 2021-12-28 Silver Peak Systems, Inc. Selective route exporting using source type
US10637721B2 (en) 2018-03-12 2020-04-28 Silver Peak Systems, Inc. Detecting path break conditions while minimizing network overhead
US20200136894A1 (en) * 2018-10-24 2020-04-30 General Electric Company System and method for establishing reliable time-sensitive networks
EP3909161A1 (en) * 2019-01-07 2021-11-17 Abb Schweiz Ag Failure handling of a tsn communication link
US11743174B2 (en) * 2019-01-29 2023-08-29 Cisco Technology, Inc. Supporting asynchronous packet operations in a deterministic network
US10999207B2 (en) * 2019-05-15 2021-05-04 Rad Data Communications Ltd. Packet loss reduction using auxiliary path
JP7415662B2 (ja) 2020-02-28 2024-01-17 沖電気工業株式会社 音声交換制御装置及び音声交換システム
US11349704B2 (en) * 2020-06-17 2022-05-31 Credo Technology Group Limited Physical layer interface with redundant data paths
CN111935266A (zh) * 2020-08-03 2020-11-13 成都深思科技有限公司 数据分流系统
CN113923722B (zh) * 2021-10-11 2023-06-13 中国联合网络通信集团有限公司 数据传输方法、装置及存储介质

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2011934A1 (en) * 1989-07-19 1991-01-19 Theodore Heske, Iii Method and apparatus for source routing bridging
JPH04278751A (ja) * 1991-03-06 1992-10-05 Fujitsu Ltd 通信制御方式
EP0779722A1 (en) * 1995-12-11 1997-06-18 Hewlett-Packard Company Failure detection method in a communication channel with several routes
US6009075A (en) * 1996-03-29 1999-12-28 Dsc Communications Corporation Transport interface for performing protection switching of telecommunications traffic
US5883891A (en) * 1996-04-30 1999-03-16 Williams; Wyatt Method and apparatus for increased quality of voice transmission over the internet
US5898687A (en) * 1996-07-24 1999-04-27 Cisco Systems, Inc. Arbitration mechanism for a multicast logic engine of a switching fabric circuit
JP3436650B2 (ja) * 1997-02-24 2003-08-11 三菱電機株式会社 ネットワーク制御装置
DE59814195D1 (de) * 1997-03-27 2008-04-30 Nokia Siemens Networks Gmbh Redundantes Übertragungssystem mit Abschaltung einer Übertragungsstrecke fehlerhaften Übertragungsverhaltens
EP0868103A3 (de) * 1997-03-27 2002-10-16 Siemens Aktiengesellschaft Annahme von Verbindungen niedriger Priorität, insbesondere non-real-time (NRT)-Verkehr, von nur einem redundanter Übertragungswege
US6094439A (en) * 1997-08-15 2000-07-25 Advanced Micro Devices, Inc. Arrangement for transmitting high speed packet data from a media access controller across multiple physical links
US6504842B1 (en) * 1998-07-30 2003-01-07 Alcatel Internetworking, Inc. Hardware copy assist for data communication switch
EP1029407A1 (en) * 1998-08-28 2000-08-23 Integral Access, Inc. Redundant path data communication
JP2001007846A (ja) * 1999-06-18 2001-01-12 Fujitsu Ltd フレーム中継装置
JP3356145B2 (ja) * 1999-12-22 2002-12-09 日本電気株式会社 伝送路障害救済方法、伝送路障害救済システム、記憶媒体およびルータ
US6751746B1 (en) * 2000-07-31 2004-06-15 Cisco Technology, Inc. Method and apparatus for uninterrupted packet transfer using replication over disjoint paths
US6831898B1 (en) * 2000-08-16 2004-12-14 Cisco Systems, Inc. Multiple packet paths to improve reliability in an IP network
JP3526032B2 (ja) * 2000-11-08 2004-05-10 日本電気株式会社 モバイルネットワーク及びipパケットの転送方法
US8428056B2 (en) * 2000-12-22 2013-04-23 Avaya, Inc. Generation of redundant scheduled network paths using a branch and merge technique
US7652983B1 (en) * 2001-06-25 2010-01-26 At&T Intellectual Property Ii, L.P. Method for restoration and normalization in a mesh network
DE60134579D1 (de) * 2001-08-01 2008-08-07 Fujitsu Ltd Kommunikationsverfahren und kommunikationseinrichtung
US7260102B2 (en) * 2002-02-22 2007-08-21 Nortel Networks Limited Traffic switching using multi-dimensional packet classification
US7623477B2 (en) * 2002-05-06 2009-11-24 Qualcomm, Incorporated Methods and apparatus for downlink macro-diversity in cellular networks
US8144711B1 (en) * 2002-07-15 2012-03-27 Rockstar Bidco, LP Hitless switchover and bandwidth sharing in a communication network
US7342890B1 (en) * 2002-12-20 2008-03-11 Juniper Networks, Inc. Data duplication for transmission over computer networks
US7188189B2 (en) * 2003-04-02 2007-03-06 Avaya Technology Corp. System and method to improve the resiliency and performance of enterprise networks by utilizing in-built network redundancy
US7646710B2 (en) * 2003-07-28 2010-01-12 Nortel Networks Limited Mobility in a multi-access communication network
US7408932B2 (en) * 2003-10-20 2008-08-05 Intel Corporation Method and apparatus for two-stage packet classification using most specific filter matching and transport level sharing
US20070274321A1 (en) * 2004-03-17 2007-11-29 Jonsson Ulf F Vlan Mapping For Multi-Service Provisioning

Also Published As

Publication number Publication date
CN1710887B (zh) 2012-06-20
US20060013210A1 (en) 2006-01-19
EP2267950A1 (en) 2010-12-29
EP1608116A1 (en) 2005-12-21
JP2006005941A (ja) 2006-01-05
CN1710887A (zh) 2005-12-21
KR101120322B1 (ko) 2012-03-06

Similar Documents

Publication Publication Date Title
KR101120322B1 (ko) 데이터 보호 방법, 네트워크 프로세서, 멀티서비스 액세스노드 및 라우터
US8472325B2 (en) Network availability enhancement technique for packet transport networks
JP4398113B2 (ja) レイヤ型ネットワークの管理システム
CA2358230C (en) Optimized fault notification in an overlay mesh network via network knowledge correlation
US7796511B2 (en) Self-routed layer 4 packet network system and method
US7804771B2 (en) Method and apparatus for protection switching in virtual private networks
EP1958379B1 (en) Faults propagation and protection for connection oriented data paths in packet networks
US6898630B2 (en) Network management system utilizing notification between fault manager for packet switching nodes of the higher-order network layer and fault manager for link offering nodes of the lower-order network layer
US8867338B2 (en) Faults Propagation and protection for connection oriented data paths in packet networks
US20020112072A1 (en) System and method for fast-rerouting of data in a data communication network
US8477600B2 (en) Composite transport functions
CN101621497B (zh) 一种多层网络中的业务保护的方法和系统
JP2001007859A (ja) ルータ
JP2002524920A (ja) 冗長経路データ通信
US20050050171A1 (en) Redundancy scheme for network processing systems
WO2012100571A1 (zh) 一种多条相同路径隧道集中管理的方法和系统
Medhi Network Reliability and Fault-Tolerance.
Shin et al. First low-cost failure recovery for reliable real-time multimedia communication
JPWO2005117365A1 (ja) 通信制御装置及び通信制御方法
KR20150132767A (ko) Mpls-tp 네트워크에서 서브 그룹을 기반으로 한 p2mp 데이터 전달 방법 및 장치
Thiran et al. A protection-based approach to Qos in Packet over fiber networks
Al-Khateeb et al. Recovery Modeling in MPLS Networks
Aleksieva Network Failures, which Cause Path Recovery in MPLS Networks

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee