KR20050004841A - 형상기억합금으로 작동되는 재사용가능한 래치 - Google Patents

형상기억합금으로 작동되는 재사용가능한 래치 Download PDF

Info

Publication number
KR20050004841A
KR20050004841A KR10-2004-7017926A KR20047017926A KR20050004841A KR 20050004841 A KR20050004841 A KR 20050004841A KR 20047017926 A KR20047017926 A KR 20047017926A KR 20050004841 A KR20050004841 A KR 20050004841A
Authority
KR
South Korea
Prior art keywords
structural member
mechanical
shape memory
memory alloy
latch
Prior art date
Application number
KR10-2004-7017926A
Other languages
English (en)
Inventor
본베렌스피터에머리
페어뱅크스딜런밀러
브로튼캐서린앤
Original Assignee
나노머슬, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노머슬, 인크. filed Critical 나노머슬, 인크.
Publication of KR20050004841A publication Critical patent/KR20050004841A/ko

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C1/00Fastening devices with bolts moving rectilinearly
    • E05C1/08Fastening devices with bolts moving rectilinearly with latching action
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0009Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with thermo-electric actuators, e.g. heated bimetals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties
    • F16C2202/28Shape memory material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Manipulator (AREA)

Abstract

본 발명에는 기계식 릴리즈 기구가 제공된다. 기계식 릴리즈 기구는 서로에 대하여 미끄러짐가능한 2 개의 구조 부재 (5, 15) 를 포함한다. 래치 (20) 는 래치 위치에서 다른 구조 부재 (5, 15) 에 대하여 하나의 구조 부재를 유지한다. 하나의 구조 부재 (5, 15) 내에 배치된 형상기억합금 (35) 은 다른 구조 부재 (5, 15) 를 유지하는 래치 (20) 를 이동시키는데 사용되어서, 구조 부재 (5, 15) 들간의 상대 이동을 허용하게 된다.

Description

형상기억합금으로 작동되는 재사용가능한 래치{REUSABLE SHAPE MEMORY ALLOY ACTIVATED LATCH}
형상기억합금 (SMA) 의 열탄성 특성은 1930 년대 이후로 알려져 왔다. 10 년 동안 SMA 를 사용한 실험이 계속되었다. 1990 년대까지 SMA 를 사용하여 상업적으로 실행하는 것은 어려운 것이었다. 오늘날, SMA 는 자동차 산업에서부터 의료 산업에 이르기까지 다양한 산업에 유일하게 사용되고 있음을 알 수 있다.
콤팩트한 값싼 선형 SMA 액츄에이터에 대한 필요성이 대두되었다. 이러한 액츄에이터는 CD 이젝트 기구에서부터 어린이용 장난감의 추진 발사대에 이르기까지 모든 것에 사용되고 있음을 알 수 있다. 하지만, 현존하는 선형 액츄에이터는 통상적으로 순수한 기계식 릴리즈 (mechanical release) 를 사용한다. 현존하는 기계식 릴리즈 기구는 다양한 기계식 연결부와 레버를 포함할 수 있다. 추가적으로, 현존하는 SMA 의 선형 액츄에이터는, 통상적인 전자 "릴리즈" 신호를 액츄에이터의 순수한 기계식 릴리즈 기구에 연결하기 위해서, 추가의 전자제품과복잡성을 요구한다.
전술한 관점에서 보면, 현존하는 기계식 릴리즈 기구의 단점을 극복하기 위해서는 개선된 선형 SMA 액츄에이터 릴리즈 기구가 필요하다.
본 발명은 래치 (latch) 에 관한 것으로, 보다 자세하게는 형상기억합금 부재를 사용하여 반복적으로 작동될 수 있는 래치에 관한 것이다.
도 1 은 본 발명의 SMA 액츄에이터가 래치 위치에 있는 제 1 예시적인 실시형태의 단면도,
도 2 는 본 발명의 SMA 액츄에이터가 언래치 위치에 있는 제 1 예시적인 실시형태의 단면 사시도,
도 3 은 본 발명의 형상기억합금의 액츄에이터가 래치 위치에 있는 제 2 예시적인 실시형태의 단면도,
도 4 는 본 발명의 열싱크 (heat sink) 의 예시적인 실시형태를 나타내면서 본 발명의 SMA 액츄에이터가 래치 위치에 있는 제 3 예시적인 실시형태의 단면도, 및
도 5 는 본 발명의 다른 예시적인 실시형태의 단면도.
본원에는 SMA 기재의 래치 작동을 반복적으로 제공하는 기계식 릴리즈 기구가 기재되어 있다. 상기 기계식 릴리즈 기구는, 래치 위치 (latched position) 와 언래치 위치 (unlatched position) 사이에서 이동가능한 제 1 구조 부재, 상기 제 1 구조 부재에 연결된 바이어스 부재, 및 제 2 구조 부재를 포함한다. 상기 SMA 로 작동되는 래치는 제 2 구조 부재와 일체로 되어 있다. 상기 래치는 제 2 구조 부재의 표면 위에 바이어스 위치를 가지고 있다. 이 바이어스 위치에서, 래치는, 제 1 구조 부재가 래치 위치에 있을 때 바이어스 부재에 의해 발생된 힘에 대향하도록 배치되어 있다. 추가적으로, SMA 부재는 제 2 구조 부재에 내장되어 래치에 연결된다. SMA 부재는 작동시 선형의 작동력을 발생시켜, 이 작동력에 의해 래치를 제 2 구조 부재의 표면 쪽으로 이동시키고 제 1 구조 부재와 제 2 구조 부재간의 상대 운동을 하게 한다.
SMA 로 작동되는 선형 액츄에이터 (100) 의 제 1 예시적인 실시형태가, 도 1 과 도 2 에 도시되어 있고, 제 1 구조 부재 (5), 제 2 구조 부재 (15), SMA 부재 (35), 및 래치 (20) 를 포함한다. 제 1 구조 부재 (5) 는 래치 위치 (도 1 참조) 와 언래치 위치 (도 2 참조) 사이에서 제 2 구조 부재 (15) 의 종축선을 따라서 이동할 수 있다. 래치 (20) 는 제 2 구조 부재 (15) 와 일체로 되어 있다. 래치 (20) 는 제 2 구조 부재의 상면 (30) 위에 바이어스 위치 (25) 를 가지고 있다. 래치 (20) 는 바이어스 부재 (10) 에 의해 발생된 힘에 대향하도록 위치결정 및 크기결정되어 있다. 바람직한 일실시형태에 있어서, 래치 (20) 는 제 2 구조 부재 (15) 의 외부면에 적절하게 결합된 별개의 부재이다. 다른 바람직한 실시형태에 있어서, 래치 (20) 는 제 2 구조 부재 (15) 의 측벽에 일체로 형성된다.
래치 위치에서, 바이어스 부재 (10) 는 제 1 구조 부재 (5) 와 제 1 고정 기계식 장애물 (obstruction), 즉 융기된 숄더 (65) 사이에서 유지된다. 이바이어스 부재 (10) 는, 래치 (20) 에 의해 릴리즈 될 시 충분한 힘을 제공하여 제 1 구조 부재 (5) 또한 추가로 제 1 구조 부재 (5) 에 연결될 수 있는 어떠한 탑재물이나 물체 (비도시) 를 언래치 위치로 이동시키도록 위치결정 및 크기결정되어 있다. 제 1 구조 부재 (5) 에 연결된 탑재물이나 물체 및 이들을 이동시키는데 필요한 힘은 특정한 용도에 따라 변할 것이다.
도 1 에 도시된 바와 같이, SMA 부재 (35) 는 제 2 구조 부재 (15) 내에 배치되어 있다. 형상기억합금 부재 (35) 는 연결 지점 (40) 에서 제 2 구조 부재의 내벽 (55) 에 부착되어 있다. 형상기억합금 부재 (35) 는 또한 래치 (20) 에 부착되어 있다. 에너지원 (비도시) 은 파워 리드 (power leads; 45) 에 전류를 공급한다. 파워 리드 (45) 는 납땜 또는 크림핑 등의 적절한 수단에 의해 형상기억합금 부재 (35) 에 전기적으로 연결되어 있다. 형상기억합금 부재 (35) 의 오스테나이트 열탄성 변태 (austenite thermoelastic transformation) 를 유발하는 충분한 전류가 파워 리드 (45) 를 통하여 형상기억합금 부재 (35) 에 공급된다. 그 결과, 형상기억합금 부재 (35) 가 접촉하게 된다. 형상기억합금 부재 (35) 가 연결 지점 (40) 에서 제 2 구조 부재의 내벽 (55) 에 고정 부착되어 있기 때문에, 형상기억합금 부재의 상변화 (phase transformation) 로 발생된 수축력이 래치 (20) 에 집중하게 된다. 형상기억합금 부재 (35) 의 형상, 유형, 및 크기는, 바이어스 위치 (25) 에 유지하려는 래치 (20) 의 경향을 극복하기에 충분한 대향력을 래치 (20) 에 제공하도록 선택된다. 추가로, 형상기억합금 부재 (35) 는, 또한 바이어스 부재 (10) 에 의해 래치 (20) 와 접촉하는제 1 구조 부재 (5) 와 래치 (20) 간의 마찰 접촉을 극복하기에 충분한 힘을 래치 (20) 에 제공한다. 고려되는 설계 인자 이외에도, 본 발명의 SMA 부재 (35) 는, 래치 (20) 를 바이어스 위치 (25) 에서부터 제 2 구조 부재의 상면 (30) 쪽으로 이동시키는데 충분한 릴리스 힘을 이 래치 (20) 에 신뢰성 있게 반복적으로 가할 것이다.
형상기억합금 부재 (35) 의 열탄성 수축력이 래치 (20) 에 작용하는 힘을 초과할 때, 이 래치 (20) 는 일시적으로 변형되어서 바이어스 위치에서 떨어져 제 1 구조 부재 (5) 와 접촉하지 않게 된다. 일단 래치 (20) 가 일시적으로 변형되어서 제 1 구조 부재 (5) 와 접촉하지 않게 되면, 제 1 구조 부재 (5) 와 제 2 구조 부재 (15) 간에 상대 이동이 발생하게 된다. 도 2 에 도시된 당해 실시형태에 있어서, 이러한 상대 이동은, 제 1 구조 부재 (5) 가 일반적으로 제 2 구조 부재 (15) 의 종축선에 평행한 방향으로 이동하는 것이다. 전술한 이동은 본 발명을 완전히 이해하는데 유용한 2 개의 운동면을 규정하는데 사용될 것이다. 이러한 운동의 래치면은 래치 (20) 의 변형 운동에 실질적으로 수직한 평면을 말한다. 도 1 에서, 래치면은 제 2 구조 부재 (15) 의 종축선에 평행하고 이 종축선을 포함하도록 배향되어 있다. 다른 방법으로, 래치면은 양 SMA 연결 지점 (40) 을 포함하는 래치 (20) 바로 아래의 수평면으로서 생각될 수 있다. 이러한 운동의 릴리즈면은 제 1 구조 부재가 래치 위치에서부터 언래치 위치로 이동할 때의 제 1 구조 부재 (5) 의 운동에 평행하게 배향된 평면이다. 도 1 에서, 이러한 운동의 릴리즈면은 제 1 구조 부재 (5) 와 제 2 구조 부재 (15) 의 종축선에 평행하다. 따라서, 도 1 의 실시형태에 있어서, 상기 운동의 래치면과 릴리즈면은 평행하다.
도 2 에 도시된 바와 같이, 바이어스 부재 (10) 에 저장된 힘이 해제되면, 제 1 구조 부재 (5) 는 언래치 위치로 이동한다. 이 제 1 구조 부재 (5) 의 이동은 제 2 구조 부재 (15) 에 있는 제 2 고정 기계식 장애물 (66) 에 의해 제한된다. 도 2 에 도시된 실시형태에 있어서, 제 2 고정 기계식 장애물 (66) 은, 제 1 구조 부재 (5) 의 운동 범위가 래치 (20) 에 접한 래치 위치에서부터 숄더 또는 보스 (66) 에 접한 언래치 위치까지의 거리만큼 한정되도록 제 2 구조 부재 (15) 에 위치한 숄더 또는 보스일 수 있다.
또한, 제 1 구조 부재 (5) 의 운동 범위는 바이어스 부재 (10) 의 크기를 결정한다. 바이어스 부재 (10) 가 스프링인 실시형태를 고려해볼 수 있다. 신장 길이가 30 mm 이고 압축 길이가 10 mm 인 특정한 스프링 (10) 을 고려해보면, 이 스프링은 약 10 mm 내지 20 mm 의 유리한 사용범위를 갖는다. 사용범위가 신장된 스프링 길이보다 작도록 선택되면, 이 스프링은 제 1 구조 부재 (5) 의 운동 범위 끝에서도 이 제 1 구조 부재 (5) 에 여전히 힘을 가하게 된다. 본 발명의 또 다른 실시형태에 있어서, 바이어스 부재 (10) 는 제 1 구조 부재 (5) 의 운동 범위보다 약 33% 더 긴 신장 길이를 가진 스프링이다. 또 다른 실시형태에 있어서, 바이어스 부재 (10) 는 제 1 구조 부재 (5) 의 운동 범위보다 약 50% 더 긴 신장 길이를 가진 스프링이다. 또 다른 실시형태에 있어서, 바이어스 부재 (10) 는 제 1 구조 부재 (5) 의 운동 범위보다 2 배 더 긴 신장 길이를 가진스프링이다.
일단 제 1 구조 부재 (5) 가 언래치 위치에 있으면, 이 제 1 구조 부재 (5) 를 래치 위치로 복귀시키기 위해서는 외력이 사용된다. 제 1 구조 부재 (5) 가 래치 위치로 되돌아가면, 래치 (20) 는 제 2 구조 부재의 상면 (30) 위의 바이어스 위치 (25) 로 되돌아갈 것이다. 또한, 래치 (20) 의 이동으로 SMA 부재 (35) 가 신장된 형상으로 복귀된다. 신장된 형태로 복귀되면, SMA 액츄에이터는 다시 작동되어 래치 (20) 를 바이어스 위치에서 떨어지게 변형시킬 수 있는 준비가 된다. 신장된 SMA 형상은 도 1, 도 3, 도 4 및 도 5 에 도시되었다.
본 발명의 다른 장점은 도 1 과 도 3 을 참조하여 이해될 것이다. SMA 부재 (35) 는 연결 지점 (40) 에서 내벽 (55) 에 부착되고 또한 래치 (20) 에 부착된다. 연결 지점 (40) 과 래치 (20) 사이에는 끼인각 (included angle) 이 존재한다. 도 1 에는 끼인각 (θ1) 이 도시되었고, 도 3 에는 끼인각 (θ2) 이 도시되었다. 끼인각의 변화는 SMA 부재 (35) 와 함께 유리하게 사용되어 래치 (20) 의 변형 및/또는 광범위한 힘을 제공해준다. 간단하게 말하면, 끼인각의 변화는, SMA 와이어 (35) 에 의해 발생되어 래치 (20) 에 가해지는 벡터 힘 (vector force) 을 변경시킨다. 끼인각이 큰 경우, 벡터의 수평 성분이 커지고 벡터 합을 좌우하며 더 큰 스트로크 (즉, 래치 (20) 의 변형) 를 유발하게 된다. 최종 벡터의 수직 성분이 작기 때문에, 래치 (20) 에는 더 작은 힘이 가해진다. 다른 한편으로는, 끼인각이 작은 경우, 벡터의 수평 성분은 더 작아진다. 이는 더 작은 래치 (20) 의 변형 또는 스트로크를 유발한다. 하지만, 벡터의 수직 성분이 크고 벡터 합을 좌우하기 때문에, 래치 (20) 에 더 큰 힘이 가해진다.
도 1 의 실시형태에 있어서, 끼인각 (θ1) 은 90°보다 더 크다. 이 실시형태는, 대부분의 기억형상합금 재료가 손상없이 그 길이의 약 3% 만큼 반복적으로 변형할 수 있다는 점에서 유리하다. 이와 같이, 더 긴 형상기억합금 부재 (35) 가 사용되도록 끼인각 (θ1) 이 선택되기 때문에, 래치 (20) 에는 더 큰 스트로크 또는 변형이 유발된다. 이러한 구성을 포함하는 본 발명의 실시형태는 래치 (29) 의 변형이 클 것이 요구되는 경우에 유리하게 사용될 수 있다. 도 1 에 도시된 큰 스트로크를 가진 실시형태의 하나의 단점은, 래치 (20) 가 제 2 구조 부재 (15) 에 일반적으로 수직한 방향으로 바이어스 위치 (25) 에서 떨어져 이동하기 때문에, 형상기억합금 부재 (35) 에 의해 발생된 모든 힘이 래치 (20) 를 이동시키는데 사용되는 것은 아니라는 것이다 (즉, 전술한 바와 같이, 소정의 SMA 와이어 길이에 대하여, 벡터의 수직 성분이 작으면 작은 힘이 유발된다). 다른 실시형태에 있어서, 상기 끼인각 (θ1) 은 약 125°이다.
다른 끼인각의 형상이 도 3 에 도시되었다. 끼인각 (θ2) 은 또한 연결 지점 (40) 과 래치 (20) 사이의 형상기억합금 부재 (35) 의 경로에 의해 한정된다. 끼인각 (θ2) 은 끼인각 (θ1) 보다 작다. 더 작은 끼인각 (θ2) 을 사용하면, 형상기억합금 부재 (35) 는 래치 (20) 의 바이어스 힘에 대향하도록 보다 가깝게 정렬된다 (즉, 래치 (20) 에 더 큰 벡터 힘의 수직 성분이 발생된다). 끼인각 (θ2) 이 거의 제로인 실시형태에 있어서, 형상기억합금 부재 (35) 는 래치 (20)의 바이어스 힘에 직접 또는 거의 직접 대향하도록 위치한다. 이러한 방식으로, 이러한 구성을 포함하는 본 발명의 실시형태는, 형상기억합금 재료가 사용범위내에서 그 종축선을 따라서 변형한다는 점에서 유리하다. 끼인각 (θ2) 이 감소함에 따라, 형상기억합금 부재 (35) 의 종축선은 래치 (20) 에 보다 직접적으로 대향하는 위치 쪽으로 이동하게 된다. 일실시형태에 있어서, 끼인각 (θ2) 은 약 45°이하이다. 다른 실시형태에 있어서, 끼인각 (θ2) 은 약 25°이하이다.
따라서, 전술한 신규한 기계식 릴리즈 기구의 실시형태는 일반적으로 제 1 구조 부재와 제 2 구조 부재간의 동심 배열을 포함한다 (도 1, 도 2, 도 3, 및 도 4 참조). 즉, 운동의 래치면과 이 운동의 릴리즈면은 동일한 평면에서 평행하다. 상기 실시형태는 제 1 구조 부재 (5) 와 제 2 구조 부재 (15) 의 동축 배열에 대해서 설명하였다. 본 발명의 실시형태들은 제 1 구조 부재 (5) 와 제 2 구조 부재 (15) 를 다른 형상으로 유리하게 사용될 수 있음을 알 수 있다.
본 발명의 또 다른 실시형태는 도 5 를 참조하여 설명될 것이다. 도 5 에서는 SMA 액츄에이터 (500) 의 예시적인 실시형태의 단면도를 도시하였고, 여기서 구조 부재는 동축이 아니며, 운동의 래치면과 운동의 릴리즈면은 여전히 평행하지만 이 평면들은 서로 수직하게 배열되어 있다. SMA 액츄에이터 (500) 는 제 2 구조 부재 (515) 에 대하여 미끄럼가능한 제 1 구조 부재 (505) 를 포함한다. 바이어스 부재 (510) 는 제 2 구조 부재 (515) 에 대하여 제 1 구조 부재 (505) 를 상대 이동시키기 위한 저장 에너지원을 제공해준다. 도 5 에 도시된 래치 위치에서, 바이어스 부재 (510) 는 제 1 구조 부재 (505) 상의 제 1 고정 기계식 장애물 (540) 과 래치 (520) 사이에서 압축된다. 래치 (520) 는 제 2 구조 부재의 표면 위의 바이어스 위치에 유지되는 래치 (20) 와 유사하고, 래치 (520) 는 형상기억합금 부재 (535) 에 의해 발생된 열탄성 수축력에 의해 바이어스 위치로부터 이동하게 된다. 형상기억합금 부재 (535) 는 제 2 구조 부재 (515) 내부에 형상과 크기가 맞도록 배치되어, 래치 (520) 에 존재하는 바이어스 위치력 (position force) 과 래치 (520) 와 제 1 구조 부재 (505) 사이에 존재하는 마찰력을 극복하여, 바이어스 부재 (510) 는 래치 위치에서 제 1 구조 부재 (505) 를 래치 (520) 와 가압 접촉하도록 가압된다 (도 5 참조).
도 5 에서는, 본 발명의 실시형태를 유리하게 작동시키는데 사용될 수 있고, 보다 용이하게는 본 발명의 실시형태를 광범위한 다양한 용도로 포함시킬 수 있는 전력 및 래치 제어 회로를 도시하였다. 이러한 용도 중 몇 개가 아래에 기재되어 있다. 또한, 도 5 에는, 릴리즈 신호 스위치 (560) 에 연결되는 전력원 (555) 이 도시되어 있고, 이 릴리즈 신호 스위치는 보호 스위치 (50) 및 SMA 부재 (535) 에 연결되어 있다. 전력원 (555) 은 SMA 부재 (355) 를 오스테나이트 변태 온도 이상으로 저항 가열하는데 충분한 전류를 공급하여 SMA 부재 (535) 를 원하는 만큼 수축시키도록 크기결정 및 선택된다.
릴리즈 신호 스위치 (560) 는 언래치 또는 릴리즈하기 위해서 본 발명의 형상기억합금 액츄에이터용 신호를 발생시키는데 유용한 어떠한 다양한 전기식, 기계식, 또는 전자기계식 인디케이터 (indicators) 일 수 있다. 릴리즈 신호 스위치 (560) 는 "릴리즈" 신호를 수신했을 때 닫혀지는 전기식 개방 회로를 가질 수 있다. 릴리즈 신호 스위치 (560) 의 다른 실시형태는 다양하고 용도에 따라 변한다. 예를 들어, 발사체 (비도시) 는 제 1 구조 부재 (505) 와 접촉 배치될 수 있다. 형상기억합금 액츄에이터 (500) 가 예를 들어 장난감 탱크에 일체화될 때, 제 1 구조 부재 (505) 가 래치 (520) 에 의해 릴리즈되면, 바이어스 부재 (510) 에 저장된 힘이 발사체 (비도시) 에 힘을 가하여 발사시킨다. 일실시형태에 있어서, 릴리즈 신호 스위치 (560) 는 장난감 탱크를 제어하는데 사용되는 원격 또는 무선 제어 장치에 의해 발생된 전자 신호를 수신한다. 릴리즈 신호 스위치 (560) 는 원격 제어시 원격 제어부에 형성된 "발사 (FIRE)" 버튼에 직접 연결될 수 있다. 다른 방법으로, 릴리즈 신호 스위치 (560) 는 무선 제어 장치의 송신기 (transmitter) 로부터 전자 송신된 "발사" 신호를 수신하는데 적합한 수신기 (receiver) 를 포함할 수 있다. 원격 제어 또는 무선 제어 실시형태에 있어서, "발사" 신호를 수신하면, 릴리즈 신호 스위치 (560) 가 닫혀져서, 전력원 (555) 의 전류가 보호 스위치 (50) 를 통하여 SMA 부재 (535) 로 흐르게 된다. 형상기억합금 부재 (535) 에 충분한 전력이 공급되어 래치 (520) 를 바이어스 위치 외부로 변형시켜 제 1 구조 부재 (505) 와 제 2 구조 부재 (515) 간의 상대 이동을 허용하게 된다. 제 1 구조 부재 (505) 는 바이어스 부재 (510) 에 의해 발생된 힘으로 이동하게 된다.
다른 실시형태에 있어서, 릴리즈 신호 스위치 (560) 는 적외선 빔 (infrared beam) 을 발생시키는 총 (gun) 등과 같은 외부 소스로부터의 전자 신호를 수신하는데 적합한 수신기를 포함할 수 있다. 이러한 실시형태에 있어서, 본 발명의 형상기억합금 액츄에이터는, 예를 들어 릴리즈 신호가 수신되었을 때 제 1 구조 부재의 힘에 의해 괴물 몸체의 일부가 분리되도록 장난감 괴물의 구성에도 포함될 수 있다. 예를 들어, 릴리즈 신호 스위치 (560) 가 괴물 머리를 괴물 몸체에 연결하는 연결 지점 근방에서 괴물의 외부에 일체화된 적외선 수신기를 포함하는 것도 고려할 수 있다. 괴물 머리는 제 1 구조 부재 (505) 에 기계식으로 연결되어 있다. 작동시, 예를 들어 장난감 총에 의해 발생된 적외선 빔이 릴리즈 신호 스위치 (560) 에 일체화된 수신기와 접촉할 때, 전력원 (555) 과 형상기억합금 부재 (535) 간에 전기 접촉이 형성된다. 전술한 바와 같이, 형상기억 합금 부재 (535) 의 수축으로 래치 (520) 를 변형시켜 바이어스 부재 (510) 의 저장 에너지를 방출하게 하여 제 1 구조 부재 (505) 와 제 2 구조 부재 (515) 간의 상대 이동을 유발한다. 전술한 장난감 괴물의 경우에, 제 1 구조 부재 (505) 와 제 2 구조 부재 (515) 간의 상대 이동으로 이 괴물 몸체로부터 괴물 머리가 빠져나오게 된다.
전술한 장난감 탱크와 괴물의 예에서 설명된 바와 같이, 릴리즈 신호 스위치 (560) 를 사용함으로써 하나의 장점은, 본 발명의 형상기업합금 기재의 릴리즈 작동을 초기화하기 위해서는 다수의 다양한 릴리즈 신호가 사용될 수 있다는 것이다. 이러한 예는 장난감을 바탕으로 응용한 장난감 산업으로부터 유추하였지만, 본 발명의 SMA 액츄에이터의 실시형태는 예를 들어 소비자에게 전자공학, 산업, 및 자동차에 적용될 수 있다.
도 5 에서는 또한 제 1 구조 부재 (505) 와 제 2 구조 부재 (515) 의 다른 구성을 도시하였다. 도시된 실시형태에 있어서, 제 1 구조 부재 (505) 는 제 2 구조 부재 (515) 에 대하여 미끄럼가능하게 배치되어 있고 래치 위치 (도 5 참조) 에서부터 제 2 고정 기계식 장애물 (545) 에 접하는 언래치 위치로 가이드 (550) 를 따라서 이동한다. 이와 같이, 제 2 구조 부재 (515) 의 다른 특징과 함께 가이드 (550) 는 제 1 구조 부재 (505) 가 래치 상태와 언래치 상태 사이에서 이동하도록 이 제 1 구조 부재를 제한한다.
형상기억합금 부재 (35) 의 신뢰성 있는 반복 작동을 촉진시키기 위해서, 본 발명의 실시형태는 또한 SMA 부재 (35) 의 연장된 수명과 손상없는 작동을 보장해주는 보호 기구를 제공한다. 도 1 을 참조하여 전술한 바와 같이, SMA 부재 (35) 는 파워 리드 (45) 를 통하여 전류를 가함으로써 오스테나이트 변태 온도 이상으로 가열된다. SMA 부재 (35) 에 전류를 연장하여 흐르게 하면, 이를 과열시키거나 작동 수명을 대단히 제한할 정도로 이 SMA 부재의 물성을 열화시킬 수 있다.
본 발명의 실시형태에서는 보호 기구가 제공되어 이러한 문제점을 해결하였다. 하나의 보호 기구로서는 제한 스위치 (limit switch; 50) (도 1, 도 2, 및 도 5 참조) 이다. SMA 부재 (35) 를 통전시키는 전기 회로내에 제한 스위치 (50) 가 배치되어 있다. 일반적인 위치 (도 1 참조) 에서, 제한 스위치 (50) 는 닫혀있고 SMA 부재 (35) 에 전력이 가해질 것이다. 제한 스위치 (50) 가 작동 위치 (도 2 참조) 에 있을 때에는, 제한 스위치 (50) 가 개방되어 SMA 부재(35) 에 전력이 공급되지 못하도록 한다. 설명된 일실시형태에 있어서, 제한 스위치 (50) 는 래치 (20) 근방에 제 2 구조 부재 (15) 내에 위치한다 (도 1 참조). 이 제한 스위치 (50) 는, SMA 부재 (35) 가 설계된 수축 지점에 도달했을 때 (즉, 래치 (20) 가 바이어스 위치 (25) 외부로 충분히 변형되어 제 1 구조 부재 (5) 와 제 2 구조 부재 (15) 간을 상대 이동시킬 때) 래치 (20) 가 제한 스위치 (50) 를 작동시키도록 래치 (20) 에 대하여 형상결정, 크기결정 및 위치결정된다. 제한 스위치가 작동되면, SMA 부재 (35) 로의 전력 공급이 차단된다. 래치 (20) 가 바이어스 위치 (25) 로 복귀하면, 제한 스위치 (50) 는 통상적인 닫힌 위치로 복귀하여 형상기억합금 부재 (35) 에 대한 전력 공급 회로를 복원시킨다.
다른 SMA 부재의 보호 기구는 도 3 에 도시되었다. 열싱크 (60) 는 또한 SMA 부재 (35) 의 신뢰성 있는 작동을 증가시키는데 사용될 수 있다. SMA 구성품의 신뢰성 있는 반복 작동의 일태양은, SMA 를 오스테나이트 상에서 마르텐자이트 상 (martensite phase) 으로 변태시키기 위해 발생되는 열을 소산시킨다는 것이다. 열탄성 상변화에 의해 발생된 열이 효과적으로 소산되지 않으면 SMA 구성품이 손상될 수 있다. 일실시형태에 있어서, 열싱크 (60) 는 형상기억합금 부재 (35) 에 인접하게 배치되어 열분산을 도와줄 수 있다. 다른 실시형태에 있어서, 열싱크 (60) 는 SMA 와이어 (35) 의 반대측상에 배치될 수 있다 (즉, SMA 부재 (35) 에 의해 형성된 끼인각내에 위치됨). 열싱크 (60) 는 그 자체와 SMA 사이에 어느 정도 상당한 간극 (clearance) 을 두며, 이 간극 (공기틈) 때문에, 열싱크는 SMA 가 신장된 형상일 때 SMA 로부터 방출되는 상당한 양의 열을 받지 않게 된다. SMA 는 가열되어 변태 온도에 도달하면 수축하게 된다. 상기 장치의 기계식 구성으로 인하여, 수축하는 SMA 는 열싱크에 더 근접하게 이동하여 상기 간극 및 공기틈은 감소되고 열싱크는 SMA 로부터 열을 더 많이 받게 된다. SMA 가 더 수축하게 되면 이러한 효과는 더 커지게 된다. 다른 실시형태에 있어서, 열싱크 (60) 는, SMA 수축이 최대일 때 이 SMA 가 열싱크 (60) 와 접촉 형성하도록 배치된다.
또 다른 실시형태에 있어서, 열싱크는 열싱크 (60) 와 접촉하기에 충분히 멀리 SMA 를 접촉시키지 않도록 SMA 의 운동 범위에 대하여 구성, 크기결정 및 위치결정된다. 대신, SMA 의 수축이 열평형 상태에 도달할 것이고, 여기서 SMA 가 완전히 수축되기 바로 전에 SMA 에 에너지가 추가되는 비율과 동일한 비율로 열싱크 (60) 가 SMA 의 외부로 에너지를 이끌어낸다. 그 결과, SMA 와이어는 절대로 과열되지 않는다. SMA 부재 (35) 에 대한 열싱크 (열싱크 (260) 에 제공된 측벽에 의해 형성) 의 유리한 간격은 도 4 에 도시되었다. 래치 위치에서, 래치에 대한 열싱크의 간격 (d2) 은 래치 (20) 가 언래치 위치에 있을 때보다 더 크다. 언래치 위치에서, SMA 부재는 수축되고 열싱크 구조물 (260) 의 상면 (265) 에 보다 근접하게 된다. SMA 부재 연결 지점 (40) 근방에서, SMA 부재 (35) 와 열싱크 구조물 (260) 간의 간격 (d1) 이 더 작다. SMA 부재 (35) 의 간격은 래치 (20) 에 인접한 외부면 (265) 상의 지점에서부터 연결 지점 (40) 쪽으로 이동함에 따라 감소함을 알 수 있다.
또 다른 실시형태에 있어서, 전술한 열싱크 평형 작동은 제한 스위치 (50)를 대신하여 SMA 수축을 제어하기 위해 사용된다. 또 다른 열교환 실시형태는 도 4 에 도시되었다. 제 2 구조 부재 (15) 의 측벽은 당해 열싱크로서 사용된다. 측벽은 V 가 거꾸로 된 형상의 측벽 (260) 으로 변형된다. V 가 거꾸로 된 형상의 측벽 (260) 은 SMA 와이어의 대응 끼인각을 보상하도록 선택된다. 전술한 바와 같이 SMA 와이어 (35) 의 근방에는 상기 열싱크 (60) 대하여 상면 (265) 이 위치한다. 도 4 에서는 열싱크로서 사용되는 제 2 구조 부재의 측벽의 변형을 도시하였지만, 열흡수 재료로부터 형성된 구조물이 열싱크에서 일반적으로 V 가 거꾸로 된 형상의 스테이지 (stage) 에 형성되어 도 3 의 릴리즈 기구 (200) 에 삽입될 수 있다. 추가로, 전술한 어떠한 열싱크 구조물이 제 1 재료로 형성된 후 개선된 열전달 능력을 가진 제 2 재료로 피복될 수 있다. 예를 들어, 제 1 재료는 플라스틱으로 제조될 수 있고, 제 2 재료는 SMA 와이어로부터 열싱크로의 열전달을 개선시키기 위해서 예를 들어 알루미늄, 니켈, 황동 등으로 피복된 금속일 수 있다.
SMA 액츄에이터의 특정한 실시형태는 도 1 을 참조하여 설명될 것이다. 이 실시형태에 있어서, 제 1 구조 부재는 피스톤 가이드로서 형성된 제 2 구조 부재에 대하여 동축으로 배치된 피스톤으로서 형상결정된다. 피스톤 가이드와 피스톤은 의도한 적용을 위해서 충분한 강도를 가진 실질적으로 어떠한 재료로 형성될 수 있다. 상기 예에서, 피스톤과 피스톤 가이드는 플라스틱으로 형성될 수 있다. 래치 (20) 는 피스톤 가이드의 표면에 일체로 형성되어 이 피스톤 가이드의 표면 위의 바이어스 위치에서 돌출하는 핑거 래치 (finger latch) 형태로 형상결정될 수 있다. 바이어스 부재 (10) 는 스프링이다.
설명된 일실시형태에 있어서, 제 1 및 제 2 구조 부재는 아세탈 (Acetal) 또는 유사 플라스틱으로부터 성형될 수 있다. SMA 와이어 (35) 는 약 0.004" 의 직경, 약 30 mm 의 길이, 약 125 도의 끼인각을 가진 TiNi SMA 재료로 형성될 수 있다. 이러한 형상은, SMA 가 그 길이의 3% 만이 수축한다면 0.9 mm 전체가 접촉하는 일부 스트로크의 증폭용으로 제공될 수 있다. 이러한 수축으로 인하여 약 1 mm 의 래치의 변형을 유발한다. 래치에 가해진 힘은 약 120 그램일 수 있다. 이러한 크기의 힘은 래치를 신뢰성 있게 구속한 후 최대 약 400 그램의 스프링 (즉, 바이어스 부재 (10)) 을 이완시킨다.
전술한 실시형태는 SMA 부재 (35, 535) 에 대하여 기재하였지만, 본 발명의 실시형태는 단일 스트랜드의 형상기억합금 와이어 구성에만 한정되지 않음을 알 수 있다. 연결지점 (40) 과 래치 (520, 20) 사이에 다중 형상기억합금 와이어의 스트랜드가 있을 수 있다. 본 발명은 특정한 유형의 형상기억합금 재료에만 한정되지 않는다. 실시형태에서는 티타늄과 니켈 (TiNi) 을 포함한 형상기억합금 재료에 대하여 기재하였지만, 예를 들어 다른 재료 중에서, 구리, 알루미늄, 및 니켈 (CuAlNi) 과, 티타늄, 니켈, 및 팔라디움 (TiNiPd) 를 포함하는 조성물등의 다른 형상기억합금 재료가 사용될 수 있다.
본 발명의 전술한 예시적인 설명과 설명적인 바람직한 실시형태는 도면에 도시되었고 자세히 기재되어 있고, 변경 및 다른 실시형태도 교시되었다. 본 발명의 태양이 도시, 기재, 및 설명되었지만, 본 발명의 정신 및 관점을 벗어나지않는 한 형태 및 상세부에서 동등한 변경이 가능함을 당업자는 이해할 것이고, 본원 발명의 관점은 이후의 청구항에서만 한정되었다.

Claims (20)

  1. 래치 위치와 언래치 위치 사이에서 이동가능한 제 1 구조 부재,
    상기 제 1 구조 부재에 연결된 바이어스 부재,
    제 2 구조 부재,
    상기 제 2 구조 부재와 일체화되고, 제 2 구조 부재의 표면 위에 바이어스 위치를 가지며, 상기 제 1 구조 부재가 래치 위치에 있을 때 바이어스 부재에 의해 발생된 힘에 대향하도록 배치되는 래치, 및
    상기 제 2 구조 부재에 내장되어 상기 래치에 연결되고, 상기 래치를 제 2 구조 부재의 표면 쪽으로 이동시켜 상기 제 1 구조 부재와 제 2 구조 부재간의 상대 이동을 유발하는 선형 작동력을 발생시키는 형상기억합금 부재를 포함하는 기계식 릴리즈 기구.
  2. 제 1 항에 있어서, 상기 바이어스 부재는 스프링인 것을 특징으로 하는 기계식 릴리즈 기구.
  3. 제 1 항에 있어서, 상기 제 2 구조 부재는 상기 제 1 구조 부재내에 배치되는 것을 특징으로 하는 기계식 릴리즈 기구.
  4. 제 1 항에 있어서, 상기 형상기억합금 부재는 니켈과 티타늄을 포함하는 것을 특징으로 하는 기계식 릴리즈 기구.
  5. 제 1 항에 있어서, 상기 형상기억합금 부재에 전류를 흐르게 하여 오스테나이트 변태 온도 이상으로 가열하였을 때 상기 형상기억합금 부재는 선형 작동력을 발생시키는 것을 특징으로 하는 기계식 릴리즈 기구.
  6. 제 5 항에 있어서, 상기 제 2 구조 부재내에 배치되는 스위치를 더 포함하고, 상기 스위치는, 래치가 제 2 구조 부재의 표면 쪽으로 이동한 후에, 이 스위치가 형상기억합금 부재에 공급되는 전류를 차단하도록 위치되는 것을 특징으로 하는 기계식 릴리즈 기구.
  7. 제 1 항에 있어서, 상기 형상기억합금 부재는 형상기억합금 재료로 형성된 와이어인 것을 특징으로 하는 기계식 릴리즈 기구.
  8. 제 7 항에 있어서, 상기 와이어는 제 2 구조 부재의 내벽과 래치에 부착되는 것을 특징으로 하는 기계식 릴리즈 기구.
  9. 제 1 항에 있어서, 상기 제 1 구조 부재가 언래치 위치로 이동하면, 이 제 1 구조 부재는 제 2 구조 부재의 종축선에 일반적으로 평행한 방향으로 이동하는 것을 특징으로 하는 기계식 릴리즈 기구.
  10. 제 1 항에 있어서, 상기 제 1 구조 부재가 언래치 위치로 이동하면, 이 제 1 구조 부재는 제 2 구조 부재의 종축선에 대하여 각을 이루어 이동하는 것을 특징으로 하는 기계식 릴리즈 기구.
  11. 제 1 고정 기계식 장애물, 제 2 고정 기계식 장애물, 및 상기 제 1 고정 기계식 장애물과 제 2 고정 기계식 장애물 사이에 배치되어 콕 위치 (cocked position) 와 발사 위치 (fired position) 사이에서 이동가능한 기계식 장애물을 구비한 제 1 부재와,
    상기 제 1 부재에 대하여 미끄럼가능하게 배치되어, 저장 에너지 부재에 의해 상기 이동가능한 기계식 장애물과 접촉하게 되는 제 1 위치와, 제 2 고정 기계식 구조물과 접촉하게 되는 제 2 위치와의 사이에서 이동가능한 제 2 부재와,
    상기 제 1 부재내에 배치되며, 상기 이동가능한 기계식 장애물을 콕 위치에서 발사 위치로 선택적으로 변경시켜, 저장 에너지 부재에 의해 제 2 부재를 제 1 부재의 제 2 고정 기계식 장애물과 접촉시키는 선형 작동력을 제공해주는 형상기억합금 부재를 포함하는 기계식 릴리즈 기구.
  12. 제 11 항에 있어서, 상기 저장 에너지 부재는 스프링인 것을 특징으로 하는 기계식 릴리즈 기구.
  13. 제 11 항에 있어서, 상기 제 2 부재는 제 1 부재의 종축선을 따라서 이동하는 것을 특징으로 하는 기계식 릴리즈 기구.
  14. 제 11 항에 있어서, 상기 형상기억합금 부재는 형상기억합금 와이어인 것을 특징으로 하는 기계식 릴리즈 기구.
  15. 제 14 항에 있어서, 상기 형상기억합금 와이어는 제 1 부재내의 제 1 연결지점과, 상기 이동가능한 기계식 장애물과, 제 1 부재내의 제 2 연결지점에 연결되어, 제 1 및 제 2 연결 지점과 상기 이동가능한 기계식 장애물 사이에 끼인각이 형성되는 것을 특징으로 하는 기계식 릴리즈 기구.
  16. 제 15 항에 있어서, 상기 끼인각은 90°보다 큰 것을 특징으로 하는 기계식 릴리즈 기구.
  17. 제 15 항에 있어서, 상기 끼인각은 25°보다 작은 것을 특징으로 하는 기계식 릴리즈 기구.
  18. 제 15 항에 있어서, 제 1 연결 지점과 이동가능한 기계식 장애물 사이의 형상기억합금 와이어의 길이는, 제 2 연결 지점과 이동가능한 기계식 장애물 사이의 형상기억합금 와이어의 길이와 실질적으로 동일한 것을 특징으로 하는 기계식 릴리즈 기구.
  19. 제 11 항에 있어서, 상기 이동가능한 기계식 장애물은 제 1 부재와 일체로 형성되는 것을 특징으로 하는 기계식 릴리즈 기구.
  20. 형상기억합금을 사용하여 이동가능한 기계식 장애물을 제어하는 장치로서,
    콕 위치와 점화 위치 사이에 위치가능한 제 1 부재,
    상기 제 1 부재에 대하여 미끄럼가능하게 배치된 제 2 부재,
    상기 제 1 부재에 연결된 탄성 부재,
    상기 제 2 부재에 일체화되어, 콕 위치와 발사 위치 사이에서 이동가능하며, 콕 위치에 있을 때 이 콕 위치에서 제 1 부재가 탄성 부재에 접촉 유지되는 이동가능한 기계식 장애물, 및
    상기 제 2 부재내에 배치되고 이동가능한 기계식 장애물에 부착되어, 오스테나이트 변태 온도 이상으로 가열되면 발생되는 선형 작동력으로 상기 이동가능한 기계식 장애물을 콕 위치에서 발사 위치로 이동시키고, 이 이동가능한 기계식 장애물이 점화 위치에 있을 때는 탄성 부재가 제 1 부재를 제 2 부재에 대하여 이동시키는 형상기억합금 작동 기구를 포함하는 장치.
KR10-2004-7017926A 2002-05-06 2003-05-06 형상기억합금으로 작동되는 재사용가능한 래치 KR20050004841A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37848602P 2002-05-06 2002-05-06
US60/378,486 2002-05-06
PCT/US2003/014327 WO2003093615A1 (en) 2002-05-06 2003-05-06 Reusable shape memory alloy activated latch

Publications (1)

Publication Number Publication Date
KR20050004841A true KR20050004841A (ko) 2005-01-12

Family

ID=29401607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-7017926A KR20050004841A (ko) 2002-05-06 2003-05-06 형상기억합금으로 작동되는 재사용가능한 래치

Country Status (5)

Country Link
US (1) US6972659B2 (ko)
EP (1) EP1540120A1 (ko)
KR (1) KR20050004841A (ko)
AU (1) AU2003234522A1 (ko)
WO (1) WO2003093615A1 (ko)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220051B2 (en) * 2001-12-05 2007-05-22 Mohsen Shahinpoor Shape memory alloy temperature sensor and switch
GB2398826B (en) * 2003-02-28 2006-02-01 Pbt Electrically controllable latch mechanism
DE602004021967D1 (de) * 2003-04-28 2009-08-20 Alfmeier Praez Ag Stromregelanordnungen mit integral ausgebildeten Formgedächtnislegierungsstellgliedern
JP2006525526A (ja) 2003-05-02 2006-11-09 アルフマイヤー プレチジオーン アクチエンゲゼルシャフト バウグルッペン ウント ジステームレーズンゲン 形状記憶合金アクチュエータを一体に備えたゲージ指示針
US7748405B2 (en) * 2003-09-05 2010-07-06 Alfmeler Prazision AG Baugruppen und Systemlosungen System, method and apparatus for reducing frictional forces and for compensating shape memory alloy-actuated valves and valve systems at high temperatures
CN100547213C (zh) * 2004-05-12 2009-10-07 朱韵成 使用记忆金属线的电子机械锁及其使用方法
US7481054B2 (en) * 2004-06-14 2009-01-27 Delphi Technologies, Inc. Shape memory alloy actuator
EP1619287B1 (en) * 2004-07-13 2007-01-03 C.R.F. Società Consortile per Azioni Household appliance, namely a machine for washing and/or drying laundry, with a door block/release device that can be actuated electrically
US7331616B2 (en) * 2004-07-15 2008-02-19 General Motors Corporation Hood latch assemblies utilizing active materials and methods of use
US7305824B1 (en) * 2004-08-06 2007-12-11 Hrl Laboratories, Llc Power-off hold element
US7220927B2 (en) * 2004-09-16 2007-05-22 Gm Global Technology Operations, Inc. Turn signal assemblies and methods for operating the same
ITTO20040691A1 (it) * 2004-10-08 2005-01-08 Elbi Int Spa Dispositivo di bloccaggio per un elemento mobile, in particolare per un cestello portabiancheria di una macchina lavatrice a carica dall'alto
US7484528B2 (en) * 2004-12-23 2009-02-03 Alfmeier Prazision Ag Baugruppen Und Systemlosungen Valve
DE102005020126A1 (de) * 2005-03-24 2006-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung für eine bidirektionale Auslenkung eines Mittels längs einer Führung
TW200640742A (en) * 2005-04-04 2006-12-01 Telezygology Inc Seals and fasteners
DE102005038654A1 (de) * 2005-08-16 2007-03-08 Siemens Ag Positioniervorrichtung zum Betätigen eines gekoppelten Drittgegenstands
US8096592B2 (en) * 2005-10-12 2012-01-17 Magna Closures Inc. Locking pivot actuator
US7469538B2 (en) * 2005-10-28 2008-12-30 Searete Llc Self assembling/quick assembly structure using shape memory alloy materials
US20070119218A1 (en) * 2005-10-28 2007-05-31 Searete Llc Adaptive engaging assembly
JP2007253675A (ja) * 2006-03-22 2007-10-04 Toyoda Gosei Co Ltd ロック装置及びグラブボックス
US8157300B2 (en) 2006-06-06 2012-04-17 Magna Closures Inc. Shaped memory alloy decklid actuator
US7695389B2 (en) 2006-06-07 2010-04-13 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Conductive polymer drive for actuating eccentric members of a motor
EP1917705B2 (en) * 2006-06-07 2013-03-06 Souriau By-pass device of an electrical component
EP2036108A4 (en) * 2006-06-23 2009-07-22 Cornerstone Res Group Inc CLOSING DEVICE WITH FORMS MEMORY
US7928826B1 (en) 2006-08-04 2011-04-19 Rockwell Collins, Inc. Electrical switching devices using a shape memory alloy (SMA) actuation mechanism
WO2008030797A2 (en) * 2006-09-06 2008-03-13 Telezygology, Inc. Locking strut
DE102006048123A1 (de) * 2006-10-06 2008-04-10 Sitech Sitztechnik Gmbh SMA - shape memory alloy zur Lehnenverstellung
US8761846B2 (en) 2007-04-04 2014-06-24 Motorola Mobility Llc Method and apparatus for controlling a skin texture surface on a device
WO2008127028A1 (en) * 2007-04-12 2008-10-23 Hwan-Kook Jung Apparatus for blocking overheat by using shape memory alloy
US7852190B1 (en) * 2007-04-17 2010-12-14 Rockwell Collins, Inc. Shape memory alloy (SMA) actuation mechanism for electrical switching device
JP4946619B2 (ja) * 2007-05-15 2012-06-06 コニカミノルタオプト株式会社 駆動装置
US9136078B1 (en) * 2007-09-24 2015-09-15 Rockwell Collins, Inc. Stimulus for achieving high performance when switching SMA devices
US8220259B1 (en) 2007-12-21 2012-07-17 Rockwell Collins, Inc. Shape-memory alloy actuator
JP4916415B2 (ja) * 2007-10-29 2012-04-11 オリンパス株式会社 形状記憶素子アクチュエータの制御装置及び制御方法
US8198010B2 (en) * 2007-11-09 2012-06-12 Presstek, Inc. Lithographic imaging with printing members having hydrophilic, surfactant-containing top layers
US7834303B2 (en) * 2008-06-09 2010-11-16 Ahura Energy Concentrating Systems Multi-element concentrator system
US7938444B2 (en) * 2008-10-14 2011-05-10 Autoliv Asp, Inc. Mounting bracket for tether release mechanism
US20100215424A1 (en) * 2009-02-24 2010-08-26 Hr Textron Inc. Locking device with a shape memory alloy actuator and method of use
JP5383321B2 (ja) * 2009-05-28 2014-01-08 日本サーモスタット株式会社 感温アクチュエータ
US20100328015A1 (en) * 2009-06-26 2010-12-30 Nokia Corporation Apparatus for coupling an actuator
EP2326908A4 (en) * 2009-09-03 2014-03-12 Spin Master Ltd RELEASABLE BONDING SYSTEM
US8299637B2 (en) * 2009-12-16 2012-10-30 GM Global Technology Operations LLC Shape-memory alloy-driven power plant and method
US8057753B2 (en) * 2010-02-04 2011-11-15 Lifescan Scotland Limited Test strip ejection mechanism
US8127952B2 (en) 2010-04-20 2012-03-06 Robert Grubba Model train coupler with linear actuator
DE102010038700B4 (de) * 2010-07-30 2021-04-29 Kiekert Aktiengesellschaft Aktuator mit Formgedächtnislegierung
KR101403026B1 (ko) * 2010-10-29 2014-06-03 한국전자통신연구원 우주용 무충격 분리장치
US8353525B2 (en) 2011-03-23 2013-01-15 Autoliv Asp, Inc. Pyrotechnic tether release assembly with a break-away piston for inflatable airbags
US8408585B2 (en) 2011-03-23 2013-04-02 Autoliv Asp, Inc. Pyrotechnic tether release assembly for inflatable airbags
US8408584B2 (en) 2011-03-23 2013-04-02 Autoliv Asp, Inc. Pyrotechnic tether release assembly for inflatable airbags
US8827331B2 (en) 2011-06-06 2014-09-09 International Business Machines Corporation Shape memory alloy locking mechanism
US9140243B2 (en) 2012-11-12 2015-09-22 Toyota Motor Engineering & Manufacturing North America, Inc. Shape memory alloy latch with stable on-off position
US20140225708A1 (en) * 2013-02-14 2014-08-14 GM Global Technology Operations LLC Overload protection for shape memory alloy actuators
WO2014135909A1 (en) 2013-03-06 2014-09-12 Kongsberg Automotive Ab Fluid routing device having a shape memory alloy member
US9296489B2 (en) * 2013-03-14 2016-03-29 Drs C3 & Aviation Company Flight recorder deployment mechanism
US10822835B2 (en) 2013-03-15 2020-11-03 Dewalch Technologies, Inc. Electronic locking apparatus and method
WO2015086089A1 (en) 2013-12-13 2015-06-18 Kongsberg Automotive Ab Sma valve for controlling pressurized air supply to an air cell in a vehicle seat
DE112013007678T5 (de) 2013-12-13 2016-09-15 Kongsberg Automotive Ab SMA-Ventil zur Steuerung von Druckluftzufuhr zu einer Luftzelle in einem Fahrzeugsitz
US10086720B2 (en) 2013-12-13 2018-10-02 Kongsberg Automotive Ab SMA valve for controlling air supply to an air cell in a vehicle seat
BR112016019731B1 (pt) * 2014-02-26 2023-04-04 Labinal, Llc Dispositivo de interrupção de circuito
DE112014006722T5 (de) 2014-06-04 2017-03-02 Kongsberg Automotive Ab SMA-Ventil zur Steuerung der Druckluftzufuhr zu einer Luftzelle in einem Fahrzeugsitz
US9481438B1 (en) 2015-04-01 2016-11-01 Brunswick Corporation Outboard motor cowl assembly using shape memory alloy to actuate seal and/or latch
CN107533934B (zh) * 2015-04-14 2019-12-27 赛峰电气与电源公司 包括形状记忆合金元件的电控开关装置
US9742058B1 (en) * 2015-08-06 2017-08-22 Gregory A. O'Neill, Jr. Deployable quadrifilar helical antenna
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
GB2554360A (en) * 2016-09-21 2018-04-04 The Science And Tech Facilities Council A moveable joint
CN108266069A (zh) * 2016-12-30 2018-07-10 南京江宁公共交通信息科技有限公司 无桩公共自行车智能锁
US10488167B2 (en) * 2017-01-30 2019-11-26 Raytheon Company Wedge-based heat switch using temperature activated phase transition material
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
US10607798B2 (en) * 2018-05-14 2020-03-31 Te Connectivity Corporation Power switch device with shape memory alloy actuator
US11454048B2 (en) * 2018-11-07 2022-09-27 The Boeing Company Shape memory alloy locking apparatuses
US11912221B2 (en) 2019-12-05 2024-02-27 Autoliv Asp, Inc. Actuator devices and assemblies for automotive safety devices
US11180107B2 (en) 2019-12-05 2021-11-23 Autoliv Asp, Inc. Tether release for an automotive safety device
US20220074235A1 (en) * 2020-09-05 2022-03-10 Ryan Joongi Cho Automatic door opening device using thermal expansion of shape memory alloy
GB2607269A (en) * 2021-04-14 2022-12-07 Cambridge Mechatronics Ltd SMA actuator assembly
CN113998155A (zh) * 2021-12-10 2022-02-01 重庆两江卫星移动通信有限公司 一种基于形状记忆合金驱动的锁紧释放装置及制作方法

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US348841A (en) 1886-09-07 Foiieth to william g
US1288060A (en) * 1918-04-09 1918-12-17 Nancy B Le Duc Flag-display device.
US1658669A (en) 1926-06-02 1928-02-07 Gen Electric Thermal responsive device
GB588829A (en) 1944-07-22 1947-06-04 Leonard Satchwell Improvements in thermal regulators for electrical heating apparatus
US2975307A (en) 1958-01-02 1961-03-14 Ibm Capacitive prime mover
US3452175A (en) 1967-05-29 1969-06-24 Atomic Energy Commission Roller-band devices
US3452309A (en) 1967-11-15 1969-06-24 Atomic Energy Commission Roller-band devices
US3748197A (en) * 1969-05-27 1973-07-24 Robertshaw Controls Co Method for stabilizing and employing temperature sensitive material exhibiting martensitic transistions
US3634803A (en) * 1969-07-22 1972-01-11 Robertshaw Controls Co Temperature-responsive switch assemblies
US3641296A (en) 1970-07-02 1972-02-08 Puritan Bennett Corp Roller-band device with diverging walls biasing means
US3725835A (en) 1970-07-20 1973-04-03 J Hopkins Memory material actuator devices
US3940935A (en) 1972-03-31 1976-03-02 The Foxboro Company Positioning device using negative spring-rate tensioning means
US3946669A (en) * 1972-05-30 1976-03-30 Veb Polygraph Leipzig Kombinat Fur Polygraphische Maschinen Und Austrustungen Printing arrangement alternatively operated for one-side printing and two-side printing with control system therefor
US3797450A (en) * 1973-01-08 1974-03-19 L Frisbee Emergency signal flag
US3946699A (en) 1974-12-06 1976-03-30 Lawrence Peska Associates, Inc. Automatic flag storage and display device
US4027953A (en) 1976-03-10 1977-06-07 Donald F. Hassinger Switch controlled adjustable rear view mirror with bimetal means
US4150544A (en) 1976-10-14 1979-04-24 Pachter John J Engine
FR2384944A1 (fr) 1977-03-25 1978-10-20 Sinai Philippe Moteur ou machine thermique utilisant l'effet mecanique de dilatation thermique des solides, des liquides et des gaz
US4247216A (en) * 1979-08-22 1981-01-27 Pansini Andrew L Quick connect handle for swimming pool cleaning tools
GB2068545B (en) * 1980-02-01 1983-07-27 Delta Materials Research Ltd Temperature-responsive actuating elements
US4319659A (en) * 1980-02-04 1982-03-16 Heckelman James D Compartment locking means and thermal actuator therefor
US4427216A (en) 1980-11-05 1984-01-24 Nippon Soken, Inc. Seat belt tensioning device
GB2093589A (en) 1981-02-21 1982-09-02 Pilkington Perkin Elmer Ltd Improvements in or relating to temperature responsive actuators particularly for optical systems
US4559512A (en) 1983-03-14 1985-12-17 Raychem Corporation Self-protecting and conditioning memory metal actuator
JPS6032980A (ja) 1983-08-03 1985-02-20 Hitachi Ltd 駆動装置
JPS6081476A (ja) 1983-10-12 1985-05-09 Hitachi Ltd アクチユエ−タ
EP0147491A1 (en) 1983-12-29 1985-07-10 Spar Aerospace Limited Thermal linear actuator
JPH0355464Y2 (ko) 1984-11-06 1991-12-10
US4751821A (en) 1985-03-29 1988-06-21 Birchard William G Digital linear actuator
JPH0670429B2 (ja) 1985-04-03 1994-09-07 時枝 直満 直線運動型アクチュエータ
US4829767A (en) 1986-10-15 1989-05-16 John Mecca Positioning device
US4742680A (en) 1986-10-15 1988-05-10 John Mecca Antiballistic missile targeter
US4884557A (en) 1987-05-15 1989-12-05 Olympus Optical Co., Ltd. Endoscope for automatically adjusting an angle with a shape memory alloy
US4841730A (en) 1987-07-02 1989-06-27 Pda Engineering Thermal actuator
US4811564A (en) 1988-01-11 1989-03-14 Palmer Mark D Double action spring actuator
US4932210A (en) 1988-08-19 1990-06-12 The Boeing Company Shape memory metal precision actuator
US4887430A (en) * 1988-12-21 1989-12-19 Eaton Corporation Bistable SME actuator with retainer
US4977886A (en) 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
GB8914707D0 (en) 1989-06-27 1989-08-16 Britax Geco Sa Exterior view mirror for a motor vehicle
US5014520A (en) 1990-04-06 1991-05-14 Robertshaw Controls Company Control device having a coiled compression shape memory spring, refrigerator system utilizing the control device and methods of making the same
US5165897A (en) 1990-08-10 1992-11-24 Tini Alloy Company Programmable tactile stimulator array system and method of operation
US5235225A (en) 1990-08-31 1993-08-10 Northwestern University Linear electrostatic actuator with means for concatenation
JP3068638B2 (ja) 1990-09-26 2000-07-24 アイシン精機株式会社 熱操作によるアクチュエータ
US5092781A (en) 1990-11-08 1992-03-03 Amp Incorporated Electrical connector using shape memory alloy coil springs
US5129753A (en) 1990-11-13 1992-07-14 Trw Inc. Shape memory wire latch mechanism
US5578053A (en) * 1993-06-24 1996-11-26 Yoon; Inbae Safety needle instrument having a triggered safety member
US5481184A (en) 1991-12-31 1996-01-02 Sarcos Group Movement actuator/sensor systems
US5127228A (en) 1991-02-07 1992-07-07 Swenson Steven R Shape memory bi-directional rotary actuator
US5312152A (en) 1991-10-23 1994-05-17 Martin Marietta Corporation Shape memory metal actuated separation device
US5344506A (en) 1991-10-23 1994-09-06 Martin Marietta Corporation Shape memory metal actuator and cable cutter
US5713870A (en) * 1991-11-27 1998-02-03 Yoon; Inbae Retractable safety penetrating instrument with laterally extendable spring strip
DE4209815A1 (de) 1992-03-26 1993-09-30 Braun Ag Betätigungsvorrichtung
US5868013A (en) * 1993-06-01 1999-02-09 Nitinol Technologies, Inc. High security lock
US5563466A (en) 1993-06-07 1996-10-08 Rennex; Brian G. Micro-actuator
US5556370A (en) 1993-07-28 1996-09-17 The Board Of Trustees Of The Leland Stanford Junior University Electrically activated multi-jointed manipulator
US5329873A (en) 1993-11-01 1994-07-19 Nancy Tiballi Extendable personal dive flag
JPH07274561A (ja) 1994-03-31 1995-10-20 Olympus Optical Co Ltd 形状記憶合金アクチュエータ制御装置
KR960005617B1 (ko) 1994-06-30 1996-04-30 대우자동차 주식회사 형상기억합금 구동방식의 자동차 백미러 절첩구동장치
KR960007599B1 (ko) 1994-09-30 1996-06-07 대우자동차 주식회사 형상기억합금을 이용한 자동차 백미러 자동수납장치
US5499702A (en) * 1994-10-07 1996-03-19 Wang; King-Sheng Retractable handle assembly
ES2127448T3 (es) 1994-11-14 1999-04-16 Landis & Gyr Tech Innovat Instalacion de accionamiento con un elemento de accionamiento a base de una aleacion de memoria de forma.
US5629662A (en) * 1995-02-01 1997-05-13 Siemens Energy & Automation, Inc. Low energy memory metal actuated latch
FR2730766B1 (fr) 1995-02-22 1997-06-06 Aerospatiale Actionneur thermique double effet a grande course
DE19509177A1 (de) 1995-03-14 1996-09-19 Wolfgang Prof Dr Ing Ziegler Verfahren und Vorrichtung zur positionsgeregelten Aktorik-Bewegung
FR2735187B1 (fr) 1995-06-06 1997-08-29 Aerospatiale Poussoir a actionnement unique motorise par un materiau a memoire de forme.
US5694663A (en) * 1995-08-15 1997-12-09 Tserng; Yueh-Chy Retractable luggage handle assembly
US5771742A (en) 1995-09-11 1998-06-30 Tini Alloy Company Release device for retaining pin
US5770913A (en) 1995-10-23 1998-06-23 Omnific International, Ltd. Actuators, motors and wheelless autonomous robots using vibratory transducer drivers
US5618066A (en) * 1995-11-13 1997-04-08 Fu-Hsiang; Chen Automatic latch device
US5624012A (en) 1995-12-27 1997-04-29 Wang; Jin-Jiao Retractable handle for a suitcase
US5763979A (en) 1996-02-29 1998-06-09 The United States Of America As Represented By The Secretary Of The Navy Actuation system for the control of multiple shape memory alloy elements
US5901554A (en) 1996-05-07 1999-05-11 Greschik; Gyula Expansion rotary engine
US5779386A (en) * 1996-08-15 1998-07-14 Fisher-Price, Inc. Apparatus and method for coupling support members
JP3819438B2 (ja) 1996-08-16 2006-09-06 ノーテル・ネットワークス・リミテッド ディジタル・データの逆多重化
US6069420A (en) 1996-10-23 2000-05-30 Omnific International, Ltd. Specialized actuators driven by oscillatory transducers
TW386150B (en) * 1996-11-08 2000-04-01 Matsushita Electric Works Ltd Flow control valve
US6126115A (en) 1997-01-21 2000-10-03 Lockheed Martin Corporation Apparatus for retaining and releasing a payload
US6434333B2 (en) 1997-05-01 2002-08-13 Minolta Co., Ltd. Driving mechanism using shape-memory alloy
US5917260A (en) 1997-06-13 1999-06-29 Garcia; Ernest J. Electromechanical millimotor
JPH11224455A (ja) * 1998-02-05 1999-08-17 Nec Corp ロック装置
US6062315A (en) 1998-02-06 2000-05-16 Baker Hughes Inc Downhole tool motor
US6133816A (en) * 1998-06-12 2000-10-17 Robertshaw Controls Corp. Switch and relay using shape memory alloy
IT1303102B1 (it) * 1998-07-31 2000-10-30 Eltek Spa Dispositivo di attuazione bistabile.
US5990777A (en) * 1998-08-05 1999-11-23 The Whitaker Corporation Shape-memory wire actuated switch
MXPA01003999A (es) 1998-10-23 2002-04-24 Magna Mirror Systems Inc Espejo retrovisor para vehiculo.
US6019113A (en) 1998-10-26 2000-02-01 General Motors Corporation Method and apparatus for controlling a shape memory alloy fuel injector
AU2369600A (en) 1998-12-16 2000-07-03 Interlogix, Inc. Slam bolt lock working in two way
IT1305590B1 (it) 1998-12-23 2001-05-09 Magneti Marelli Spa Specchio retrovisore per autoveicoli con dispositivo attuatoreanti-abbagliamento, a memoria di forma.
JP3613066B2 (ja) 1999-04-15 2005-01-26 ソニー株式会社 形状記憶合金を用いた駆動装置
US6218762B1 (en) 1999-05-03 2001-04-17 Mcnc Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays
US6450064B1 (en) 1999-05-20 2002-09-17 Starsys Research Corporation Resettable separation mechanism with anti-friction bearings
US6371030B1 (en) * 1999-08-09 2002-04-16 The United States Of America As Represented By The Secretary Of The Navy Training projectile using shape memory alloy members
US6574958B1 (en) 1999-08-12 2003-06-10 Nanomuscle, Inc. Shape memory alloy actuators and control methods
US6327855B1 (en) 2000-02-04 2001-12-11 Jds Uniphase Inc. Actuators including serpentine arrangements of alternating actuating and opposing segments and related methods
US6333583B1 (en) 2000-03-28 2001-12-25 Jds Uniphase Corporation Microelectromechanical systems including thermally actuated beams on heaters that move with the thermally actuated beams
US6326707B1 (en) 2000-05-08 2001-12-04 Mark A. Gummin Shape memory alloy actuator
US6374608B1 (en) 2001-03-06 2002-04-23 Charles James Corris Shape memory alloy wire actuator
US6508437B1 (en) 2002-01-15 2003-01-21 Honeywell International Inc. Launch lock for spacecraft payloads

Also Published As

Publication number Publication date
EP1540120A1 (en) 2005-06-15
US20040035687A1 (en) 2004-02-26
WO2003093615A1 (en) 2003-11-13
AU2003234522A1 (en) 2003-11-17
US6972659B2 (en) 2005-12-06

Similar Documents

Publication Publication Date Title
KR20050004841A (ko) 형상기억합금으로 작동되는 재사용가능한 래치
US7331563B2 (en) Valve with compact actuating mechanism
US7788921B2 (en) Shape memory alloy actuator
US4524343A (en) Self-regulated actuator
US7005778B2 (en) Apparatus for supplying power to a sensor
EP2133566B1 (en) Shape memory alloy actuator
US6040643A (en) Linear actuator
JP2003217422A (ja) 長手方向圧電ラッチングリレー
WO2002061829A3 (en) Passively operated thermally diodic packaging method for missile avionics
US20110226225A1 (en) Biased Releasable Connection System
EP3111463B1 (en) Circuit interruption device employing shape memory alloy element
US7481055B2 (en) Rotary actuator
US20070096860A1 (en) Compact MEMS thermal device and method of manufacture
US6797905B1 (en) Rocker switch
JP2009207336A (ja) 熱伝導構造
JP2006523923A (ja) 濡れフィンガーラッチング圧電リレー
US11572869B2 (en) Mechanical actuator system and EOAT device having such an actuator system
US6246021B1 (en) Switching device
CN217682120U (zh) 形状记忆合金致动器
CN217805284U (zh) 一种应急解锁装置
CN114320797A (zh) 一种形状记忆合金致动器
US7237380B1 (en) Compact actuator
CN114336504A (zh) 机电式安全执行机构过载识别控制系统
ATE240461T1 (de) Mechanismus zur stossdämpfung, insbesondere zur verwendung im weltraum
ATE369616T1 (de) Schaltereinrichtung mit einem aktuatorelement aus einer form-gedächtnis-legierung

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid