KR20040060182A - 저압 기상반응법에 의한 나노 wc계 분말의 제조방법 - Google Patents

저압 기상반응법에 의한 나노 wc계 분말의 제조방법 Download PDF

Info

Publication number
KR20040060182A
KR20040060182A KR1020020086721A KR20020086721A KR20040060182A KR 20040060182 A KR20040060182 A KR 20040060182A KR 1020020086721 A KR1020020086721 A KR 1020020086721A KR 20020086721 A KR20020086721 A KR 20020086721A KR 20040060182 A KR20040060182 A KR 20040060182A
Authority
KR
South Korea
Prior art keywords
precursor
tungsten
gas
based powder
phase reaction
Prior art date
Application number
KR1020020086721A
Other languages
English (en)
Other versions
KR100500551B1 (ko
Inventor
김병기
김진천
하국현
최철진
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR10-2002-0086721A priority Critical patent/KR100500551B1/ko
Priority to JP2003421801A priority patent/JP2004210632A/ja
Priority to US10/747,656 priority patent/US7118724B2/en
Publication of KR20040060182A publication Critical patent/KR20040060182A/ko
Application granted granted Critical
Publication of KR100500551B1 publication Critical patent/KR100500551B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/776Ceramic powder or flake

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 고강도, 내마모가 필요한 초경합금 등의 소재로 사용되는 나노 분말의 제조에 관한 것이며, 그 목적은 저압 기상반응법에 의해 텅스텐이 함유된 전구체를 사용하여 수십 nm급의 WC 분말을 제공함에 있다.
상기 목적 달성을 위한 본 발명에 따른 WC 분말의 제조방법은, 상기 텅스텐을 함유한 전구체를 준비하는 단계; 상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계; 상기 가스를 비산화성 분위기 내에 두고 대기압 미만의 압력 하에서 침탄시키는 단계; 상기 침탄된 가스를 응축하는 단계;를 포함하여 구성되는 것을 특징으로 한다.
이렇게 제조된 나노 WC 분말은 강도가 높고, 내마모성이 우수하여 초경공구 등의 초경합금이나, 내마모용 부품 또는 금형 소재의 원료로서 매우 적합하다.

Description

저압 기상반응법에 의한 나노 WC계 분말의 제조방법{Process for manufacturing WC based powder by vaper reaction under vacuum pressure}
본 발명은 고강도, 내마모가 필요한 초경합금 등의 소재로 사용되는 나노 분말의 제조에 관한 것으로서, 보다 상세하게는 저압 기상반응법에 의해 텅스텐이 함유된 전구체로부터 수십 nm급의 WC 분말을 제조하는 방법에 관한 것이다.
일반적으로 WC계 분말은 텅스텐 분말과 고상의 탄소 분말을 혼합하여 고온에서 침탄시키는 고상반응에 의하여 제조된다. 그러나, 상기 고상반응법은 시초분말이 고상이므로 고상 카본과 혼합 및 밀링하는 공정이 요구되고, 텅스텐 산화물의 다단환원공정이 요구되는 등 공정이 복잡할 뿐만 아니라, 고상간의 반응으로서 반응시간이 길어지므로 WC 입자가 성장하기 때문에 약 0.5㎛ 이하의 분말을 제조하기가 힘들었다.
한편, 1990년도 이후 금속수용성 염을 이용하여 W과 Co를 함유한 수용액을 분무 건조하여 초미립 WC/Co 분말을 얻는 합성 기술, 소위 액상반응에 의한 합성기술이 상용화되고 있다. 그러나, 이러한 액상반응법 역시 액상염을 분무 건조하고 탈염처리 및 밀링, 환원하는 등 공정이 복잡하고, 수용액의 건조 과정 및 환원·침탄 열처리중에 WC 입자의 성장으로 약 0.1㎛ 이하의 극미세 분말을 제조하는데는 한계가 있다.
본 발명의 목적은 저압 기상반응을 이용하여 보다 단순한 공정으로 약 10nm 이하의 WC 초경분말을 합성하는데 있다.
도1은, 본 발명에 따른 나노 WC계 분말의 제조공정도이고,
도2는, 본 발명의 제조방법에 사용되는 나노 분말 제조장치의 개략 구성도이고,
도3은, 본 발명에 따라 제조된 나노 분말의 조직사진이다.
<도면의 주요부분에 대한 부호의 설명>
1 ... 금속유기물 전구체, 2 ... 수송가스 공급파이프,
10 ... 기화기, 15... 반응로밸브,
20 ... 반응로, 21 ... 반응로조절기,
30 ... 응축기, 31 ... 냉각기.
상기 목적을 달성하기 위하여 본 발명은, 텅스텐 함유 전구체로부터 WC계 분말을 제조하는 방법에 있어서,
상기 텅스텐을 함유한 전구체를 준비하는 단계; 상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계; 상기 가스를 비산화성 분위기 내에 두고 대기압 미만의 압력 하에서 침탄시키는 단계; 상기 침탄된 가스를 응축하는 단계;를 포함하여 구성되는 것을 특징으로 한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 텅스텐 함유 전구체를 직접 기화 또는 승화시킨 후, 이를 대기압 미만의 진공압력 하에서 침탄 열처리함으로써, 나노 크기의 목적 분말을 제조하는데 특징이 있다.
상기 전구체는 텅스텐을 함유한 전구체이면 무방하며, 텅스텐 에톡사이드 용액(V 용액) 또는 텅스텐 클로라이드(WCl6) 용액 등의 액상 전구체나, 텅스텐 헥사카보닐[W(CO)6]과 같은 고상의 전구체를 사용할 수도 있다. 또한, 필요에 따라 상기 용액에 Co와 같은 제3 원소를 첨가할 수 있다.
본 발명에서는 상기 전구체를 기화 또는 승화시켜 가스로 만든 후, 가스 상태의 텅스텐을 비산화성 분위기의 진공압력 하에서 침탄시킨다.
도1은, 본 발명에 따른 나노 WC계 분말의 제조공정도이고, 도2는, 상기 전구체를 기화시킨 후 침탄하기 위한, 본 발명의 제조방법에 사용되는 나노 분말 제조장치의 일례를 나타내는 개략 구성도이다.
도2에 도시된 바와 같이, 기상반응을 통한 나노 분말의 제조장치(100)는, 펌프(미도시)에 의하여 저장용기로부터 공급되는 전구체(1)를 기화시키는 기화기(10)와, 기화된 전구체를 가열하여 침탄시키는 반응로(20)와, 상기 반응로(10)에 연결된 응축기(30)를 포함하여 구성된다.
상기 기화기(10)에는 수송가스 공급파이프(2)와 기화된 전구체와 수송가스의 혼합가스가 배출되는 혼합가스 공급파이프(3)가 각각 연결되어 있어 반응로(10)로 혼합가스를 공급한다.
반응로(20)에는 반응로조절기(21)가 연결되어 있어 반응로의 온도를 조절할 수 있다. 그리고, 상기 기화기(10)와 반응로(20) 사이에는 반응로밸브(15)가 설치되어 있어 수송가스의 유량을 조절할 수 있도록 되어 있다.
WC 분말을 제조하기 위하여, 상기 반응로밸브(15)를 열면, 기화된 전구체와 수송가스의 혼합가스가 반응로(20)로 공급되어 대기압 미만의 진공 하에서 침탄된다. 침탄된 가스는 응축기(30)로 제공되어 응축 및 회수되고, 잔류가스는 배출파이프(32)로 배출된다.
본 발명의 주된 특징은, 이와 같이 분자수준의 기상(氣相)인 전구체 가스를 대기압 미만의 진공압력 하에서 침탄시킴으로써, 침탄반응속도가 빠를 뿐만 아니라, 침탄반응이 종료되어 응축된 최종제품분말의 크기를 약 10nm 이하의 나노 수준으로 할 수 있다는 점에 있다. 상기 진공압력은 1.3×10-5atm 이상~1 atm 미만인 것이 바람직하다. 반응로(20)를 1.3×10-5atm 미만의 초진공 상태로 유지하기에는 비용이 너무 많이 들기 때문이다.
상기 공급파이프(2,3)는 스테인레스, 동 등의 금속 또는 알루미나, 뮬라이트, 실리콘 카바이드 등의 세라믹, 테프론 등을 사용할 수 있으며, 전구체(1)의 기화온도인 100~300℃의 온도에서 견딜 수 있는 것이 적당하다. 또한, 기화기(10)도 전구체의 기화온도 이상 견딜 수 있는 한 쪽 끝이 막힌 스테인레스관, 알루미나관, 석영관, 파이렉스관 등을 사용할 수 있다.
수송가스로는 비산화성분위기를 형성할 수 있는 CO, CO2, CH4, C2H4, He, Ar, N2, H2및 이들의 혼합가스 중에서 선택된 적어도 하나를 사용할 수 있으며, 수송가스의 유량은 10~2000cc/min 정도가 적당하다.
한편, 액상의 전구체를 사용할 경우에는, 전구체의 이송유량은 0.05~2cc/min 정도가 적당하다.
반응로(20)는 수평 튜브로의 형식으로 스테인레스관, 석영관, 뮬라이트관, 알루미나관 등이 사용가능하다. 상기 반응로(20)는 히터가 내장되어 있으며, C성분을 함유한 반응가스(침탄가스)가 주입되어 기화된 전구체와 침탄반응을 일으키게 된다.
한편, 수송가스로 CO, CO2, CH4, C2H4등을 사용할 경우에는, 따로 침탄가스를 주입할 필요가 없다. 즉, 기화기(10) 및 공급파이프(3)에서 전구체 가스를 수송하는 수송가스가, 반응로(20)에서는 침탄가스로 사용되는 것이다. 반응로(20)의 온도는 침탄반응이 활발하게 일어나는 온도로 유지되고 있으므로, 상기 수송가스가 반응로에서는 침탄반응을 일으키게 된다.
이 때, 반응로(20)의 분위기는 수송가스에 의하여 비산화성 분위기로 유지된다. 한편, 본 발명에서 500~1500℃의 온도범위에서 침탄열처리가 이루어지는 것이 바람직하며, 더욱 바람직하게는 1000~1200℃에서 침탄되는 것이 좋다. 500℃ 이하에서는, 침탄반응이 활발하게 일어나지 않으며, 제품수율과 원가절감의 차원에서 그 상한선은 1500℃ 이하인 것이 좋다.
반응로(20)에서 침탄된 가스는 응축기(30)로 공급되어 자연 침강하여 응축될 수도 있으나, 응축기 내에 설치된 냉각기 표면에 흡착시켜 응축할 수도 있다. 상기 냉각기 내에는 냉각수, 액체질소 또는 액체헬륨 등의 영하의 냉매가 채워져 있어, 이른바 열 영동효과에 의하여 자연침강에 의한 응축보다 훨씬 빨리 흡착이 진행될 뿐 아니라, 이를 회전시키면 더 우수한 응축효율을 얻을 수 있다.
본 발명에서 상기 전구체에 제3의 원소, 예컨대 Co, Mo, V, Ni, Cr 및 Fe 등과 같은 제3의 원소를 첨가할 수 있음은 물론이다.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다. 그러나, 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.
[실시예]
기화온도가 120~170℃이고 부식성이 없는 고상의 전구체인 텅스텐 헥사카보닐을 준비하고, 이를 도2와 같은 장치에서 기화(기화기 온도 120℃)시켜 외경 약 40mm, 내경 약 30mm인 알루미나관인 반응로 내로 이송하였다. 수송가스로는 CO가스를 사용하였다.
상기 기화된 전구체를 반응로에서 반응온도 및 압력을 달리하여 침탄하고 응축, 회수한 결과를 표 1에 나타내었다.
침탄반응온도(℃) 제품분말입자크기(nm) 반응압력(atm)
발명예 600 4 1.3×10-2
1000 5
비교예 600 53 1(상압)
표 1로 보아 알 수 있듯이, 상압 하에서 침탄시킨 비교예에 비하여 대기압 미만의 저압 하에서 침탄시킨 분말의 입자가 훨씬 더 미세함을 알 수 있다.
한편, 이렇게 침탄 열처리되어 얻어진 WC 분말을 회수하고, 그 회수된 분말을 전자현미경으로 관찰하여, 그 결과를 도3에 나타내었다.
도3에 나타난 바와 같이, 본 발명에 따라 제조된 WC 분말은 그 입자크기가 약 4nm로서 10nm 이하의 크기를 보이고 있다.
상술한 바와 같이, 본 발명에 의하면 텅스텐 전구체를 기화 또는 승화시켜 기상의 텅스텐을 바로 침탄하므로 밀링이나 환원공정이 불필요하므로 공정이 간소하다는 장점이 있다.
또한, 저압 기상반응을 통하여 분자 수준의 기상을 진공 하에서 침탄 및 응축시키므로 수십 nm급의 WC 분말을 제공할 수 있으며, 이러한 나노 분말은 강도가 높고, 내마모성이 우수하여 초경공구 등의 초경합금이나, 내마모용 부품 또는 금형 소재의 원료로서 매우 적합하다.

Claims (6)

  1. 텅스텐 함유 전구체로부터 WC계 분말을 제조하는 방법에 있어서,
    상기 텅스텐을 함유한 전구체를 준비하는 단계;
    상기 전구체를 기화 또는 승화시켜 가스를 발생시키는 단계;
    상기 가스를 비산화성 분위기 내에 두고 대기압 미만의 압력 하에서 침탄시키는 단계;
    상기 침탄된 가스를 응축하는 단계;를 포함하여 구성되는 것을 특징으로 하는 저압 기상반응법에 의한 나노 WC계 분말의 제조방법.
  2. 제1항에 있어서,
    상기 침탄반응은 상기 전구체는 텅스텐 헥토사이드, 텅스텐 클로라이드 및 텅스텐 헥사카보닐 중에서 선택된 적어도 하나인 것을 특징으로 하는 저압 기상반응법에 의한 나노 WC계 분말의 제조방법.
  3. 제1항에 있어서,
    상기 비산화성분위기는 CO, CO2, CH4, C2H4, He, Ar, N2, H2및 이들의 혼합가스 중에서 선택된 적어도 하나를 사용하여 형성되는 것을 특징으로 하는 저압 기상반응법에 의한 나노 WC계 분말의 제조방법.
  4. 제1항에 있어서,
    상기 침탄은 500~1500℃의 온도 하에서 이루어지는 것을 특징으로 하는 저압 기상반응법에 의한 나노 WC계 분말의 제조방법.
  5. 제1항에 있어서,
    상기 침탄된 가스를 대기압 이하의 압력 하에서 응축하는 것을 특징으로 하는 저압 기상반응법에 의한 나노 WC계 분말의 제조방법.
  6. 제1항에 있어서,
    상기 침탄된 가스가 영하의 냉각기 표면에 흡착시켜 응축되는 것을 특징으로 하는 저압기상반응법에 의한 나노 WC계 분말의 제조방법.
KR10-2002-0086721A 2002-12-30 2002-12-30 저압 기상반응법에 의한 나노 wc계 분말의 제조방법 KR100500551B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0086721A KR100500551B1 (ko) 2002-12-30 2002-12-30 저압 기상반응법에 의한 나노 wc계 분말의 제조방법
JP2003421801A JP2004210632A (ja) 2002-12-30 2003-12-19 低圧気相反応法によるナノwc系粉末の製造方法
US10/747,656 US7118724B2 (en) 2002-12-30 2003-12-30 Method of producing nanophase WC powder by vapor phase reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0086721A KR100500551B1 (ko) 2002-12-30 2002-12-30 저압 기상반응법에 의한 나노 wc계 분말의 제조방법

Publications (2)

Publication Number Publication Date
KR20040060182A true KR20040060182A (ko) 2004-07-06
KR100500551B1 KR100500551B1 (ko) 2005-07-12

Family

ID=32822553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0086721A KR100500551B1 (ko) 2002-12-30 2002-12-30 저압 기상반응법에 의한 나노 wc계 분말의 제조방법

Country Status (3)

Country Link
US (1) US7118724B2 (ko)
JP (1) JP2004210632A (ko)
KR (1) KR100500551B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175387B2 (en) 2012-04-13 2015-11-03 Korea Institute Of Science And Technology Method for fabricating two dimensional nanostructured tungsten carbide
CN108217655A (zh) * 2018-01-15 2018-06-29 中国科学院过程工程研究所 一种纳米碳化钨制备系统及制备方法
KR20180133152A (ko) * 2017-06-05 2018-12-13 울산과학기술원 나노 입자 제조 장치 및 제조 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513110B1 (ko) * 2002-12-30 2005-09-07 한국기계연구원 저압 기상반응법에 의한 나노 w 분말의 제조방법
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7247765B2 (en) * 2004-05-21 2007-07-24 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
KR100825688B1 (ko) * 2006-04-04 2008-04-29 학교법인 포항공과대학교 나노다공성 텅스텐 카바이드 촉매 및 그의 제조방법
US7601294B2 (en) * 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
US20100035746A1 (en) * 2006-06-20 2010-02-11 University Of Utah Research Foundation Methods for Making Carbide-Metal Nanocomposite Powders
DE102008014800B3 (de) * 2008-03-18 2009-08-20 Federal-Mogul Burscheid Gmbh Verfahren und Vorrichtung zur Herstellung eines dispersionsgehärteten Gegenstandes, der Carbid-Nanopartikel enthält
CN102897841A (zh) * 2012-09-28 2013-01-30 浙江东晶光电科技有限公司 一种二硫化钨微米结构的制备方法
KR101808405B1 (ko) * 2016-02-04 2017-12-14 한국과학기술연구원 고효율의 다량 기상합성 나노입자 자동제어 포집장치 및 그 포집방법
CN105880605B (zh) * 2016-05-16 2017-12-29 四川欧曼机械有限公司 一种φ80以上大规格硬质合金阀球生产工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175387B2 (en) 2012-04-13 2015-11-03 Korea Institute Of Science And Technology Method for fabricating two dimensional nanostructured tungsten carbide
KR20180133152A (ko) * 2017-06-05 2018-12-13 울산과학기술원 나노 입자 제조 장치 및 제조 방법
CN108217655A (zh) * 2018-01-15 2018-06-29 中国科学院过程工程研究所 一种纳米碳化钨制备系统及制备方法
CN108217655B (zh) * 2018-01-15 2019-10-22 中国科学院过程工程研究所 一种纳米碳化钨制备系统及制备方法

Also Published As

Publication number Publication date
KR100500551B1 (ko) 2005-07-12
US20040219091A1 (en) 2004-11-04
JP2004210632A (ja) 2004-07-29
US7118724B2 (en) 2006-10-10

Similar Documents

Publication Publication Date Title
KR100500551B1 (ko) 저압 기상반응법에 의한 나노 wc계 분말의 제조방법
Taylor et al. Thermal plasma processing of materials: A review
US20070221635A1 (en) Plasma synthesis of nanopowders
JP4356313B2 (ja) 金属化合物微粉末の製造方法
Wang et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction–carburization process
JPWO2020021786A1 (ja) 高嵩密度モリブデンオキシクロライドの製造方法
Wu et al. Preparation technology of ultra-fine tungsten carbide powders: an overview
JPH08225395A (ja) ホウ素ドープされたダイヤモンドの製造方法
KR100494976B1 (ko) 상압 기상반응법에 의한 나노 wc계 분말의 제조방법
KR100513110B1 (ko) 저압 기상반응법에 의한 나노 w 분말의 제조방법
Aksak et al. Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO 2/Si substrates
JPH03199379A (ja) 化学蒸着法を用いる微結晶固体粒子の蒸着方法
KR20040082950A (ko) 기상합성법에 의한 이중벽 탄소나노튜브의 대량 합성 방법
JP2005279624A (ja) カーボンナノチューブの製造用触媒、製造方法及び製造装置
CN111620340B (zh) 一种原位生长TiC纳米管的方法
JPH09287076A (ja) 複合炭素被膜の形成方法
US20100035746A1 (en) Methods for Making Carbide-Metal Nanocomposite Powders
Kim et al. Adhesion improvement of cubic BN: C film synthesized by a helicon wave plasma chemical vapor deposition process
Schäffel et al. Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles
JPS5825404A (ja) 超硬質合金の焼結法
Arora 2 Nanomaterials
JPH01127629A (ja) 硬質合金の製造方法
JP2762561B2 (ja) ダイヤモンド膜の合成方法
JP3893458B2 (ja) 配向性多層ナノチューブの製造方法
JPS61174378A (ja) 硬質窒化ホウ素被覆材料の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100628

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee