KR20040059454A - Method for forming storage node contact in semiconductor - Google Patents

Method for forming storage node contact in semiconductor Download PDF

Info

Publication number
KR20040059454A
KR20040059454A KR1020020086202A KR20020086202A KR20040059454A KR 20040059454 A KR20040059454 A KR 20040059454A KR 1020020086202 A KR1020020086202 A KR 1020020086202A KR 20020086202 A KR20020086202 A KR 20020086202A KR 20040059454 A KR20040059454 A KR 20040059454A
Authority
KR
South Korea
Prior art keywords
storage node
oxide layer
forming
node contact
mechanical polishing
Prior art date
Application number
KR1020020086202A
Other languages
Korean (ko)
Other versions
KR100881837B1 (en
Inventor
노용주
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020020086202A priority Critical patent/KR100881837B1/en
Publication of KR20040059454A publication Critical patent/KR20040059454A/en
Application granted granted Critical
Publication of KR100881837B1 publication Critical patent/KR100881837B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE: A method for forming a storage node contact of a semiconductor device is provided to prevent dishing in CMP(Chemical Mechanical Polishing) by depositing a buffer oxide layer on a bit line. CONSTITUTION: A plurality of bit lines are formed by sequentially depositing a metal line(1), a mask nitride layer(2) and a buffer oxide layer(8), and then forming a spacer(3) at both sidewalls of the same. An oxide pattern(4) is formed on the resultant structure. Polysilicon(5) is deposited on the entire surface of the resultant structure. Then, storage node contacts are formed by performing CMP until the mask nitride layer is exposed.

Description

반도체 소자의 스토리지 노드 컨택 형성 방법{Method for forming storage node contact in semiconductor}Method for forming storage node contact in semiconductor device

본 발명은 반도체 소자의 스토리지 노드 컨택 형성 방법에 관한 것으로서, 보다 상세하게는 비트 라인의 상부에 버퍼 산화막을 증착하여 화학기계적 연마에서의 디싱(Dishing) 현상을 방지한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a storage node contact of a semiconductor device, and more particularly, to prevent dishing in chemical mechanical polishing by depositing a buffer oxide layer on an upper portion of a bit line.

종래의 반도체 소자의 스토리지 노드 컨택 형성 방법에 따르면, 화학기계적 연마에 대하여 막질의 특성 별로 연마 속도가 상이하기 때문에 디싱이 발생되는 문제가 있다.According to the conventional method for forming a storage node contact of a semiconductor device, dishing occurs because the polishing rate is different depending on the characteristics of the film with respect to chemical mechanical polishing.

도 1을 참조하면, 비트 라인은 메탈 라인(1)의 상부에 마스크 질화막(2)이 형성되고, 이들의 측벽에 스페이서(3)가 형성된 구조를 갖는다.Referring to FIG. 1, the bit line has a structure in which a mask nitride film 2 is formed on the metal line 1, and spacers 3 are formed on sidewalls thereof.

그리고, 비트 라인이 형성된 상부에 비트 라인 분리를 위한 산화막(4)을 증착한 후 이를 라인 형태를 갖도록 식각하며, 전면에 다시 폴리 실리콘(5)을 증착한다.Then, the oxide film 4 for the bit line separation is deposited on the bit line formed thereon, and then etched to have a line shape, and polysilicon 5 is deposited on the entire surface.

그 후, 스토리지 노드 컨택을 형성하기 위한 화학기계적 연마가 수행된다.Thereafter, chemical mechanical polishing is performed to form the storage node contacts.

그러나, 비트 라인의 상부 마스크 질화막(2)은 산화막(4)과 폴리 실리콘(5)과 비교하여 화학기계적 연마가 느리게 진행된다.However, the chemical mechanical polishing is slower in the upper mask nitride film 2 of the bit line than in the oxide film 4 and the polysilicon 5.

그러므로, 비트 라인의 상부에 위치한 마스크 질화막(2)이 노출되는 시점까지 화학기계적 연마가 진행되면, 도 2와 같이 마스크 비트 라인의 측방향에 위치한 산화막(4)과 폴리 실리콘(5)의 연마된 레벨이 질화막(2) 보다 낮아지는 디싱 현상이 발생된다.Therefore, when the chemical mechanical polishing is performed until the mask nitride film 2 positioned on the bit line is exposed, the oxide film 4 and the polysilicon 5 polished as shown in FIG. A dishing phenomenon occurs in which the level is lower than that of the nitride film 2.

상기한 디싱은 후속 캐패시터 제조 공정에서 패터닝을 어렵게 만드는 등 반도체 소자의 신뢰성을 저하시키는 주 요인이 되는 문제점이 있다.The dishing has a problem in that reliability of the semiconductor device is deteriorated, such as making patterning difficult in a subsequent capacitor manufacturing process.

본 발명의 목적은 비트 라인의 상부에 버퍼 산화막을 형성함으로써 반도체 소자의 스토리지 노드 컨택 형성 과정에 있어서 발생되는 디싱 현상을 해소함에 있다.An object of the present invention is to form a buffer oxide layer on an upper part of a bit line, thereby eliminating dishing occurring during a storage node contact formation process of a semiconductor device.

도 1 및 도 2는 종래의 반도체 소자의 스토리지 노드 컨택 형성 방법의 공정도1 and 2 are process diagrams of a method for forming a storage node contact of a conventional semiconductor device

도 3 내지 도 6은 본 발명에 따른 반도체 소자의 스토리지 노드 컨택 형성 방법의 바람직한 실시예를 나타내는 공정도3 to 6 are process diagrams showing a preferred embodiment of the method for forming a storage node contact of a semiconductor device according to the present invention.

본 발명에 따른 반도체 소자의 스토리지 노드 컨택 형성 방법은, 메탈 라인과 마스크 질화막 및 버퍼 산화막을 적층하고 스페이서를 형성하여 비트 라인들을 형성하는 제 1 공정; 산화막을 전면 도포하고 상기 비트라인들 상부의 스토리지 컨택 노드를 형성할 영역에 대하여 식각하고, 전면에 걸쳐서 폴리 실리콘을 증착하는 제 2 공정; 화학기계적 연마를 진행하여 마스크 질화막까지 연마하여 스토리지 노드 컨택을 형성하는 제 3 공정을 구비한다.A method of forming a storage node contact of a semiconductor device according to the present invention includes: a first process of stacking a metal line, a mask nitride film, and a buffer oxide film, and forming a spacer to form bit lines; A second process of applying an oxide layer over the entire surface, etching the region to form a storage contact node over the bit lines, and depositing polysilicon over the entire surface; And a third process of performing chemical mechanical polishing to polish the mask nitride film to form a storage node contact.

여기에서, 상기 버퍼 산화막은 BPSG(boron/phosphorus-doped silicon oxide) 또는 FSG(Fluorine-doped silicon oxide) 중 어느 하나의 증착될 수 있으며, 그 두께는 200Å 내지 1000Å으로 형성됨이 바람직하다.Here, the buffer oxide film may be deposited of any one of BPSG (boron / phosphorus-doped silicon oxide) or FSG (Fluorine-doped silicon oxide), the thickness is preferably formed of 200 ~ 1000Å.

이하, 본 발명에 따른 반도체 소자의 스토리지 노드 컨택 형성 방법의 바람직한 실시예에 대하여 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, a preferred embodiment of a method of forming a storage node contact of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 비트 라인의 상부에 화학기계적 연마에 대한 연마 속도가 분리 산화막 및 폴리실리콘에 비하여 빠른 버퍼 산화막을 형성하며, 그에 따라서 디싱이 발생하지 않는 스토리지 노드 컨택을 형성한다.The present invention forms a buffer oxide film on the upper part of the bit line with a faster polishing rate for chemical mechanical polishing than a separate oxide film and polysilicon, thereby forming a storage node contact in which dishing does not occur.

도 3 내지 도 6을 참조하여 본 발명에 따른 실시예를 설명한다.An embodiment according to the present invention will be described with reference to FIGS. 3 to 6.

비트 라인들이 도 3과 같이 형성되며, 각 비트 라인은 메탈 라인(1)과 마스크 질화막(2) 및 버퍼 산화막(8)이 순차적으로 적층되고, 이들의 양측에 스페이서(3)가 형성된 구조를 갖는다.Bit lines are formed as shown in FIG. 3, and each bit line has a structure in which a metal line 1, a mask nitride film 2, and a buffer oxide film 8 are sequentially stacked, and spacers 3 are formed on both sides thereof. .

비트 라인은 마스크 질화막(2) 대신 마스크 SiON이 증착된 구조를 가질 수 있다.The bit line may have a structure in which a mask SiON is deposited instead of the mask nitride film 2.

버퍼 산화막은 BPSG(boron/phosphorus-doped silicon oxide), FSG(Fluorine-doped silicon oxide) 등으로 화학기상증착되는 것이며, 200Å 내지 1000Å의 두께를 갖도록 형성됨이 바람직하다. 버퍼 산화막은 포토레지스트를 이용하여 형성될수 있다.The buffer oxide film is chemical vapor deposited by boron / phosphorus-doped silicon oxide (BPSG), fluorine-doped silicon oxide (FSG), or the like, and is preferably formed to have a thickness of 200 kV to 1000 kPa. The buffer oxide film can be formed using a photoresist.

스토리지 노드 컨택은 비트 라인들의 상부에 형성되며, 이를 위하여 분리 산화막으로서 산화막(4)이 전면에 증착된 후 라인 형태의 해당 영역을 제외한 나머지가 식각으로 제거된다. 그 후 전면에 걸쳐서 폴리 실리콘(5)이 증착된다.The storage node contacts are formed on the bit lines, and for this purpose, after the oxide layer 4 is deposited on the front surface as a separate oxide layer, the remaining portions except for the corresponding region in the form of lines are etched away. Then polysilicon 5 is deposited over the entire surface.

분리 산화막인 산화막(4)은 고밀도 플라즈마 산화막(고밀도 플라즈마 화학기상증착 산화막) 또는 PE-TEOS, O3-TEOS 등으로 형성될 수 있다.The oxide film 4, which is a separation oxide film, may be formed of a high density plasma oxide film (high density plasma chemical vapor deposition oxide film) or PE-TEOS, O 3 -TEOS, or the like.

상기한 산화막(4)과 폴리 실리콘(5)은 스토리지 노드 컨택을 형성하기 위하여 화학기계적 연마에 의하여 연마되며, 이를 위한 화학기계적 연마에 사용되는 슬러리는 50㎚ 내지 300㎚ 크기의 실리카, 알루미나 연마제가 첨가되고 pH 8 내지 pH 11을 유지함이 바람직하다. 그리고, 실리카 연마제 대신 세리아-베이스(Ceria-base) 연마제가 이용될 수 있다.The oxide film 4 and the polysilicon 5 are polished by chemical mechanical polishing to form a storage node contact. The slurry used for the chemical mechanical polishing includes silica and alumina abrasives having a size of 50 nm to 300 nm. It is preferred to add and maintain pH 8 to pH 11. And, instead of silica abrasive, Ceria-base abrasive may be used.

버퍼 산화막(8)은 폴리실리콘(5)이나 산화막(4)에 비하여 화학기계적 연마가 빠르게 진행되는 특성을 갖는다.The buffer oxide film 8 has a characteristic that the chemical mechanical polishing proceeds faster than the polysilicon 5 or the oxide film 4.

그러므로, 화학기계적 연마가 버퍼 산화막(8)이 제거되어 비트 라인의 마스크 질화막(2)이 드러날 때까지 계속되면, 도 5의 A와 같은 험프(Hump)가 형성된다.Therefore, if the chemical mechanical polishing is continued until the buffer oxide film 8 is removed and the mask nitride film 2 of the bit line is exposed, a Hump as shown in FIG. 5A is formed.

이 상태에서 화학기계적 연마가 계속되면, 마스크 질화막(2)이 폴리실리콘(5)이나 산화막(4)에 비하여 화학기계적 연마가 느리게 진행되므로 펌프가 제거되며, 결국 도 6과 같이 디싱이 발생되지 않는 스토리지 컨택 노드가 형성된다.If the chemical mechanical polishing is continued in this state, since the chemical mechanical polishing proceeds slower than that of the polysilicon 5 or the oxide film 4, the pump is removed, and as a result, dishing does not occur as shown in FIG. A storage contact node is formed.

상기한 도 6과 같이 화학기계적 연마가 완료되면 클리닝 공정이 후속된다.As shown in FIG. 6, when the chemical mechanical polishing is completed, the cleaning process is followed.

따라서, 본 발명에 의하면 스토리지 컨택 노드 형성 과정에서 디싱의 발생이 방지되며, 그에 의하여 후속 캐패시터 제조 공정에서 패터닝이 용이해지고, 반도체 소자의 신뢰성이 확보되는 효과가 있다.Therefore, according to the present invention, dishing is prevented during the storage contact node formation process, thereby facilitating patterning in a subsequent capacitor manufacturing process and securing reliability of a semiconductor device.

Claims (10)

메탈 라인, 마스크 질화막 및 버퍼 산화막을 순차적으로 적층하고 스페이서를 형성하여 비트 라인들을 형성하는 제 1 공정;A first step of sequentially stacking a metal line, a mask nitride film, and a buffer oxide film and forming a spacer to form bit lines; 산화막을 전면 도포한 후 상기 비트라인들 상부의 스토리지 컨택 노드를 형성할 영역에 대하여 식각하고, 전면에 걸쳐서 폴리 실리콘을 증착하는 제 2 공정;A second process of depositing polysilicon over the entire surface after applying an oxide film on the entire surface of the bit lines to etch a region to form a storage contact node; 화학기계적 연마를 진행하여 마스크 질화막까지 연마하여 스토리지 노드 컨택을 형성하는 제 3 공정;을 구비함을 특징으로 하는 반도체 소자의 스토리지 노드 형성 방법.And a third step of performing chemical mechanical polishing to polish the mask nitride layer to form a storage node contact. 제 1 항에 있어서,The method of claim 1, 상기 제 1 공정은 메탈 라인과 마스크 SiON 및 버퍼 산화막을 적층하고 스페이서를 형성하여 상기 비트 라인들을 형성함을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The method of claim 1, wherein the bit lines are formed by stacking a metal line, a mask SiON, and a buffer oxide layer, and forming a spacer. 제 1 항에 있어서,The method of claim 1, 상기 버퍼 산화막은 BPSG(boron/phosphorus-doped silicon oxide) 또는 FSG(Fluorine-doped silicon oxide) 중 어느 하나의 증착으로 형성됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The buffer oxide layer is formed by depositing any one of BPSG (boron / phosphorus-doped silicon oxide) or FSG (Fluorine-doped silicon oxide). 제 3 항에 있어서,The method of claim 3, wherein 상기 버퍼 산화막은 200Å 내지 1000Å의 두께로 형성됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The buffer oxide layer is formed to a thickness of 200 ~ 1000Å storage node contact method of the semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 버퍼 산화막은 포토레지스트를 이용하여 형성됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.And the buffer oxide layer is formed using a photoresist. 제 1 항에 있어서,The method of claim 1, 상기 산화막은 고밀도 플라즈마 산화막(고밀도 플라즈마 화학기상증착 산화막), PE-TEOS 또는 O3-TEOS 중 어느 하나로 형성됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The oxide layer is formed of any one of a high density plasma oxide film (high density plasma chemical vapor deposition oxide film), PE-TEOS or O 3 -TEOS. 제 1 항에 있어서,The method of claim 1, 상기 화학기계적 연마에 사용되는 슬러리는 50㎚ 내지 300㎚ 크기의 실리카 연마제 또는 알루미나 연마제가 첨가됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The slurry used for the chemical mechanical polishing is a method for forming a storage node contact of a semiconductor device, characterized in that the addition of silica abrasives or alumina abrasives having a size of 50nm to 300nm. 제 7 항에 있어서,The method of claim 7, wherein 상기 슬러리는 pH 8 내지 pH 11을 유지함을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The slurry is a method of forming a storage node contact of a semiconductor device, characterized in that for maintaining a pH of 8 to 11. 제 1 항에 있어서,The method of claim 1, 상기 화학기계적 연마에 사용되는 슬러리는 세리아-베이스(Ceria-base) 연마제가 이용됨을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The slurry used for chemical mechanical polishing is a ceria-base abrasive, characterized in that the storage node contact forming method of the semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 버퍼 산화막은 상기 산화막 및 상기 폴리실리콘에 비하여 화학기계적 연마 속도가 빠른 것임을 특징으로 하는 반도체 소자의 스토리지 노드 컨택 형성 방법.The buffer oxide layer has a faster chemical mechanical polishing rate than the oxide layer and the polysilicon.
KR1020020086202A 2002-12-30 2002-12-30 Method for forming storage node contact in semiconductor KR100881837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020086202A KR100881837B1 (en) 2002-12-30 2002-12-30 Method for forming storage node contact in semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020086202A KR100881837B1 (en) 2002-12-30 2002-12-30 Method for forming storage node contact in semiconductor

Publications (2)

Publication Number Publication Date
KR20040059454A true KR20040059454A (en) 2004-07-05
KR100881837B1 KR100881837B1 (en) 2009-02-03

Family

ID=37351460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020086202A KR100881837B1 (en) 2002-12-30 2002-12-30 Method for forming storage node contact in semiconductor

Country Status (1)

Country Link
KR (1) KR100881837B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002769U (en) 2016-01-26 2017-08-03 주식회사 영일프레시젼 Supporting Part with Heat Sink and Stacking Structure thereof
KR20180002793U (en) 2017-03-21 2018-10-01 주식회사 영일프레시젼 Heat Sink with Bottom Portion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333543B1 (en) * 1998-12-30 2002-09-17 주식회사 하이닉스반도체 Method for forming gate electrode of semiconductor device
KR100352909B1 (en) * 2000-03-17 2002-09-16 삼성전자 주식회사 Method of forming self-aligned contact structure in semiconductor device and self-aligned contact structure fabricated thereby
KR100598165B1 (en) * 2000-08-31 2006-07-10 주식회사 하이닉스반도체 Method For Forming The Contact Of Semi-conductor Device
KR100623611B1 (en) * 2000-12-18 2006-09-12 주식회사 하이닉스반도체 Method for chemical mechanical polishing of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002769U (en) 2016-01-26 2017-08-03 주식회사 영일프레시젼 Supporting Part with Heat Sink and Stacking Structure thereof
KR20180002793U (en) 2017-03-21 2018-10-01 주식회사 영일프레시젼 Heat Sink with Bottom Portion

Also Published As

Publication number Publication date
KR100881837B1 (en) 2009-02-03

Similar Documents

Publication Publication Date Title
KR100632653B1 (en) Method for forming bitline in semiconductor device
JP4039504B2 (en) Manufacturing method of semiconductor device
KR100881837B1 (en) Method for forming storage node contact in semiconductor
KR100680948B1 (en) Method for manufacturing storage node contact of semiconductor device
KR100640154B1 (en) Methof for manufacturing capacitor
KR100390838B1 (en) Method for forming landing plug contact in semiconductor device
US6303484B1 (en) Method of manufacturing dummy pattern
KR100224782B1 (en) Method of forming an element isolation region in a semiconductor device
US7678661B2 (en) Method of forming an insulating layer in a semiconductor device
US11784056B2 (en) Self-aligned double patterning
KR100400324B1 (en) Method for manufacturing a semiconductor device
KR20020046466A (en) Method for fabricating capacitor of semiconductor device
KR100492897B1 (en) Method for fabricating polysilicon plug using polysilicon slurry
KR20020089998A (en) Method for Forming ILD in Semiconductor Device
KR100745058B1 (en) Method for forming self align contact hole of semiconductor device
KR20000044667A (en) Method of forming contact in semiconductor device
KR100721190B1 (en) Method for forming the semiconductor memory device
KR20030059444A (en) Method of manufacturing semiconductor device
KR100370162B1 (en) method for manufacturing semiconductor device
KR20030058263A (en) Method of forming storage node contact
KR20020001335A (en) Method for manufacturing semiconductor for planarization in damascene gate process
KR19990039741A (en) Planarization method in semiconductor device
KR20040032352A (en) method for forming a metal wiring of a semiconductor device
KR20030000473A (en) Method for manufacturing semiconductor device
KR20070097806A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee