KR20040050225A - sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same - Google Patents
sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same Download PDFInfo
- Publication number
- KR20040050225A KR20040050225A KR1020020077946A KR20020077946A KR20040050225A KR 20040050225 A KR20040050225 A KR 20040050225A KR 1020020077946 A KR1020020077946 A KR 1020020077946A KR 20020077946 A KR20020077946 A KR 20020077946A KR 20040050225 A KR20040050225 A KR 20040050225A
- Authority
- KR
- South Korea
- Prior art keywords
- alloy
- cutting
- tool
- carbide
- tungsten carbide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
본 발명은 탄화텅스텐(WC)계 소결합금 소결체에 관한 것으로, 보다 상세하게는 탄·질화물을 함유하는 탄화텅스텐계 합금으로서, 높은 인성 및 내마모성을 동시에 갖게 하는데 적합한 절삭공구용 소결합금 및 그를 이용한 절삭공구에 관한 것이다.The present invention relates to a tungsten carbide (WC) -based small alloy sintered body, and more particularly, to a tungsten carbide-based alloy containing carbon and nitride, which is suitable for simultaneously having high toughness and wear resistance, and a small alloy for cutting tools and cutting using the same. It is about a tool.
절삭가공 분야의 고속절삭 및 정밀절삭 등의 공구류, 구조재 등을 이용하는 여러 공업분야에서는 고온 특성을 비롯하여 내마모성, 내소성변형, 고인성 특성을 갖게 하기 위해 서멧(cermet)공구 합금과 초경공구 합금 등이 알려지고 있다.In many industries that use tools and structural materials such as high speed cutting and precision cutting in the cutting field, cermet tool alloys and carbide tool alloys are used to provide high temperature characteristics, wear resistance, plastic deformation and high toughness characteristics. It is known.
서멧공구는 탁원한 내마모성과 내소성변형 특성을 가지고 있는 반면에 초경공구에 비해 인성이 부족하여 초경공구와 같이 심한 단속가공 등에는 아직 폭 넓게 사용되지 못하고 있다.The cermet tool has a rugged wear resistance and plastic deformation resistance, but the toughness of the cermet tool is not as widely used for severe interrupted machining such as cemented carbide tools.
또한 초경공구는 서멧공구에 비해 우수한 인성을 가지므로 칩핑이나 내결손 저항은 우수하지만 고속가공에서는 내마모성이 떨어지고 절삭날이 소성변형하기 쉬워 서멧과는 서로 상반된 특성을 가지고 있다.In addition, carbide tools have superior toughness compared to cermet tools, so they have excellent chipping and fracture resistance. However, high speed machining has low wear resistance and easy cutting edge plastic deformation.
종래의 서멧공구 합금의 조성은 티타늄(Ti), 탄화티타늄(TiC) 또는 티타늄탄 -질화물(TiCN)을 주성분으로 하고 주기율표상 4a, 5a, 6a족 원소의 탄화물(Mo2C, TaC,NbC)등을 첨가하고, 결합상으로는 주로 철족 천이금속(Co, Ni)으로 구성된다.Conventional cermet tool alloys consist mainly of titanium (Ti), titanium carbide (TiC) or titanium carbon-nitride (TiCN), and carbides of group 4a, 5a, and 6a elements (Mo 2 C, TaC, NbC) on the periodic table. Etc. are added, and the bonding phase is mainly composed of iron group transition metals (Co, Ni).
이러한 서멧공구의 개발은 인성과 내마모성을 보다 더 개선시켜 공구수명을 높이기 위해 주로 경질상인 탄화티타늄(TiC) 또는 티타늄탄-질화물(TiCN)의 구성 함량을 높이거나, 결합금속(Co, Ni)함량을 줄이면서 질소함량을 높이는 연구가 제안되어 왔다.The development of these cermet tools increases the constituent content of titanium carbide (TiC) or titanium carbon-nitride (TiCN), which is mainly hard, to improve the toughness and wear resistance. Research has been proposed to increase the nitrogen content while reducing the amount of nitrogen.
또한 서멧공구 합금의 탄소와 질소 함량을 조절함으로써 조직 중 경질상을 둘러싸고 있는 탄·질화물 유심조직(core structure)의 두께를 조절하여 합금의 강도나 인성을 개선시키는 방법도 제시되었다. 상기와 같은 방법에 따라 본래 목적으로 한 서멧공구의 내마모성과 인성이 어느 정도 개선되긴 하였으나, 초경합금과 같은 우수한 인성을 얻기에는 아직까지 부족하였다.In addition, a method of improving the strength and toughness of the alloy by controlling the carbon and nitrogen content of the cermet tool alloy by controlling the thickness of the carbon-nitride core structure surrounding the hard phase of the structure has been proposed. Although the abrasion resistance and toughness of the cermet tool originally intended according to the above method were improved to some extent, it was still insufficient to obtain excellent toughness such as cemented carbide.
초경공구 합금은 탄화텅스텐(WC)를 주성분으로 하고 결합상으로 코발트 (Co)를 사용하며, 고온 특성을 높이기 위해 소량의 TiC나 TaC를 첨가하기도 한다. 이러한 초경공구 합금의 내마모성을 높이기 위한 연구는 대부분 탄화바나듐(VC)과 같은 결정립 성장 억제재를 첨가하여 미립조직을 얻는 방법과 소결체 표면에 코발트(Co)농도를 감소시켜 내마모성을 개선시키는 방법등이 보고되어 왔다.The carbide tool alloy is mainly composed of tungsten carbide (WC), cobalt (Co) as a binding phase, and a small amount of TiC or TaC is added to improve high temperature characteristics. Most studies on the wear resistance of such carbide tool alloys include adding grain growth inhibitors such as vanadium carbide (VC) to obtain fine grains and improving the wear resistance by reducing the cobalt (Co) concentration on the surface of the sintered body. Has been.
이러한 내마모성과 인성의 서로 상반되는 특성을 이상적으로 동시에 대폭 개선하여 절사특성을 높이는 것은 서멧공구나 초경공구에서는 한계가 있었다고 볼수 있다.The improvement of cutting characteristics by ideally and at the same time significantly improving the opposing characteristics of wear resistance and toughness can be said to be limited in cermet tools and carbide tools.
본 발명은 종래의 문제점을 해결하기 위한 것으로, 서멧공구 합금이 가지는 우수한 내마모성 및 내열특성 등과 초경공구 합금에 필적하는 인성을 동시에 만족시킬 수 있는데 적합한 소결합금을 얻는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and an object thereof is to obtain a suitable small-alloy alloy capable of simultaneously satisfying the excellent wear resistance and heat resistance of the cermet tool alloy and toughness comparable to that of the cemented carbide tool alloy.
도 1은 본 발명에 따른 현미경 확대 합금조직 사진1 is a microscope enlarged alloy structure photograph according to the present invention
상기 목적을 달성하기 위한 본 발명은 탄화텅스텐(WC)이 20∼65중량%, 주기율표상 4a, 5a, 6a족 원소의 탄화물 또는 탄질화물 중 적어도 1종이 30∼60중량%, 천이금속으로 된 결합상금속이 10∼30 중량%로 조성됨을 특징으로하는 탄화텅스텐 소결합금으로 이루어진다.The present invention for achieving the above object is 20 to 65% by weight of tungsten carbide (WC), 30 to 60% by weight of at least one of the carbides or carbonitrides of the 4a, 5a, 6a group elements of the periodic table, the combination of transition metals The tungsten carbide sub-alloy is characterized in that the phase metal is composed of 10 to 30% by weight.
본 발명은 상기한 소결합금을 이용하여 각종 인써트형 절삭공구를 얻을 수 있음은 물론 인써트형 절삭공구를 모재로 하여 물리증착법(PVD) 또는 화학증착법(CVD)으로 경질 세라믹물질을 표면에 코팅처리한 코팅 절삭공구를 얻을 수 있음은 물론이다.According to the present invention, various insert-type cutting tools can be obtained using the above-described small alloy, and hard ceramic material is coated on the surface by physical vapor deposition (PVD) or chemical vapor deposition (CVD) using the insert-type cutting tool as a base material. Of course, a coated cutting tool can be obtained.
상기 조성에서 주기율표상의 4a, 5a, 6a족 원소로서는 타타늄(Ti), 탄탈(Ta), 몰리브덴(Mo), 니오븀(Nb), 지르코늄(Zr)등이 바람직하며, 탄질화물로서가장바람직하기로는 탄질화티타늄(TiCN) 이다.Titanium (Ti), tantalum (Ta), molybdenum (Mo), niobium (Nb), zirconium (Zr) and the like are preferable as the 4a, 5a and 6a group elements on the periodic table in the above composition. Titanium carbonitride (TiCN).
상기 탄질화물인 TiCN분말은 TiN비가 25∼95%의 조성비를 갖는 TiN(TiC/TiN)=0.25∼0.95의 분말을 사용하여 TiCN이 20∼50중량%이고, 이때 기타 탄화물은 Mo2C, TaC, NbC, ZrC 중 적어도 1종이 10중량% 이하인 경우가 가장 바람직 하다. 한편 천이금속으로서 결합상을 이루는 금속은 Co-Ni결합상이 바람직하다.The TiCN powder, which is a carbonitride, has a TiCN of 20 to 50% by weight using a TiN (TiC / TiN) = 0.25 to 0.95 powder having a TiN ratio of 25 to 95%, and other carbides are Mo 2 C, TaC Most preferably, at least one of NbC and ZrC is 10% by weight or less. On the other hand, as the transition metal, the metal forming the bonding phase is preferably a Co-Ni bonding phase.
도 1은 본 발명의 합금에 따른 현미경사진을 나타낸 것으로, 이러한 복합조직은 질소함유로 인해 미립화된 조직이며, 고농도의 WC가 TiCN 및 제2탄화물과 반응하여 (W, Ti, Ta)CN 등의 탄질화물을 형성하고 주위에 WC입자가 분산되어 있는 조직을 나타낸다.Figure 1 shows a micrograph according to the alloy of the present invention, such a composite structure is a micronized structure due to the nitrogen containing, high concentration of WC reacts with TiCN and the second carbide (W, Ti, Ta) CN, etc. It shows the structure where carbonitride is formed and WC particles are dispersed around.
상기 복합조직 중 주경질상인 탄질화물 입자들은 공구의 내마모성 및 내열특성을 개선시키고 주위에 분산되어 있는 높은 탄성계수를 가진 WC입자는 충격을 흡수하여 인성을 개선시키는 역할을 하여 절삭공구로서 우수한 절삭특성을 나타낸다.Carbon nitride particles, which are the major hard phases of the composite structure, improve the wear resistance and heat resistance of the tool, and the WC particles having a high modulus of elasticity dispersed around them serve to improve the toughness by absorbing the impact and thus have excellent cutting characteristics. Indicates.
또한 서멧공구와 같이 탄질화물(TiCN)을 함유하는 합금의 경우 주요 제조공정인 소결공정에서 특히, 소결성이 크게 떨어져 1450℃ 이상의 높은 소결온도를 요하지만, 본 발명의 합금은 오히려 1400℃이하의 낮은 온도에서도 손쉽게 소결이 가능한 특성을 얻을 수 있다.In addition, alloys containing carbonitrides (TiCN), such as cermet tools, require a high sintering temperature of 1450 ° C. or higher due to a particularly poor sinterability in the sintering process, which is a major manufacturing process. It is possible to obtain characteristics that can be easily sintered even at temperature.
다음은 실시예에 따라 설명한다.The following is described according to the embodiment.
실시예 1Example 1
본 발명의 합금을 설계함에 있어, 각 탄화물 및 코발트(Co), 니켈(Ni)은 평균입도 1.0∼1.5㎛, 순도99.9%의 공업용 원료분말을 사용하였다. 그리고탄질화물(TiCN)분말은 질소함유 합금을 만들기 위해 TiN비가 25∼95%의 조성비를 갖는 TiN(TiC/TiN)=0.25∼0.95의 분말을 사용하였다. 본 발명의 합금과 종래의 서멧합금 및 유사재종의 ISO P-계열의 초경합금의 조성을 표1에 나타냈다.In designing the alloy of the present invention, each carbide, cobalt (Co) and nickel (Ni) used an industrial raw material powder having an average particle size of 1.0 to 1.5 µm and a purity of 99.9%. The carbonitride (TiCN) powder was made of TiN (TiC / TiN) = 0.25-0.95 having a TiN ratio of 25-95% to form a nitrogen-containing alloy. Table 1 shows the composition of the alloy of the present invention, conventional cermet alloys, and cemented carbides of the ISO P-series of similar grades.
상기 표1에서와 같이 본 발명의 합금은 종래의 서멧과 초경합금의 조성과 크게 다름을 알 수 있다. 상기한 본 발명의 합금을 이용한 소결방법에 있어서는 통상의 초경합금 또는 서멧공구의 제조방법인 분말야금법으로 제조하였다.As shown in Table 1, it can be seen that the alloy of the present invention is significantly different from the composition of the conventional cermet and cemented carbide. In the sintering method using the alloy of the present invention described above was prepared by the powder metallurgy method, which is a manufacturing method of a conventional cemented carbide or cermet tool.
먼저, 각 원료분말을 습식 볼 밀링 분쇄법으로 50∼80시간 분쇄, 혼합한 후 건조하여 각 규격의 시험편 및 절삭공구를 성형압 150∼200MPa로 성형하였으며, 성형체의 소결은 소결온도 1350∼1400℃구간에서 30∼60분 진공(또는 질소)분위기로 소결하였다. 종래의 서멧 절삭공구의 소결온도는 1450℃이상인 것에 비해 본 발명의 경우는 1400℃이하에서 충분히 치밀한 소결이 이루어졌다.First, each raw powder was pulverized and mixed for 50 to 80 hours by wet ball milling, followed by drying. The test pieces and cutting tools of each specification were molded at a molding pressure of 150 to 200 MPa. Sintered under vacuum (or nitrogen) atmosphere for 30 to 60 minutes in the section. The sintering temperature of the conventional cermet cutting tool is more than 1450 ℃, in the case of the present invention is sufficiently dense sintering at 1400 ℃ or less.
실시예 2Example 2
상기와 같이 소결제조한 본 발명의 합금을 다이야몬드 연삭 휠을 사용하여 연삭가공하여 물성 시험편 및 규격의 절삭공구를 제조하였다. 연삭 가공성은 서멧합금보다 양호하였으며, 초경합금과 유사한 연삭특성을 나타내었다.The alloy of the present invention sintered as described above was ground using a diamond grinding wheel to prepare a test piece of physical properties and a cutting tool of the standard. Grindability was better than cermet alloy and showed similar grinding characteristics as cemented carbide.
상기 제조된 각 시험편으로부터 합금의 조직사진(시료번호2)을 도 1에 나타내었다. 앞에서 설명하였듯이 본 발명의 합금조직은 종래의 서멧과 초경합금 조직과는 다른 양 조직을 복합화한 조직으로 나타내었다.The structure photograph (sample number 2) of the alloy from each of the prepared test pieces is shown in FIG. As described above, the alloy structure of the present invention is represented by a complex structure of both the conventional cermet and the cemented carbide structure.
각 합금의 항자력, 경도, 굽힘강도. 파괴인정 등의 기계적특성을 특정하여 표2에 나타내었다.Coercive force, hardness, and bending strength of each alloy. The mechanical properties such as failure recognition are shown in Table 2.
상기 표2와 같이, 본 발명의 합금은 기존의 절삭공구 합금인 서멧과 비교하여 유사한 경도를 가지는 반면에 파괴인성과 열전도도가 대폭향상된 것을 알 수 있다. 또한 동일 용도의 ISO P-계열의 대표적인 초경합금에 비해서는 유사 강도 및 파괴인성 값을 가지면서도 서멧공구 합금 수준의 높은 경도 값을 가지는 것을 알수 있다.As shown in Table 2, it can be seen that the alloy of the present invention has a similar hardness compared to the conventional cutting tool alloy cermet, while significantly improving fracture toughness and thermal conductivity. In addition, compared to the typical cemented carbide of the ISO P-series of the same use it can be seen that it has a high hardness value of the cermet tool alloy level while having similar strength and fracture toughness values.
실시예 3Example 3
상기 실시예 1, 2의 각 합금을 이용 절삭공구를 제작하여 절삭성능을 평가하였다. 절삭공구의 규격은 SPKN1203EDTR 밀링 인서트로 제작하여 동일용도의 종래의 서멧 및 초경합금 공구와 절삭성능을 비교하여 표3에 나타내었다.Cutting tools were fabricated using the alloys of Examples 1 and 2 to evaluate cutting performance. The cutting tool specifications were prepared with SPKN1203EDTR milling inserts and are shown in Table 3 comparing cutting performance with conventional cermet and cemented carbide tools of the same use.
밀링시험은 90×90×200mm의 피삭제 합금강인 SCM4(HB240) 및 KP4(합금강, HB320)를 건식 상향 절삭으로 하였고, 서멧 또는 초경공구가 기존 사용되는 절삭조건(절삭속도 V, 이송속도 f, 절삭깊이d)에서 각 절삭공구의 절삭날 측면(flank)마모량이 0.25mm에 도달 할 때까지의 절삭한 거리로 평가하였고, 절삭도중 공구의 결손이 발생하거나 칩핑이 발생하여 더 이상 절삭가공이 어려울 경우에는 공구수명이 끝난 것으로 평가하였다.In the milling test, dry up-cutting of SCM4 (HB240) and KP4 (alloyed steel, HB320), 90 × 90 × 200 mm alloy steel, was carried out and the cutting conditions (cutting speed V, feed rate f, The cutting distance d) was evaluated as the cutting distance from the cutting edge flank of each cutting tool to 0.25mm, and it would be difficult to cut any more due to the lack of tools or chipping during cutting. In this case, tool life was evaluated as being over.
피삭재에 대한 절삭조건: 절삭속도 V=200m/min.Cutting conditions for the workpiece: cutting speed V = 200 m / min.
이송속도 f=0.2mm/rev.Feedrate f = 0.2mm / rev.
절삭깊이 d= 2.0mmDepth of cut d = 2.0 mm
상기 표3에서와 같이 본 발명 합금의 절삭공구는 종래의 서멧공구나 초경공구에 비해 탁월한 절삭성능을 가지는 것을 알 수 있다.As shown in Table 3, it can be seen that the cutting tool of the alloy of the present invention has excellent cutting performance compared to conventional cermet tools or cemented carbide tools.
본 발명 합금 절삭공구는 공구수명까지의 절삭거리가 타 공구에 비해 뛰어날 뿐 만 아니라, 공구수명까지의 절삭 날끝이 정상마모로 진행되는데 비해 서멧과 초경공구는 수명말기에 칩핑이나 결손현상이 발생하였다. 이는 서멧공구의 칩핑마모는 인성이 부족하기 때문이며, 초경공구의 경우 수명말기에 결손마모가 일어나는 것은 내마모성이 부족하기 때문으로 볼 수 있다. 이에 비해 본 발명 합금의 절삭공구가 뛰어난 절삭성능을 가지는 것은 내마모성과 인성을 균형있게 가지고 있기 때문으로 판단된다.In the alloy cutting tool of the present invention, not only the cutting distance to the tool life is superior to other tools, but also the cutting edge of the tool life progresses to normal wear, whereas the cermet and carbide tools have chipping or defects at the end of their life. . This is because the chipping wear of the cermet tool lacks toughness, and in the case of cemented carbide tools, defect wear occurs at the end of the service life due to the lack of wear resistance. On the other hand, it is judged that the cutting tool of the alloy of the present invention has excellent cutting performance because it has a balance of wear resistance and toughness.
또한 각 절삭공구의 인성(내결손성)을 조사하기 위해 SCM4피삭재를 절삭 할 때 동일 절삭조건에서 이동속도를 증가시켜 칩핑 및 결손을 유도해 가면서 각 공구가 결손 될 때까지 절삭시험한 결과를 표4에 나타내었다.In addition, when cutting SCM4 workpieces to investigate the toughness (break resistance) of each cutting tool, the cutting test results until each tool is missing while increasing the moving speed under the same cutting conditions to induce chipping and defects. 4 is shown.
※ 피삭재: SCM4. 절삭속도: V=100m/min. 절삭깊이: d=2.0mm※ Workpiece: SCM4. Cutting speed: V = 100m / min. Depth of cut: d = 2.0mm
상기 인성시험 결과, 본 발명 합금의 절삭공구는 서멧은 물론 초경공구보다도 오히려 우수한 인성을 나타내었다. 표2에서와 같이 파괴인성 값은 초경합금이 가장 우수하지만, 본 발명은 이에 근접한 파괴인성을 가지면서 보다 높은 경도 값을 가지는 본 발명 합금공구가 상대적으로 더 높은 이송속도에서도 공구의 결손이 없었다. 이는 공구재료의 요구 특성 중 인성과 내마모성이 균형있게 겸비하여야 함을 잘 말해 주고 있다.As a result of the toughness test, the cutting tool of the alloy of the present invention showed excellent toughness rather than cermet carbide tools. As shown in Table 2, the fracture toughness value is the best of the cemented carbide, but the present invention has a fracture toughness close to this, and the alloy tool of the present invention having a higher hardness value has no tool defect even at a relatively higher feed rate. This shows that the toughness and abrasion resistance of the tool material must be balanced.
한편, 밀링절삭에 있어서는 절삭속도가 높아질수록 공구 절삭날에 열크랙이 발생하기 쉬우며, 특히 이러한 열크랙의 발생과 발달 유무에 따라 공구수명이 결정되는 경우가 많다. 각 공구의 열크랙 저항성을 조사하기 위하여 표3에서 피삭재 KP4 절삭조건과 동일한 밀링절삭 시험에서 절삭속도를 250m/min으로 상향조정하여 절삭거리 1.5m를 절삭한 후 절삭날부의 열균열을 조사하였다.On the other hand, in milling cutting, the higher the cutting speed, the more easily cracks are generated on the cutting edge of the tool, and in particular, the tool life is often determined by the occurrence and development of such cracks. In order to investigate the thermal crack resistance of each tool, the cutting speed was adjusted to 250m / min in the same milling cutting test as the workpiece KP4 cutting conditions in Table 3, and the cutting distance of 1.5m was cut and the thermal cracks of the cutting edges were examined.
열균열 저항은 본 발명 합금공구와 초경공구가 유사하게 나타났으나, 마모현상은 초경합금이 더욱 심하게 나타났다. 서멧공구는 열균열이 가장 크게 발달하였는데, 이는 기본적으로 표2에서와 같이 열전도도가 낮기 때문인 것으로 판단된다.The thermal cracking resistance of the alloy tool and the cemented carbide tool of the present invention was similar, but the wear phenomenon of the cemented carbide was more severe. In the cermet tool, thermal cracking was most developed, which is primarily because of low thermal conductivity as shown in Table 2.
본 발명 합금공구는 표2에서와 같이 서멧에비해 상대적으로 열전도도가 높아 열균열 저항성이 큰 것을 알 수 있다.As shown in Table 2, the alloy tool of the present invention has a relatively high thermal conductivity compared to the cermet, and thus has a high thermal cracking resistance.
이상에서와 같이 본 발명 합금공구는 기계적 특성 및 절삭특성이 종래의 초경공구(코팅공구), 서멧공구 및 세라믹공구에 비해 인성과 내마모성을 균형있게 갖추고 있을 뿐 만 아니라 열적특성도 우수하여 뛰어난 절삭특성을 나타내는 것을 확인 하였으며, 향후 새로운 범용성 공구로서 각종 금속 피삭재의 절삭가공에서 뛰어난 성능을 발휘할 수 있을 것으로 판단된다. 또한 코팅모재로 사용할 경우 더욱 뛰어난 내마모특성을 나타내므로 비코팅 공구 뿐만 아니라 코팅공구로도 응용히 기대된다.As described above, the alloy tool of the present invention has excellent mechanical properties and cutting characteristics as well as excellent toughness and wear resistance as well as excellent thermal properties compared to conventional carbide tools (coating tools), cermet tools, and ceramic tools. The new versatile tool is expected to show excellent performance in the cutting of various metal workpieces in the future. In addition, it is expected to be applied to coating tools as well as uncoated tools because it shows more excellent wear resistance when used as a coating base material.
이상에서와 같이 본 발명 합금을 이용한 절석공구는 인성과 내마모성을 동시에 만족함으로써 기존 서멧공구의 사용영역인 절삭 뿐만아니라 초경공구의 사용영역까지를 장수명 공구로서 폭 넓게 사용할 수 있으므로써 탄소강, 합금강, 금형강 뿐만 아니라 스테인레스강 등의 절삭가공 분야에서 새로운 범용성 절삭공구로서의 폭 넓은 적용이 가능하며, 상기 소재를 모재로 하고 그 표면에 물리증착법(PVD)또는 화학증착법(CVD)으로 코팅처리하여 사용하는 절삭공구에 사용됨은 물론 상기 소재를 사용한 금형, 다이스, 치구 등의 각종 내마모 재료등에 광범위하게 사용할 수 있다. 또한 기존의 각종 강의 절삭방식인 단속가공이나 황삭가공에서는 코팅 초경공구를 사용하고, 정삭가공 또는 마무리 가공에서는 서멧공구로 바꾸어 사용하는 것에 비해 본 발명의 절삭공구로 두 영역의 절삭가공을 모두 대체 할 수 있는 큰 장점이 있다. 또한 본 발명의 합금을 제조함에 있어서는 기존의 서멧공구 합금보다 소결성이 양호하여 기존보다 약50℃ 이하 낮은 온도에서도 소결이 가능하고, 성형성 및 연삭성도 우수하여 공구합금의 제조가 용이하고 제조원가도 낮출 수 있는 장점도 있다.As described above, the cutting tools using the alloy of the present invention satisfy the toughness and wear resistance at the same time, so that not only the cutting area of the conventional cermet tool, but also the use area of the cemented carbide tool can be widely used as a long-life tool. A wide range of applications as a new universal cutting tool is possible in cutting applications such as stainless steel as well as steel, and cutting is used as the base material and the surface is coated by physical vapor deposition (PVD) or chemical vapor deposition (CVD). As well as being used in a tool, it can be widely used for various wear-resistant materials, such as a metal mold | die, dice | die, and a jig | tool using the said material. In addition, the cutting tool of the present invention can be used to replace both cutting processes in the cutting tool of the present invention, compared to using a coated carbide tool for interrupted or rough machining, which is a conventional cutting method for steel, and to a cermet tool for finishing or finishing. There is a big advantage to that. In addition, in the manufacture of the alloy of the present invention sinterability is better than the conventional cermet tool alloy is possible to sinter even at a temperature lower than about 50 ℃ or less, and excellent moldability and grinding properties, and easy to manufacture tool alloys and lower manufacturing costs There are also advantages.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0077946A KR100497850B1 (en) | 2002-12-09 | 2002-12-09 | sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0077946A KR100497850B1 (en) | 2002-12-09 | 2002-12-09 | sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040050225A true KR20040050225A (en) | 2004-06-16 |
KR100497850B1 KR100497850B1 (en) | 2005-06-29 |
Family
ID=37344452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0077946A KR100497850B1 (en) | 2002-12-09 | 2002-12-09 | sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100497850B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2802601C1 (en) * | 2023-04-05 | 2023-08-30 | Общество с ограниченной ответственностью "Вириал" | Carbide alloy with a reduced content of tungsten carbide for the manufacture of cutting tools and a method for its production |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927447B2 (en) * | 2012-06-28 | 2015-01-06 | Ngk Spark Plug Co., Ltd. | Ceramic sintered body |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60211040A (en) * | 1984-04-06 | 1985-10-23 | Hitachi Metals Ltd | Wear resistant sintered hard alloy |
JPH06170611A (en) * | 1986-01-27 | 1994-06-21 | Mitsubishi Materials Corp | Surface coating tungsten carbide base cemented carbide cutting tool |
JP2668977B2 (en) * | 1988-09-06 | 1997-10-27 | 三菱マテリアル株式会社 | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance |
DE69227503T2 (en) * | 1991-09-02 | 1999-04-22 | Sumitomo Electric Industries, Ltd., Osaka | HARD ALLOY AND THEIR PRODUCTION |
KR19990075035A (en) * | 1998-03-17 | 1999-10-05 | 유창종 | Titanium Carbonitride-based Composite Carbonitride Ceramic Sintered Body and Manufacturing Method Thereof |
-
2002
- 2002-12-09 KR KR10-2002-0077946A patent/KR100497850B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2802601C1 (en) * | 2023-04-05 | 2023-08-30 | Общество с ограниченной ответственностью "Вириал" | Carbide alloy with a reduced content of tungsten carbide for the manufacture of cutting tools and a method for its production |
Also Published As
Publication number | Publication date |
---|---|
KR100497850B1 (en) | 2005-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2134881B1 (en) | Composite articles | |
US6010283A (en) | Cutting insert of a cermet having a Co-Ni-Fe-binder | |
KR101859644B1 (en) | Sintered alloy for cutting tools and cutting tools for heat resistant alloy | |
EP0864661B1 (en) | Nitrogen-containing sintered hard alloy | |
WO2010104094A1 (en) | Cermet and coated cermet | |
JPH02254131A (en) | Nitrogen-containing cermet having excellent various characteristics, its manufacture and coated nitrogen-containing cermet | |
JP2014198362A (en) | Surface coated cutting tool | |
WO2022194767A1 (en) | Cutting tool | |
WO2023188875A1 (en) | Sintered body and cutting tool | |
KR101302374B1 (en) | Cemented carbide having good wear resistance and chipping resistance | |
KR102395885B1 (en) | Hard film for cutting tools | |
KR100497850B1 (en) | sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same | |
JPH10298698A (en) | Cemented carbide | |
JP2004223666A (en) | Cutting tool for rough machining | |
JP7385351B2 (en) | Free-cutting cemented carbide | |
JP2000126905A (en) | Surface-covered tungsten carbide group cemented carbide cutting tool excellent in chipping resistance | |
JP2017179474A (en) | Hard metal used for tool for processing nonmetallic material | |
JPH0332502A (en) | Cermet tool | |
JP2020033597A (en) | TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL | |
JP4284153B2 (en) | Cutting method | |
JPH0673560A (en) | Coated sintered hard alloy member and its production | |
KR102265210B1 (en) | Cutting tools having improved toughness | |
JP3368367B2 (en) | Tungsten carbide based cemented carbide and cutting tools | |
WO2009116616A1 (en) | Tungsten carbide-based sintered object | |
JP3878334B2 (en) | Cemented carbide and coated cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120605 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130613 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |