KR20030030755A - Multi-layer deposition method using plasma - Google Patents

Multi-layer deposition method using plasma Download PDF

Info

Publication number
KR20030030755A
KR20030030755A KR1020010063117A KR20010063117A KR20030030755A KR 20030030755 A KR20030030755 A KR 20030030755A KR 1020010063117 A KR1020010063117 A KR 1020010063117A KR 20010063117 A KR20010063117 A KR 20010063117A KR 20030030755 A KR20030030755 A KR 20030030755A
Authority
KR
South Korea
Prior art keywords
chamber
corrosion resistant
plasma
resistant layer
layer
Prior art date
Application number
KR1020010063117A
Other languages
Korean (ko)
Other versions
KR100438941B1 (en
Inventor
오정근
Original Assignee
주식회사 엘지이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지이아이 filed Critical 주식회사 엘지이아이
Priority to KR10-2001-0063117A priority Critical patent/KR100438941B1/en
Publication of KR20030030755A publication Critical patent/KR20030030755A/en
Application granted granted Critical
Publication of KR100438941B1 publication Critical patent/KR100438941B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3382Polymerising

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: A method is provided in which the metallic material has corrosion resistance and hydrophilicity at the same time by forming a corrosion resistant layer on the surface of a metallic material and forming a hydrophilicity layer on the surface of the corrosion resistant layer, thereby forming a multi-layer film using plasma. CONSTITUTION: In a method for depositing corrosion resistant layer and hydrophilicity layer on the surface of a metallic material for refrigeration and air conditioning, the method for forming a multi-layer film having corrosion resistance and hydrophilicity using plasma comprises steps of obtaining plasma from a mixed gas by maintaining the internal pressure of the chamber under the certain vacuum condition in the state that upper and lower electrodes(102,103) that are the cathode and a material to be processed(104) that is the anode are simultaneously positioned inside a chamber(101) and impressing 1100 to 1300 V of DC voltage to the upper and lower electrodes and material to be processed in the state that HMDSO (hexamethyldisiloxane) and He (helium) gas are injected into the chamber in a flow rate of 1500 to 2100 sccm (standard cubic centimeter per minute), and depositing the mixed gas on the surface of the metallic material as the mixed gas is being excited by plasma so that a corrosion resistant layer having corrosion resistance is formed on the surface of the metallic material; and a step of obtaining plasma from a mixed gas by injecting hydrocarbon based gas and He (helium) gas into the chamber at a flow rate of 700 to 2100 sccm and impressing 1000 to 1300 V of DC voltage to the upper and lower electrodes(102,103) that are the cathode and the material to be processed(104) that is the anode at the same time in the state that the corrosion resistant layer formed material is positioned inside the chamber, and forming a hydrophilicity layer having hydrophilicity on the surface of the corrosion resistant layer as the mixed gas is being excited by plasma so that a multi-layer film in which the corrosion resistant layer and hydrophilicity layer are sequentially deposited is formed.

Description

플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법{MULTI-LAYER DEPOSITION METHOD USING PLASMA}Multilayer film formation method having corrosion resistance and hydrophilicity using plasma {MULTI-LAYER DEPOSITION METHOD USING PLASMA}

본 발명은 플라즈마를 이용한 내부식성 및 친수성을 가지는 다층막 형성방법에 관한 것으로, 보다 상세하게는 금속 소재의 표면에 HMDSO와 He가스를 이용하여 1차로 내식층을 형성하고, 그 내식층이 형성된 소재의 표면에 탄화수소계 가스와 He가스를 이용하여 2차로 친수층을 형성하여 소재가 내식성과 친수성을 동시에 가지도록 하는 플라즈마를 이용한 내부식성 및 친수성을 가지는 다층막 형성방법에 관한 것이다.The present invention relates to a method for forming a multilayer film having corrosion resistance and hydrophilicity using plasma, and more particularly, to form a corrosion resistant layer primarily using HMDSO and He gas on the surface of a metal material, The present invention relates to a method for forming a multilayer film having corrosion resistance and hydrophilicity using plasma, in which a hydrophilic layer is secondarily formed by using a hydrocarbon gas and a He gas on the surface so that the material has both corrosion resistance and hydrophilicity.

통상적으로 에어컨의 실외기는 케이스의 내부에 열교환기가 설치되어 있고, 그 열교환기는 스테인레스 재질의 지지대와 알루미늄 재질의 방열핀 및 동 파이프로 구성되어 있다.Typically, the outdoor unit of the air conditioner is provided with a heat exchanger inside the case, the heat exchanger is composed of a stainless steel support, aluminum radiating fins and copper pipes.

상기와 같이 구성되는 에어컨 실외기의 열교환기는 열교환능력이 우수해야 하며, 옥외에 주로 설치되기 때문에 빗물이나 바람에 많이 노출되므로 부식에 잘 견디는 우수한 재질을 선택하여 제작되어 진다.The heat exchanger of the outdoor unit of the air conditioner configured as described above should have excellent heat exchange ability, and since it is mainly installed outdoors, it is manufactured by selecting an excellent material that is resistant to corrosion since it is exposed to rainwater or wind.

방열핀의 소재로 가장 많이 사용되는 것는 알루미늄 소재로서, 알루미늄은 가공이 용이하고, 부식에 잘 견디며, 열교환능력이 양호함에도 불구하고, 서남아시아나 동남아시아의 해안가와 같이 고온다습하고 염분이 많은 지역의 외부에 설치되는 경우에 실외기용 열교환기의 방열핀들이 쉽게 부식되는 문제점이 있었다.The most widely used heat sink fin is aluminum, which is easy to process, resists corrosion, and has good heat exchange ability. When installed, there was a problem that the heat radiation fins of the outdoor unit heat exchanger are easily corroded.

이러한 점을 개선하고자 기후가 악조건인 곳에 설치되는 에어컨의 실외기들은 열교환기의 방열핀들을 제작할때에 표면에 크롬(Cr) 도금을 하여 내부식처리를 하게 되는데, 그와 같이 도금처리를 하는 경우에 어느정도 사용수명이 증가되어 개선이 되었다고 볼 수 있으나, 사용자들이 만족할 만큼 충분한 내부식성을 갖지 못하여 일정 기간이 지나면 부식에 의한 소손이 발생되는 문제점이 있었다.In order to improve this, outdoor units of air conditioners installed in bad weather conditions are subjected to corrosion treatment by plating chromium (Cr) on the surface when manufacturing heat sink fins of heat exchanger. It can be seen that the improved service life has been improved, but users do not have enough corrosion resistance to satisfy, there is a problem that a burnout by corrosion occurs after a certain period of time.

또한, 방열핀의 소재 표면에 표면처리를 하여 소재의 표면에 고분자 중합막을 증착시키는 친수처리에 관련된 기술들이 다양하게 소개되고 있으나, 이와 같이 친수처리된 소재를 이용하여 제작된 열교환기의 방열핀들이 악조건에서는 쉽게 부식되어 소손되거나, 친수성막이 벗겨지는 문제점이 있었다.In addition, various techniques related to the hydrophilic treatment of depositing a polymer polymer film on the surface of the material by surface treatment on the material surface of the heat dissipation fin have been introduced in various ways. Easily corroded or burned out, there was a problem that the hydrophilic film is peeled off.

상기와 같은 문제점을 감안하여 안출한 본 발명의 목적은 열교환기의 제조에 이용되는 금속 소재의 표면에 내식층을 형성하고, 그 내식층의 표면에 친수층을 형성하여 다층막을 형성함으로써, 소재가 내식성과 친수성을 동시에 가지도록 하는데 적합한 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법을 제공함에 있다.The object of the present invention devised in view of the above problems is to form a multi-layered film by forming a corrosion resistant layer on the surface of the metal material used for the manufacture of the heat exchanger, and by forming a hydrophilic layer on the surface of the corrosion resistant layer. The present invention provides a method for forming a multilayer film having corrosion resistance and hydrophilicity using plasma suitable to have corrosion resistance and hydrophilicity at the same time.

도 1은 본 발명에 따른 다층막 형성을 위한 장치의 개략구성도.1 is a schematic configuration diagram of an apparatus for forming a multilayer film according to the present invention.

도 2는 본 발명에 따른 다층막이 형성된 소재의 단면도.2 is a cross-sectional view of a material formed with a multilayer film according to the present invention.

도 3은 본 발명의 다층막이 형성된 소재의 시료와 종래의 크롬 코팅된 소재의 표면저항값을 비교한 그래프.Figure 3 is a graph comparing the surface resistance value of the sample of the material with a multilayer film of the present invention and the conventional chromium coated material.

도 4는 본 발명의 다층막이 형성된 소재의 시료와 종래의 크롬 코팅된 소재의 친수성을 비교한 그래프.Figure 4 is a graph comparing the hydrophilicity of a sample of a material having a multilayer film of the present invention and a conventional chromium coated material.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

101 : 챔버 102 : 상부 전극101 chamber 102 upper electrode

103 : 하부 전극 104 : 소재103: lower electrode 104: material

121 : 내식층 122 : 친수층121: corrosion resistant layer 122: hydrophilic layer

123 : 다층막123: multilayer film

상기와 같은 본 발명의 목적을 달성하기 위하여In order to achieve the object of the present invention as described above

냉동 공조용 금속 소재의 표면에 내식층 및 친수층을 증착하는 방법에 있어서,In the method of depositing a corrosion resistant layer and a hydrophilic layer on the surface of the metal material for refrigeration air conditioning,

챔버의 내부에 음극이 되는 상,하부 전극을 위치시킴과 아울러 양극이 되는 소재를 위치시킨 상태에서, 챔버의 내부압력을 소정의 진공상태로 유지함과 아울러상기 챔버의 내부로 HMDSO와 He가스를 1500sccm:2100sccm으로 주입하는 상태에서 상기 상,하부 전극과 소재에 DC전압을 1100V~1300V로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 증착하여 내식성을 가지는 내식층이 형성되도록 하는 단계와;With the upper and lower electrodes serving as cathodes and the material serving as anodes placed inside the chamber, the internal pressure of the chamber is maintained at a predetermined vacuum and HMDSO and He gases are discharged into the chamber at 1500 sccm. In the state of injection at 2100sccm, DC voltage is applied to the upper and lower electrodes and the material at 1100V ~ 1300V to obtain plasma from the mixed gas, and the mixed gas is excited by the plasma to deposit on the surface of the metal material to prevent corrosion. Having a corrosion resistant layer formed thereon;

상기와 내식층이 형성된 소재를 챔버의 내부에 위치시킨 상태에서 챔버의 내부로 탄화수소계가스와 He가스를 700sccm:2100sccm으로 주입함과 아울러 음극이 되는 상,하부 전극과 양극이 되는 소재에 DC전압을 1000V~1300V로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 내식층의 표면에 친수성을 가지는 친수층이 형성되어, 내식층과 친수층이 차례로 증착된 다층막이 형성되도록 하는 단계;를 순차적으로 실시하는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법이 제공된다.Injecting hydrocarbon-based gas and He gas at 700sccm: 2100sccm into the chamber while the material having the above-mentioned corrosion resistant layer is placed inside the chamber, and the upper and lower electrodes serving as the cathode and the material serving as the anode Is applied at 1000 V to 1300 V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a hydrophilic layer having hydrophilicity on the surface of the corrosion resistant layer, thereby forming a multilayer film in which the corrosion resistant layer and the hydrophilic layer are sequentially deposited. There is provided a method for forming a multilayer film having corrosion resistance and hydrophilicity using plasma, characterized in that the step of sequentially performing.

이하, 상기의 본 발명을 첨부된 실시예를 참고하여 보다 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying examples of the present invention described in more detail as follows.

도 1은 본 발명의 내식성 및 친수성을 가지는 다층막을 형성하는 증착장치를 개략적으로 보인 개략구성도로서, 도시된 바와 같이, 박스체인 공정 챔버(101)의 내측 상부에 상부 전극(102)이 고정되어 있고, 그 상부 전극(102)의 하측에 하부 전극(103)이 고정되어 있다.1 is a schematic configuration diagram schematically illustrating a deposition apparatus for forming a multilayer film having corrosion resistance and hydrophilicity according to the present invention. As shown in the drawing, an upper electrode 102 is fixed to an inner upper portion of a box chain process chamber 101. The lower electrode 103 is fixed below the upper electrode 102.

그리고, 상기 공정 챔버(101)의 일측에는 공정 챔버(101)의 내부로 공급하기 위한 알루미늄 시트 상태의 소재(104)가 감겨져 있는 언 와인더(105)가 언 와인더 챔버(106)의 내부에 배치되어 있고, 타측에는 공정 챔버(101)에서 배출되는소재(104)를 감기 위한 와인더(107)가 언 와인더 챔버(108)의 내부에 배치되어 있으며, 상기 언 와인더 챔버(105)의 출구부와 와인더 챔버(108)의 입구부에는 시료(104)의 이동을 안내하는 한쌍의 가이드 롤러(109)가 설치되어 있다.In addition, on one side of the process chamber 101, an unwinder 105 having an aluminum sheet material 104 wound around the process chamber 101 is wound inside the unwinder chamber 106. On the other side, the winder 107 for winding the material 104 discharged from the process chamber 101 is disposed inside the unwinder chamber 108, and the unwinder chamber 105 A pair of guide rollers 109 for guiding the movement of the sample 104 are provided at the outlet portion and the inlet portion of the winder chamber 108.

또한, 상기 공정 챔버(101)의 하부 일측에는 공정가스를 주입하기 위한 가스주입라인(111)이 설치되어 있고, 타측에는 반응하고난 후의 배기가스를 배출하기 위한 배기라인(112)이 설치되어 있으며, 그 배기라인(112) 상에는 공정 챔버(101)의 내부가 진공상태로 유지되도록 펌핑하기 위한 펌프(113)가 설치되어 있다.In addition, a lower portion of the process chamber 101 is provided with a gas injection line 111 for injecting process gas, and the other side is provided with an exhaust line 112 for discharging the exhaust gas after the reaction. On the exhaust line 112, a pump 113 for pumping the inside of the process chamber 101 is maintained in a vacuum state.

한편, 상, 하부 전극(102)(103) 및 소재(104)에 직류전원을 공급할 수 있도록 직류전원공급기(114)에 설치되어 있고, 도면에는 도시되지 않았지만 언 와인더(105)와 와인더(107)를 회전시키기 위한 모터(미도시)가 구비되어 있다.On the other hand, it is provided in the DC power supply 114 to supply DC power to the upper and lower electrodes 102, 103 and the material 104, and although not shown in the figure unwinder 105 and the winder ( A motor (not shown) for rotating 107 is provided.

상기와 같이 구성되어 있는 증착장치에서 금속 소재의 표면에 내식층과 친수층을 형성하는 방법을 설명하면 다음과 같다.Referring to the method of forming a corrosion resistant layer and a hydrophilic layer on the surface of the metal material in the deposition apparatus is configured as described above are as follows.

전원이 인가되어 모터(미도시)의 구동에 의하여 언 와인더(105)가 시계반대방향으로 회전을 하고, 와인더(107)가 시계방향으로 회전을 하면 언 와인더(105)에 감겨있던 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부에 설치된 상부 전극(102)과 하부 전극(103)의 사이를 통과하여 와인더(107)에 연속적으로 감기게 된다.When the power is applied, the unwinder 105 rotates in the counterclockwise direction by the driving of a motor (not shown), and the winder 107 rotates in the clockwise direction, the sheet wound on the unwinder 105 The aluminum material 104 in a state passes between the upper electrode 102 and the lower electrode 103 installed inside the process chamber 101 and is continuously wound on the winder 107.

그와 같은 상태에서 가스주입라인(111)을 통하여 HMDSO(Hexamethyldisiloxane, (CH3)3SiOSi(CH3)3)와 He가스가 1500sccm:2100sccm의 비율로 혼합된 혼합가스를 챔버(101)의 내부로 주입함과 아울러 전극(102)과소재(104)에 1100V~1300V의 범위로 전압을 인가하면 상,하부 전극(102)(103)과 소재(104)의 사이에서 플라즈마가 형성되면서 혼합가스가 여기되어 연속적으로 이동하는 소재(104)의 표면에 내식성을 가지는 고분자 중합막인 내식층이 형성되어 진다.In such a state, the mixed gas in which HMDSO (Hexamethyldisiloxane, (CH 3 ) 3 SiOSi (CH 3 ) 3 ) and He gas are mixed at a ratio of 1500sccm: 2100sccm through the gas injection line 111 is provided in the chamber 101. In addition, when a voltage is applied to the electrode 102 and the material 104 in the range of 1100 V to 1300 V, plasma is formed between the upper and lower electrodes 102 and 103 and the material 104, and the mixed gas is generated. On the surface of the material 104 which is excited and continuously moves, a corrosion resistant layer which is a polymer polymerization film having corrosion resistance is formed.

상기와 같이 소재(104)의 표면에 내식층을 형성한 후에, 다시 그 내식층이 형성된 시트 상태의 소재(104)의 표면에 공정가스를 변경하여 동일한 방법으로 친수층을 형성하는데, 이를 상세히 설명하면 다음과 같다.After forming a corrosion resistant layer on the surface of the material 104 as described above, by changing the process gas on the surface of the material 104 of the sheet state in which the corrosion resistant layer is formed to form a hydrophilic layer in the same manner, which will be described in detail Is as follows.

내식층이 형성되어 롤 형태로 감겨진 소재(104)를 언 와인더(105)와 와인더(107)에 장착하고, 전원을 인가하면 모터(미도시)의 구동에 의하여 언 와인더(105)가 시계반대방향으로 회전을 하고, 와인더(107)가 시계방향으로 회전을 하며 내식층을 형성할때와 마찬가지로 언 와인더(105)에 감겨있던 시트 상태의 내식층이 형성된 알루미늄 소재(104)가 공정 챔버(101)의 내부에 설치된 상부 전극(102)과 하부 전극(103)의 사이를 통과하여 와인더(107)에 연속적으로 감기게 된다.The corrosion resistant layer is formed and mounted on the unwinder 105 and the winder 107, the material 104 wound in the form of a roll, when the power is applied to the unwinder 105 by driving of a motor (not shown) Is rotated counterclockwise, the winder 107 is rotated clockwise to form a corrosion resistant layer, as in the case of forming a corrosion resistant aluminum material 104 is formed in the sheet-like corrosion resistant layer wound on the unwinder 105 Is passed between the upper electrode 102 and the lower electrode 103 installed inside the process chamber 101 to be continuously wound on the winder 107.

그와 같은 상태에서 가스주입라인(111)을 통하여 탄화수소계가스와 He가스를 700sccm:2100sccm의 비율로 혼합한 혼합가스를 챔버(101)의 내부로 주입함과 아울러 상,하부 전극(102)(103)과 소재(104)에 1000V~1300V의 범위로 전압을 인가하면 상,하부 전극(102)(103)과 소재(104)의 사이에서 플라즈마가 형성되면서 혼합가스가 여기되어 연속적으로 이동하는 소재(104)에 형성된 내식층의 표면에 친수성을 가지는 고분자 중합막인 친수층이 형성되어 도 2에서와 같이 소재(104)의 표면에70Å 정도의 내식층(121)과 500Å 정도의 친수층(122)이 차례로 형성되는 다층막(123)이 형성되어 진다.In such a state, the mixed gas obtained by mixing the hydrocarbon gas and the He gas at a ratio of 700 sccm: 2100 sccm through the gas injection line 111 is injected into the chamber 101 and the upper and lower electrodes 102 ( When voltage is applied to the 103 and the material 104 in the range of 1000 V to 1300 V, a plasma is formed between the upper and lower electrodes 102 and 103 and the material 104 to excite the mixed gas and continuously move the material. A hydrophilic layer, which is a polymer polymer film having hydrophilicity, is formed on the surface of the corrosion resistant layer formed on the 104, and the corrosion resistant layer 121 of about 70 GPa and the hydrophilic layer 122 of about 500 GPa are formed on the surface of the material 104 as shown in FIG. The multilayer film 123 is formed in order to form a film.

또한, 경우에 따라서는 상기와 같이 내식 및 친수처리된 소재를 다시 챔버(101)에 넣고, 가스주입라인(111)을 통하여 에어를 1500sccm으로 주입하는 상태에서 DC전압을 700~800V로 인가하여 발생되는 플라즈마에 의하여 친수층(122)의 표면을 좀더 포스포러스하게 함으로써 친수성을 극대화 할 수 있다.In addition, in some cases, the material subjected to the corrosion and hydrophilic treatment is put into the chamber 101 again, and the DC voltage is applied at 700 to 800 V while injecting air at 1500 sccm through the gas injection line 111. Hydrophilicity can be maximized by making the surface of the hydrophilic layer 122 more phosphorous by the plasma.

도 3은 본 발명의 내부식처리된 소재의 시료와 종래의 크롬 코팅된 소재의 시료의 표면저항값을 EIS(ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY)기법으로 측정한 결과로서, X축은 주파수로서 부식측정을 위한 EIS값이 민감하게 대응하는 범위를 찾아내기 위하여 어느 특정 주파수를 선택한 것이고, Y축은 전기적인 저항값으로 임피던스 절대값을 나타낸다.Figure 3 is a result of measuring the surface resistance value of the sample of the corrosion-resistant material and the sample of the conventional chromium-coated material of the present invention by EIS (ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY) technique, the X-axis is the frequency EIS value for corrosion measurement To find this sensitively corresponding range, a certain frequency was chosen, and the Y-axis represents the absolute value of impedance as the electrical resistance.

그래프에 나타난 바와 같이, 크롬이 코팅되어 있는 소재의 시료에 비하여 본 발명에 의한 방법으로 다층막이 형성된 소재(104)의 시료에서 측정된 저항값이 3승 오더(ORDER) 만큼 높음을 확인할 수 있었다. 여기서 시료의 저항값은 높을 수록 내부식성이 뛰어나다는 것을 의미하므로, 본 발명에 의한 내부식처리방법에 의하여 처리되는 소재의 내부식성이 크게 향상됨을 확인할 수 있다.As shown in the graph, it can be confirmed that the resistance value measured in the sample of the material 104 having the multilayer film formed by the method according to the present invention is higher than the sample of the material coated with chromium by an order of three orders. Here, since the higher the resistance value of the sample means that the corrosion resistance is excellent, it can be confirmed that the corrosion resistance of the material treated by the corrosion treatment method according to the present invention is greatly improved.

도 4는 본 발명의 다층막이 형성된 소재의 시료와 종래의 크롬 코팅된 소재의 친수성을 비교한 그래프로서, 여기에 나타난 바와 같이, 각각의 시료를 10분동안 건조 및 젖조하는 것을 1싸이클로 지속적으로 반복하고, 친수성의 척도인 동적접촉각을 측정한 결과, 종래의 크롬이 코팅된 소재의 시료는 초기에는 동적접촉각이 낮으나 싸이클이 반복됨에 따라 동적접촉각이 급격이 증가되어 50도 이상이 되었으며, 본 발명에 의한 다층막이 형성된 소재의 시료는 600 싸이클 이상 반복되어도 동적접촉각이 초기와 같이 낮은 상태로 일정하게 유지되는 것으로 나타나므로, 본 발명에 따른 다층막이 형성된 소재는 고 친수성을 장시간 유지하는 것을 확인할 수 있었다.4 is a graph comparing the hydrophilicity of a sample of a material having a multi-layered film of the present invention and a conventional chromium-coated material, and as shown herein, drying and wetting each sample for 10 minutes continuously in one cycle. As a result of measuring the dynamic contact angle, which is a measure of hydrophilicity, the sample of the conventional chromium-coated material has a low initial dynamic contact angle, but as the cycle is repeated, the dynamic contact angle is rapidly increased to 50 degrees or more. The sample of the material having the multilayer film formed by the present invention was found to be constantly maintained at a low state as the initial dynamic contact angle was repeated even after 600 cycles or more, it was confirmed that the material having the multilayer film according to the present invention maintains high hydrophilicity for a long time.

이상에서 상세히 설명한 바와 같이, 본 발명 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법은 양극이 되도록 연결된 소재를 진공 챔버의 내부에 위치시키고, 챔버의 내부로 HMDSO와 He가스를 혼합한 혼합가스를 주입하는 상태에서 DC전압을 인가하여 형성되는 플라즈마를 이용하여 소재의 표면에 내식층을 형성한 다음, 그 내식층이 형성된 소재를 다시 진공 챔버의 내부에 위치시키고 탄화수소계가스와 He가스를 혼합한 혼합가스를 주입하는 상태에서 DC전압을 인가하여 형성되는 플라플라즈마를 이용하여 소재의 표면에 친수층을 형성하여 내식성과 친수성을 가지는 다층막을 형성함으로써, 공조기의 방열핀 소재로 이용하는 알루미늄 소재의 내식성 및 친수성을 향상시키는 효과가 있다.As described in detail above, in the method of forming a multilayer film having corrosion resistance and hydrophilicity using the plasma of the present invention, a material connected to be an anode is placed in a vacuum chamber, and a mixed gas of HMDSO and He gas is injected into the chamber. After forming a corrosion resistant layer on the surface of the material by using a plasma formed by applying a DC voltage in the state, then the material with the corrosion layer is placed in the vacuum chamber again and mixed with hydrocarbon gas and He gas By using a plasma formed by applying a DC voltage in the state of gas injection, a hydrophilic layer is formed on the surface of the material to form a multilayer film having corrosion resistance and hydrophilicity, thereby providing corrosion resistance and hydrophilicity of an aluminum material used as a heat radiation fin material of an air conditioner. It is effective to improve.

Claims (5)

냉동 공조용 금속 소재의 표면에 내식층 및 친수층을 증착하는 방법에 있어서,In the method of depositing a corrosion resistant layer and a hydrophilic layer on the surface of the metal material for refrigeration air conditioning, 챔버의 내부에 음극이 되는 상,하부 전극을 위치시킴과 아울러 양극이 되는 소재를 위치시킨 상태에서, 챔버의 내부압력을 소정의 진공상태로 유지함과 아울러 상기 챔버의 내부로 HMDSO와 He가스를 1500sccm:2100sccm으로 주입하는 상태에서 상기 상,하부 전극과 소재에 DC전압을 1100V~1300V로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 증착하여 내식성을 가지는 내식층이 형성되도록 하는 단계와;With the upper and lower electrodes serving as cathodes and the material serving as anodes placed inside the chamber, the internal pressure of the chamber is maintained at a predetermined vacuum and HMDSO and He gases are discharged into the chamber at 1500 sccm. In the state of injection at 2100sccm, DC voltage is applied to the upper and lower electrodes and the material at 1100V ~ 1300V to obtain plasma from the mixed gas, and the mixed gas is excited by the plasma to deposit on the surface of the metal material to prevent corrosion. Having a corrosion resistant layer formed thereon; 상기와 내식층이 형성된 소재를 챔버의 내부에 위치시킨 상태에서 챔버의 내부로 탄화수소계가스와 He가스를 700sccm:2100sccm으로 주입함과 아울러 음극이 되는 상,하부 전극과 양극이 되는 소재에 DC전압을 1000V~1300V로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 내식층의 표면에 친수성을 가지는 친수층이 형성되어, 내식층과 친수층이 차례로 증착된 다층막이 형성되도록 하는 단계;를 순차적으로 실시하는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법.Injecting hydrocarbon-based gas and He gas at 700sccm: 2100sccm into the chamber while the material having the above-mentioned corrosion resistant layer is placed inside the chamber, and the upper and lower electrodes serving as the cathode and the material serving as the anode Is applied at 1000 V to 1300 V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a hydrophilic layer having hydrophilicity on the surface of the corrosion resistant layer, thereby forming a multilayer film in which the corrosion resistant layer and the hydrophilic layer are sequentially deposited. Method of forming a multilayer film having a corrosion resistance and hydrophilicity using a plasma, characterized in that to perform sequentially. 제 1항에 있어서, 상기 내식층의 증착은 공정 챔버를 지나는 소재의 표면에 연속적으로 형성되어지는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법.The method of claim 1, wherein the deposition of the corrosion resistant layer is continuously formed on the surface of the material passing through the process chamber. 제 1항에 있어서, 상기 친수층의 증착은 공정 챔버를 지나는 소재의 표면에 연속적으로 형성되어지는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법.The method of claim 1, wherein the deposition of the hydrophilic layer is continuously formed on a surface of the material passing through the process chamber. 제 1항에 있어서, 상기 친수층을 형성한 후에 진공 챔버의 내부에 친수처리된 소재를 위치시킨 상태에서 챔버의 내부로 1500sccm으로 에어를 주입함과 아울러 양극이 되는 소재와 음극이 되는 상,하부 전극에 700~800V 의 전압을 인가하여 발생되는 플라즈마로 후처리를 하여 고친수성을 유지할 수 있도록 하는 단계를 더 포함하여 실시하는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법.According to claim 1, After the hydrophilic layer is formed in a state in which the hydrophilic material is placed inside the vacuum chamber while injecting air at 1500sccm into the interior of the chamber and the upper and lower parts to be the anode and the cathode And post-treatment with plasma generated by applying a voltage of 700 to 800 V to the electrode to maintain high hydrophilicity. 제 1항에 있어서, 상기 내식층은 70Å의 두께로 증착되고, 친수층은 500Å의 두께로 증착되는 것을 특징으로 하는 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막 형성방법.The method of claim 1, wherein the corrosion resistant layer is deposited to a thickness of 70 kPa, and the hydrophilic layer is deposited to a thickness of 500 kPa.
KR10-2001-0063117A 2001-10-12 2001-10-12 Multi-layer deposition method using plasma KR100438941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0063117A KR100438941B1 (en) 2001-10-12 2001-10-12 Multi-layer deposition method using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0063117A KR100438941B1 (en) 2001-10-12 2001-10-12 Multi-layer deposition method using plasma

Publications (2)

Publication Number Publication Date
KR20030030755A true KR20030030755A (en) 2003-04-18
KR100438941B1 KR100438941B1 (en) 2004-07-03

Family

ID=29564473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0063117A KR100438941B1 (en) 2001-10-12 2001-10-12 Multi-layer deposition method using plasma

Country Status (1)

Country Link
KR (1) KR100438941B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098075A1 (en) * 2004-04-06 2005-10-20 Lg Electronics, Inc. Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
KR100892455B1 (en) * 2007-08-20 2009-04-10 엘지전자 주식회사 Corrosion-resistant, ultra-hydrophilic and antibacterial thin film coated metal product
KR100892456B1 (en) * 2007-08-20 2009-04-10 엘지전자 주식회사 Corrosion-resistant and ultra-hydrophilic thin film coated metal product
KR101022819B1 (en) * 2008-08-27 2011-03-17 부산대학교 산학협력단 manufacturing methods of hydrophilicity heat exchanger
WO2016076673A1 (en) * 2014-11-14 2016-05-19 유흥상 Coating method for forming hmdso layer and af layer together on aluminum metal layer and forming hmdso layer and af layer together on aluminum metal layer using ion source
WO2021219115A1 (en) * 2020-04-30 2021-11-04 江苏菲沃泰纳米科技股份有限公司 Hydrophilic anti-fog film layer, preparation method therefor, and use and product thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610132A (en) * 1992-06-29 1994-01-18 Nagasaki Pref Gov Production of thin film of organosilicon compound
JPH1030184A (en) * 1996-07-19 1998-02-03 Otsuka Pharmaceut Factory Inc Plasma vapor depositing device for film
JP4012620B2 (en) * 1998-03-11 2007-11-21 株式会社日本製鋼所 Method for producing gas barrier film
KR100320197B1 (en) * 1999-08-21 2002-01-10 구자홍 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
KR20020037997A (en) * 2000-11-16 2002-05-23 구자홍 Power supplying method in an apparatus for continuous plasma polymerization
KR20020086139A (en) * 2001-05-11 2002-11-18 주식회사 엘지이아이 Surface modifying method by plasma polymerization

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098075A1 (en) * 2004-04-06 2005-10-20 Lg Electronics, Inc. Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
KR100783213B1 (en) * 2004-04-06 2007-12-06 엘지전자 주식회사 Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
KR100783214B1 (en) * 2004-04-06 2007-12-06 엘지전자 주식회사 Ultra-hydrophilic and antibacterial thin film coated metal product, and it's manufacturing method
US7901786B2 (en) 2004-04-06 2011-03-08 Lg Electronics, Inc. Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
US8043710B2 (en) 2004-04-06 2011-10-25 Lg Electronics Inc. Ultra-hydrophilic and antibacterial thin film coated metal product, and it's manufacturing method
KR100892455B1 (en) * 2007-08-20 2009-04-10 엘지전자 주식회사 Corrosion-resistant, ultra-hydrophilic and antibacterial thin film coated metal product
KR100892456B1 (en) * 2007-08-20 2009-04-10 엘지전자 주식회사 Corrosion-resistant and ultra-hydrophilic thin film coated metal product
KR101022819B1 (en) * 2008-08-27 2011-03-17 부산대학교 산학협력단 manufacturing methods of hydrophilicity heat exchanger
WO2016076673A1 (en) * 2014-11-14 2016-05-19 유흥상 Coating method for forming hmdso layer and af layer together on aluminum metal layer and forming hmdso layer and af layer together on aluminum metal layer using ion source
WO2021219115A1 (en) * 2020-04-30 2021-11-04 江苏菲沃泰纳米科技股份有限公司 Hydrophilic anti-fog film layer, preparation method therefor, and use and product thereof

Also Published As

Publication number Publication date
KR100438941B1 (en) 2004-07-03

Similar Documents

Publication Publication Date Title
US10808321B2 (en) Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same
US8211592B2 (en) Hydrophilic layer on flowfield for water management in PEM fuel cell
US7901786B2 (en) Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
CN101521281A (en) Low cost fuel cell bipolar plate and process of making the same
JP6014807B2 (en) FUEL CELL SEPARATOR OR FUEL CELL COLLECTING MEMBER AND METHOD FOR PRODUCING THE SAME
KR100438941B1 (en) Multi-layer deposition method using plasma
JP5099693B2 (en) Amorphous carbon film and method for forming the same
US7178584B2 (en) Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
US7790246B2 (en) Ultra hydrophilic Ti-O-C based nano film and fabrication method thereof
KR100438940B1 (en) Anti-corrosion treatment method of metal using plasma
KR100438942B1 (en) Anti-corrosion treatment method of metal using plasma
JP6229771B2 (en) Fuel cell separator or fuel cell current collector
CN1256463C (en) Corrosion-resistant bydrophilic multi-layer film forming method by plasma
US20030000825A1 (en) Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
KR101032795B1 (en) Dlc-coated heat exchanger and method of processing the same
KR100368052B1 (en) Continous polymerizing apparatus using plasma
KR100438943B1 (en) Polymerization film deposition apparatus
KR100892456B1 (en) Corrosion-resistant and ultra-hydrophilic thin film coated metal product
KR20070026496A (en) Ultra hydrophilic ti-o-c based nano film and fabrication method thereof
CN115911436A (en) Preparation process of carbon-based composite coating of metal bipolar plate of PEM fuel cell
KR20030030767A (en) Surface treatment apparatus of metal using plasma
CN1754979A (en) Metal corrosion-resistant processing method by use of plasma
Rashtchi et al. Nanostructured Multilayer Cr/Crn Coatings on 316l Stainless Steel for Proton Exchange Membrane Fuel Cell Bipolar Plates
KR20020037985A (en) Polymer film deposition method for heat exchanger pin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120521

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee