KR100438942B1 - Anti-corrosion treatment method of metal using plasma - Google Patents
Anti-corrosion treatment method of metal using plasma Download PDFInfo
- Publication number
- KR100438942B1 KR100438942B1 KR10-2001-0063118A KR20010063118A KR100438942B1 KR 100438942 B1 KR100438942 B1 KR 100438942B1 KR 20010063118 A KR20010063118 A KR 20010063118A KR 100438942 B1 KR100438942 B1 KR 100438942B1
- Authority
- KR
- South Korea
- Prior art keywords
- chamber
- plasma
- corrosion
- metal
- hmdso
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 10
- 239000002184 metal Substances 0.000 title claims abstract description 10
- 230000007797 corrosion Effects 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 47
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229920006254 polymer film Polymers 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 7
- 238000004378 air conditioning Methods 0.000 claims description 4
- 238000005057 refrigeration Methods 0.000 claims description 4
- 238000009751 slip forming Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/182—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0834—Compounds having one or more O-Si linkage
- C07F7/0838—Compounds with one or more Si-O-Si sequences
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32018—Glow discharge
- H01J37/32027—DC powered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32733—Means for moving the material to be treated
- H01J37/32752—Means for moving the material to be treated for moving the material across the discharge
- H01J37/32761—Continuous moving
- H01J37/3277—Continuous moving of continuous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/338—Changing chemical properties of treated surfaces
- H01J2237/3382—Polymerising
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명의 플라즈마를 이용한 금속의 내부식처리방법은 챔버(101)의 내부에 설치된 전극(102)(103)이 음극이되고 소재(104)가 양극이 되도록 전기적이 접속을 하고, 언 와인더(105)에 감겨있는 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부로 공급이되며, 그 공급이되는 소재(104)가 공정 챔버(101)를 지나 와인더(107)에 연속적으로 감겨지는 상태에서, 챔버(101)의 내부로 예비가열된 HMDSO 또는 HMDSO와 He가스를 혼합한 혼합가스를 주입하여 챔버(101)의 내부가 120~150도 사이가 되도록 조절함과 아울러 소재(104)와 전극(102)(103)에 DC전압을 인가하면, 소재(104)와 전극(102)(103) 사이에서 플라즈마가 형성되며 소재(104)의 표면에 내부식성이 뛰어난 내부식성 중합막이 형성되어 진다.In the corrosion treatment method of the metal using the plasma of the present invention, the electrodes 102 and 103 installed inside the chamber 101 are electrically connected so that the cathode becomes the cathode and the material 104 becomes the anode, and the unwinder ( A sheet of aluminum material 104 wound around 105 is supplied into the process chamber 101, and the material 104 to be supplied is continuously passed through the process chamber 101 to the winder 107. In the wound state, HMDSO or HMDSO preheated into the interior of the chamber 101 is injected into the mixed gas of HMDSO and He gas is adjusted so that the interior of the chamber 101 is between 120 ~ 150 degrees and the material 104 When a DC voltage is applied to the electrodes 102 and 103, a plasma is formed between the material 104 and the electrodes 102 and 103, and a corrosion resistant polymer film having excellent corrosion resistance is formed on the surface of the material 104. It is done.
Description
본 발명은 플라즈마를 이용한 금속의 내부식처리에 관한 것으로, 보다 상세하게는 부식처리물질을 예비가열하여 챔버의 내부로 공급함과 아울러 전극과 소재에 DC전압을 인가하여 형성되는 플라즈마에 의하여 소재의 표면에 내부식성이 뛰어난 내부식성 막의 증착이 이루어질 수 있도록 한 플라즈마를 이용한 금속의 내부식처리방법에 관한 것이다.The present invention relates to the corrosion treatment of metals using plasma, and more particularly, the surface of the material by plasma formed by preheating the corrosion treatment material to the inside of the chamber and applying a DC voltage to the electrode and the material. The present invention relates to a method for treating corrosion of metals using plasma which enables deposition of a corrosion resistant film having excellent corrosion resistance.
통상적으로 에어컨의 실외기는 케이스의 내부에 열교환기가 설치되어 있고, 그 열교환기는 스테인레스 재질의 지지대와 알루미늄 재질의 방열핀 및 동 파이프로 구성되어 있다.Typically, the outdoor unit of the air conditioner is provided with a heat exchanger inside the case, the heat exchanger is composed of a stainless steel support, aluminum radiating fins and copper pipes.
상기와 같이 구성되는 에어컨 실외기의 방열핀은 옥외에 주로 설치되기 때문에 빗물이나 바람에 많이 노출되므로 부식에 잘 견디며 열교환능력이 우수한 재질을 선택하여 제작되어 진다.Since the heat dissipation fin of the outdoor unit of the air conditioner configured as described above is mainly installed outdoors, it is exposed to rainwater or wind so that it is resistant to corrosion and is manufactured by selecting a material having excellent heat exchange ability.
그러나, 상기와 같은 통상적인 에어컨 열교환기용 방열핀은 부식에 잘 견디는 알루미늄 재질로 되어 있음에도 불구하고, 서남아시아나 동남아시아의 해안가와 같이 고온다습하고 염분이 많은 지역의 외부에 설치되는 경우에 실외기용 열교환기의 방열핀들이 쉽게 부식되는 문제점이 있었다.However, although the heat dissipation fin for a conventional air conditioner heat exchanger is made of aluminum that resists corrosion well, the heat exchanger for an outdoor unit may be installed outside a high temperature, high humidity and salty area, such as a coastline of Southwest Asia or Southeast Asia. There was a problem that the heat radiation fins are easily corroded.
이러한 점을 개선하고자 기후가 악조건인 곳에 설치되는 에어컨의 실외기들은 열교환기의 방열핀들을 제작할때에 표면에 크롬(Cr) 도금을 하여 내부식처리를하게 되는데, 그와 같이 도금처리를 하는 경우에 어느정도 사용수명이 증가되어 개선이 되었다고 볼 수 있으나, 장시간 내부식성을 유지하지 못할뿐 아니라 크롬 도금이 환경문제로 인하여 규제가 예상되어서 많은 연구자들에 의하여 그에 대체할만한 연구가 활발하게 진행되고 있다.In order to improve this, outdoor units of air conditioners installed in bad weather conditions are subjected to corrosion treatment by plating chromium (Cr) on the surface when manufacturing heat sink fins of heat exchanger. It can be seen that the improvement of the service life has been improved, but not only can not maintain the corrosion resistance for a long time, but the chromium plating is expected to be regulated due to environmental problems, so many researchers are actively researching alternatives.
그 한예로, Si를 다량 함유하고 있는 HMDSO를 이용하여 금속의 표면에 플라즈마에 의한 박막을 증착함으로써 장기간 내부식성을 유지할 수 있도록 하는 연구가 소개되고 있는데, 이와 같이 HMDSO를 이용하여 금속 소재의 표면에 박막을 증착하는 경우에 HMDSO가 공급되는 라인이나 챔버의 내부에서 HMDSO가 쉽게 응축이 되어 소재의 표면에 균일한 박막의 증착이 어렵고, 증착된 상태에서도 장기간 충분한 내부식성을 유지하지 못하는 문제점이 있었다.For example, studies have been conducted to maintain corrosion resistance for a long time by depositing a thin film by plasma on a metal surface using HMDSO containing a large amount of Si. Thus, a thin film on a surface of a metal material using HMDSO is introduced. In the case of depositing the HMDSO is easily condensed in the interior of the line or chamber HMDSO is supplied is difficult to deposit a uniform thin film on the surface of the material, there was a problem that does not maintain sufficient corrosion resistance for a long time even in the deposited state.
상기와 같은 문제점을 감안하여 안출한 본 발명의 목적은 공정 챔버의 내부로 공급되는 HMDSO를 일정온도로 가열하여 공급함으로써, 소재의 표면에 내부식성을 가지는 박막이 균일하게 증착되고, 그 박막에 의하여 소재가 장기간 높은 내부식성을 유지할 수 있도록 하는데 적합한 플라즈마를 이용한 금속의 내부식처리방법을 제공함에 있다.The object of the present invention devised in view of the above problems is that by supplying HMDSO supplied to the inside of the process chamber by heating at a constant temperature, a thin film having corrosion resistance is uniformly deposited on the surface of the material, whereby The present invention provides a method for treating corrosion of metal using plasma, which is suitable for maintaining a high corrosion resistance for a long time.
도 1은 본 발명의 내부식처리를 실시하는 증착장치를 개략적으로 보인 개략구성도.1 is a schematic configuration diagram schematically showing a deposition apparatus for performing a corrosion treatment of the present invention.
도 2는 크롬이 코팅된 소재와 예비가열된 각 소재의 표면저항값 실험데이터를 비교한 그래프.Figure 2 is a graph comparing the surface resistance value experimental data of the chromium-coated material and each preheated material.
** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **
101 : 챔버 102 : 상부 전극101 chamber 102 upper electrode
103 : 하부 전극 104 : 소재103: lower electrode 104: material
상기와 같은 본 발명의 목적을 달성하기 위하여In order to achieve the object of the present invention as described above
냉동 공조용 금속 소재의 표면에 내부식성 막을 증착하는 방법에 있어서,In the method of depositing a corrosion resistant film on the surface of the metal material for refrigeration air conditioning,
챔버의 내부에 음극이 되는 전극을 위치시킴과 아울러 양극이 되는 소재를위치시키고,In addition to placing the electrode that is the cathode inside the chamber and the material that is the anode,
상기 챔버의 내부압력을 소정의 진공상태로 유지하며,Maintaining the internal pressure of the chamber in a predetermined vacuum state,
상기 챔버의 내부로 예비가열된 HMDSO를 1000sccm:2000sccm으로 주입하여 챔버의 내부 온도가 80~180도 사이가 되도록 하고,Inject the preheated HMDSO into the interior of the chamber at 1000sccm: 2000sccm so that the internal temperature of the chamber is between 80 and 180 degrees,
상기 음극과 양극에 DC전압을 1100V~1300V의 범위로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 내식성을 가지는 고분자 중합막을 형성하는 플라즈마를 이용한 금속의 내부식처리방법이 제공된다.The plasma is applied to the cathode and the anode in the range of 1100V to 1300V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a polymerized polymer film having corrosion resistance on the surface of the metal material. Provided is a method of treating corrosion.
또한, 냉동 공조용 금속 소재의 표면에 내부식성 막을 증착하는 방법에 있어서,Further, in the method of depositing a corrosion resistant film on the surface of the metal material for refrigeration and air conditioning,
챔버의 내부에 음극이 되는 전극을 위치시킴과 아울러 양극이 되는 소재를 위치시키고,In addition to placing the electrode that is the cathode inside the chamber and the material that is the anode,
상기 챔버의 내부압력을 소정의 진공상태로 유지하며,Maintaining the internal pressure of the chamber in a predetermined vacuum state,
상기 챔버의 내부로 예비가열된 HMDSO와 He가스의 혼합가스를 1000sccm:2000sccm으로 주입하여 챔버의 내부 온도가 80~180도 사이로 조절되도록 하고,Inject the mixed gas of HMDSO and He gas preheated into the chamber at 1000sccm: 2000sccm to adjust the internal temperature of the chamber to between 80 and 180 degrees,
상기 음극과 양극에 DC전압을 1100V~1300V의 범위로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 내식성을 가지는 고분자 중합막을 형성하는 플라즈마를 이용한 금속의 내부식처리방법이 제공된다.The plasma is applied to the cathode and the anode in the range of 1100V to 1300V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a polymerized polymer film having corrosion resistance on the surface of the metal material. Provided is a method of treating corrosion.
이하, 상기의 본 발명을 첨부된 실시예를 참고하여 보다 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying examples of the present invention described in more detail as follows.
도 1은 본 발명의 내부식처리를 실시하는 증착장치를 개략적으로 보인 개략구성도로서, 도시된 바와 같이, 박스체인 공정 챔버(101)의 내측 상부에 상부 전극(102)이 고정되어 있고, 그 상부 전극(102)의 하측에 하부 전극(103)이 고정되어 있다.FIG. 1 is a schematic configuration diagram schematically showing a deposition apparatus for performing corrosion resistance treatment according to the present invention. As shown in the drawing, an upper electrode 102 is fixed to an inner upper portion of a box chain process chamber 101. The lower electrode 103 is fixed to the lower side of the upper electrode 102.
그리고, 상기 공정 챔버(101)의 일측에는 공정 챔버(101)의 내부로 공급하기 위한 시트 상태의 알루미늄 소재(104)가 감겨져 있는 언 와인더(105)가 언 와인더 챔버(106)의 내부에 배치되어 있고, 타측에는 공정 챔버(101)에서 배출되는 소재(104)를 감기 위한 와인더(107)가 언 와인더 챔버(108)의 내부에 배치되어 있으며, 상기 언 와인더 챔버(105)의 출구부와 와인더 챔버(108)의 입구부에는 소재(104)의 이동을 안내하는 한쌍의 가이드 롤러(109)가 각각 설치되어 있다.In addition, at one side of the process chamber 101, an unwinder 105, in which a sheet-shaped aluminum material 104 is wound, is supplied inside the unwinder chamber 106 to supply the inside of the process chamber 101. On the other side, the winder 107 for winding the material 104 discharged from the process chamber 101 is disposed inside the unwinder chamber 108, and the unwinder chamber 105 A pair of guide rollers 109 for guiding the movement of the material 104 are provided at the outlet and the inlet of the winder chamber 108, respectively.
또한, 상기 공정 챔버(101)의 하부 일측에는 공정가스를 주입하기 위한 가스주입라인(111)이 설치되어 있고, 타측에는 반응하고난 후의 배기가스를 배출하기 위한 배기라인(112)이 설치되어 있으며, 그 배기라인(112) 상에는 공정 챔버(101)의 내부가 진공상태로 유지되도록 펌핑하기 위한 펌프(113)가 설치되어 있다.In addition, a lower portion of the process chamber 101 is provided with a gas injection line 111 for injecting process gas, and the other side is provided with an exhaust line 112 for discharging the exhaust gas after the reaction. On the exhaust line 112, a pump 113 for pumping the inside of the process chamber 101 is maintained in a vacuum state.
한편, 상, 하부 전극(102)(103) 및 소재(104)에 직류전원을 공급할 수 있도록 직류전원공급기(114)에 설치되어 있고, 도면에는 도시되지 않았지만 언 와인더(105)와 와인더(107)를 회전시키기 위한 모터(미도시)가 구비되어 있다.On the other hand, it is provided in the DC power supply 114 to supply DC power to the upper and lower electrodes 102, 103 and the material 104, and although not shown in the figure unwinder 105 and the winder ( A motor (not shown) for rotating 107 is provided.
상기와 같이 구성되어 있는 증착장치에서 금속 소재의 표면에 내부식 막을형성하는 방법을 각각의 실험예를 통하여 설명하면 다음과 같다.The method of forming the corrosion resistant film on the surface of the metal material in the deposition apparatus configured as described above will be described through the respective experimental examples.
실험1)Experiment 1)
전원이 인가되어 모터(미도시)의 구동에 의하여 언 와인더(105)가 시계반대방향으로 회전을 하고, 와인더(107)가 시계방향으로 회전을 하면 언 와인더(105)에 감겨있던 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부에 설치된 상부 전극(102)과 하부 전극(103)의 사이를 통과하여 와인더(107)에 연속적으로 감기게 된다.When the power is applied, the unwinder 105 rotates in the counterclockwise direction by the driving of a motor (not shown), and the winder 107 rotates in the clockwise direction, the sheet wound on the unwinder 105 The aluminum material 104 in a state passes between the upper electrode 102 and the lower electrode 103 installed inside the process chamber 101 and is continuously wound on the winder 107.
그와 같은 상태에서 가스주입라인(111)을 통하여 예비가열된 HMDSO(Hexamethyldisiloxane, (CH3)3SiOSi(CH3)3)를 1000sccm:2000sccm으로 주입하여 챔버(101)의 내부 온도가 120~150도가 되도록함과 아울러 전극(102)과 소재(104)에 1100V~1300V의 범위로 전압을 인가하면 상,하부 전극(102)(103)과 소재(104)의 사이에서 플라즈마가 형성되면서 연속적으로 이동하는 소재(104)의 표면에 내부식성을 가지는 중합막이 연속적으로 형성되어 진다.상기 가스의 주입단위인 sccm(standard cubic centimeter per minitues)은 표준조건(0℃, 1기압)에서의 가스유량이다.In such a state, HMDSO (Hexamethyldisiloxane, (CH 3 ) 3 SiOSi (CH 3 ) 3 ) preheated through the gas injection line 111 is injected at 1000sccm: 2000sccm, so that the internal temperature of the chamber 101 is 120-150. In addition, when a voltage is applied to the electrode 102 and the material 104 in the range of 1100 V to 1300 V, a plasma is formed between the upper and lower electrodes 102 and 103 and the material 104 to continuously move. A polymerized film having corrosion resistance is continuously formed on the surface of the material 104. The standard gas cubic centimeter per minitues (SCCM) is a gas flow rate under standard conditions (0 ° C, 1 atmosphere).
실험2)Experiment 2)
실험 1에서와 마찬가지로, 전원이 인가되어 모터(미도시)의 구동에 의하여 언 와인더(105)가 시계반대방향으로 회전을 하고, 와인더(107)가 시계방향으로 회전을 하면 언 와인더(105)에 감겨있던 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부에 설치된 상부 전극(102)과 하부 전극(103)의 사이를 통과하여 와인더(107)에 연속적으로 감기는 것은 실험 1에서와 동일하다.As in Experiment 1, when the power is applied and the unwinder 105 rotates counterclockwise by the driving of a motor (not shown), and the winder 107 rotates clockwise, the unwinder ( The sheet-shaped aluminum material 104 wound on the 105 is continuously wound on the winder 107 through the upper electrode 102 and the lower electrode 103 installed inside the process chamber 101. Same as in Experiment 1.
여기서, 가스주입라인(111)을 통하여 예비가열된HMDSO(Hexamethyldisiloxane, (CH3)3SiOSi(CH3)3)와 He가스의 혼합가스를 1000sccm:2000sccm으로 주입하여 챔버(101)의 내부 온도가 120~150도가 되도록함과 아울러 전극(102)과 소재(104)에 1100V~1300V의 범위로 전압을 인가하면 상,하부 전극(102)(103)과 소재(104)의 사이에서 플라즈마가 형성되면서 연속적으로 이동하는 소재(104)의 표면에 내부식성을 가지는 중합막이 연속적으로 형성되어 진다.Here, the internal temperature of the chamber 101 is injected by injecting a mixed gas of HMDSO (Hexamethyldisiloxane, (CH 3 ) 3 SiOSi (CH 3 ) 3 ) and He gas preheated through the gas injection line 111 at 1000sccm: 2000sccm. When the voltage is applied to the electrode 102 and the material 104 in the range of 1100 V to 1300 V, the plasma is formed between the upper and lower electrodes 102 and 103 and the material 104. The polymer film which has corrosion resistance is continuously formed in the surface of the material 104 which moves continuously.
상기 He가스 외에 Ar가스나 O2가스를 사용하여도 가능하다.In addition to the He gas, Ar gas or O 2 gas may be used.
상기의 실험예들에서 챔버(101)의 내부 온도가 120~150도 범위가 되도록 콘트롤한 것은 온도가 80도 이하로 낮은 경우에는 HMDSO가 주입라인이나 챔버 내부에서 응축이 되어 원할한 증착이 이루어지지 못하고, 온도가 180도 이상이 되는 경우에는 알루미늄 소재가 경화되고, 공정가스가 희박해져서 내부오염이 발생되는 등의 문제가 발생되기 때문이다. 따라서, 챔버(101)의 내부 온도는 80~180도 사이의 범위로 콘트롤하여야 하며, 가장 바람직하게는 120~150도 사이의 범위에서 안정적으로 작업하는 것이 바람직할 것이다.In the above experimental examples, the internal temperature of the chamber 101 is controlled to be in the range of 120 to 150 degrees. When the temperature is lower than 80 degrees, the HMDSO is condensed in the injection line or the chamber, so that the deposition is smooth. This is because when the temperature is 180 degrees or more, the aluminum material is cured, the process gas is thinned, and internal contamination occurs. Therefore, the internal temperature of the chamber 101 should be controlled in the range of 80 to 180 degrees, and most preferably it will be desirable to work stably in the range of 120 to 150 degrees.
그리고, 상기의 실험들에서는 전원으로 직류전원공급기(114)를 이용하여 DC전압을 인가하는 것을 예로들어 설명하였으나, 패시브(PASSIVE) 전극인 소재와 액티브(ACTIVE) 전극을 구비하고, RF 발생기를 이용한 RF 플라즈마 방전을 발생시켜서 증착작업을 하는 것도 가능하다. 다만, RF 플라즈마 방전을 이용하여 증착을 하는 경우 보다 DC플라즈마 방전을 이용하여 증착을 하는 경우에 고밀도의 증착막을 얻을 수 있다.In the above experiments, the DC voltage is applied by using the DC power supply 114 as a power source, but the material is a passive electrode and an active electrode, and the RF generator is used. It is also possible to generate an RF plasma discharge to perform deposition. However, a higher density deposited film can be obtained when the deposition is performed by using a DC plasma discharge than when the deposition is performed by using an RF plasma discharge.
도 2는 종래 크롬이 코팅된 소재와 본 발명의 각 실험을 통하여 내부식성 박막이 코팅된 소재의 시료의 표면저항값을 EIS(ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY)기법으로 측정한 결과로서, X축은 주파수로서 부식측정을 위한 EIS값이 민감하게 대응하는 범위를 찾아내기 위하여 어느 특정 주파수를 선택한 것이고, Y축은 전기적인 저항값으로 임피던스 절대값을 나타낸다.Figure 2 is a result of measuring the surface resistance value of a sample of a conventional chromium-coated material and a material coated with a corrosion-resistant thin film through each experiment of the present invention, EIS (ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY) technique, X-axis is a corrosion measurement as frequency In order to find the range where the EIS value is sensitively selected, the specific frequency is selected, and the Y-axis represents the absolute value of impedance as the electric resistance value.
그래프에 나타난 바와 같이, 크롬이 코팅되어 있는 소재의 시료는 측정된 저항값이 103승 오더(ORDER) 정도인 반면에 각각의 실험에 의하여 제조된 샘플중 HMDSO만을 예비가열하여 주입한 경우는 저항값이 107승 오더이고, HMDSO와 He가스를 예비가열하여 주입한 경우는 저항값이 108승 오더정도로 나타났다. 여기서, 저항값은 높을 수록 내부식성이 뛰어나다는 것을 의미하므로, 본 발명에 의한 내부식처리방법에 의하여 처리되는 소재의 내부식성이 크게 향상됨을 확인할 수 있다.As shown in the graph, the sample of the chromium-coated material had a measured resistance value of about 10 3 orders, whereas the resistance of the sample prepared by preheating only HMDSO in the samples prepared by each experiment was measured. When the value was 10 7 order and the HMDSO and He gas were preheated and injected, the resistance value was about 10 8 order. Here, since the higher the resistance value means the better the corrosion resistance, it can be seen that the corrosion resistance of the material treated by the corrosion treatment method according to the present invention is greatly improved.
이상에서 상세히 설명한 바와 같이, 본 발명의 플라즈마를 이용한 금속의 내부식처리방법은 공정 챔버의 내부를 이동하는 소재가 양극이 되고 전극이 음극이 되도록 전기적인 연결이 되어 있는 상태에서, 챔버의 내부로 HMDSO 또는 HMDSO와 He가스를 일정비율로 혼합한 혼합가스를 예비가열하여 주입함으로써, 챔버의 내부온도가 120~150도가 되도록 한 상태에서 소재와 전극에 DC전압을 인가하면, 소재와 전극 사이에서 플라즈마가 형성되며, 소재의 표면에 내부식성이 뛰어난 내부식성 중합막이 형성되어 진다.As described in detail above, the metal corrosion treatment method using the plasma of the present invention, in the state that the electrical material is moved to the inside of the process chamber is an anode and the electrode is an electrical connection, the interior of the chamber By preheating and injecting a mixed gas mixed with HMDSO or HMDSO and He gas at a constant ratio, and applying a DC voltage to the material and the electrode while keeping the internal temperature of the chamber at 120 to 150 degrees, the plasma between the material and the electrode is reduced. Is formed, and a corrosion-resistant polymer film having excellent corrosion resistance is formed on the surface of the material.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0063118A KR100438942B1 (en) | 2001-10-12 | 2001-10-12 | Anti-corrosion treatment method of metal using plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0063118A KR100438942B1 (en) | 2001-10-12 | 2001-10-12 | Anti-corrosion treatment method of metal using plasma |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030030756A KR20030030756A (en) | 2003-04-18 |
KR100438942B1 true KR100438942B1 (en) | 2004-07-03 |
Family
ID=29564474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0063118A KR100438942B1 (en) | 2001-10-12 | 2001-10-12 | Anti-corrosion treatment method of metal using plasma |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100438942B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5069930A (en) * | 1988-09-30 | 1991-12-03 | Leybold Aktiengesellschaft | Method for the evaporation of monomers that are liquid at room temperature |
US6177142B1 (en) * | 1998-05-28 | 2001-01-23 | John T. Felts | Method of forming a film on a substrate |
-
2001
- 2001-10-12 KR KR10-2001-0063118A patent/KR100438942B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5069930A (en) * | 1988-09-30 | 1991-12-03 | Leybold Aktiengesellschaft | Method for the evaporation of monomers that are liquid at room temperature |
US6177142B1 (en) * | 1998-05-28 | 2001-01-23 | John T. Felts | Method of forming a film on a substrate |
Also Published As
Publication number | Publication date |
---|---|
KR20030030756A (en) | 2003-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0450165A2 (en) | Process and apparatus for coating upper surface reflecting mirrors | |
US9175381B2 (en) | Processing tubular surfaces using double glow discharge | |
EP1637624A1 (en) | Thin film forming device and thin film forming method | |
CN103930192A (en) | Surface coating | |
KR100343717B1 (en) | Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning | |
US20220315721A1 (en) | Resin surface hydrophilization method, plasma processing device, laminate body, and laminate body manufacturing method | |
KR100438942B1 (en) | Anti-corrosion treatment method of metal using plasma | |
CN1938444B (en) | Ultra-hydrophilic and micro-organism resistant thin film coated metal product and method for manufacturing the same | |
KR100438941B1 (en) | Multi-layer deposition method using plasma | |
US7790246B2 (en) | Ultra hydrophilic Ti-O-C based nano film and fabrication method thereof | |
EP1040210B1 (en) | Plasma polymerization on surface of material | |
KR100438940B1 (en) | Anti-corrosion treatment method of metal using plasma | |
EP2045357B1 (en) | Method of forming silicon nitride films | |
JP5578042B2 (en) | Conductive substrate and manufacturing method thereof | |
KR100836055B1 (en) | ULTRA HYDROPHILIC Ti-O-C BASED NANO FILM AND FABRICATION METHOD THEREOF | |
KR20030030767A (en) | Surface treatment apparatus of metal using plasma | |
US20030070911A1 (en) | Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning | |
KR100438944B1 (en) | Surface treatment apparatus of metal using plasma | |
CN1754979A (en) | Metal corrosion-resistant processing method by use of plasma | |
US20190330730A1 (en) | Sensor in the field of process automation and its manufacture | |
CN115133059A (en) | Surface coating of fuel cell metal flow field plate and preparation method thereof | |
JP2020143324A (en) | Method of manufacturing coated member | |
KR100438943B1 (en) | Polymerization film deposition apparatus | |
JPS62180077A (en) | Coating method for inside surface of pipe | |
CN118326379A (en) | Vapor deposition method for improving SCR product voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120521 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20130514 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |