KR100438940B1 - Anti-corrosion treatment method of metal using plasma - Google Patents

Anti-corrosion treatment method of metal using plasma Download PDF

Info

Publication number
KR100438940B1
KR100438940B1 KR10-2001-0063116A KR20010063116A KR100438940B1 KR 100438940 B1 KR100438940 B1 KR 100438940B1 KR 20010063116 A KR20010063116 A KR 20010063116A KR 100438940 B1 KR100438940 B1 KR 100438940B1
Authority
KR
South Korea
Prior art keywords
plasma
chamber
corrosion
gas
metal
Prior art date
Application number
KR10-2001-0063116A
Other languages
Korean (ko)
Other versions
KR20030030754A (en
Inventor
오정근
Original Assignee
주식회사 엘지이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지이아이 filed Critical 주식회사 엘지이아이
Priority to KR10-2001-0063116A priority Critical patent/KR100438940B1/en
Publication of KR20030030754A publication Critical patent/KR20030030754A/en
Application granted granted Critical
Publication of KR100438940B1 publication Critical patent/KR100438940B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3382Polymerising

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명의 플라즈마를 이용한 금속의 내부식처리방법은 챔버(101)의 내부에 설치된 전극(102)(103)이 음극이되고 소재(104)가 양극이 되도록 전기적이 접속을 하고, 언 와인더(105)에 감겨있는 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부로 공급이되며, 그 공급이되는 소재(104)가 공정 챔버(101)를 지나 와인더(107)에 연속적으로 감겨지는 상태에서, 챔버(101)의 내부로 HMDSO와 He가스를 일정비율로 혼합한 혼합가스를 주입함과 아울러 소재(104)와 전극(102)(103)에 DC전압을 인가하면, 소재(104)와 전극(102)(103) 사이에서 플라즈마가 형성되며 소재(104)의 표면에 내부식성이 뛰어난 내부식성 중합막이 형성되어 진다.In the corrosion treatment method of the metal using the plasma of the present invention, the electrodes 102 and 103 installed inside the chamber 101 are electrically connected so that the cathode becomes the cathode and the material 104 becomes the anode, and the unwinder ( A sheet of aluminum material 104 wound around 105 is supplied into the process chamber 101, and the material 104 to be supplied is continuously passed through the process chamber 101 to the winder 107. In the wound state, when the mixed gas in which HMDSO and He gas are mixed at a predetermined ratio is injected into the chamber 101 and DC voltage is applied to the material 104 and the electrodes 102 and 103, the material ( Plasma is formed between the 104 and the electrodes 102 and 103, and a corrosion resistant polymer film having excellent corrosion resistance is formed on the surface of the material 104.

Description

플라즈마를 이용한 금속의 내부식처리방법{ANTI-CORROSION TREATMENT METHOD OF METAL USING PLASMA}Anti-corrosion treatment method of metal using plasma {ANTI-CORROSION TREATMENT METHOD OF METAL USING PLASMA}

본 발명은 플라즈마를 이용한 금속의 내부식처리에 관한 것으로, 보다 상세하게는 HMDSO와 He가스를 적정비율로 혼합한 혼합가스를 챔버의 내부로 공급함과 아울러 전극과 소재에 DC전압을 인가하여 형성되는 플라즈마에 의하여 소재의 표면에 내부식성이 뛰어난 내부식성 막의 증착이 이루어질 수 있도록 한 플라즈마를 이용한 금속의 내부식처리방법에 관한 것이다.The present invention relates to the corrosion treatment of metals using plasma, and more particularly, is formed by supplying a mixed gas of HMDSO and He gas at an appropriate ratio into the chamber and applying a DC voltage to the electrode and the material. The present invention relates to a method for treating corrosion of metals using plasma which enables deposition of a corrosion resistant film having excellent corrosion resistance on a surface of a material by plasma.

통상적으로 에어컨의 실외기는 케이스의 내부에 열교환기가 설치되어 있고, 그 열교환기는 스테인레스 재질의 지지대와 알루미늄 재질의 방열핀 및 동 파이프로 구성되어 있다.Typically, the outdoor unit of the air conditioner is provided with a heat exchanger inside the case, the heat exchanger is composed of a stainless steel support, aluminum radiating fins and copper pipes.

상기와 같이 구성되는 에어컨 실외기는 옥외에 주로 설치되기 때문에 빗물이나 바람에 많이 노출되므로 부식에 잘 견디며 열교환능력이 우수한 재질을 선택하여 제작되어 진다.Since the outdoor unit of the air conditioner configured as described above is mainly installed outdoors, it is exposed to rainwater or wind, so it is manufactured by selecting a material that resists corrosion well and has excellent heat exchange ability.

그러나, 상기와 같은 통상적인 에어컨 열교환기용 방열핀은 부식에 잘 견디는 알루미늄 재질로 되어 있음에도 불구하고, 서남아시아나 동남아시아의 해안가와 같이 고온다습하고 염분이 많은 지역의 외부에 설치되는 경우에 실외기용 열교환기의 방열핀들이 쉽게 부식되는 문제점이 있었다.However, although the heat dissipation fin for a conventional air conditioner heat exchanger is made of aluminum that resists corrosion well, the heat exchanger for an outdoor unit may be installed outside a high temperature, high humidity and salty area, such as a coastline of Southwest Asia or Southeast Asia. There was a problem that the heat radiation fins are easily corroded.

이러한 점을 개선하고자 기후가 악조건인 곳에 설치되는 에어컨의 실외기들은 열교환기의 방열핀들을 제작할때에 표면에 크롬(Cr) 도금을 하여 내부식처리를하게 되는데, 그와 같이 도금처리를 하는 경우에 어느정도 사용수명이 증가되어 개선이 되었다고 볼 수 있으나, 사용자들이 만족할 만큼 충분한 내부식성을 갖지 못하여 일정 기간이 지나면 부식에 의한 소손이 발생되는 문제점이 있었다.In order to improve this, outdoor units of air conditioners installed in bad weather conditions are subjected to corrosion treatment by plating chromium (Cr) on the surface when manufacturing heat sink fins of heat exchanger. It can be seen that the improved service life has been improved, but users do not have enough corrosion resistance to satisfy, there is a problem that a burnout by corrosion occurs after a certain period of time.

상기와 같은 문제점을 감안하여 안출한 본 발명의 목적은 공정 챔버의 내부에 HMDSO와 He가스를 적정 비율로 공급함과 아울러 DC전압을 인가하여 소재의 표면에 내부식성이 뛰어난 내부식성 막을 증착시키도록 하는데 적합한 플라즈마를 이용한 금속의 내부식처리방법을 제공함에 있다.The object of the present invention devised in view of the above problems is to supply an HMDSO and He gas in an appropriate ratio inside the process chamber and to apply a DC voltage to deposit a corrosion resistant film having excellent corrosion resistance on the surface of the material. The present invention provides a method for treating corrosion resistance of metal using a suitable plasma.

도 1은 본 발명의 내부식처리를 실시하는 증착장치를 개략적으로 보인 개략구성도.1 is a schematic configuration diagram schematically showing a deposition apparatus for performing a corrosion treatment of the present invention.

도 2는 본 발명의 내부식처리된 소재의 시료와 종래의 크롬 코팅된 소재의 표면저항값을 비교한 그래프.Figure 2 is a graph comparing the surface resistance value of the sample of the corrosion-resistant material of the present invention and the conventional chromium coated material.

** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **

101 : 챔버 102 : 상부 전극101 chamber 102 upper electrode

103 : 하부 전극 104 : 소재103: lower electrode 104: material

상기와 같은 본 발명의 목적을 달성하기 위하여In order to achieve the object of the present invention as described above

냉동 공조용 금속 소재의 표면에 내부식성 막을 증착하는 방법에 있어서,In the method of depositing a corrosion resistant film on the surface of the metal material for refrigeration air conditioning,

챔버의 내부에 음극이 되는 전극을 위치시킴과 아울러 양극이 되는 소재를 위치시키고,In addition to placing the electrode that is the cathode inside the chamber and the material that is the anode,

상기 챔버의 내부압력을 소정의 진공상태로 유지하며,Maintaining the internal pressure of the chamber in a predetermined vacuum state,

상기 챔버의 내부로 HMDSO와 He가스를 1500sccm:2100sccm으로 주입하고,Injecting HMDSO and He gas at 1500sccm: 2100sccm into the chamber,

상기 음극과 양극에 DC전압을 1100V~1300V의 범위로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 내식성을 가지는 고분자 중합막을 형성하는 플라즈마를 이용한 금속의 내부식처리방법이 제공된다.The plasma is applied to the cathode and the anode in the range of 1100V to 1300V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a polymerized polymer film having corrosion resistance on the surface of the metal material. Provided is a method of treating corrosion.

이하, 상기의 본 발명을 첨부된 실시예를 참고하여 보다 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying examples of the present invention described in more detail as follows.

도 1은 본 발명의 내부식처리를 실시하는 증착장치를 개략적으로 보인 개략구성도로서, 도시된 바와 같이, 박스체인 공정 챔버(101)의 내측 상부에 상부 전극(102)이 고정되어 있고, 그 상부 전극(102)의 하측에 하부 전극(103)이 고정되어 있다.FIG. 1 is a schematic configuration diagram schematically showing a deposition apparatus for performing corrosion resistance treatment according to the present invention. As shown in the drawing, an upper electrode 102 is fixed to an inner upper portion of a box chain process chamber 101. The lower electrode 103 is fixed to the lower side of the upper electrode 102.

그리고, 상기 공정 챔버(101)의 일측에는 공정 챔버(101)의 내부로 공급하기 위한 알루미늄 시트 상태의 소재(104)가 감겨져 있는 언 와인더(105)가 언 와인더 챔버(106)의 내부에 배치되어 있고, 타측에는 공정 챔버(101)에서 배출되는 소재(104)를 감기 위한 와인더(107)가 언 와인더 챔버(108)의 내부에 배치되어 있으며, 상기 언 와인더 챔버(105)의 출구부와 와인더 챔버(108)의 입구부에는 시료(104)의 이동을 안내하는 한쌍의 가이드 롤러(109)가 설치되어 있다.In addition, on one side of the process chamber 101, an unwinder 105 having an aluminum sheet material 104 wound around the process chamber 101 is wound inside the unwinder chamber 106. On the other side, the winder 107 for winding the material 104 discharged from the process chamber 101 is disposed inside the unwinder chamber 108, and the unwinder chamber 105 A pair of guide rollers 109 for guiding the movement of the sample 104 are provided at the outlet portion and the inlet portion of the winder chamber 108.

또한, 상기 공정 챔버(101)의 하부 일측에는 공정가스를 주입하기 위한 가스주입라인(111)이 설치되어 있고, 타측에는 반응하고난 후의 배기가스를 배출하기 위한 배기라인(112)이 설치되어 있으며, 그 배기라인(112) 상에는 공정 챔버(101)의 내부가 진공상태로 유지되도록 펌핑하기 위한 펌프(113)가 설치되어 있다.In addition, a lower portion of the process chamber 101 is provided with a gas injection line 111 for injecting process gas, and the other side is provided with an exhaust line 112 for discharging the exhaust gas after the reaction. On the exhaust line 112, a pump 113 for pumping the inside of the process chamber 101 is maintained in a vacuum state.

한편, 상, 하부 전극(102)(103) 및 소재(104)에 직류전원을 공급할 수 있도록 직류전원공급기(114)에 설치되어 있고, 도면에는 도시되지 않았지만 언 와인더(105)와 와인더(107)를 회전시키기 위한 모터(미도시)가 구비되어 있다.On the other hand, it is provided in the DC power supply 114 to supply DC power to the upper and lower electrodes 102, 103 and the material 104, and although not shown in the figure unwinder 105 and the winder ( A motor (not shown) for rotating 107 is provided.

상기와 같이 구성되어 있는 증착장치에서 금속 소재의 표면에 내부식 막을 형성하는 방법을 설명하면 다음과 같다.Referring to the method of forming a corrosion-resistant film on the surface of the metal material in the deposition apparatus is configured as described above are as follows.

전원이 인가되어 모터(미도시)의 구동에 의하여 언 와인더(105)가 시계반대방향으로 회전을 하고, 와인더(107)가 시계방향으로 회전을 하면 언 와인더(105)에 감겨있던 시트 상태의 알루미늄 소재(104)가 공정 챔버(101)의 내부에 설치된 상부 전극(102)과 하부 전극(103)의 사이를 통과하여 와인더(107)에 연속적으로 감기게 된다.When the power is applied, the unwinder 105 rotates in the counterclockwise direction by the driving of a motor (not shown), and the winder 107 rotates in the clockwise direction, the sheet wound on the unwinder 105 The aluminum material 104 in a state passes between the upper electrode 102 and the lower electrode 103 installed inside the process chamber 101 and is continuously wound on the winder 107.

그와 같은 상태에서 가스주입라인(111)을 통하여 HMDSO(Hexamethyldisiloxane, (CH3)3SiOSi(CH3)3)와 He가스가 1500sccm:2100sccm의 비율로 혼합된 혼합가스를 챔버(101)의 내부로 주입함과 아울러 전극(102)과 소재(104)에 1100V~1300V의 범위로 전압을 인가하면 상,하부 전극(102)(103)과 소재(104)의 사이에서 플라즈마가 형성되면서 연속적으로 이동하는 소재(104)의 표면에 내부식성을 가지는 중합막이 연속적으로 형성되어 진다.상기 가스의 주입단위인 sccm(standard cubic centimeter per minitues)은 표준조건(0℃, 1기압)에서의 유량을 의미한다.In such a state, the mixed gas in which HMDSO (Hexamethyldisiloxane, (CH 3 ) 3 SiOSi (CH 3 ) 3 ) and He gas are mixed at a ratio of 1500sccm: 2100sccm through the gas injection line 111 is provided in the chamber 101. In addition to the injection into the electrode 102 and the material 104 when the voltage is applied in the range of 1100V ~ 1300V, plasma is formed between the upper and lower electrodes 102, 103 and the material 104 to move continuously A polymerized film having corrosion resistance is continuously formed on the surface of the material 104. Sccm (standard cubic centimeter per minitues), which is a gas injection unit, means a flow rate under standard conditions (0 ° C., 1 atmosphere). .

도 2는 본 발명의 내부식처리된 소재의 시료와 종래의 크롬 코팅된 소재의 시료의 표면저항값을 EIS(ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY)기법으로 측정한 결과로서, X축은 주파수로서 부식측정을 위한 EIS값이 민감하게 대응하는 범위를 찾아내기 위하여 어느 특정 주파수를 선택한 것이고, Y축은 전기적인 저항값으로 임피던스 절대값을 나타낸다.Figure 2 is a result of measuring the surface resistance value of the sample of the corrosion-resistant material and the sample of the conventional chromium-coated material of the present invention by EIS (ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY) technique, X-axis is the frequency EIS value for corrosion measurement To find this sensitively corresponding range, a certain frequency was chosen, and the Y-axis represents the absolute value of impedance as the electrical resistance.

그래프에 나타난 바와 같이, 크롬이 코팅되어 있는 소재의 시료에 비하여 본 발명에 의한 방법으로 내부식처리된 소재(104)의 시료에서 측정된 저항값이 3승 오더(ORDER) 만큼 높음을 확인할 수 있었다. 여기서 시료의 저항값은 높을 수록 내부식성이 뛰어나다는 것을 의미하므로, 본 발명에 의한 내부식처리방법에 의하여 처리되는 소재의 내부식성이 크게 향상됨을 확인할 수 있다.As shown in the graph, it was confirmed that the resistance value measured in the sample of the material 104 subjected to the corrosion treatment by the method according to the present invention is higher than the sample of the material coated with chromium by an order of three orders. . Here, since the higher the resistance value of the sample means that the corrosion resistance is excellent, it can be confirmed that the corrosion resistance of the material treated by the corrosion treatment method according to the present invention is greatly improved.

이상에서 상세히 설명한 바와 같이, 본 발명 플라즈마를 이용한 금속의 내부식처리방법은 공정 챔버의 내부를 이동하는 소재가 양극이 되고 전극이 음극이 되도록 전기적인 연결이 되어 있는 상태에서, 챔버의 내부로 HMDSO와 He가스를 일정비율로 혼합한 혼합가스를 주입함과 아울러 소재와 전극에 DC전압을 인가하면, 소재와 전극 사이에서 플라즈마가 형성되며, 소재의 표면에 내부식성이 뛰어난 내부식성 중합막이 형성되어 진다.As described in detail above, the metal corrosion treatment method using the plasma of the present invention HMDSO into the interior of the chamber in the state that the electrical material to move the inside of the process chamber is an anode and the electrode is a cathode When a mixed gas containing a mixture of He and He gases is injected, and a DC voltage is applied to the material and the electrode, plasma is formed between the material and the electrode, and a corrosion resistant polymer film having excellent corrosion resistance is formed on the surface of the material. Lose.

Claims (2)

냉동 공조용 금속 소재의 표면에 내부식성 막을 증착하는 방법에 있어서,In the method of depositing a corrosion resistant film on the surface of the metal material for refrigeration air conditioning, 챔버의 내부에 음극이 되는 전극을 위치시킴과 아울러 양극이 되는 소재를 위치시키고,In addition to placing the electrode that is the cathode inside the chamber and the material that is the anode, 상기 챔버의 내부압력을 소정의 진공상태로 유지하며,Maintaining the internal pressure of the chamber in a predetermined vacuum state, 상기 챔버의 내부로 HMDSO와 He가스를 1500sccm:2100sccm으로 주입하고,Injecting HMDSO and He gas at 1500sccm: 2100sccm into the chamber, 상기 음극과 양극에 DC전압을 1100V~1300V의 범위로 인가하여 혼합가스로 부터 플라즈마를 얻고, 그 플라즈마에 의해 혼합가스가 여기되면서 금속 소재의 표면에 내식성을 가지는 고분자 중합막을 형성하는 플라즈마를 이용한 금속의 내부식처리방법.The plasma is applied to the cathode and the anode in the range of 1100V to 1300V to obtain a plasma from the mixed gas, and the mixed gas is excited by the plasma to form a polymerized polymer film having corrosion resistance on the surface of the metal material. Corrosion treatment method 제 1항에 있어서, 상기 내부식성 막의 증착은 공정 챔버를 지나는 소재의 표면에 연속적으로 형성되어지는 것을 특징으로 하는 플라즈마를 이용한 금속의 내부식처리방법.The method of claim 1, wherein the deposition of the corrosion resistant film is continuously formed on the surface of the material passing through the process chamber.
KR10-2001-0063116A 2001-10-12 2001-10-12 Anti-corrosion treatment method of metal using plasma KR100438940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0063116A KR100438940B1 (en) 2001-10-12 2001-10-12 Anti-corrosion treatment method of metal using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0063116A KR100438940B1 (en) 2001-10-12 2001-10-12 Anti-corrosion treatment method of metal using plasma

Publications (2)

Publication Number Publication Date
KR20030030754A KR20030030754A (en) 2003-04-18
KR100438940B1 true KR100438940B1 (en) 2004-07-03

Family

ID=29564472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0063116A KR100438940B1 (en) 2001-10-12 2001-10-12 Anti-corrosion treatment method of metal using plasma

Country Status (1)

Country Link
KR (1) KR100438940B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920703215A (en) * 1990-02-14 1992-12-17 원본미기재 Low Temperature Plasma Technique for Corrosion Protection of Steel
JPH0610132A (en) * 1992-06-29 1994-01-18 Nagasaki Pref Gov Production of thin film of organosilicon compound
JPH11256338A (en) * 1998-03-11 1999-09-21 Mitsubishi Heavy Ind Ltd Production of gas barrier film
KR20010018714A (en) * 1999-08-21 2001-03-15 구자홍 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
KR20010031646A (en) * 1997-10-31 2001-04-16 슈베르트 헬무트 Method for corrosion-resistant coating of metal substrates by means of plasma polymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920703215A (en) * 1990-02-14 1992-12-17 원본미기재 Low Temperature Plasma Technique for Corrosion Protection of Steel
JPH0610132A (en) * 1992-06-29 1994-01-18 Nagasaki Pref Gov Production of thin film of organosilicon compound
KR20010031646A (en) * 1997-10-31 2001-04-16 슈베르트 헬무트 Method for corrosion-resistant coating of metal substrates by means of plasma polymerization
JPH11256338A (en) * 1998-03-11 1999-09-21 Mitsubishi Heavy Ind Ltd Production of gas barrier film
KR20010018714A (en) * 1999-08-21 2001-03-15 구자홍 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization

Also Published As

Publication number Publication date
KR20030030754A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
Madadi et al. Improving performance in PEMFC by applying different coatings to metallic bipolar plates
US8877002B2 (en) Internal member of a plasma processing vessel
CN101647098A (en) Aluminum-plated components of semiconductor material processing apparatuses and methods of manufacturing the components
Pan et al. Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment
JP2016100177A (en) Fuel cell separator or current collecting member, and manufacturing method thereof
JP5099693B2 (en) Amorphous carbon film and method for forming the same
KR100438941B1 (en) Multi-layer deposition method using plasma
CN1272141A (en) Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
KR100438940B1 (en) Anti-corrosion treatment method of metal using plasma
KR100783214B1 (en) Ultra-hydrophilic and antibacterial thin film coated metal product, and it's manufacturing method
Wen et al. Corrosion Behavior of Au Coating on 316L Bipolar Plate in Accelerated PEMFC Environment
US7790246B2 (en) Ultra hydrophilic Ti-O-C based nano film and fabrication method thereof
KR100438942B1 (en) Anti-corrosion treatment method of metal using plasma
BR102014026134A2 (en) plasma process and reactor for thermochemical surface treatment of metal parts
KR100438944B1 (en) Surface treatment apparatus of metal using plasma
KR100438945B1 (en) Surface treatment apparatus of metal using plasma
KR200380956Y1 (en) Dew point measuring apparatus of galvanizing simulator
GB2078699A (en) Coating of metallic substrates
KR100836055B1 (en) ULTRA HYDROPHILIC Ti-O-C BASED NANO FILM AND FABRICATION METHOD THEREOF
JP6928448B2 (en) Method for forming a conductive carbon film, method for manufacturing a conductive carbon film coating member, and method for manufacturing a separator for a fuel cell
KR100438946B1 (en) Gas inlet-pipe condensation preventing apparatus using heated cooling water of plasma deposition apparatus
CN1754979A (en) Metal corrosion-resistant processing method by use of plasma
KR100892455B1 (en) Corrosion-resistant, ultra-hydrophilic and antibacterial thin film coated metal product
US20220018021A1 (en) Method for coating metal
KR100438943B1 (en) Polymerization film deposition apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120521

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee