JPH11256338A - Production of gas barrier film - Google Patents

Production of gas barrier film

Info

Publication number
JPH11256338A
JPH11256338A JP5946498A JP5946498A JPH11256338A JP H11256338 A JPH11256338 A JP H11256338A JP 5946498 A JP5946498 A JP 5946498A JP 5946498 A JP5946498 A JP 5946498A JP H11256338 A JPH11256338 A JP H11256338A
Authority
JP
Japan
Prior art keywords
film
gas barrier
plasma
treatment
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5946498A
Other languages
Japanese (ja)
Other versions
JP4012620B2 (en
Inventor
Masahiro Bessho
正博 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05946498A priority Critical patent/JP4012620B2/en
Publication of JPH11256338A publication Critical patent/JPH11256338A/en
Application granted granted Critical
Publication of JP4012620B2 publication Critical patent/JP4012620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily improve oxygen gas barrier property and water vapor barrier property at a low cost by forming a thin film essentially comprising silicon oxide on a polymer film by CVD method of using plasma under specified pressure produced from an org. silicon compd. as the source material which is a liquid in a specified temp. range. SOLUTION: A polymer base film 16 such as PE is travelled along the roll- type ground electrode 4 in a chamber 5. The polymer film is preferably preliminarily subjected to pretreatment such as corona discharge treatment and plasma treatment to remove contaminants on the surface and to activate its surface. High frequency power is applied on a discharge electrode 3 disposed near the ground electrode 4 to discharge to produced plasma under 600 to 1520 Torr pressure. An org. silicon compd. such as hexamethyldisiloxane which is a liquid in 20 to 150 deg.C temp. range is introduced into the plasma. By this CVD method, a thin film essentially comprising silicon oxide expressed by SiOx (x is 1.0 to 2.0) is formed to have 5 to 200 nm thickness on the base film 16. Then the thin film is preferably subjected to post treatment with O2 plasma to be smoothened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスバリア性フィル
ム、特に酸素バリア性及び/又は水蒸気バリア性に優れ
たガスバリア性フィルムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gas barrier film, particularly a gas barrier film having excellent oxygen barrier properties and / or excellent water vapor barrier properties.

【0002】[0002]

【従来の技術】従来、ガスバリア性に優れたフィルムと
して、各種フィルム上にアルミニウムを積層したもの、
ポリビニリデン樹脂やポリビニリデンポリアクリル酸共
重合体樹脂をコーティングしたもの、あるいはSiOx
等の薄膜をコーティングしたものなどが知られている。
これらのうちSiOx等の薄膜を形成させたガスバリア
性フィルムの製造方法としては、各種フィルム上に真空
蒸着、スパッタリング、イオンプレーティング、減圧プ
ラズマCVD等の方法が挙げられる。真空蒸着法による
高分子フィルム上への酸化珪素薄膜の好ましい製造方法
としては、金属を加熱して気相で酸素と反応させる反応
蒸着法、電子線により酸化珪素を蒸着源とする電子ビー
ム蒸着法、珪素又は酸化珪素を加熱し、必要に応じて気
相で酸素と反応させる電子ビーム反応蒸着法がある。ま
た、減圧プラズマCVD法によるガスバリア性フィルム
の製造方法としては、原料の有機珪素化合物をプラズマ
中に導入することにより無機の酸化珪素とする方法がよ
く知られている。このとき原料として使用される有機珪
素化合物として具体的には、テトラエトキシシラン、メ
チルトリエトキシシラン、ヘキサメチルジシロキサン、
テトラメトキシシラン、メトキシトリメチルシラン、テ
トラメチルシラン、トリフェニルシラン、ヘキサメチル
トリシロキサン、テトラクロロシラン、トリクロロメチ
ルシラン、トリメチルクロロシラン、ジメチルジクロロ
シラン、ジメチルクロロシランなどが挙げられる。
2. Description of the Related Art Conventionally, as a film having excellent gas barrier properties, aluminum is laminated on various films,
Coated with polyvinylidene resin or polyvinylidene polyacrylic acid copolymer resin, or SiOx
And the like are known.
Among them, examples of a method for producing a gas barrier film having a thin film such as SiOx formed thereon include methods such as vacuum deposition, sputtering, ion plating, and low-pressure plasma CVD on various films. Preferred methods for producing a silicon oxide thin film on a polymer film by a vacuum vapor deposition method include a reactive vapor deposition method in which a metal is heated and reacted with oxygen in a gas phase, and an electron beam vapor deposition method in which silicon oxide is used as a vapor deposition source by an electron beam. There is an electron beam reactive evaporation method in which silicon or silicon oxide is heated and, if necessary, is reacted with oxygen in a gas phase. Further, as a method for producing a gas barrier film by a low-pressure plasma CVD method, a method of introducing an organic silicon compound as a raw material into plasma to obtain inorganic silicon oxide is well known. At this time, as the organic silicon compound used as a raw material, specifically, tetraethoxysilane, methyltriethoxysilane, hexamethyldisiloxane,
Examples include tetramethoxysilane, methoxytrimethylsilane, tetramethylsilane, triphenylsilane, hexamethyltrisiloxane, tetrachlorosilane, trichloromethylsilane, trimethylchlorosilane, dimethyldichlorosilane, and dimethylchlorosilane.

【0003】[0003]

【発明が解決しようとする課題】前記の従来技術のうち
真空蒸着、スパッタリング又はイオンプレーティングに
よる方法はいずれも固体の原料を使用するため、操作性
が悪かったり、原料が高価で経済性が悪いという問題点
を有している。また、いずれの方法も10-1Torr以
上の高い真空度を要する真空プロセスであるため、減圧
用の真空設備が必要であったり、真空度に見合ったシー
ル性を確保する必要があるため、設備コスト(イニシャ
ルコスト)やランニングコストが高いという問題点があ
る。本発明はこのような従来技術の問題点を解決し、酸
素ガスバリア性及び水蒸気バリア性に優れ、透明性も高
く、さらに安定した品質のガスバリア性フィルムを、高
度の真空設備を必要としない大気圧下のプロセスで操作
性よく容易に製造することができるガスバリア性フィル
ムの製造方法を提供することを目的とする。
Among the above-mentioned prior arts, the methods using vacuum deposition, sputtering or ion plating all use solid raw materials, so that their operability is poor, and the raw materials are expensive and economical. There is a problem that. In addition, since each of these methods is a vacuum process requiring a high degree of vacuum of 10 -1 Torr or more, vacuum equipment for decompression is required, or it is necessary to secure sealing properties corresponding to the degree of vacuum. There is a problem that cost (initial cost) and running cost are high. The present invention solves such problems of the prior art, and provides a gas barrier film having excellent oxygen gas barrier properties and water vapor barrier properties, high transparency, and stable quality at atmospheric pressure which does not require advanced vacuum equipment. An object of the present invention is to provide a method for producing a gas barrier film that can be easily produced with good operability by the following process.

【0004】[0004]

【課題を解決するための手段】本発明は高分子フィルム
上に、20〜150℃の温度域において液体である有機
珪素化合物を原料として、600〜1520Torrの
圧力下で発生するプラズマを用いたCVD法により、S
iOx(x=1.0〜2.0)で表される酸化珪素を主
成分とする薄膜を形成させることを特徴とするガスバリ
ア性フィルムの製造方法である。
According to the present invention, there is provided a CVD method using a plasma generated on a polymer film at a pressure of 600 to 1520 Torr from an organic silicon compound which is a liquid in a temperature range of 20 to 150 ° C. By law, S
A method for manufacturing a gas barrier film, comprising forming a thin film containing silicon oxide represented by iOx (x = 1.0 to 2.0) as a main component.

【0005】本発明の方法においては、酸化珪素を主成
分とする薄膜を形成させるに先立ち、高分子フィルム
に、該高分子フィルム表面に付着した汚れ物質の除去、
表面活性化のための前処理としてオゾン処理、紫外線処
理、コロナ放電やAr、He、N2 、O2 等の単一又は
混合雰囲気下でのプラズマ処理を単独で又は複数種組み
合わせて施すのが好ましい。中でもO2 プラズマ処理が
好適である。また、酸化珪素を主成分とする薄膜を形成
させた後に、後処理としてO2 プラズマ処理を行うこと
により未反応原料の酸化を促進させ、コーティング膜の
組成をさらに均一化させることができる。
[0005] In the method of the present invention, prior to forming a thin film containing silicon oxide as a main component, removing a contaminant attached to the surface of the polymer film,
Ozone treatment, ultraviolet treatment, corona discharge or plasma treatment under a single or mixed atmosphere of Ar, He, N 2 , O 2, etc. may be performed alone or in combination as a pretreatment for surface activation. preferable. Among them, O 2 plasma treatment is preferable. Further, after forming a thin film containing silicon oxide as a main component, by performing an O 2 plasma treatment as a post-treatment, the oxidation of the unreacted raw material is promoted, and the composition of the coating film can be further uniformed.

【0006】[0006]

【発明の実施の形態】本発明の方法において、ガスバリ
ア性を有するコーティング膜の原料として使用する20
〜150℃の温度域において液体である有機珪素化合物
とは、20〜150℃の範囲内の少なくとも一部で液体
である化合物を意味し、具体的な化合物の例としてはテ
トラエトキシシラン、メチルトリエトキシシラン、ヘキ
サメチルジシロキサン、テトラメトキシシラン、メトキ
シトリメチルシラン、テトラメチルシラン、ヘキサメチ
ルトリシロキサン、テトラクロロシラン、トリクロロメ
チルシラン、トリメチルクロロシラン、ジメチルジクロ
ロシラン、ジメチルクロロシランなどを挙げることがで
きるが、特に好ましい化合物としてヘキサメチルジシロ
キサン(HMDSO:C6 18OSi2 :沸点100
℃)がある。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a material used as a raw material for a coating film having gas barrier properties is used.
The organic silicon compound which is liquid in a temperature range of from about 150 ° C. to about 150 ° C. means a compound which is liquid in at least a part of the range of from 20 ° C. to 150 ° C., and specific examples of the compound include tetraethoxysilane and methyltriethyl. Ethoxysilane, hexamethyldisiloxane, tetramethoxysilane, methoxytrimethylsilane, tetramethylsilane, hexamethyltrisiloxane, tetrachlorosilane, trichloromethylsilane, trimethylchlorosilane, dimethyldichlorosilane, dimethylchlorosilane, etc. As a preferred compound, hexamethyldisiloxane (HMDSO: C 6 H 18 OSi 2 : boiling point 100)
° C).

【0007】本発明で基材として使用する高分子フィル
ムの例としてはポリエチレン、ポリプロピレン、ポリエ
チレンテレフタレート、ナイロン−6、ナイロン−6
6、ポリビニルアルコール等が挙げられる。これらの高
分子フィルムには添加剤、例えば可塑剤、帯電防止剤、
滑剤、紫外線吸収剤等が含まれていてもよい。
Examples of the polymer film used as a substrate in the present invention include polyethylene, polypropylene, polyethylene terephthalate, nylon-6, nylon-6
6, polyvinyl alcohol and the like. Additives to these polymer films, such as plasticizers, antistatic agents,
A lubricant, an ultraviolet absorber and the like may be included.

【0008】次に、本発明の方法によるガスバリア性フ
ィルムの一般的な製造方法を示す。先ず必要により、プ
ラズマCVD法による薄膜の形成に先立って、真空容器
中で高分子フィルムにコロナ放電処理、Ar、He、N
2 、O2 などによるプラズマ処理等の前処理を施し、高
分子フィルムの汚れ物質の除去や表面の活性化を行う。
これによって、高分子フィルムとコーティング膜との接
着性を向上させることができる。処理条件は、それぞれ
の処理方法について、それぞれ最適条件を設定すればよ
いが、最も一般的な方法であるO2 プラズマ処理の標準
的な例を表1に示す。
Next, a general method for producing a gas barrier film according to the method of the present invention will be described. First, if necessary, prior to the formation of a thin film by the plasma CVD method, a corona discharge treatment is applied to the polymer film in a vacuum vessel, and Ar, He, N
2. Pretreatment such as plasma treatment with O 2 is performed to remove contaminants and activate the surface of the polymer film.
Thereby, the adhesiveness between the polymer film and the coating film can be improved. The processing conditions may be set to optimal conditions for each processing method. Table 1 shows a standard example of O 2 plasma processing, which is the most general method.

【0009】次いで、必要により前処理を施した高分子
フィルムに、前記の有機珪素化合物をAr、Heなどの
不活性ガスをキャリアガスとして供給し、600〜15
20Torr、好ましくは760±10Torrの大気
圧又はその近傍の圧力下で行う大気圧プラズマCVD法
によりコーティングを行い、高分子フィルム上にSiO
x(x=1.0〜2.0)で表される酸化珪素を主成分
とする薄膜を形成させる。
Next, the above-mentioned organosilicon compound is supplied as an inert gas such as Ar or He as a carrier gas to the polymer film which has been subjected to a pretreatment if necessary, and the resulting mixture is subjected to a heat treatment at 600 to 15 minutes.
Coating is performed by an atmospheric pressure plasma CVD method performed at or near an atmospheric pressure of 20 Torr, preferably 760 ± 10 Torr, and SiO 2 is coated on the polymer film.
A thin film mainly composed of silicon oxide represented by x (x = 1.0 to 2.0) is formed.

【0010】本発明の方法における大気圧プラズマCV
D法は、マッチングボックスを通して交流電源と接続さ
れる放電電極と接地電極を兼ねるロール型電極との間に
交流電界を印加し、600〜1520Torrの大気圧
又はその近傍の圧力下でグロー放電を発生させることが
可能な大気圧プラズマ処理装置を使用して、高分子フィ
ルム表面に操作性よく簡単にガスバリア性コーティング
膜を形成させる方法である。前記放電電極は導電体表面
に誘電体を被覆して形成したもので、誘電体としてはA
2 3 が好適である。
Atmospheric pressure plasma CV in the method of the present invention
In the method D, an AC electric field is applied between a discharge electrode connected to an AC power supply through a matching box and a roll-type electrode also serving as a ground electrode, and a glow discharge is generated under an atmospheric pressure of 600 to 1520 Torr or a pressure in the vicinity thereof. This is a method for easily forming a gas barrier coating film on the surface of a polymer film with good operability by using an atmospheric pressure plasma processing apparatus that can be used. The discharge electrode is formed by covering the surface of a conductor with a dielectric.
l 2 O 3 is preferred.

【0011】ガスバリア性コーティング膜である酸化珪
素を主成分とする薄膜の厚み範囲は5〜200nm、好
ましくは20〜130nm、さらに好ましくは40〜6
0nmである。厚みが5nm未満ではガスバリア効果が
十分ではなく、また、200nmを超えると表面にクラ
ックを生じやすくなりバリア性が低下する。
[0011] The thickness range of the thin film containing silicon oxide as a main component, which is a gas barrier coating film, ranges from 5 to 200 nm, preferably from 20 to 130 nm, and more preferably from 40 to 6 nm.
0 nm. If the thickness is less than 5 nm, the gas barrier effect is not sufficient, and if it exceeds 200 nm, cracks are likely to occur on the surface, and the barrier properties are reduced.

【0012】さらに、大気圧プラズマCVD法による薄
膜の形成後に、後処理としてO2 プラズマ処理を行うこ
とにより未反応原料の酸化を促進させ、コーティング膜
の組成をさらに均一化させることができる。本発明にお
ける前処理、コーティング処理及び後処理の標準的な条
件を表1に示す。
Further, after forming the thin film by the atmospheric pressure plasma CVD method, by performing O 2 plasma treatment as a post-treatment, the oxidation of the unreacted raw material is promoted, and the composition of the coating film can be made more uniform. Table 1 shows standard conditions of the pretreatment, the coating treatment, and the post-treatment in the present invention.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (実施例1)図1は本発明方法を実施するための大気圧
プラズマ処理装置の概要を示す説明図である。幅150
mm、厚さ30μmの二軸延伸PET(ポリエチレンテ
レフタレート)フィルムを供試体として図1に示す形式
の試験装置を使用し、表2の条件でコーティングフィル
ムを作製し、性能評価を行った。作製した試料は表3に
示す試料No.1〜10の10種類である。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Embodiment 1) FIG. 1 is an explanatory view showing an outline of an atmospheric pressure plasma processing apparatus for carrying out the method of the present invention. Width 150
A biaxially stretched PET (polyethylene terephthalate) film having a thickness of 30 μm and a thickness of 30 μm was used as a test piece, and a coating film was prepared under the conditions shown in Table 2 using a test apparatus of the type shown in FIG. The manufactured samples are the sample Nos. Shown in Table 3. There are 10 types from 1 to 10.

【0015】[0015]

【表2】 [Table 2]

【0016】試験は先ず図1に示した装置のフィルム送
りロール9に処理を行う基材フィルム16を装着し、フ
ィルム端部を張力調整用ロール11、ロール型接地電極
4、張力調整用ロール11を介してフィルム巻き取りロ
ール10に固定する。放電電極3と冷却水により冷却し
ているロール型接地電極4(冷却系統は図示省略)との
距離を0.5〜20mmに各部での距離が等しくなるよ
うに調整した後、チャンバ5内を排気用の真空ポンプ6
を用いて0.1Torr程度まで排気した。次いでチャ
ンバ5内にHeガス導入管17からHeガスを大気圧に
なるまで導入した。
In the test, first, the base film 16 to be treated is mounted on the film feed roll 9 of the apparatus shown in FIG. 1, and the film ends are tension-adjusted roll 11, the roll-type ground electrode 4, and the tension-adjusted roll 11 And is fixed to the film take-up roll 10. After adjusting the distance between the discharge electrode 3 and the roll-type ground electrode 4 (cooling system not shown) cooled by the cooling water so that the distance in each part is equal to 0.5 to 20 mm, the inside of the chamber 5 is adjusted. Vacuum pump 6 for exhaust
The gas was evacuated to about 0.1 Torr by using. Next, He gas was introduced into the chamber 5 from the He gas introduction pipe 17 until the pressure became atmospheric pressure.

【0017】図2は図1の大気圧プラズマ処理装置のプ
ラズマ処理部の拡大図である。図2に示すように放電電
極3は絶縁体21に挟まれた導電体19の表面を誘電体
20で被覆した構造であり、電極間の距離が変わらない
ようロール型接地電極4に沿って湾曲した形状とし、導
入したガスが放電部に効率よく供給されるようなスリッ
ト部22が形成されている。また、図示していないが冷
却水を通水できる構造となっている。
FIG. 2 is an enlarged view of the plasma processing section of the atmospheric pressure plasma processing apparatus of FIG. As shown in FIG. 2, the discharge electrode 3 has a structure in which the surface of a conductor 19 sandwiched between insulators 21 is covered with a dielectric 20, and is curved along the roll-type ground electrode 4 so that the distance between the electrodes does not change. The slit 22 is formed such that the introduced gas is efficiently supplied to the discharge unit. Although not shown, the structure is such that the cooling water can pass therethrough.

【0018】その後、放電電極3とロール型接地電極4
にマッチングボックス1を介して13.56MHzの高
周波を所定の電力で供給し、先ずHe雰囲気下でグロー
プラズマを発生させた。次いで原料である有機珪素化合
物としてヘキサメチルジシロキサン(HMDSO)を使
用し、所定量のHe及びO2 ガスとともに760Tor
rの圧力下に、スリット部22からプラズマ内に供給し
た。液体であるHMDSOの供給はHMDSOを入れた
容器12にキャリアガス導入管15からHeガスを導入
してバブリングさせ、このHeガスをキャリアガスとし
てHMDSOを搬送させるようにした。処理中のHeガ
スとO2 ガスの比率はHeガス導入管17からのHeガ
スとO2 ガス導入管14からのO2 ガスにより調整し
た。また、フィルム処理の際のフィルム送り速度は0.
1〜0.5m/minとした。
Thereafter, the discharge electrode 3 and the roll type ground electrode 4
A high frequency of 13.56 MHz was supplied at a predetermined power through the matching box 1 to generate glow plasma in a He atmosphere. Next, hexamethyldisiloxane (HMDSO) is used as an organosilicon compound as a raw material, and 760 Torr with a predetermined amount of He and O 2 gas.
Under the pressure of r, the plasma was supplied from the slit portion 22 into the plasma. The liquid HMDSO was supplied by introducing He gas from the carrier gas introduction pipe 15 into the container 12 containing HMDSO and bubbling the HMDSO, and transporting the HMDSO using the He gas as a carrier gas. The ratio of the He gas and the O 2 gas during the treatment was adjusted by the He gas from the He gas introduction pipe 17 and the O 2 gas from the O 2 gas introduction pipe. In addition, the film feed speed during the film processing is 0.1.
1 to 0.5 m / min.

【0019】前処理は次のように行った。すなわち、コ
ーティング処理を行う前の基材フィルム16を、コーテ
ィングのときと同様にフィルム送りロール9に装着し、
張力調整用ロール11、ロール型接地電極4、張力調整
用ロール11を介してフィルム巻き取りロール10に固
定し、チャンバ5内を0.1Torr程度まで十分排気
した。次いでO2 ガス導入管14からO2 ガスを10ミ
リリットル/minの流量で導入し、13.56MHz
の高周波を100Wの電力で供給しプラズマを発生さ
せ、フィルム送り速度0.5m/minとして1秒間O
2 プラズマ処理した。
The pretreatment was performed as follows. That is, the base film 16 before performing the coating treatment is mounted on the film feed roll 9 in the same manner as in the case of coating,
The film was fixed to the film take-up roll 10 via the tension adjusting roll 11, the roll-type ground electrode 4, and the tension adjusting roll 11, and the inside of the chamber 5 was sufficiently evacuated to about 0.1 Torr. Then O 2 gas O 2 gas introduction pipe 14 is introduced at a flow rate of 10 ml / min, 13.56 MHz
Is supplied at a power of 100 W to generate plasma, and the film is fed at a film feeding speed of 0.5 m / min for 1 second.
Two plasma treatments were performed.

【0020】後処理は、コーティング処理後のフィルム
を前処理と同様の方法でO2 プラズマ処理することによ
って行った。なお本実施例においては、フィルム巻き取
りロール10に巻き取られた前処理後のフィルムは、フ
ィルム送りロール9、フィルム巻き取りロール10を逆
方向回転させて再度フィルム送りロール9に巻き取った
あと、前記によりコーティング処理を行った。また、後
処理も同様に行った。
The post-treatment was performed by subjecting the film after the coating treatment to O 2 plasma treatment in the same manner as in the pre-treatment. In this embodiment, the pre-processed film wound on the film take-up roll 10 is wound on the film feed roll 9 again by rotating the film feed roll 9 and the film take-up roll 10 in the reverse direction. The coating process was performed as described above. Post-processing was also performed in the same manner.

【0021】作製したガスバリア性フィルムの試料につ
いて、酸素透過率測定装置(MOCON社製、OX−T
RAN100)を使用して酸素透過量を測定し酸素ガス
バリア性を評価するとともに、JIS−Z0208に準
拠して水蒸気透過量の測定を行い水蒸気バリア性を評価
した。また、透明性については全光線透過率を測定し、
透過率が60%以上のものを透明性◎、40%以上60
%未満のものを○、40%未満のものを×として評価し
た。
With respect to the sample of the produced gas barrier film, an oxygen permeability measuring device (OX-T, manufactured by MOCON) was used.
Using RAN100), the oxygen permeability was measured to evaluate the oxygen gas barrier properties, and the water vapor permeability was measured in accordance with JIS-Z0208 to evaluate the water vapor barrier properties. For transparency, measure the total light transmittance,
Those with a transmittance of 60% or more have a transparency of ◎, 40% or more and 60
% And less than 40% were evaluated as x.

【0022】作製した試料の作製条件等を表3に、性能
評価試験結果を表4、図3及び図4に示す。表4の試料
No.0は比較のため未処理のPETフィルムのガスバ
リア性を示したものである。図3は前処理及び後処理の
効果を比較したものであり、No.1〜3を比較する
と、前処理を行わないでコーティング処理を施した場合
(No.1)、ガスバリア性の向上が認められるもの
の、その効果は小さく、前処理を行ったNo.2と比較
するとガスバリア性が劣ることがわかる。このことか
ら、前処理がガスバリア性の向上に有効な処理であるこ
とが確認できる。また、後処理を施したNo.3ではさ
らにガスバリア性が向上している。
Table 3 shows the manufacturing conditions and the like of the manufactured samples, and Table 4 and FIGS. 3 and 4 show the results of the performance evaluation test. In Table 4, sample No. 0 indicates the gas barrier property of the untreated PET film for comparison. FIG. 3 compares the effects of pre-processing and post-processing. Comparing Nos. 1 to 3, when the coating treatment was performed without performing the pre-treatment (No. 1), although the gas barrier property was improved, the effect was small, and the effect was small. It is understood that the gas barrier property is inferior to that of No. 2. From this, it can be confirmed that the pretreatment is an effective treatment for improving the gas barrier property. In addition, No. In No. 3, the gas barrier properties are further improved.

【0023】次に他の条件は一定として印加電力を変化
させた場合(No.3〜5)では、50Wで処理を行っ
たNo.4のガスバリア性が低いが、これは膜厚が20
nmと薄いためである。また、処理時間を変化させた例
(No.3、7、8)では、処理時間の長いNo.7及
び8のガスバリア性が悪いが、これは膜厚が厚すぎて、
表面にクラックが生じやすくなったためである。
Next, when the applied power was changed while keeping the other conditions constant (Nos. 3 to 5), No. 3 was processed at 50 W. 4 has a low gas barrier property,
This is because it is as thin as nm. In the example in which the processing time was changed (Nos. 3, 7, and 8), No. 3 having a long processing time was used. Gas barrier properties of 7 and 8 are bad, but this is too thick,
This is because cracks are easily generated on the surface.

【0024】次に、導入するO2 ガス流量を変化させた
場合(No.3、9、10)、ガス流量の変化によって
バリア性に大きな変化は見られず、いずれも良好なガス
バリア性を示した。図4はNo.3〜10の試料につい
て、コーティングした膜厚に対してO2 及び水蒸気のバ
リア性を比較したものである。膜厚が40〜60nmの
場合、良好なガスバリア性を示しているが、膜厚がそれ
以上厚くなるとバリア性が低下する。これは膜が厚いた
め表面にクラックを生じやすくなりバリア性が低下する
ためであると思われる。以上の結果より、ガスバリア性
が効果的に作用する膜厚みは40〜60nm近辺であ
る。
Next, when the flow rate of the introduced O 2 gas was changed (Nos. 3, 9, and 10), no significant change was observed in the barrier property due to the change in the gas flow rate, and all showed good gas barrier properties. Was. FIG. About 3-10 samples, a comparison of the O 2 and barrier properties of water vapor with respect to the coated film thickness. When the film thickness is 40 to 60 nm, good gas barrier properties are exhibited, but when the film thickness is further increased, the barrier properties are reduced. This is presumably because the film is thick and cracks easily occur on the surface, and the barrier property is reduced. From the above results, the thickness of the film on which the gas barrier property works effectively is around 40 to 60 nm.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】本発明の方法によれば、高分子フィルム
上に液体の有機珪素化合物を原料として大気圧及びその
近傍の圧力で発生させたグロープラズマを用いたCVD
法により酸化珪素膜を比較的簡単に操作性よく形成させ
ることができる。また、適切な前処理及び/又は後処理
を行うことにより、さらにガスバリア性に優れたフィル
ムを製造することが可能であり、これらのフィルムのガ
スバリア性は時間経過による性能の低下もみられない。
According to the method of the present invention, CVD using a glow plasma generated on a polymer film at atmospheric pressure or a pressure near the atmospheric pressure using a liquid organosilicon compound as a raw material.
By the method, a silicon oxide film can be relatively easily formed with good operability. In addition, by performing appropriate pre-treatment and / or post-treatment, it is possible to produce films having more excellent gas barrier properties, and the gas barrier properties of these films do not show a decrease in performance over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための大気圧プラズマ処
理装置の概要を示す説明図。
FIG. 1 is an explanatory view showing an outline of an atmospheric pressure plasma processing apparatus for carrying out a method of the present invention.

【図2】図1の大気圧プラズマ処理装置のプラズマ処理
部の拡大図。
FIG. 2 is an enlarged view of a plasma processing unit of the atmospheric pressure plasma processing apparatus of FIG.

【図3】実施例における前処理及び後処理の有無とガス
バリア性との関係を示す図。
FIG. 3 is a diagram showing the relationship between the presence or absence of pre-processing and post-processing and gas barrier properties in an example.

【図4】実施例におけるコーティング膜厚とガスバリア
性との関係を示す図。
FIG. 4 is a diagram showing a relationship between a coating film thickness and gas barrier properties in Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子フィルム上に、20〜150℃の
温度域において液体である有機珪素化合物を原料とし
て、600〜1520Torrの圧力下で発生するプラ
ズマを用いたCVD法により、SiOx(x=1.0〜
2.0)で表される酸化珪素を主成分とする薄膜を形成
させることを特徴とするガスバリア性フィルムの製造方
法。
An SiOx (x = x) film is formed on a polymer film by a CVD method using a plasma generated under a pressure of 600 to 1520 Torr using an organic silicon compound which is a liquid in a temperature range of 20 to 150 ° C. as a raw material. 1.0-
2.0) A method for producing a gas barrier film, comprising forming a thin film containing silicon oxide as a main component represented by the formula (2).
【請求項2】 酸化珪素を主成分とする薄膜を形成させ
るに先立ち、高分子フィルムに、該高分子フィルム表面
に付着した汚れ物質の除去、表面活性化のための前処理
を施すことを特徴とする請求項1に記載のガスバリア性
フィルムの製造方法。
2. Prior to forming a thin film containing silicon oxide as a main component, the polymer film is subjected to a pretreatment for removing dirt attached to the surface of the polymer film and activating the surface. The method for producing a gas barrier film according to claim 1.
【請求項3】 酸化珪素を主成分とする薄膜を形成させ
た後に、後処理としてO2 プラズマ処理を行うことを特
徴とする請求項1又は2に記載のガスバリア性フィルム
の製造方法。
3. The method for producing a gas barrier film according to claim 1, wherein an O 2 plasma treatment is performed as a post-treatment after forming the thin film containing silicon oxide as a main component.
【請求項4】 前記薄膜の厚みが5〜200nmの範囲
であることを特徴とする請求項1〜3のいずれか1項に
記載のガスバリア性フィルムの製造方法。
4. The method for producing a gas barrier film according to claim 1, wherein the thickness of the thin film is in a range of 5 to 200 nm.
JP05946498A 1998-03-11 1998-03-11 Method for producing gas barrier film Expired - Fee Related JP4012620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05946498A JP4012620B2 (en) 1998-03-11 1998-03-11 Method for producing gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05946498A JP4012620B2 (en) 1998-03-11 1998-03-11 Method for producing gas barrier film

Publications (2)

Publication Number Publication Date
JPH11256338A true JPH11256338A (en) 1999-09-21
JP4012620B2 JP4012620B2 (en) 2007-11-21

Family

ID=13114074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05946498A Expired - Fee Related JP4012620B2 (en) 1998-03-11 1998-03-11 Method for producing gas barrier film

Country Status (1)

Country Link
JP (1) JP4012620B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271167A (en) * 2000-03-24 2001-10-02 Okura Ind Co Ltd Method for depositing zinc oxide thin film
WO2003094256A3 (en) * 2002-04-30 2004-04-01 Vitex Systems Inc Barrier coatings and methods of making same
KR100438940B1 (en) * 2001-10-12 2004-07-03 주식회사 엘지이아이 Anti-corrosion treatment method of metal using plasma
KR100438941B1 (en) * 2001-10-12 2004-07-03 주식회사 엘지이아이 Multi-layer deposition method using plasma
EP1493311A1 (en) * 2002-04-10 2005-01-05 Dow Corning Ireland Limited Gel and powder making
JP2010013735A (en) * 2009-09-29 2010-01-21 Konica Minolta Holdings Inc Method for producing resin film, and organic electroluminescence element using the resin film
WO2012132696A1 (en) 2011-03-30 2012-10-04 リンテック株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
WO2013045930A1 (en) 2011-09-27 2013-04-04 Innovia Films Limited Printable film
KR20190014756A (en) * 2017-08-03 2019-02-13 한국기계연구원 Forming method of composite silicon oxide layer and composite silicon oxide layer using thereof and member for preventing humidity using thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271167A (en) * 2000-03-24 2001-10-02 Okura Ind Co Ltd Method for depositing zinc oxide thin film
KR100438940B1 (en) * 2001-10-12 2004-07-03 주식회사 엘지이아이 Anti-corrosion treatment method of metal using plasma
KR100438941B1 (en) * 2001-10-12 2004-07-03 주식회사 엘지이아이 Multi-layer deposition method using plasma
EP1493311A1 (en) * 2002-04-10 2005-01-05 Dow Corning Ireland Limited Gel and powder making
US7438882B2 (en) * 2002-04-10 2008-10-21 Dow Corning Ireland Limited Gel and powder making
WO2003094256A3 (en) * 2002-04-30 2004-04-01 Vitex Systems Inc Barrier coatings and methods of making same
JP2010013735A (en) * 2009-09-29 2010-01-21 Konica Minolta Holdings Inc Method for producing resin film, and organic electroluminescence element using the resin film
WO2012132696A1 (en) 2011-03-30 2012-10-04 リンテック株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
CN103534084A (en) * 2011-03-30 2014-01-22 琳得科株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
EP2692522A1 (en) * 2011-03-30 2014-02-05 LINTEC Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
EP2692522A4 (en) * 2011-03-30 2015-04-29 Lintec Corp Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
US9763345B2 (en) 2011-03-30 2017-09-12 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
WO2013045930A1 (en) 2011-09-27 2013-04-04 Innovia Films Limited Printable film
US10471647B2 (en) 2011-09-27 2019-11-12 Innovia Films Limited Printable film
KR20190014756A (en) * 2017-08-03 2019-02-13 한국기계연구원 Forming method of composite silicon oxide layer and composite silicon oxide layer using thereof and member for preventing humidity using thereof

Also Published As

Publication number Publication date
JP4012620B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US6251807B1 (en) Method for improving thickness uniformity of deposited ozone-teos silicate glass layers
JP3135198B2 (en) Method of depositing silicon oxynitride film by plasma enhanced CVD
CN1053170C (en) Process for a surface treatment of a glass fabric
JP4830733B2 (en) Gas barrier film and manufacturing method thereof
US20060251825A1 (en) Low dielectric constant insulating film and method of forming the same
US5185179A (en) Plasma processing method and products thereof
JP2002237480A (en) Method of treating base material with discharge plasma
EP2363511B1 (en) Film deposition method and film deposition device
JP2004535037A (en) Surface treatment method and apparatus using glow discharge plasma
JP4012620B2 (en) Method for producing gas barrier film
JP2003503849A (en) Method and apparatus for forming a film on a substrate
US5057336A (en) Method of forming high purity SiO2 thin film
KR100286380B1 (en) Film deposition pretreatment method and semiconductor device manufacturing method
Fujino et al. Surface Modification of Base Materials for TEOS/O 3 Atmospheric Pressure Chemical Vapor Deposition
JPH08213386A (en) Manufacture of semiconductor device
Kakiuchi et al. Highly efficient formation process for functional silicon oxide layers at low temperatures (≤ 120° C) using very high-frequency plasma under atmospheric pressure
JP2004006511A (en) Plasma processing apparatus
JP4809973B2 (en) Method and apparatus for manufacturing semiconductor device
JPH02122924A (en) Transparent barrier film and manufacture thereof
JP2004010992A (en) Method of producing layered product
JP4332919B2 (en) Method for producing gas barrier material
CN108349210B (en) Gas barrier film
EP1115901A1 (en) Method for applying a coating to a substrate
JP2005074987A (en) Transparent gas-barrier film and method for producing the same
JP6786897B2 (en) Film formation method by high frequency plasma CVD

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041019

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070418

RD03 Notification of appointment of power of attorney

Effective date: 20070418

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070808

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees