KR20000048677A - 에이알큐 시스템용 에러검출방법 - Google Patents

에이알큐 시스템용 에러검출방법 Download PDF

Info

Publication number
KR20000048677A
KR20000048677A KR1019990702625A KR19997002625A KR20000048677A KR 20000048677 A KR20000048677 A KR 20000048677A KR 1019990702625 A KR1019990702625 A KR 1019990702625A KR 19997002625 A KR19997002625 A KR 19997002625A KR 20000048677 A KR20000048677 A KR 20000048677A
Authority
KR
South Korea
Prior art keywords
packet
variable information
information field
bit positions
packets
Prior art date
Application number
KR1019990702625A
Other languages
English (en)
Other versions
KR100312729B1 (ko
Inventor
일빈대비트알
카이랄라알리에스
Original Assignee
도날드 디. 먼둘
에릭슨 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도날드 디. 먼둘, 에릭슨 인크. filed Critical 도날드 디. 먼둘
Publication of KR20000048677A publication Critical patent/KR20000048677A/ko
Application granted granted Critical
Publication of KR100312729B1 publication Critical patent/KR100312729B1/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • H03M13/093CRC update after modification of the information word
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1803Error detection or correction; Testing, e.g. of drop-outs by redundancy in data representation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1628List acknowledgements, i.e. the acknowledgement message consisting of a list of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1838Buffer management for semi-reliable protocols, e.g. for less sensitive applications such as streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • H04L1/1877Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

본 발명은 일치하지 않는 비트 위치를 결정하기 위해 CRC 필드를 포함하는 수신된 데이터 패킷의 다중 카피가 서로 비교되는 자동 반복 요청(ARQ)용 에러 검출 및 정정 방법에 관한 것이다. 이에 따라 결정된 비트 위치의 수가 임계치 이하이면, 일치하지 않는 비트 위치에서의 가능한 구성을 지닌 잠재적인 패킷에 대한 유효성의 CRC에 의해 시험된다. 수신된 데이터 패킷의 다중 카피간의 헤더 필드의 변경을 설명하기 위해, CRC 필드가 상기 수신된 데이터 패킷의 다중 카피의 적어도 어느 것의 가변 헤더 필드를 수정하기 전후에 산출된다.

Description

에이알큐 시스템용 에러검출방법{ERROR DETECTION SCHEME FOR ARQ SYSTEMS}
디지털 통신 시스템에서, 전송중 발생할 수 있는 어느 에러의 검출 및/또는 정정을 할 수 있도록 송신된 데이터에 용장 정보를 부가하는데 블록 코드가 이용된다. 일반적으로 이용하고 있는 하나의 형태 코드를 순회 용장 검색(CRC)이라고 한다. 이 순회 용장 검색은 최소량의 용장으로 많은 에러를 검출할 수 있고 단순 논리 회로로 실행될 수 있다. 이러한 장점으로 디지털 통신 시스템에서 CRC 코드의 이용이 확산되게 되었다.
CRC 점검의 하나의 결점으로는 CRC 점검이 에러 검출을 하지만 이 에러를 미리 정정하지 못한다는 것이다. 따라서, CRC 점검은 자동순회 검색(ARQ)시스템에 흔히 이동되는데 이 자동순회 시스템에서는 수신 모듈이 발신 모듈과 재 통신할 수 있다. 기본적으로, 수신 모듈은 순회 용장 점검에 의해 발생되어 발신 모듈에 의해 이 패킷에 부가되는 프레임 점검 시퀸스를 점검함으로써 송신 에러에 대한 인입하는 패킷 또는 프레임을 점검하고 발생 모듈에 의해 이 패킷에 부가된다. 인입 패킷이 현저한 에러 없이 도달하면, 종단 모듈은 긍정 응답 패킷(ACK)을 발신 모듈에게 전송한다. 인입하는 패킷이 전송 에러에 의해 결함이 발생하면, 종단 모듈은 이 패킷을 디스카드하고 ACK을 유보한다(또는 대안적으로, 부정 응답 또는 NACK을 전송한다). ACK가 유보될 때, 발신 모듈은 종단 모듈에 의해 정확히 수신되지 않았다고 판단하여 발신모듈은 패킷을 재전송한다.
상술한 바와 같이, 종래의 ARQ는 긴 역사를 가지고 있고 이는 Bertsekas 및 Gallager(Data Networks, Prentice-Hall, 1987 pp. 58∼73)에 상세히 설명되어 있다. 종래의 ARQ 방법에 대한 개량이 다음과 같이 미국특허 제5,241,548호에 개시되어 있다. 전송에러에 의해 결함 있는 패킷이 도달하는 경우에, 종단 모듈에 의해 디스카드되지 않고 버퍼에 기억된다. 이 패킷이 종단 모듈에의 3개의 패킷이 버퍼에 축적될 때마다, 종단 모듈은 패킷의 3개의 결함이 있는 응답에 대해 비트 단위 다수결 논리 투표를 수행한다. 이 투표결과로부터 종단 모듈은 새로운 합성 패킷을 구성한다. 합성 패킷에 대한 프레임 점검 시퀸스가 유효하면, 종단 모듈은 긍정 응답을 발신 모듈에 전달하고, 그렇지 않으면, 버퍼가 퍼지(purge)되고, 처리가 다시 시작되고 종단 모듈은 유효하지 않은 패킷의 자동 재전송을 대기한다.
기본적인 ARQ 방법의 변형은 낮은 BER을 일반적으로 지니는 지형적 전송 링크의 필요에 응하여 오랜 시간에 걸쳐 개발되어 채널 효율과 처리량이 증가하게 되었다. 그럼에도 불과하고, 데이터에 존재하는 여러 방법은 특히, 높은 BER을 산발적으로 가지는 이동 무선 송신 시스템에서 채널에러 때문에 채널 처리량과 효율을 완전하게 최적화 할 수 없었다.
미국특허 제5,241,548호에 개시된 방법은 다수결 논리 투표의 부가된 면이 확신할 수 없는 두개의 수신된 패킷을 기반으로 결정되기 전에 패킷의 3개의 응답을 수신할 필요가 있었다. 3개의 응답 후에 패킷이 적절히 디코드 될 수 없으면, 다수결 논리 연산이 보팅 타이(voting tie)를 배제하기 위해 응답의 홀수를 필요로 하기 때문에, 전체 처리를 재 시작하는 유일한 대안은 전체 5개의 응답을 대기해야 한다. 홀수의 응답을 축적하지만, 2 또는 4응답으로 적절히 응답할 수 있는 경우에, 수 3 및 수 5는 실질적으로 낭비를 초래한다.
또한, 모듈을 지원하는 물리적인 층은 다이버시터 수신기를 포함할 때, 패킷의 홀수의 요건은 특히 제한된다. 일반적으로, 다이버시티 수신기는 두개의 안테나를 이용하고 인입하는 신호의 두개의 추정을 얻는다. 이러한 종류의 구조는 기본적으로 시험을 위해 패킷 홀수의 패킷응답을 제공할 수 있는 능력을 지닌다. 그러나, 이러한 다이버시티 수신기가 선행기술에 따라 기능하는 ARQ 모듈을 지원할 때, 선행기술의 ARQ 모듈은 패킷 응답이 홀수가 필요한 제한을 기본적으로 가지기 때문에, 이러한 능력이 완전히 낭비되게 된다.
선행기술 ARQ의 또다른 문제는 CRC에 의해 보호되는 정보의 부분이 응답에서 응답으로 변경되고 CRC에 의해 보호되는 정보의 또다른 부분이 동일하게 유지될 때 발생한다. 예를 들어, 이러한 문제는 동기화, 순차화, 어드레싱, 망관리에 관한 정보 또는 통신 프로토콜의 하위층에 의해 이용되는 기타정보를 운반하는 헤더 필드를 포함하는 경우에 발생한다. 이러한 상황에서, 순차번호와 같은 헤더 필드의 정보는 응용으로부터 응용으로 변경될 수 있는 반면 텍스트 필드는 동일하게 유지된다. CRC가 헤더는 물론 텍스트 필드에 대해 산출되기 때문에, 응답 사이의 헤더의 변경으로 텍스트 필드가 동일할지라도 CRC가 변경되게 된다.
본 발명은 데이터 통신 시스템에 관한 것이고, 특히, 고 비트 에러비(BER)를 받는 자동 재생 요구(ARQ) 시스템의 에러검출에 관한 것이다.
도 1은 선행기술에 의해 개시되었듯이 데이터 링크 연결에 의해 상호 연결된 발신모듈과 종단 모듈을 도시한 도면.
도 2는 선행기술의 발신 DLC 모듈의 관점으로부터의 ARQ 프로토콜의 작동을 도시한 도면.
도 3은 본 발명의 ARQ 프로토콜의 개량된 종단 모듈의 작동을 도시한 도면.
도 4는 3개의 위치가 일치하지 않는 10개의 비트 위치를 각각 지닌 두개의 패킷의 예를 도시한 도면.
도 5는 도 4에서 도입된 예를 구성하고 합성패킷의 집합의 구성을 도시한 도면.
도 6은 본 발명의 종단 모듈에 대한 물리적층 지원을 제공할 수 있는 이중 체인 다이버시트 수신기의 기본 구조를 도시한 도면.
도 7은 이중 체인 다이버시티 수신기에서 구현될 때 본 발명의 종단 모듈의 작동을 도시한 도면.
본 발명은 ARQ 프로토콜용 종단 모듈에 관한 것이다. 바람직한 실시예에서, 전송에러를 지니고 수신된 패킷은 디스카드 되지 않고, 기억소자에 기억된다. 전송된 패킷의 결함이 있는 응답의 짝수가 기억소자에 존재할 때마다, 여러 응답이 다른 비트의 수에 대해 카운트된다. 이러한 카운트는 소정의 임계치와 비교되는데 이 임계치의 레벨은 검출되지 않은 전송에러에 대한 응용의 허용범위 또는 이용 가능한 프로세서 자원의 할당 또는 휴대용 단말의 경우에는 이용 가능한 밧데리 예비량의 할당에 의존하여 선택된다. 출력된 비트의 수가 이 임계치 이하로 떨어지면, 일치하지 않는 어느 비트가 전송에러없이 수신되는 경우에, 모든 가능한 전송된 비트 패턴의 집합이 구축된다. 각각의 가능한 전송된 비트 패턴의 CRC가 시험된다. CRC중 하나가 정확히 유효한 것으로 발견되면, 전송된 패턴의 다음 응답의 도달을 대기하는 종단 모듈로부터 ACK가 전달된다. 전송된 패킷의 전송된 패킷의 결함이 있는 응답의 홀수가 기억소자에 있을 때마다, 합성패킷은 다수결 논리 투표에 의해 형성된다. 합성 패킷의 CRC가 유효하면, ACK가 전달된다. 다이버시티 수신기에 관한 또다른 실시예에서, 상술했듯이 결합이 있는 패킷의 쌍을 처리하여 디코드 하기 위해 개량된 종단 모듈을 이용한다.
본 발명은 종단 모듈의 작동을 향상 시키므로써 최대의 채널 처리량을 제공하고 채널 대역폭을 보존하고 종단간 패킷지연을 최소화하고 다이버시티 수신기의 능력을 최적화한다. 이는 이동무선링크가 불분명한 장애로 인해 일시적으로 차단되거나 악천후로 인한 바람직하지 않은 조건을 일시적으로 놓이는 경우에서처럼 통신 채널의 물리적층 자원의 기억용량이 제한되고 에러를 받기 쉬운 경우에 매우 중요하다.
본 발명의 또다른 목적은 휴대용 무선 단말기에 이용할 수 있는 방법으로 ARQ 프로토콜 모듈에 이용되는 프로세서 자원 또는 밧데리 자원이 변경 전송 채널 상태, 또는 밧데리 보존량의 레벨 또는 검출되지 않은 에러에 대한 응용층의 허용범위에 응답하여 제한되거나 적합하게 된다.
도면을 참고하면, 본 발명의 에러 제어시스템을 구현할 수 있는 데이터 통신 시스템의 개략도가 도시되어 있다. 데이터 통신 시스템을 참조번호 10으로 표시되었다. 데이터 통신 시스템(10)은 통신 링크(130)를 개재하여 종단 모듈(120)에 연결하는 발신 모듈(110)을 포함한다. 발신 모듈(110)은 데이터의 패킷 또는 프레임을 통신링크(130)를 개재하여 종단 모듈(120)에 전달한다. 통신 링크(130)는 이동 무선 장비 또는 고정 무선 장비 또는 지형적인 회선 및 데이터-회선 종단 장치에 의해 제공될 수 있다.
발신 모듈(110)은 데이터를 통신 채널을 개재하여 통신하기에 적합하게 하기 위해 이 데이터를 포맷한다. 데이터를 채널 요건과 호환할 수 있게 데이터를 포맷하는 것을 소오스 코딩이라고 한다. 소오스 코딩후, 데이터는 부가적인 비트를 데이터 스트림에 부가함으로써 엔코드되고 이 데이터 스트림은 수신된 데이터 스트림에서 채널에러를 검출한다. 부가적인 데이터 비트를 용장 비트라고 한다. 수신단에서 에러검출을 위해 데이터 스트림에 용장 비트를 부가하는 처리를 에러 코딩이라고 한다.
에러 검출 기술의 하나의 공지된 예는 순회 용장 점검(CRC)으로 알려져 있다. 대부분의 CRC 코드는 에러 검출에 이용되지만 에러 정정에는 이용되지 않는다. 기타의 블록 코드 및 컨벌루션 코드는 에러 검출과 에러 정정을 한다. CRC 코드가 에러 검출을 위해 이용될 때, 종단 모듈(120)은 전송중 발생될 수 있었던 어느 에러의 수신된 데이터를 점검한다. 수신된 패킷이 현저한 에러 없이 수신되면, 수신 모듈(120)은 ACK라고 하는 긍정 응답 패킷을 발신 모듈(110)에 전달한다. 수신된 패킷이 제어 에러에 의해 결함이 발생하면, ACK가 보류된다. 이 경우에(ACK이 보류된 경우에), 발신모듈(110)은 소정의 기간이 경과한 후에 패킷을 재전송한다. 이러한 형태의 시스템은 자동 반복 요청 장치(ARQ)라고 한다.
도 2는 ARQ 시스템에서의 발신 모듈(110)의 작동을 도시한다. 데이터를 전송하려는 요구가 수신될 때〔블록(200)〕, 발신 모듈(110)은 CRC을 산출하고 프레임 검사 비트를 소오스 정보에 부착한다〔블록(210)〕. 다음, 패킷이 통신 링크(130)를 개재하여 전송된다〔블록(220)〕. 다음, 발신 모듈(110)은 타이머를 작동시킨다 〔블록(230)〕. 타이머의 만료 전에, ACK가 종단모듈(120)로부터 수신되는 경우에, 발신 모듈(110)은 종단 모듈(120)이 패킷을 정확히 수신한 것을 추론한다 〔블록(240)〕. 다음, 발신 모듈(110)은 패킷 반복 카운트를 제로로 한다 〔블록(250)〕. 서비스에 대한 다음 요청을 대기한다. 그렇지 않으면〔즉, ACK가 타이머(230)가 만료되기 전에, 발신 모듈(110)로부터 수신되지 않으면〕, 발신 모듈(110)은 종단 모듈(120)이 이 패킷을 정확히 수신하지 않은 것을 추론한다. 다음 발신모듈(110)은 패킷 반복 카운트를 점검하고〔블록(260)〕, 이 반복 카운트는 패킷이 재 전송될 수 있는 시간의 수를 제한하기 위한 카운트이다. 패킷 반복 카운트가 최대 수용 가능한 값에 이르지 않으면, 패킷은 종단 모듈(120)에 재전송되고〔블록(270)〕, 패킷 반복 카운트가 증분한다〔블록(280)〕. 그렇지 않은 경우(즉, 패킷 반복 카운트가 최대 허용 가능한 값에 도달하는 경우), 통신 데이터 링크(130)의 연결이 떨어지거나 점검측정이 선행기술에 나타나 바와 같이, 행해진다〔블록(290)〕.
도 3a 및 도 3b는 본 발명을 따른 향상된 종단 단말의 작동을 도시한다. 패킷이 수신될 때〔블록(300)〕, 종단 모듈(120)은 각각의 인입하는 패킷의 순회 용장 점검(CRC)을 산출하고 이 결과를 시험한다〔블록(310)〕. CRC가 통과하면, 종단모듈(120)은 통신 링크(130)를 개재하여, ACK을 발신모듈(110)에 전달하고 버퍼를 퍼지 한다. 이 버퍼의 기능은 아래에서 더 자세히 설명되었다〔블록(320)〕. 종단모듈(120)은 다음 패킷의 도달을 대기한다. 그렇지 않으면(CRC 기 결합이 있으면), 전합이 있는 패킷이 버퍼에 기록된다〔블록(330)〕.다음, 종단 모듈(120)은 버퍼 영역을 시험하고 존재하는 버퍼의 수를 카운트한다〔블록(340)〕. 하나의 패킷이 버퍼에 있는 경우(이 패킷은 막 입력되는 경우), 종단 모듈(120)은 다음 패킷의 도달을 대기한다〔블록(350)〕.
두개 이상의 패킷이 기억장치에 있는 경우, 종단 모듈(120)은 패킷의 짝수 또는 홀수가 버퍼에 존재한다〔블록(360)〕. 패킷의 홀수가 있는 경우, 단일 합성 패킷이 다수결 논리 투표 기술에 의해 형성된다〔블록(370)〕. 이 기술을 이용하면, 일치하지 않는 비트 위치의 값은 일치하는 위치에서 단순한 다수결 투표에 의해 할당된다. 예를 들어, 다수결 투표가 3개의 응답에 대해 수행되면, 3개의 응답중 두개의 응답이 일치하지 않는 비트 위치에 할당된 1의 값을 가지게 된다. 다수결 투표 결과는 정정 비트 값에 대응하는 확률이 높다. 합성 패킷이 형성된 후, CRC 점검이 다수결 투표된 패킷에 대해 행해진다〔블록(380) 및 블록(390)〕. CRC 점검이 통과하는 경우에, 종단 모듈은 ACK을 발신 모듈에 전달하고〔블록(400)〕 버퍼를 퍼지한다. 그렇지 않으면(즉, CRC가 통과하지 않으면), 종단 모듈(120)은 다음 패킷을 대기한다〔블록(410)〕.
다수결 논리 투표기술은 타이(tie)의 가능성이 있기 때문에, 홀수 패킷인 경우에 잘 적용되지 않는다. 따라서, 대체 기술이 결함이 있는 짝수일 경우, 합성 패킷을 발생하는데 이용된다〔블록(360)〕. 이 경우에, 종단 모듈(120)은 일치하지 않는 비트 위치의 수를 카운트한다〔블록(420)〕. 이를 위해 버퍼에 기억된 패킷의 응용이 비트 위치에 의해 비트 위치와 비교된다. 모든 응용이 특정의 비트 위치의 내용과 일치하면, 이 위치가 일치하고, 그렇지 않으면, 일치하지 않기 때문에 한번 카운트된다. 도 4는 비교된 두개의 응답 예를 도시하고 각각의 응답은 10비트를 지니고, 두개의 응답은 3개의 일치하지 않는 비트 위치를 가진다.
도 3에 나타난 바와 같이, 일치하지 않는 비트 위치의 수가 LMAX와 비교된다 〔블록(430)〕. 일치하지 않는 비트 위치의 수가 LMAX와 같거나 초과하는 경우에, 모듈(120)은 다음 패킷의 도달을 대기한다〔블록(440)〕. 그렇지 않으면(즉, 논쟁의 비트 위치의 수가 LMAX이하이면), 모듈(120)은 합성 패킷 또는 패킷들을 형성한다〔블록(450)〕. 일련의 합성 패킷이 분배된 비트 위치에 값의 모든 가능한 결합을 발생하여 포함한다. 두개의 일치하지 않는 비트 위치가 있으면, 4개의 가능한 결합이 있다. 3개의 논쟁이 되는 비트 위치가 있으면, 8개의 가능한 결합이 있다.
도 5는 합성패킷의 집합의 구성을 도시한다. 도 5에 나타난 바와 같이, 합성 패킷의 집합의 모든 수는 두개의 수신된 패킷이 자기자신과 일치하는 비트 위치의 버퍼에 유지되는 두개의 수신된 패킷과 같은 비트 값을 가진다. 각각의 비트 위치에대해 두개의 수신된 패킷이 다르다. 즉, 두개의 수신된 패킷이 다른 각 비트 위치에 대해, 일치하지 않는 비트 위치, 즉 합성 집합의 요소가 일치하지 않는 비트 위치에 1이 형성되고, 나머지 요소가 일치하지 않는 비트 위치에 0이 형성된다. 이 방식에서, 두개의 기억된 패킷에 동일한 방식으로 수신된 모든 비트, 즉 일치되지 않는 비트 위치의 비트가 에러 없이 수용된다는 조건하에서, 모든 가능한 전송된 비트 패턴이 재 구축된다. 2L성분의 이 집합으로부터, 이 두개의 비트 패턴이 전송에러를 포함하기 위해 선행기술에서 간주되어 던 것처럼, 기억장치에 유지된 두개의 패킷에 대응하는 비트 패턴이 제거된다.
단말 모듈(120)은 다음 합성 패킷의 집합의 각각의 수의 CRC을 산출하여 검사하고 단계(460), 유효한 프레임 점검 시퀸스를 지닌 합성 패킷의 수를 결정한다〔블록(470)〕. 정확히, 1이 유효한 프레임 점검 시퀸스를 가지면, 모듈(120)은 ACK을 모듈(110)에 전달하고 버퍼를 퍼지한다〔블록(400)〕. 그렇지 않으면(즉, 유효프레임 점검시퀸스를 지닌 합성패킷의 수가 정확히 0이 아니면), 모듈(120)은 ACK를 유보하고 다음 패킷의 도달을 대기한다〔블록(440)〕.
임계치(LMAX)가 시스템과 성능을 고려하여 산출되고 변경된다. 여기서 설명한 바람직한 실시예에서, LMAX의 값은 CRC에 의해 검출되지 않은 전송에러의 가능성을 제한하여 일치하지 않는 비트 증가의 수에 따라 증가한다. 이러한 검출되지 않은 에러를 산출하는 분석 기술은 문헌에 기재되어 있다〔예를 들어, Boudreau씨 등의 IBM Journal of Research and Development, vol. 38, no. 6(November 1994), pp. 651∼658의 Performance of a Cyclic Redundancy Check and its Interaction With a Data Scrambler〕.
본 발명의 또다른 실시예에서, LMAX의 값이 선택되거나 유효한 프로세서 사이클의 기능에 따라 변화하여 상한이 합성의 집합을 점유하는데 기여하는 프로세서 자원에 대해 설정된다. 상한을 설정하거나 변경하는 목적은 변화하는 환경에 응답하여 이용하기 위해 프로세서 자원을 프리업(free-up)하는 것이다. 본 실시예의 하나의 변형에서, LMAX의 값은 아래의 식에 따라 설정될 수 있다.
LMAX=log((T/N)+M)
단, T는 합성 패킷의 집합을 처리하기에 현재 유효한 프로세서 지시의 전체수.
M은 버퍼에 기록된 결함이 있는 패킷의 수.
N은 합성 패킷의 집합의 단일수를 처리하기 위해 필요한 지시 사이클의 수.
log는 가장 가까운 정수를 버린 2기수 로그.
본 발명의 또다른 실시예에서, LMAX의 값이 유효한 밧데리 용량의 기능으로 선택되거나 변경되어 상한이 합성 집합을 조합하는데 프로세서에 의해 소비된 에너지에 대해 설정된다. 에너지 소비는 단말 DLC 모듈을 수행하는 밧데리 구동 수신기와 관계한다. 본 실시예의 하나의 변형에서, LMAX는 다음에 따라 설정된다.
LMAX=log((ET/EN)+M)
단, Er은 합성 패킷의 집합을 처리하는데 현재 유효한 전체 밧데리 용량.
M은 버퍼에 기억된 결함이 있는 패킷의 수.
EN은 합성 패킷의 집합의 단일 수를 처리하기 위해 필요한 밧데리 용량.
log는 가장 근접한 정수를 버린 2기수 로그.
본 발명의 또다른 실시예에서, 3개의 수신된 패킷중의 다수결 논리 투표가 합성 패킷의 집합의 팽창 및 CRC의 조사와 대치되어 CRC가 유효한 하나의 성분을 조사한다. 이 확장에서, 수신된 정보의 가능한 변경의 모두가 산출되고 동일한 방법으로 두개의 기억된 패킷에 수신된 비트가 보정되도록 유지되거나 3개의 기억된 패킷에 동일한 방식으로 수용된 비트가 보정되도록 유지되거나 두개 또는 3개의 기억된 패킷에 동일한 방식으로 기억되는 비트가 보정되도록 유지된다.
짝수의 패킷이 수신될 때 종단 모듈(120)에 의해 이용되는 대체 기술이 다이버시티 수신기에서 또한 이용 가능하다. 도 6은 참조번호(500)로 표시한 2체인 다이버시티 수신기의 구조를 도시한다. 도 6에서, 두개의 수신기 체인은 각각의 인입하는 패킷의 두개의 응용을 형성한다. 체인(510)은 안테나(520), RF 회로(530) 및 복조기(540)를 포함한다. 체인(550)은 안테나(560), RF 회로(570) 및 복조기(580)를 포함한다. 수신 디이버시트를 제공하기 위해 서로 스파이럴식으로 제거되는 안테나(520, 560)는 인입하는 수신기를 수신한다. RF 회로(530, 570) 및 복조기(540, 580)는 모뎀 복조기를 제어하는 공지된 원리에 따라 기능하고 RF 신호를 디지털 비트 스트림으로 변환하는데, 각각의 이의 출력은 인입하는 패킷의 응답이 된다. 디코더(590)는 종단 모듈을 수행한다. 디코더(590)는 인입하는 패킷 응답을 수용하고 데이터의 정확한 버전과 ACK 인증을 추력한다.
도 7a 및 도 7b는 수신기의 두개의 체인 특성으로 인해 쌍으로 패킷응용을 발생하는 다이버시티 수신기에서 구현되는 개량된 종단 모듈의 작동을 도시한다.
패킷 쌍이 수신되는 경우〔블록(610)〕, 다이버시티 수신기(500)는 제1패킷의 CRC을 산출한다〔블록(620)〕. 제1패킷의 CRC가 유효하면〔블록(630)〕, 다이버시티 수신기는 ACK을 발신 모듈에 전달하고 버퍼를 퍼지한다〔블록(640)〕. 그렇지 않으면(CRC 점검이 실패하는 경우), 쌍의 제2패킷의 CRC가 점검된다〔블록(650)〕. 제2패킷의 CRC가 통과하면〔블록(660)〕, 다이버시티 수신기는 ACK을 발신 모듈에 전송하고 버퍼를 퍼지한다〔블록(670)〕. 두개의 패킷이 CRC 점검을 통과하면, 양 패킷이 버퍼에 기억된다〔블록(680)〕. 버퍼에 기억된 모든 패킷은 일치하지 않는비트 위치의 수를 결정하기 위해 비교된다〔블록(690)〕. 일치하지 않는 비트 위치의 수가 임계치(LMAX)와 비교된다〔블록(700)〕. 일치하지 않는 비트 위치의 수가 임계치(LMAX)를 초과하면, 버퍼는 퍼지되고 다이버시트 수신기는 새로운 패킷 쌍을 대기한다〔블록(710)〕. 논쟁이 되는 비트 위치의 수가 임계치(LMAX) 이하이면, 일련의 합성 패킷은 상술한 대체 기술을 이용하여 형성된다〔블록(720)〕. 다이버시티 수신기는 각각의 합성패킷의 CRC를 산출한다〔블록(730)〕.하나만의 합성 패킷이 유호(CRC)를 지니면〔블록(740)〕, 다이버시티 수신기는 ACK을 발신 모듈에 전송하고 버퍼를 퍼지한다〔블록(750)〕. 합성 패킷이 유효한 CRC을 가지지 않으면〔블록(760)〕, 버퍼가 퍼지되고 다이버시티 수신기는 전송될 새로운 패킷 쌍을 대기한다〔블록(780)〕. 하나이상의 합성패킷이 통과하면〔블록(760)〕, 다이버시티 수신기는 ACK을 보유하고 수신될 다음 패킷을 대기한다〔블록 (770)〕.
이러한 개시는 열려 변형예와 함께 본 발명의 바람직한 실시예로 될 것이라는 것이 설명되었다. 기타의 변형 및 이러한 사고의 변형은 당업자가 본 발명이 기본 개념, 특히, go-back-N ARQ 시스템 변형 및 선택적인 반복 ARQ 시스템 변형, ARPANET ARQ 시스템 변형 및 기타 관련된 ARQ 시스템 변형을 포함하는 본 발명이 확장을 알게 된다. 다음, 크레임에 포함된 내용은 설명을 위한 것이지 제한하려는 것이 아니다.
지금까지 설명한 본 발명이 설명에서, 발신 모듈(110)에 의해 종단 모듈(120)에 전송된 여러 패킷이 동일하다고 했다. 재전송된 패킷이 종단 모듈(120)에 의해 받아들일 수 없는 전에 전송된 패킷과 다를 수 있는 조건이 있다. 어떤 통신 프로토콜에서, 소오스 정보가 재 전송될 때, CRC에 의해 보호된 정보의 부분은 변경한다. 예를 들어, 데이터 패킷은 동기화, 순차화, 어드레싱, 망관리에 관한 정보 또는 통신 프로토콜의 상층에 의해 이용되지 않는 기타 정보를 운반하는 헤더 필드를 포함한다. 예를 들어, 이 헤더 필드는 정보가 재 전송될 때 변경될 수 있는 순차번호를 포함할 수 있다. CRC가 헤더 필드는 물론 정보필드에 대해 산출되기 때문에, 두 전송사이에 이루어진 헤더에 대한 어느 변경에 의해 정보 필드가 동일하게 유지될지라도 CRC에 대한 변경이 이루어진다. 결과적으로 종단 모듈(120)에 의해 수신된 데이터 패킷의 여러 응용의 이용이 서로 비교되기 전에 변경되어야 한다.
본 발명은 전송된 부분이 전송사이에서 변경되는 상황에서 이용될 수 있는 다수결 논리 투표기술과 대체기를을 이용할 수 있도록 단말 모듈(120)에서 수신된 패킷을 변경하는 방법을 제공한다. 본 발명은 데이터 패킷을 처리하여 변경된 정보의 효과를 휘소하는 순회 용장 점검의 선형성 특성을 장점으로 한다. 이 방법은 선형 에러 제어코드에 적용될 수 있고 시스템적 순회 용장 점검에 의해 제한되는 것은 아니다.
응답을 변경하는 본 발명의 방법은 모듈로 2계수를 지닌 다항식의 연산을 통하여 매우 용이하게 설명된다. 도 8은 데이터 패킷의 개략적인 대표도이다. 데이터 패킷은 정보 필드와 용장 필드를 포함한다. 정보필드는 k1비트 필드를 포함하는 헤더 필드, K2를 포함하는 텍스트 필드 및 m비트를 포함하는 CRC 필드로 세분화된다. 헤더 필드는 다항식 i1(x)로 나타내고, 텍스트 필드는 다항식 i2(x)로 표시되어 다항식 i(x)=i1(x)xk2+i2(x)를 형성한다. 전송된 코드워드는 c(x)로 나타내고 CRC 점검을 형성하는 발생기의 다항식은 g(x)로 나타난다. 패리티 점검 비트는 다음 식으로 주어진다.
다음, 전송된 코드워드는 c(x)=i(x)xm+p(x)로 쓰여진다. 선형 코드(p(x))는 i1(x) 및 i2(x)의 분배의 합으로 표시될 수 있다. 즉, 패리티 점검은 다음 식으로 표시할 수 있다는 것을 주목하는 것이 중요한다.
p(x)=p1(x)+p2(x)
단, p(x1)는 가변 정보필드(i1(x))와 관련된 용장을 나타내고 p2(x)는 고정 정보 필드(i2(x))와 관련된 패리티 점검 비트를 나타낸다. p1(x)은 다음 식으로 나타날 수 있다.
p2(x)는 다음식으로 나타낼 수 있다.
변경된 정보를 포함하는 패킷이 종단 모듈(120)에 의해 수신될 때, 가변 정보 필드의 어느 변경으로 인한 수신된 데이터 패킷의 차가 제거되어야 한다. 이는 수신된 데이터 패킷의 헤더 필드를 같게 함으로써 성취된다. 변경된 응용의 용장 필드는 헤더에서의 변경으로 인한 용장 벡터로 인한 변경을 감산함으로써 재 산출된다. 이러한 연산이 다음 식으로 표현될 수 있다.
r'(x)=r(x)+p1(x)+i1(x)xmxk2
위의 식에서, r(x)은 수신된 패킷이고 r'(x)은 변경된 패킷이다. 이 방법의 경우에, 헤더 변경으로부터 발생한 차이가 동일한 텍스트 필드를 지닌 데이터 패킷으로부터 제거된다. 따라서, 여러 변경된 응답(r'(x))은 패킷의 홀수에 대한 다수결 논리 투표기술 및 패킷의 짝수에 관한 대체기술을 이용하여 전에 설명한 바와 같이 비교될 수 있다.
다음의 것은 본 발명의 에러 검출 방법의 예이다. 전송된 패킷은 전체 7개의 비트 x0-x6을 포함한다. 비트 x0은 최종 중요한 비트이다. 비트 x0-x2는 벡터(p(x))에 의해 나타나는 패래티 비트이다. 비트 x3및 x4는 벡터 i2(x)에 의해 나타나는 텍스트 비트이다. 비트 x5및 x6은 벡터 i1(x)에 의해 나타나는 헤더 비트이다.
발생기의 다항식 g(x)는 x3+x+1이다. i1(x), i2(x) 및 p(x)는 다음과 같다.
i1(x)=1=01(제1전송)
i1(x)=x=10(제2전송)
i2(x)=x+1=11(모두 전송)
p(x)=x=010(제1 전송)
p(x)=0=000(제2전송)
따라서, 제1전송된 코드워드는 0111010이다. 제2전송된 코드워드는 1011000이다.
제1전송중, 에러 패턴 X2는 제1수신된 워드 r(x)이 0111110이 되도록 도입되어 있다. 페리티 점검은 에러를 발견하여 ACK가 유보되어 버퍼에 기억된다. 제2송신중, 에러패턴 x4이 도입되어, 수신된 워드 r(x)가 1001000이 되고 다시 패리티 점검이 이 에러를 발견함으로써 ACK가 유보된다. 제2수신된 워드가 또한 버퍼에 기억된다.
수신된 유닛은 대체기술을 구축하도록 되어 있다. 그러나, 텍스트 필드가 동일하게 유지될지라도, 헤더 필드가 전송중 변경되기 때문에 제1 및 제2수신된 코드워드가 직접 비교된다. 에러를 정정하는 제1단계는 헤더 필드의 효과를 제거하기 위해 수신된 코드워드를 변경한다. 먼저, 헤더 비트가 감산되고 둘째로 헤더 비트로 인한 용자 벡터(p1(x))가 감산된다. 이러한 연산은 다음 식으로 표현된다.
r'(x)=r(x)+p1(x)+i1(x)x3x2=r(x)+p1(x)+i1(x)x5
r'(x)을 구축하기 위해 다음 식에 따라 p1(x)을 산출해야 한다.
제1전송을 위하여, p1(x)=x2+x+1. 제2전송을 위해, p1(x)=x2+1, 지금 r'(x)은 다음과 같이 산출할 수 있다.
제1전송
r'(x)=r(x)+p1(x)+i1(x)x5
r'(x)=x5+x4+x3+x2+x → 0111 110
p1(x)=x2+x+1 → 0000 111
i(x)x5=x5→ 0100 000
r'(x)=x4+x3+1 → 0011 001
제2전송
r'(x)=r(x)+p1(x)+i1(x)x5
r(x)= x6+x3→ 1001 000
p1(x)=x2+1 → 0000 101
i(x)x5=x6→ 1000 000
r'(x)= → 0001 101
지금, 두개의 응용이 논쟁이 되는 비트 위치를 결정하기 위해 다음과 같이 직접 비교될 수 있다.
제1응답 0011 001
제2응답 0001 101
비트 위치 x2및 X4는 두개의 응용에서 논쟁이 된다. 따라서 합성 집합은 값 1 과 0을 다음과 같이 논쟁이 되는 위치로 대치하여 구성한다.
합성 1 → 0001001
합성 2 → 0001101 - 두 번째 응용
합성 3 → 0011001 - 첫 번째 응용
합성 4 → 0011101
제1 및 제3합성 응답은 에러로 이미 알려진 두개의 수신된 응답을 복사하기 때문에 무시된다. 두개의 나머지 합성의 패리티는 다음과 같이 점검된다.
합성 1
유효하지 않음
합성 4
유효
합성 4는 유효 패리티 점검을 포함하는 유일한 합성이다. 따라서, 합성 4는 전송된 텍스트 필드를 포함하도록 되어 있다.
위의 설명에서, r(x)은 하드 출력 수신 패킷이라고 했다. 또한 본 발명은 소프트 출력 수신 패킷과 관련하여 이용될 수 있다. 소프트 출력 패킷은 정수로 구성되어 있고 양의 정수는 0이고 음의 정수는 1이다. r(x)로부터 i1(x)의 효과를 감산하기 위해 i1(x)로부터 I1(x)을 구축해야 한다. 단 i1(x)의 0(1)은 I1(x)에서의 +1(-1)이다. 이와 유사하게, p1(x)로부터 P1(x)을 구축한다. 이를 계산하면,
r'(x)=r(x)(P1(x) +I1(x)xmxk2)으로 된다.
다시, r'(x)은 i2(x)만에 의존한다. 최종적으로, 종래의 소프트 결합 기술을 이용하여 r'(x)의 L 반복을 결합한다. 이로 인한 소프트 출력 워드(r″(x))는 양의 값을 0으로 변경하고 음의 값을 1로 변경함으로써 통상적인 방식으로 하드 출력워드로 변경될 수 있다. 마지막으로 CRC가 점검된다.
본 발명은 본 발명의 기본적인 특성과 정신에서 분리됨이 없으면, 이미 설명한 방식외의 특정한 방식으로 수행될 수 있다. 예를 들어, 본 발명을 따른 대류 오븐의 모델을 설명하는데 이용되는 특정한 디멘션이 청구범위를 제한하지 않도록 되어 있지만 예로써만 제공된다. 따라서 본 실시예는 모든 면에서 예시적이지 제한적이 아니라고 여겨지고 수반한 청구범위의 의미 및 범위내에서의 모든 변경이 가능하다.

Claims (17)

  1. 가변 정보 필드와 공정 정보 필드를 포함하는 전송된 패킷의 다수의 결함이 있는 응답에서 에러를 정정하는 방법에 있어서,
    a) 모든 응답에서의 가변 정보 필드를 동등하게 하기 위해 하나이상의 결함이 있는 응답에서 가변 정보 필드를 변경하는 단계와;
    b) 가변 정보 필드의 변경으로 인한 용장 벡터를 감산하기 위해 변경된 응답에 있어서의 용장 필드를 재산출하는 단계와;
    c) 일치하지 않는 비트 위치를 결정하기 위해 상기 변경된 응답을 비교하는 단계와;
    d) 다중 반복은 하나이상의 응답을 포함하며, 결함이 있는 응답의 다중 반복의 비교를 기반으로 하나이상의 합성 패킷을 발생하는 단계와;
    e) 상기 합성 패킷(들)의 유효성을 결정하는 단계를 구비한 것을 특징으로 하는 에러 정정 방법.
  2. 제1항에 있어서, 합성 패킷은 일치하지 않는 비트 위치에서 다수결 논리 투표에 의해 발생되는 것을 특징으로 하는 에러 정정 방법.
  3. 제1항에 있어서, 합성 패킷은 일치하지 않는 비트 위치에서의 값의 가능한 모든 결합을 스트링이 포함된 일치하지 않는 비트로 대체함으로써 다수의 합성 패킷이 발생되는 대체 기술에 의해 합성 패킷이 발생되는 것을 특징으로 하는 에러 정정 방법.
  4. 가변 정보 필드와 고정 정보 필드를 포함하는 전송된 패킷의 다수의 결함이 있는 응답의 에러 정정 방법에 있어서,
    a) 기준으로 하나의 응답을 선택하는 단계와;
    b) 모든 응답의 가변 정보 필드를 같게 하기 위해 나머지 응답의 가변 정보 필드를 변경하는 단계와;
    c) 가변 정보 필드의 변경으로 인한 용장 벡터를 감산하기 위해 변경된 응답의 용장 필드를 재산출하는 단계와;
    d) 일치하지 않는 비트 위치를 결정하기 위해 상기 응답을 비교하는 단계와;
    e) 상기 합성 패킷(들)이 유효성을 결정하는 단계와;
    f) 상기 합성 패킷의 유효성을 결정하는 단계를 구비한 것을 특징으로 하는 에러 정정 방법.
  5. 제4항에 있어서, 합성 패킷은 일치하지 않는 비트 위치에서의 다수결 논리 투표에 의해 발생되는 것을 특징으로 하는 에러 정정 방법.
  6. 제4항에 있어서, 일치하지 않는 비트 위치에서의 값의 모든 가능한 결합을 스트링이 포함된 논쟁이 있는 비트로 대체함으로써 다수의 합성 패킷이 발생되는 대체 기술에 의해 합성 패킷이 발생하는 것을 특징으로 하는 에러 정정 방법.
  7. 가변 정보 필드와 고정된 정보 필드를 포함하는 전송된 패킷의 다수의 결함이 있는 응답의 에러 정정 방법에 있어서,
    a) 각각의 응답의 가변 정보 필드를 소정의 값으로 변경하는 단계와;
    b) 가변정보 필드의 변경으로 인한 용장 벡터를 감산하기 위해 각각의 응답에서의 가변 정보 필드를 재산출하는 단계와;
    c) 일치하지 않는 비트 위치를 결정하기 위해 상기 변경된 응답을 비교하는 단계와;
    d) 다중 반복은 하나이상의 변경된 응답을 포함하며, 결함이 있는 응답의 다중 반복의 비교를 기반으로 하나이상의 합성 패킷을 발생하는 단계와;
    e) 상기 합성 패킷(들)의 유효화를 결정하는 단계를 구비한 것을 특징으로 하는 에러 정정 방법.
  8. 제7항에 있어서, 합성패킷은 일치하지 않는 비트 위치에서의 다수결 논리투표에 의해 발생되는 것을 특징으로 하는 에러 정정 방법.
  9. 제7항에 있어서, 일치하지 않는 비트 위치의 값의 모든 가능한 결합을 스트림이 포함된 논쟁이 되는 비트로 대체함으로써 다수의 합성 패킷이 발생되는 대체 기술에 의해 합성 패킷이 발생되는 것을 특징으로 하는 에러 정정 방법.
  10. 동일한 고정 정보 필드를 지닌 또다른 수신된 코드워드와 비교하기 위해, 가변 정보 필드, 고정 정보 및 용장필드를 지닌 수신된 코드워드를 변경하는 방법에 있어서,
    a) 수신된 코드워드의 가변정보 필드를 변경하는 단계와;
    b) 가변 정보 필드의 변경으로 인한 용장 벡터를 제거하기 위해 수신된 코드워드의 용장 필드를 재산출하는 단계를 구비한 것을 특징으로 하는 수신된 코드워드를 변경하는 방법.
  11. 제10항에 있어서, 가변 정보 필드는 또다른 수신된 코드워드의 가변정보와 같게 하도록 변경되는 것을 특징으로 하는 수신된 코드워드를 변경하는 방법.
  12. 제10항에 있어서, 가변 정보 필드는 소정의 값과 같게 변경되는 것을 특징으로 하는 수신된 코드워드를 변경하는 방법.
  13. 전송된 데이터 패킷의 다중 카피가 수신된 다이버시티 수신기에서의 에러를 정정하는 에러 정정 방법에 있어서,
    a) 일치하지 않는 다중 카피를 비교하는 단계와;
    b) 논쟁이 되는 비트 위치에서의 값의 모든 가능한 결합을 논쟁이 되지 않는 비트 위치를 포함하는 스트링으로 대체함으로써 합성세트의 집합을 형성하는 단계와;
    c) 각각이 합성 패킷의 유효성을 결정하는 단계와;
    d) 하나만이 합성 패킷이 유효한 경우, 유효한 합성 패킷을 출력하는 단계를 구비한 것을 특징으로 하는 에러 정정 방법.
  14. 제13항에 있어서, 논쟁이 되는 비트 위치의 수를 합성 패킷을 형성하기 전에 소정의 임계치와 비교하는 단계를 더 포함하는 것을 특징으로 하는 에러 정정 방법.
  15. 제14항에 있어서, 합성패킷은 일치하지 않는 비트 위치의 수가 상기 소정의 임계치 이하일 때만 발생하는 것을 특징으로 하는 에러 정정 방법.
  16. 제14항에 있어서, 상기 소정의 임계치는 밧데리 용량이 기능인 것을 특징으로 하는 에러 정정 방법.
  17. 제14항에 있어서, 상기 소정의 임계치는 유효한 프로세서 지시 사이클의 기능인 것을 특징으로 하는 에러 정정 방법.
KR1019997002625A 1996-09-27 1999-03-26 에이알큐 시스템용 에러검출방법 KR100312729B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/723,217 1996-09-27
US8/723,217 1996-09-27
US08/723,217 US5745502A (en) 1996-09-27 1996-09-27 Error detection scheme for ARQ systems

Publications (2)

Publication Number Publication Date
KR20000048677A true KR20000048677A (ko) 2000-07-25
KR100312729B1 KR100312729B1 (ko) 2001-11-03

Family

ID=24905356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019997002625A KR100312729B1 (ko) 1996-09-27 1999-03-26 에이알큐 시스템용 에러검출방법

Country Status (10)

Country Link
US (1) US5745502A (ko)
EP (2) EP0928520B1 (ko)
JP (1) JP2001501789A (ko)
KR (1) KR100312729B1 (ko)
CN (1) CN1100394C (ko)
AU (1) AU727898B2 (ko)
CA (1) CA2267373A1 (ko)
DE (2) DE69717472T2 (ko)
TW (1) TW345781B (ko)
WO (1) WO1998013940A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089940B2 (en) 2001-10-05 2012-01-03 Qualcomm Incorporated Method and system for efficient and reliable data packet transmission

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968197A (en) * 1996-04-01 1999-10-19 Ericsson Inc. Method and apparatus for data recovery
US6320879B1 (en) * 1997-03-18 2001-11-20 Paradyne Corporation Communication system and method for interleaving or transmission of telephone rings and data
US6101168A (en) * 1997-11-13 2000-08-08 Qualcomm Inc. Method and apparatus for time efficient retransmission using symbol accumulation
DE69835767T2 (de) * 1997-12-11 2006-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Redondanter abschluss zur dynamischer fehlerisolierung
US6327688B1 (en) * 1998-08-07 2001-12-04 Analog Devices, Inc. Data bus with automatic data integrity verification and verification method
US6418549B1 (en) 1998-10-30 2002-07-09 Merunetworks, Inc. Data transmission using arithmetic coding based continuous error detection
US6209111B1 (en) * 1998-11-09 2001-03-27 Microsoft Corporation Error correction on a mobile device
JP3640844B2 (ja) * 1999-09-17 2005-04-20 株式会社東芝 エラー処理機能を備えた伝送装置及びエラー処理方法
US6505034B1 (en) * 1999-12-20 2003-01-07 Nokia Ip Inc. Adaptive ARQ feedback bandwidth allocation
JP3916382B2 (ja) * 2000-07-07 2007-05-16 沖電気工業株式会社 動画像受信装置
US6804218B2 (en) 2000-12-04 2004-10-12 Qualcomm Incorporated Method and apparatus for improved detection of rate errors in variable rate receivers
US6732329B2 (en) * 2001-03-27 2004-05-04 Intel Corporation Providing a header checksum for packet data communications
US20030039226A1 (en) 2001-08-24 2003-02-27 Kwak Joseph A. Physical layer automatic repeat request (ARQ)
KR100378586B1 (ko) * 2001-08-29 2003-04-03 테커스 (주) 엑티브엑스 기반의 키보드 해킹 방지 방법 및 장치
US7889742B2 (en) 2001-09-29 2011-02-15 Qualcomm, Incorporated Method and system for improving data throughput
JP4372549B2 (ja) * 2001-11-16 2009-11-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
DE10161631B4 (de) * 2001-12-14 2004-01-22 Siemens Ag Verfahren zur Korrektur des Beginns der Abtastung einer seriellen Bitfolge eines Ausgangssignals eines Filters
JP3499548B1 (ja) * 2002-07-01 2004-02-23 松下電器産業株式会社 受信装置及び通信方法
KR100584170B1 (ko) * 2002-07-11 2006-06-02 재단법인서울대학교산학협력재단 터보 부호화된 복합 재전송 방식 시스템 및 오류 검출 방법
KR100548314B1 (ko) * 2002-10-11 2006-02-02 엘지전자 주식회사 무선통신 수신시스템의 오류제어방법
FR2846182B1 (fr) * 2002-10-16 2005-01-28 Nortel Networks Ltd Procede de controle de retransmission de donnees et unite de controle pour mettre en oeuvre le procede
US7523305B2 (en) * 2003-12-17 2009-04-21 International Business Machines Corporation Employing cyclic redundancy checks to provide data security
JP2005332549A (ja) * 2004-03-09 2005-12-02 Teac Corp 光ディスク装置
US7392459B2 (en) * 2004-04-14 2008-06-24 Lucent Technologies Inc. Method and apparatus for preventing a false pass of a cyclic redundancy check at a receiver during weak receiving conditions in a wireless communications system
EP1617432A1 (en) * 2004-07-12 2006-01-18 Teac Corporation Optical disk device
JP4501566B2 (ja) * 2004-07-13 2010-07-14 富士通株式会社 無線通信装置及び移動局
DE102004036383B4 (de) * 2004-07-27 2006-06-14 Siemens Ag Codier-und Decodierverfahren , sowie Codier- und Decodiervorrichtungen
US7965646B2 (en) * 2004-08-11 2011-06-21 Qwest Communications International Inc Wireless code-passing system for stateful connection monitoring
US20060198442A1 (en) * 2004-12-28 2006-09-07 Curt Jutzi Method, apparatus and system for frame level recovery using a collection of badly received frames
JP4571893B2 (ja) * 2005-07-26 2010-10-27 日本放送協会 デジタル信号受信装置及びデジタル信号受信プログラム
JP4558617B2 (ja) * 2005-09-22 2010-10-06 株式会社日立国際電気 誤り訂正処理方法及び伝送装置
JP2007104423A (ja) * 2005-10-05 2007-04-19 Oki Electric Ind Co Ltd 連送方式による誤り訂正方法、通信システム及び受信装置
US8892963B2 (en) * 2005-11-10 2014-11-18 Advanced Micro Devices, Inc. Error detection in high-speed asymmetric interfaces utilizing dedicated interface lines
EP1791285A1 (en) * 2005-11-29 2007-05-30 Alcatel Lucent Hybrid ARQ apparatus and corresponding method, wherein the FEC redundancy is adapted based on the number of retransmissions of a packet
CN100424998C (zh) * 2006-01-20 2008-10-08 北京华环电子股份有限公司 一种基于循环冗余码的单比特纠错查表方法及其电路
JP4601564B2 (ja) * 2006-02-22 2010-12-22 株式会社日立国際電気 誤り訂正処理方法及び伝送装置
JP4984281B2 (ja) * 2006-08-18 2012-07-25 学校法人 名城大学 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム
US9882683B2 (en) * 2006-09-28 2018-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Autonomous transmission for extended coverage
CN102983952B (zh) * 2006-11-29 2016-06-15 艾利森电话股份有限公司 具有线性独立数据分组编码的可靠多播方法和装置
KR101367072B1 (ko) 2006-12-14 2014-02-24 톰슨 라이센싱 통신 시스템에서 적응 변조를 갖는 arq
JP2010514259A (ja) 2006-12-14 2010-04-30 トムソン ライセンシング 通信システムのための変調指示方法
EP2122884B1 (en) 2006-12-14 2014-06-18 Thomson Licensing Rateless encoding and decoding in communication systems
EP2103023B1 (en) 2006-12-14 2015-04-15 Thomson Licensing Rateless codes decoding method for communication systems
WO2008085811A2 (en) * 2007-01-04 2008-07-17 Interdigital Technology Corporation Method and apparatus for hybrid automatic repeat request transmission
JP5125180B2 (ja) * 2007-03-30 2013-01-23 沖電気工業株式会社 車々間通信システム及び車々間通信における誤り訂正方法
GB2453344B (en) 2007-10-04 2012-01-18 Toumaz Technology Ltd Wireless transmission method and apparatus
EP2344985A1 (en) 2008-10-09 2011-07-20 Georgia Tech Research Corporation Secure communication using non-systematic error control codes
US20120174187A1 (en) * 2009-07-09 2012-07-05 Georgia Tech Research Corporation Systems and methods for providing physical layer security
TW201123793A (en) * 2009-12-31 2011-07-01 Ralink Technology Corp Communication apparatus and interfacing method for I/O control interface
US8392810B2 (en) * 2010-01-25 2013-03-05 Qualcomm Incorporated Majority vote error correction
GB2504522B (en) * 2012-08-01 2014-12-17 Canon Kk Data processing method and apparatus for processing a plurality of received data copies
DE102013006141B4 (de) * 2013-04-10 2016-09-29 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Verfahren zur Verarbeitung von Datenpaketen in einem Kommunikationsknoten
CN105408870B (zh) * 2013-07-30 2018-06-19 三菱电机株式会社 数据处理装置、数据通信装置、通信系统、数据处理方法以及数据通信方法
JP6188867B2 (ja) * 2015-06-12 2017-08-30 株式会社日立製作所 パケットを復元するための方法及びシステム
EP3125454A1 (en) * 2015-07-27 2017-02-01 Thomson Licensing Data processing method and device for correcting errors in defective copies of a data packet
EP3163512A1 (en) * 2015-10-30 2017-05-03 Thomson Licensing Data processing apparatus and method for recovering a correct code symbol sequence from multiple incorrect copies
US10498361B2 (en) 2016-04-20 2019-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for group transmissions
US10367609B2 (en) * 2017-09-20 2019-07-30 Qualcomm Incorporated Error correction for data packets transmitted using an asynchronous connection-less communication link
CN108337069B (zh) * 2018-01-19 2021-06-25 国网辽宁省电力有限公司 一种改进的降低误码率的末端并行分组crc校验系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887162A (en) * 1988-04-19 1989-12-12 Ricoh Company, Ltd. Facsimile machine having retransmission function
US5241548A (en) * 1991-05-23 1993-08-31 Motorola, Inc. Method for error correction of a transmitted data word
WO1993006671A1 (en) * 1991-09-20 1993-04-01 Motorola, Inc. Extended error correction of a transmitted data message
JP2967897B2 (ja) * 1993-07-22 1999-10-25 エヌ・ティ・ティ移動通信網株式会社 自動再送要求データ伝送方法
US5577053A (en) * 1994-09-14 1996-11-19 Ericsson Inc. Method and apparatus for decoder optimization
US5687188A (en) * 1994-10-11 1997-11-11 Motorola, Inc. Method of producing an adjusted metric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089940B2 (en) 2001-10-05 2012-01-03 Qualcomm Incorporated Method and system for efficient and reliable data packet transmission

Also Published As

Publication number Publication date
WO1998013940A1 (en) 1998-04-02
AU4429597A (en) 1998-04-17
DE69727325T2 (de) 2004-10-14
KR100312729B1 (ko) 2001-11-03
CN1238075A (zh) 1999-12-08
EP1154576A3 (en) 2001-12-19
CN1100394C (zh) 2003-01-29
EP1154576B1 (en) 2004-01-21
DE69717472T2 (de) 2003-07-10
JP2001501789A (ja) 2001-02-06
AU727898B2 (en) 2001-01-04
TW345781B (en) 1998-11-21
US5745502A (en) 1998-04-28
EP0928520A1 (en) 1999-07-14
CA2267373A1 (en) 1998-04-02
DE69717472D1 (de) 2003-01-09
EP0928520B1 (en) 2002-11-27
DE69727325D1 (de) 2004-02-26
EP1154576A2 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
KR100312729B1 (ko) 에이알큐 시스템용 에러검출방법
Lin et al. A hybrid ARQ scheme with parity retransmission for error control of satellite channels
US9350491B2 (en) System and method for mitigating burst noise in a communications system
US7089478B2 (en) FEC block reconstruction system, method and computer program product for mitigating burst noise in a communications system
US6438723B1 (en) Method and arrangement for the reliable transmission of packet data
Shiozaki Adaptive type-II hybrid broadcast ARQ system
US5946320A (en) Method for transmitting packet data with hybrid FEC/ARG type II
KR101143282B1 (ko) 연쇄 반응 코드의 체계적 인코딩 및 디코딩
US6421803B1 (en) System and method for implementing hybrid automatic repeat request using parity check combining
US20090271681A1 (en) Method, device and software application for transmitting data packets in a communication system
WO2011071472A1 (en) The application of fountain forward error correction codes in multi-link multi-path mobile networks
KR20000074685A (ko) 연쇄부호를 사용한 적응형 하이브리드 arq 방법
US6678854B1 (en) Methods and systems for providing a second data signal on a frame of bits including a first data signal and an error-correcting code
US20040181740A1 (en) Communicating method, transmitting apparatus, receiving apparatus, and communicating system including them
JP3388035B2 (ja) ハイブリッド自動再送要求方式によるデータ通信システム、送信装置及び送信方法
Chaudhary et al. Error control techniques and their applications
Garg et al. An introduction to various error detection and correction schemes used in communication
US6781987B1 (en) Method for packet transmission with error detection codes
Singh et al. Data Link Layer Designing Issues: Error Control-A Roadmap
Veer OVERVIEW OF ERROR DETECTION AND CORRECTION SCHEME IN COMMUNICATION
Kim et al. Progressive video coding for noisy channels
KR101753971B1 (ko) 향상된 오류 정정 기능을 제공하는 네트워크-채널 결합 코딩 방법, 이를 이용한 네트워크-채널 결합 코딩 장치 및 네트워크-채널 결합 코딩 시스템
Bajić et al. A hybride procedure with selective retransmission for aggregated packets of unequal length
Daraiseh et al. Exact performance analysis of spread spectrum satellite networks
Sun et al. DLC strategies with flexible error control in wireless ATM

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
LAPS Lapse due to unpaid annual fee