KR20000010666A - 광-음향 혈전 용해법 - Google Patents

광-음향 혈전 용해법 Download PDF

Info

Publication number
KR20000010666A
KR20000010666A KR1019980708637A KR19980708637A KR20000010666A KR 20000010666 A KR20000010666 A KR 20000010666A KR 1019980708637 A KR1019980708637 A KR 1019980708637A KR 19980708637 A KR19980708637 A KR 19980708637A KR 20000010666 A KR20000010666 A KR 20000010666A
Authority
KR
South Korea
Prior art keywords
liquid medium
optical fiber
laser light
surrounding liquid
laser
Prior art date
Application number
KR1019980708637A
Other languages
English (en)
Inventor
피터 셀리어스
실바 루이즈 다
마이클 글린스키
리차드 런던
던칸 메이트랜드
데니스 매튜스
조세프 피. 핏치
Original Assignee
린다 에스. 스티븐슨
더 리전트 오브 더 유니버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 린다 에스. 스티븐슨, 더 리전트 오브 더 유니버시티 오브 캘리포니아 filed Critical 린다 에스. 스티븐슨
Publication of KR20000010666A publication Critical patent/KR20000010666A/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • A61B2017/22084Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance stone- or thrombus-dissolving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Otolaryngology (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Laser Surgery Devices (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Prostheses (AREA)
  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Saccharide Compounds (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

본 발명은 생물 조직에 초음파 여기를 발생시키기 위한 카테터를 기본으로 하는 장치에 관한 것이다. 펄스형 레이저광은 광섬유(10)를 통하여 인도되어 음향 진동을 생성시키는 에너지를 제공한다. 광학 에너지는 수-기재 흡수 유체, 예컨대 식염수, 혈전 용해제, 혈액 또는 혈전에 축적되며, 열탄성 및/또는 열역학적 메카니즘을 통하여 유체내에 음향 충격을 발생시킨다. 레이저를 임의의 반복율(10Hz 내지 100kHz로 다양함)로 진동시킴으로써, 매질내에 초음파 방사장이 형성될 수 있다. 상기 초음파 진동을 형성시키는 방법은 인간의 체내에서 발작과 관련된 질병, 특히 혈전 용해 또는 혈관 경련의 치료에 사용될 수 있다. 카테터(14)는 또한 부수적인 치료법으로서 혈전 용해제 치료법을 포함할 수 있으며, 영상 및 피드백 조절을 위한 초음파 탐지 장치 및 혈전 형태 및 경도를 확인하기 위한 광학 센서와 함께 사용될 수 있다.

Description

광-음향 혈전 용해법
허혈성 발작은 뇌 동맥 망상조직에 있어서 혈전의 형성 또는 정체에 의해 야기된다. 통상, 이들 폐색은 경동맥 또는 두개골 강에서 훨씬 높이 위치하는 훨씬 더 작은 혈관에서 발견된다. 개입(interventional) 심장학자 및 혈관 외과 의사들은 다른 신체 부위의 맥관 구조에서 최소한으로 침해하면서 상기 상태를 치료하는 방법을 고안하여 왔다. 이들 치료법 중에는 마이크로카테터(microcatheter)가 폐색 위치를 가리키는 초음파 혈관 성형술이 있다. 초음파 변환기는 카테터내를 통과하며 폐색 부위에 아주 근접한 원 말단(distal end)에 있는 작동 말단(working tip)에 진동을 전달하는 전달 매질과 연결되어 있다. 동맥 경화성 플라크를 분해시키고 응혈 분해를 용이하게 하는 초음파 카테터는 종래에 기재되어 있다. 이들 발명의 개선점은 동일한 기본적인 장치의 작동 및 기능을 개선시키는데 집중되어 있다(Pflueger 일행, 미국 특허 5,397,301호). 조직내로 연결된 진동은 응혈을 강한 국부적인 전단 및 인장 응력에 노출시키는 공동 기포(cavitation bubble) 및 마이크로젯과 같은 다양한 초음파 메카니즘을 통하여 응혈의 분해 또는 유화를 돕는다. 이들 종래 기술의 장치는 통상 시각화를 용이하게 하기 위하여 혈전 용해제 및/또는 방사선 촬영용 콘트라스트제와 함께 사용된다.
초음파 카테터 장치는 모두 진동원(변환기)이 카테터의 외부에 존재하는 공통된 구조를 갖는다. 진동 에너지는 카테터의 근 말단(proximal end)에 연결되고 음파를 전달할 수 있는 와이어를 통하여 카테터의 길이 방향으로 전달된다. 상기 구조에 있어서는 다음과 같은 관련된 단점이 있다: 근접된 조직의 수반된 열과 함께 굴곡 및 커브를 통한 에너지 손실이 있다; 상기 장치가 발작 치료용으로 충분히 작지 않으며 더 작은 크기로 제작하기 어렵다; 초음파 발생기와 카테터의 근 말단 사이의 알려지지 않은 다양한 커플링 효과 때문에 선량 측정기를 평가 또는 조절하기가 어렵다. Dubrul 일행의 미국 특허 5,380,273호에서는 전송 장치내에 향상된 재료를 혼입함으로써 종래 기술의 장치를 개선하고자 시도하고 있다. 초음파 변환기 자체를 카테터 원 말단에 위치시키는 것은 크기 제한 및 전력 요건을 포함하는 많은 이유 때문에 비실용적이었다.
폐색물의 제거와 관련된 방법은 레이저 광이 광섬유를 통하여 폐색 물질에 직접 충돌하는 레이저 혈관 성형술이다. 레이저 혈관 성형 장치는 주변 조직을 손상 또는 파괴시키는 것으로 밝혀졌다. 몇몇 경우에 있어서 조절되지 않은 열이 혈관 천공을 야기하였다. 고에너지 레이저 펄스를 낮은 또는 적당한 주파수, 예컨대 약 1Hz 내지 100Hz에서 사용하는 것은 건강한 조직을 심하게 손상시키는 비차별적인 응력파를 야기하거나 또는 건강한 조직이 영향받지 않을 정도로 독립적인 레이저 파라미터가 조정될 때 목적 조직를 불충분하게 제거한다. 열적 가열을 피하기 위하여 고에너지 레이저광을 사용하는 것은 거대한 공동 기포 및 천공을 야기하는 충격파 또는 조직에 역효과를 주는 관련된 다른 메카니즘을 통하여 손상을 야기하는 것으로 밝혀졌다.
미국 정부는 로렌스 리버모어 내셔널 래보러토리(Lawrence Livermore National Laboratory)의 수술에 대하여 미국 에너지부와 유니버시티 오브 캘리포니아 사이의 계약 번호 W-7405-ENG-48에 의해 본 발명의 권리를 갖는다.
본 발명은 관상 조직과 기관에서 차단물의 제거에 관한 것이며, 더욱 구체적으로는 동맥 경화성 플라크 또는 혈전과 같은 혈관내 폐색의 제거에 관한 것이다.
도 1a는 본 발명의 광섬유-기재 광-음향 혈전 용해 카테터의 적용을 나타내는 약도이다.
도 1b는 보조 유체를 사용한 폐색물의 초음파 분해를 묘사한다.
도 2a 내지 2c는 본 발명의 열-탄성 조작을 묘사한다.
도 3a 내지 3c는 본 발명의 과열 증기 팽창 방식을 묘사한다.
도 4a는 오목 말단을 갖는 광섬유를 나타낸다.
도 4b는 볼록 말단을 갖는 광섬유를 나타낸다.
도 5는 섬유 가닥의 한 다발을 나타낸다.
도 6은 가변성 직경의 광섬유를 나타낸다.
도 7은 유리/플라스틱 섬유 복합체를 나타낸다.
본 발명의 목적은 폐색물에 근접한 유체(fluid)에 초음파 여기(excitation)를 발생시키는 일련의 저에너지 레이저 펄스의 고주파수를 사용하여 혈관 폐색물을 분해하는 장치를 제공하는 것이다.
카테터를 통한 에너지 전달은 레이저 펄스를 원 말단으로 인도하는 광섬유를 사용함으로써 이루어진다. 그러나, 레이저 혈관 성형 또는 혈전 용해와는 달리, 본 발명은 폐색물의 직접적인 제거에 의존하지 않으며, 대신 폐색물에 근접한 유체에 초음파 여기를 발생시키기 위하여 일련의 저에너지 레이저 펄스의 고주파수를 사용한다. 따라서, 폐색물의 분해는 초음파 작용 및/또는 유화에 의해 촉진되며, 직접적으로 레이저광과의 상호 작용에 의한 것은 아니다. 조직 및 유체에서 초음파 반응을 유도하는 비결은 레이저광의 파장, 펄스 시간, 펄스 에너지 및 반복율을 신중하게 조절하는데 있다. 조직에서 초음파 여기를 유도하는 광학 에너지를 사용하는 것은 많은 이점을 제공한다. 광섬유는 작은 치수로 제조될 수 있고, 매우 투명하며 상당한 양의 광 전력 밀도를 거의 또는 전혀 감쇠가 없이 전원으로부터 배달 위치에 전달할 수 있다. 광섬유는 또한 관심있는 모는 관을 통과하기에 충분히 탄력적이다. 본 발명은 작고 탄력있는 카테터를 통하여 예컨대 발작 치료에 필요한 음향학적 여기를 발생시키기에 충분한 에너지를 전달한다. 본 방법은 또한 조직에서 유도된 음향학적 진동의 크기를 모니터하고 제어하기 위한 피드백 메카니즘을 포함한다.
본 발명은 광섬유를 함유하는 카테터를 포함한다. 이 광섬유는 광 펄스를 상기 섬유에 주입하는 고주파 레이저 시스템과 근 말단에서 연결되어 있다. 근 말단에서 상기 섬유로부터 나오는 광은 카테터를 둘러싸고 있는 유체에 의해 흡수된다. 상기 유체는 혈액; 흡수성 염료, 혈전 용해성 약제 또는 혈전 자체를 함유하는 생물학적 식염수일 수 있다. 광섬유는 에너지 전달 장치로서 작용하여 레이저에 의해 생성된 광학 에너지가 섬유의 말단에 전달된다. 광섬유의 원 말단으로부터 나오는 레이저 광은 10Hz 내지 100kHz의 주파수, 200㎚ 내지 5000㎚의 파장 및 0.01J/㎝2내지 4J/㎝2, 광섬유의 직경이 작은 경우 최대 50J/㎝2에너지 밀도를 갖는다. 인가된 에너지는 5mJ 이하, 바람직하게는 1mJ 미만으로 유지된다. 하나의 실시예에 있어서, 펄스 주파수는 5kHz 내지 25kHz이다. 또는, 펄스 주파수 범위의 낮은 값은 100, 200, 400 또는 800Hz이며, 높은 값은 25, 50 또는 100kHz일 수 있다.
관상 조직에서 혈전, 동맥 경화성 플라크 또는 다른 폐색 물질의 용해는 폐색물 근처의 유체에서 발생되는 초음파 방사에 의해 용이하게 이루어진다. 보조 처리로서, 음향학적 혈전 용해 공정으로부터 남겨진 상당히 큰 파편(>5㎛의 입경)의 추가 용해를 용이하게 하는 소량의 혈전 용해제를 투여하기 위하여 광섬유를 둘러싸거나 또는 이에 평행한 하나의 작업 채널이 사용될 수 있다. 광학 에너지의 음향 에너지로의 변환은 열탄성적, 열역학적이거나 또는 이들의 조합일 수 있는 몇몇 메카니즘을 통하여 진행될 수 있다. 도 1a는 하나의 평행 작업 채널(12)을 갖는 광섬유(10)를 나타내며, 섬유(10)와 작업 채널(12)은 모두 혈관(16)내에 삽입되는 카테터(14)내에 위치한다. 섬유(10)의 원 말단은 혈관(16)내의 혈전(18) 및 협착성 플라크(20) 근처에 위치한다. 도 1b에 있어서, 섬유(10)는 레이저 광을 전달하여 붕괴성 공동 기포(11) 및 확장성 음파(13)를 생산한다. 카테터(14) 내의 평행 작업 채널(12)은 보조 유체(15)를 전달하여 혈관(16)내로부터 폐색물(17)의 제거를 돕는다.
도 2a 내지 2c에 묘사된 바와 같이, 열탄성 방식에 있어서, 광섬유(21)를 통하여 각 레이저 펄스(22)는 작은 부피의 유체내에서 큰 열탄성 응력을 생산하는 유체(24)에서 조절된 수준의 에너지를 전달한다. 상기 응력의 확장 방향은 도 2a에서 화살표(25)로 표시하였다. 레이저 펄스(22)에 의해 가열되는 유체(24)의 부피는 유체(24)내에서 레이저광의 흡수 깊이에 의해 결정되며, 필요한 크기를 생산하도록 조절되어야 한다. 예컨대, 적합한 크기는 섬유 직경이거나, 또는 폐색물을 함유하는 혈관의 몇몇 단편에 필적하는 거리일 수 있다. 이는 대부분의 레이저 에너지가 필요한 크기의 유체 깊이로 축적될 수 있도록 레이저 파장 또는 유체의 조성을 조절함으로써 조정될 수 있다. 레이저 펄스 시간은 최소 치수의 흡수 영역을 가로지르는 음향 통과 시간보다 짧은 시간 안에 흡수 유체내로 모든 레이저 에너지를 축적시키기에 충분히 짧다. 이는 등체적(일정 부피) 가열 공정이다. 직경이 약 100㎛인 흡수 부피에 대한 음향 통과 시간은 약 70ns이며, 따라서 축적 시간은 이보다 훨씬 짧은 예컨대, 약 10ns이어야 한다.
흡수 유체는 에너지 축적에 대하여 열탄성적으로 반응하여 고압 영역이 유체내에서 가열된 부피로 형성된다. 고압 영역의 경계는 음파의 패턴으로 붕괴되며, 압축파는 에너지 축적 영역(팔자형 파두)으로부터 전파되며 희박파(rarefaction wave)는 에너지 축적 영역(수렴 파두)의 중앙으로 전파된다. 희박파가 초기 축적 영역의 중앙에 수렴할 때, 합체되어 더 큰 기포(30)를 형성하는 공동 기포의 형성을 촉진시키는 인장 응력의 영역(26)을 형성시킨다. 결국, 공동 기포가 붕괴되고(32), 그 결과 확장성 음파(33)가 형성된다. 공동 기포의 붕괴 및 이후의 반향은 주변 유체에서 음향 충격을 생성시키며, 이는 공동의 에너지의 일부를 가져간다. 붕괴 및 반향 과정은 주로 유체 밀도 및 초기 공동의 최대 크기에 의해 좌우되는 시간 동안 발생한다. 최초 붕괴 및 반향 이후에 공동의 에너지가 유체에 분산될 때까지 밀도를 감소시키는 연이은 붕괴 및 반향이 발생한다. 그 후의 레이저 펄스는 상기 사이클을 반복 또는 계속하기 위하여 전달되어 임의의 주파수 또는 레이저 펄스 주파수에 의해 결정된 주파수로 초음파 방사장(ultrasonic radiation field)을 생성시킨다.
요약하면, 제 1방식을 통하여 작동하는 장치는 (i) 섬유 치수에 상당하는 유체 부피로 상기 치수를 가로지르는 음향 통과 시간보다 짧은 시간 동안 레이저 에너지를 축적시키고(경우에 따라 레이저 파장 및 흡수 유체의 선택에 의해 조절됨); (ii) 공동 기포의 최대 크기가 거의 섬유 직경과 동일하도록 레이저 에너지를 조절하며; (iii) 본 방법의 다중 사이클이 주변 유체에 음향 방사장을 생성시키도록 레이저를 임의의 반복율로 진동시킴으로써 유체에 초음파 방사장을 생성시키고; 레이저 펄스 반복율을 공동 수명과 일치시킴으로써 공명 작용이 얻어질 수 있다. 통상적인 조작은 사이클이 1-100kHz이고 100-200㎛의 상호 치환(reciprocal displacement)을 갖는 유체-기재 변환기에 이른다(통상적인 광섬유에 있어서). 상기 치환은 기계적으로 활성화된 초음파 혈관 성형 장치에서 발견되는 것과 매우 유사하다.
과열 증기 확장 방식에 있어서는 도 3a 내지 3c에 나타낸 바와 같이 광섬유(41)에서 각 레이저 펄스(40)는 카테터를 함유하는 관의 특징적인 크기에 비하여 유체에서 매우 작거나, 또는 심지어 섬유 직경에 비하여 작은 흡수 깊이내에서 조절된 수준의 에너지를 전달한다. 흡수 깊이는 또한 음파가 레이저 펄스의 지속 시간동안 이동하는 거리에 비하여 작을 수 있다. 레이저 에너지는 주위 압력에서 유체의 기화 온도보다 훨씬 높이 모든 유체를 가열하기 위하여 충분한 수준의 에너지를 흡수 깊이내에 축적한다. 레이저 에너지를 축적하는 과정에 있어서, 열탄성적으로 생성된 음파가 유체에 가해지고 가열된 영역으로부터 전파된다. 1μs보다 긴 시간인 경우, 과열된 유체(42)는 기화되어 증기 기포를 형성시킨다. 유체가 기화됨에 따라, 그 부피(44)는 크게 증가하며, 따라서 증기 기포의 최대 크기가 예컨대 관 직경을 초과하지 않도록 단지 작은 유체층을 포함할 필요가 있다.
레이저 펄스 지속 시간은 기포 확장이 거의 등압 과정이기 때문에 열탄성 방식에서 만큼 짧은 시간으로 제한될 필요는 없다. 그러나, 레이저 펄스 지속 시간은 기포 확장 시간보다 짧아야 하며, 과열된 영역인 경우는 통상적인 열 완화 시간보다 훨씬 더 짧아야 한다(Rayleigh의 기포 붕괴 이론에 따르면, 기포 수명은 50㎛ 직경의 기포에 대하여 약 25μs이며, 레이저 펄스의 지속 시간은 수 마이크로초 이하이어야 한다). 증기 기포는 유체에서 초기에 생성된 증기압에 의존하는 최대 직경까지 팽창한다. 최대 기포 직경에서, 팽창된 기포의 증기압은 주위 압력 이하로 떨어지며 기포(46)는 붕괴되어 확장성 음파(48)을 생성시킨다. 반향 및 이후의 붕괴 현상은 최초의 붕괴에 이어 발생한다. 기포 팽창 및 붕괴는 음향 에너지를 유체에 전달한다. 이후의 레이저 펄스가 전달되어 상기 사이클을 반복 또는 계속하도록 하며 임의의 주파수 또는 레이저 펄스 주파수에 의해 결정된 주파수에서 초음파 방사장을 형성시킨다. 제 1방식과 유사하게, 레이저 펄스 시간을 공동 기포의 수명과 일치시킴으로써 공명 작용이 얻어질 수 있다.
요약하면, 제 2방식을 통하여 작동하는 장치는 (i) 작은 부피의 유체에 레이저 에너지를 축적시키고(경우에 따라 레이저 파장 및 흡수 유체의 선택에 의해 조절됨); (ii) 공동 기포의 최대 크기가 거의 섬유 직경과 동일하도록 레이저 에너지를 조절하며; (iii) 기포 생성 및 붕괴 과정의 다중 사이클이 주변 유체에 음향 방사장을 생성시키도록 레이저를 임의의 반복율로 진동시킴으로써 유체에 초음파 방사장을 생성시킨다. 제 1방식과는 달리, 전달 시간은 중요한 쟁점이 아니며, 따라서 긴 펄스 지속 시간을 갖는 레이저가 유용할 수 있다.
상기 양 조작 방식에 있어서, 최소 레이저 펄스 에너지를 갖는 적합한 음향 반응이 얻어지도록 레이저 파장, 레이저 펄스 지속 시간 및 레이저 흡수 깊이은 정확히 조절되어야 한다. 제 1방식에 있어서, 흡수 부피를 섬유 직경 또는 관 직경의 몇몇 단편과 같은 본 시스템의 특징적인 치수와 일치시키고 짧은 레이저 펄스(20ns 미만)를 사용하는 것을 필요로 한다. 제 2방식에 있어서는 적은 에너지 비용으로 도모할 수 있는 충분한 수준의 과열을 소량의 유체에서 얻기 위하여 주변 조직에 손상을 주지 않을 정도로 큰 증기 기포를 형성시키지 않으면서 매우 작은 흡수 깊이로 레이저 에너지를 축적시키는 것을 필요로 한다.
조직내에서 레이저 에너지를 음향 여기와 연결하는 이들 광-음향 방식은 수많은 특징을 포함한다. 높은 반복율과 결합된 저 내지 적당한 레이저 펄스 에너지는 과도한 조직 가열 또는 강한 충격 발생을 피한다. 레이저 에너지의 국부적인 흡수가 발생한다. 레이저 에너지는 열탄성적으로 또는 열역학적으로 주변 유체와 상호 작용할 수 있다. 음향 방사장은 섬유 말단에서 작은 공동 기포의 반복된 확장 및 붕괴에 의해 생성된다. 공명 조작은 레이저 펄스 시간을 공동의 수명과 일치시킴으로써 얻어질 수 있다. 부드러운 섬유성 폐색(혈전)은 혈전내에 직접 공동 기포를 생성시킴으로써 분해될 수 있다.
섬유 말단에서 유체에 축적된 에너지의 공간 및 시간적 분배의 조절 및/또는 조작은 예컨대 음향 에너지를 섬유 근처의 대상에 집중시키거나 또는 음향 방사를 더욱 균일하게 분배하기 위하여 근접장 음향 방사 형태를 변형시키는데 사용될 수 있다. 상기 전략을 기본으로 하는 기술은 레이저 펄스 시간이 짧고 유체 흡수가 또한 비교적 강하여 레이저 에너지가 섬유 말단의 표면에 인접한 얇은 층에 축적되는 열탄성 반응의 특별한 경우(제 1방식)에 있어서 가장 성공적일 것이다. 예컨대, 섬유 말단에 오목한 표면을 형성함으로써, 광학 에너지는 유사한 분배 형태로 유체에 축적된다. 상기 오목 분배로부터 나오는 음파는 섬유 말단으로부터 거리 R의 지점에 초점을 맞추는 경향이 있으며, 여기서 R은 오목한 표면의 곡률 반경이다. 평면 섬유 말단은 초기에 평면 음향 파두를 섬유 말단 근처에 생성시키는 경향이 있다. 볼록 섬유 말단은 음향 에너지를 더 넓은 입체각으로 분산시키는 발산성 구형 파두를 생성할 것이다. 근접장 방사 형태를 변형시키는 또 다른 방법은 레이저 에너지가 전달되는 섬유 다발을 사용하여 축적된 레이저 에너지의 시간적 분배를 조절하는 것이다. 레이저 에너지는 카테터 말단에서 각 섬유 가닥에 서로 다른 시간에 도달하도록 배열될 수 있으며, 이는 레이더에서 사용되는 위상-배열 기술(phased-array techniques)과 유사한 이들 각 가닥의 상이한 공간적 위치와 조합되어 음향 방사 패턴의 방향 및 형태를 조절하도록 조정될 수 있다. 도 4a는 오목 원 말단(52)을 갖는 변형된 광섬유(50)를 나타낸다. 도 4b는 볼록 원 말단(54)을 갖는 광섬유(50)를 나타낸다. 도 5는 레이저 펄스 에너지가 서로 다른 시간에 전달되는 한 다발의 섬유 가닥(58)으로 구성된 변형된 광섬유(56)를 나타낸다.
시판되는 섬유는 일반적으로 환경으로부터 보호하기 위하여 피복된다. "노출" 또는 비피복 섬유도 사용할 수 있다. 카테터를 통하여 더욱 용이하게 미끄러지게 하기 위하여 섬유에 피복제를 사용하는 것이 편리하다. 도 6에 나타낸 바와 같이, 가변성 직경의 광섬유(60)는 근 말단(62)에 더 큰 물리적 강도를 부여하며 원 말단(64)에서 더 높은 접근성을 가능하게 한다. 이는 존재하는 섬유를 변형시키거나(코어 주변의 보호막을 제거) 또는 주문 섬유를 제조함으로써 완수될 수 있다. 주문 제작은 섬유의 압출 또는 인장율을 변화시킴으로써 달성될 수 있다. 유리 또는 플라스틱 조성은 섬유를 인장시키는 함수로서 변화될 수 있으며, 그 결과 광질을 희생시키지 않으면서 근 말단으로부터 더 높은 조절이 얻어진다. 이것의 하나의 특별한 예는 말단을 부드럽게 처리하는 것이며, 따라서 말단이 카테터 덮개에서 막히지 않는다. 또한, 말단에서의 형상 기억은 카테터 덮개의 근 말단으로부터 튀어나올 때 상기 섬유의 조종을 가능하게 한다.
도 7은 유리/플라스틱 섬유 복합체를 나타낸다. 섬유(70)는 1㎜ 내지 수 ㎝ 길이의 비교적 짧은 플라스틱 말단(74)과 유리부(72)를 포함한다. 유리부(72)의 단단함으로 인해, 상기 구조를 갖는 광섬유는 맥관 구조를 용이하게 통과한다. 부드러운 플라스틱 말단(74)은 유리 말단보다 정맥벽을 덜 천공시킨다. 상기 구조는 광섬유의 내구성을 증가시키기 위하여 부수적인 유리 말단을 포함할 수 있다.
다양한 주파수의 음향 에너지가 본 발명에서 발생되며, 신체 조직에서 음향 영상을 형성시키기 위한 신호원으로 간주될 수 있다. 상기 신호를 생산하는 음향 방사의 점원에 의존하는 임의의 신호 탐지 및 분석 시스템은 본 발명과 함께 사용될 수 있다.
본 발명에서 계획된 적용 방법은 국부적인 초음파 여기가 카테터의 적용을 통하여 신체 조직에서 생성될 수 있는 임의의 방법 또는 과정을 포함한다. 본 발명은 (i) 허혈성 발작을 유도하는 혈관 폐색의 혈관내 치료(이 기술은 혈전을 용해시키고 영향받은 대뇌 조직의 재관류를 유도한다), (ii) 대뇌 혈관 경련의 혈관내 치료(이 기술은 혈관 수축을 완화시키고 정상적인 관류를 회복시켜 또 다른 일시적인 허혈성 발작 또는 다른 비정상적인 관류 상태를 방지한다), (iii) 심혈관 폐색의 혈관내 치료(이 기술은 혈전을 용해하거나 또는 동맥으로부터 동맥경화성 플라크를 제거할 수 있다), (iv) 경동맥 협착의 혈관내 치료, (v) 말초 동맥 협착의 혈관내 치료, (vi) 피하 삽입을 통하여 용이하게 접근할 수 있는 신체의 임의의 내강 도입로에 있어서 일반적인 개통, (vii) 초음파 여기의 국부적인 (점)원이 카테터의 삽입을 통하여 접근할 수 있는 기관 또는 조직 위치내에 필요한 임의의 초음파 영상 적용, (viii) 담석, 신장 결석 또는 다른 신체내의 칼슘화된 물체의 제거를 포함하는 쇄석술적 적용 및 (ix) 초음파 조절형 광학 X-선 단층 촬영에 있어서 초음파의 원천으로서 사용될 수 있다.
본 발명에 의해 사용된 펄스형 레이저 에너지원은 기체, 액체 또는 고체 상태의 매질을 기본으로 할 수 있다. 희토류 도프형 고체상 레이저, 루비 레이저, 알렉산더 레이저, Nd:YAG 레이저 및 Ho:YLF 레이저는 모두 펄스형 방식에서 높은 반복율로 작동될 수 있고 본 발명에서 사용될 수 있는 레이저의 예이다. 상기 고체상 레이저는 기본적인 레이저 파장의 화성을 형성하기 위하여 비선형 주파수-더블링 또는 주파수-트리플링 결정을 포함할 수 있다. 초음파 방사의 간섭 광선을 만드는 고체상 레이저는 본 발명에서 직접 사용될 수 있거나 또는 자외선 및 가시 영역의 넓은 영역에서 조정할 수 있는 출력 광선을 생산하기 위하여 염료 레이저와 함께 사용될 수 있다. 넓은 영역의 조정성은 레이저 파장을 카테터의 원 말단에 위치하는 유체의 흡수 특성과 일치시키는데 있어서 광범위한 융통성을 제공한다. 출력 광선은 광섬유에 의해 예컨대 피하 카테터를 통하여 수술 위치에 연결된다. 작동시에, 펄스형 광선은 종래 기술의 장치보다 하부 조직을 덜 손상시키고 혈관벽을 천공시킬 가능성이 낮으면서 혈전 또는 동맥 경화성 플라크를 제거 및/또는 유화시키는 초음파 여기를 제공한다.
다양한 기타 펄스형 레이저가 상기 개시된 레이저원을 대신할 수 있다. 마찬가지로, 다양한 염료 및 구조가 염료 레이저에 사용될 수 있다. 염료-함침형 플라스틱 필름 또는 큐벳-함유형 염료와 같은 자유 유동형 염료 이외의 형태가 염료 레이저에서 사용될 수 있다. 염료 레이저는 또한 복수의 상이한 염료를 저장할 수있으며 사용자에 의한 조절 신호 또는 사용중에 부닥치는 상황(예컨대, 혈액이 충전된 영역으로부터 식염수 영역으로 스위칭할 때 또는 칼슘성 퇴적물에 따라)에 따라 자동적으로 서로 대체될 수 있다. 본 발명의 염료 레이저 성분에 사용하기에 적합한 염료는 예컨대 P-테르페닐(피이크 파장: 339); BiBuQ(피이크 파장: 385); DPS(피이크 파장: 405); 및 쿠마린 2(피이크 파장: 448)를 포함한다.
다른 실시 형태에 있어서 펄스형 광원은 주파수-더블형 또는 주파수-트리플형 고체상 레이저에 의해 펌핑되는 광학 파라메트릭 발진기(OPO, optical parametric oscillator)일 수 있다. OPO 시스템은 주로 고체상 광학 성분으로 구성된 콤팩트 시스템에서 광범위한 파장 조정성을 가능하게 한다. OPO 시스템에서 레이저 파장은 또한 사용자에 의한 조절 신호 또는 사용중에 부닥치는 상황에 따라 자동적으로 변화될 수 있다.
본 발명을 실시하는데 있어서 유용한 카테터는 다양한 형태를 가질 수 있다. 예컨대, 하나의 실시 형태는 3.5㎜ 이하, 바람직하게는 2.5㎜ 이하의 외경을 갖는 카테터로 구성될 수 있다. 직경이 400미크론인 광섬유 또는 SG800 섬유(Spectran, Inc.제조, 미국 매사추세츠주 Sturbridge 소재)와 같은 더 작은 실리카(융합 석영) 섬유도 상기 카테터의 범위내에 있다. 카테터는 플러슁(flushing) 및 흡입부를 제공하기 위하여 다중-내강일 수 있다. 하나의 실시 형태에 있어서, 카테터 말단은 방사선 비투과성 내열 재료로 제조될 수 있다. 상기 방사선 비투과성 말단은 형광투시기 아래에 카테터를 위치시키는데 사용될 수 있다.
본 발명은 반향그래픽 또는 광음향 영상 시스템 또는 광학 조망 시스템과 같은 영상 시스템을 포함하는 장치뿐만 아니라 형광투시기의 인도에 따라 작동하는 장치를 포함하여 다양한 카테터 장치와 함께 사용될 수 있다. 상기 카테터 환경에 특별히 적용될 수 있는 광음향 영상 시스템의 한 예로서 본 발명의 참고 자료로 포함된 미국 특허 4,504,727호를 참조한다.
구체적으로 기재된 실시 형태에 있어서의 변화 및 변형은 첨부된 청구항의 범위에 의해 한정된 본 발명의 범위를 벗어나지 않으면서 실시될 수 있다.

Claims (48)

  1. 근 말단 및 원 말단을 포함하는 광섬유를 혈관 조직내의 폐색 부위에 삽입하고;
    상기 근 말단에 레이저광을 연결시키고, 상기 레이저광이 (i) 5kHz 내지 25kHz의 펄스 주파수, (ii) 200㎚ 내지 5000㎚의 파장 및 (iii) 0.01J/㎝2내지 4J/㎝2의 에너지 밀도를 가지며, 상기 레이저광이 상기 원 말단으로부터 방출되어 주변의 액상 매질에 음향 방사장을 생성시키며, 상기 음향 방사장이 상기 주변 액상 매질내의 열탄성 확장 및 상기 주변 액상 매질내의 과열 증기 확장으로 이루어진 군으로부터 선택된 메카니즘을 통하여 생성되는 것을 포함하는, 피하 내강 통과 접근 과정에 있어서 대뇌혈관 조직에 음향 에너지를 전달하는 방법.
  2. 근 말단 및 원 말단을 포함하는 광섬유를 혈관 조직내의 폐색 부위에 삽입하고;
    상기 근 말단에 레이저광을 연결시키고, 상기 레이저광이 (i) 10Hz 내지 100kHz의 펄스 주파수, (ii) 200㎚ 내지 5000㎚의 파장 및 (iii) 0.01J/㎝2내지 4J/㎝2의 에너지 밀도를 가지며, 상기 레이저광이 상기 원 말단으로부터 방출되어 주변의 액상 매질에 음향 방사장을 생성시키는 것을 포함하는 방법.
  3. 제 2항에 있어서, 상기 레이저광이 >1kHz 내지 25kHz의 펄스 주파수를 갖는 방법.
  4. 제 3항에 있어서, 상기 레이저광이 200ns 미만의 펄스 지속 시간을 가지며, 상기 원 말단으로부터 방출되는 레이저 광이 주변의 액상 매질의 열탄성 확장을 통하여 음향 방사장을 생성시키는 방법.
  5. 제 3항에 있어서, 상기 원 말단으로부터 방출되는 레이저광이 과열 증기 확장을 통하여 음향 방사장을 생성시키는 방법.
  6. 제 3항에 있어서, 상기 맥관 구조에서 혈관내 폐색의 제거를 위하여 주변 액상 매질에 음향 방사장을 생성시키기 위하여 상기 원 말단으로부터 레이저광이 방출되는 방법.
  7. 제 6항에 있어서, 상기 혈관내 폐색이 동맥경화성 플라크 및 혈전으로 구성된 군으로부터 선택된 방법.
  8. 제 3항에 있어서, 상기 주변 액상 매질이 혈액; 생물학적 식염수; 흡수성 염료, 혈전 용해성 약제 또는 혈전을 함유하는 생물학적 식염수로 구성된 군으로부터 선택된 방법.
  9. 제 3항에 있어서, 상기 광섬유가 카테터내에 위치하며, 폐색물을 유화시키기 위하여 상기 카테터를 통하여 혈전 용해제를 주변 액상 매질에 주입하는 것을 추가로 포함하는 방법.
  10. 제 9항에 있어서, 작업 채널이 상기 카테터내의 광섬유와 평행하며, 카테터를 통하여 폐색물을 유화시키는 혈전 용해제를 주변 액상 매질에 주입하는 단계가 카테터내의 작업 채널을 통하여 폐색물을 유화시키는 혈전 용해제를 주입하는 것을 포함하는 방법.
  11. 제 3항에 있어서, 상기 광섬유가 카테터내에 위치하며, 시각화를 용이하게 하기 위하여 카테터를 통하여 주변 액상 매질에 방사선 사진 콘트라스트제를 주입하는 것을 추가로 포함하는 방법.
  12. 제 3항에 있어서, 피드백 메카니즘을 통하여 조직에서 유도된 음향 진동의 크기를 모니터하고 제어하는 것을 추가로 포함하는 방법.
  13. 제 3항에 있어서, 맥관 구조내에 광섬유를 삽입하는 상기 단계가 오목 말단, 볼록 말단 및 평면 말단으로 구성된 군으로부터 선택된 말단을 갖는 광섬유를 삽입하는 것을 포함하는 방법.
  14. 제 3항에 있어서, 맥관 구조내에 광섬유를 삽입하는 상기 단계가 맥관 구조내에 가변성 직경의 광섬유를 갖는 광섬유를 삽입하는 것을 포함하는 방법.
  15. 제 3항에 있어서, 맥관 구조내에 광섬유를 삽입하는 상기 단계가 맥관 구조내에 유리와 플라스틱의 복합체를 포함하는 광섬유를 삽입하는 것을 포함하는 방법.
  16. 제 3항에 있어서, 열탄성적, 열역학적 메카니즘 및 이들 메카니즘의 조합으로 구성된 군으로부터 선택된 메카니즘을 통하여 혈관내의 폐색물의 제거를 위하여 주변 액상 매질에 음향 방사장을 생성시키기 위하여 상기 레이저광이 원 말단으로부터 방출되는 방법.
  17. 제 3항에 있어서, 혈관내의 폐색물의 제거를 위하여 주변 액상 매질에 음향 방사장을 생성시키기 위하여 상기 레이저광이 원 말단으로부터 방출되고, 상기 레이저광이 200ns 미만의 펄스 지속 시간을 가지며, 원 말단으로부터 방출된 상기 레이저광이 주변 액상 매질의 열탄성 확장을 통하여 음향 방사장을 생성시키고, 상기 레이저광이 작은 부피의 상기 주변 액상 매질에 큰 열탄성 응력을 생성시키는 주변 액상 매질에 조절된 수준의 에너지를 제공하며, 상기 레이저광에 의해 가열되는 주변 액상 매질의 부피가 주변 액상 매질에서 레이저광의 흡수 깊이에 의해 결정되고, 상기 부피에서 필요한 열탄성 응력을 생산하기 위하여 상기 흡수 깊이가 조절되는 방법.
  18. 제 3항에 있어서, 혈관내의 폐색물의 제거를 위하여 주변 액상 매질에 음향 방사장을 생성시키기 위하여 상기 레이저광이 원 말단으로부터 방출되고, 상기 레이저광이 최소 치수의 흡수 영역을 가로지르는 음향 통과 시간보다 짧은 시간 안에 흡수 유체내로 모든 레이저 에너지를 축적시키기에 충분히 짧은 펄스 지속 시간을 가지며, 원 말단으로부터 방출된 상기 레이저광이 주변 액상 매질의 열탄성 확장을 통하여 음향 방사장을 생성시키는 방법.
  19. 제 3항에 있어서, 상기 광섬유가 한 다발의 섬유 가닥을 포함하고, 상기 다발의 각 가닥내의 레이저광이 상이한 시간에 근 말단에 도달하며, 상기 상이한 시간은 음향 방사장의 방향 및 형태를 조절하기 위하여 조정되고, 상기 상이한 시간이 각 가닥의 상이한 공간적 위치와 조합되어 조정되는 방법.
  20. 제 3항에 있어서, 상기 레이저광이 신체 조직에서 음향 영상을 형성시키기 위한 신호원으로 사용되는 방법.
  21. 광섬유를 맥관 조직에 삽입하고;
    광섬유의 직경에 상당하는 주변 액상 매질의 부피로 상기 부피의 길이를 가로지르는 음향 통과 시간보다 짧은 시간 동안 레이저 에너지를 축적시키고;
    공동 기포의 최대 크기가 거의 섬유 직경과 동일하도록 레이저 에너지를 조절하며;
    본 방법의 다중 사이클이 주변 유체에 음향 방사장을 생성시키도록 레이저 에너지를 임의의 반복율로 진동시키는 것을 포함하는, 맥관 조직내에 위치하는 주변 액상 매질의 열탄성 확장을 통하여 초음파 방사장을 생성시키는 방법.
  22. 제 20항에 있어서, 공명 작용을 얻기 위하여 상기 레이저 에너지의 레이저 펄스 반복율을 공동 수명과 일치시키는 것을 추가로 포함하는 방법.
  23. 광섬유를 맥관 조직에 삽입하고;
    공동 기포를 생성시키기 위하여 작은 부피의 주변 액상 매질에 레이저 에너지를 축적시키며;
    공동 기포의 최대 크기가 거의 섬유 직경과 동일하도록 레이저 에너지를 조절하고;
    기포 생성 및 붕괴 과정의 다중 사이클이 주변 액상 매질에 음향 방사장을 생성시키도록 레이저 에너지를 임의의 반복율로 진동시키는 것을 포함하는, 맥관 조직내에 위치하는 주변 액상 매질의 증기 확장을 통하여 초음파 방사장을 생성시키는 방법.
  24. 제 23항에 있어서, 공명 작용을 얻기 위하여 상기 레이저 에너지의 펄스 시간을 공동 기포의 공동 수명과 일치시키는 단계를 추가로 포함하는 방법.
  25. 근 말단 및 원 말단을 포함하고 혈관 조직내의 폐색 부위에 삽입되는 광섬유; 및
    상기 근 말단에 레이저광을 연결시키고, (i) 10Hz 내지 100kHz의 펄스 주파수, (ii) 200㎚ 내지 5000㎚의 파장 및 (iii) 0.01J/㎝2내지 4J/㎝2의 에너지 밀도를 가지며, 원 말단으로부터 방출되어 주변의 액상 매질에 음향 방사장을 생성시키는 레이저광을 제공하기 위한 레이저를 포함하는 장치.
  26. 제 25항에 있어서, 상기 레이저광이 >1kHz 내지 25kHz의 펄스 주파수를 갖는 장치.
  27. 제 26항에 있어서, 상기 레이저광이 200ns 미만의 펄스 지속 시간을 가지며, 상기 원 말단으로부터 방출되는 레이저 광이 주변의 액상 매질의 열탄성 확장을 통하여 음향 방사장을 생성시키는 장치.
  28. 제 26항에 있어서, 상기 원 말단으로부터 방출되는 레이저광이 과열 증기 확장을 통하여 음향 방사장을 생성시키는 장치.
  29. 제 26항에 있어서, 상기 맥관 구조에서 혈관내 폐색의 제거를 위하여 주변 액상 매질에 음향 방사장을 생성시키기 위하여 상기 원 말단으로부터 레이저광이 방출되는 장치.
  30. 제 29항에 있어서, 상기 혈관내 폐색이 동맥경화성 플라크 및 혈전으로 구성된 군으로부터 선택된 장치.
  31. 제 25항에 있어서, 상기 주변 액상 매질이 혈액; 생물학적 식염수; 흡수성 염료, 혈전 용해성 약제 또는 혈전을 함유하는 생물학적 식염수로 구성된 군으로부터 선택된 장치.
  32. 제 25항에 있어서, 카테터를 추가로 포함하고, 상기 광섬유가 상기 카테터내에 위치하며, 폐색물을 유화시키기 위하여 카테터를 통하여 혈전 용해제가 주변 액상 매질에 주입될 수 있는 장치.
  33. 제 32항에 있어서, 상기 카테터내의 광섬유와 평행한 작업 채널을 추가로 포함하며, 상기 폐색물을 유화시키기 위하여 상기 작업 채널을 통하여 혈전 용해제가 주입될 수 있는 장치.
  34. 제 25항에 있어서, 카테터를 추가로 포함하고, 상기 광섬유가 카테터내에 위치하며, 시각화를 용이하게 하기 위하여 카테터를 통하여 주변 액상 매질에 방사선 사진 콘트라스트제가 주입될 수 있는 장치.
  35. 제 25항에 있어서, 상기 주변 액상 매질에서 유도된 음향 방사장의 크기를 모니터하고 제어하는 장치를 추가로 포함하는 장치.
  36. 제 25항에 있어서, 상기 광섬유가 오목, 볼록 및 평면으로 구성된 군으로부터 선택된 형태를 갖는 말단을 포함하는 장치.
  37. 제 25항에 있어서, 상기 광섬유가 가변성 직경을 포함하는 장치.
  38. 제 37항에 있어서, 상기 광섬유가 광섬유 말단에서 점점 가늘어지는 가변성 직경을 포함하는 장치.
  39. 제 25항에 있어서, 상기 광섬유가 유리와 플라스틱의 복합체를 포함하는 장치.
  40. 제 39항에 있어서, 상기 광섬유가 광섬유 말단에 유리와 짧은 영역의 플라스틱의 복합체를 포함하고, 상기 짧은 영역이 3㎜ 내지 3㎝의 길이를 갖는 장치.
  41. 제 25항에 있어서, 상기 레이저광에 의해 가열되는 주변 액상 매질의 부피가 주변 액상 매질에서 레이저광의 흡수 깊이에 의해 결정되고, 상기 흡수 깊이가 상기 부피에서 필요한 열탄성 응력을 생산하기 위하여 조절되는 장치.
  42. 제 25항에 있어서, 상기 레이저광이 최소 치수의 흡수 영역을 가로지르는 음향 통과 시간보다 짧은 시간 안에 흡수 유체내로 모든 레이저 에너지를 축적시키기에 충분히 짧은 펄스 지속 시간을 가지며, 원 말단으로부터 방출된 상기 레이저광이 주변 액상 매질의 열탄성 확장을 통하여 음향 방사장을 생성시키는 장치.
  43. 제 25항에 있어서, 상기 광섬유가 광 에너지를 주변 액상 매질에 집중시키는 광학 성분으로 사용되도록 구성된 말단을 포함하며, 상기 말단이 또한 필요한 음향 에너지의 생성을 위하여 레이저 에너지의 광선 프로필을 최적화시키도록 구성된 장치.
  44. 제 25항에 있어서, 상기 광섬유가 분쇄, 연마 및 화학적 에칭으로 구성된 군으로부터 선택된 방법에 의해 제조된 표면을 갖는 말단을 포함하는 장치.
  45. 제 25항에 있어서, 상기 레이저가 조정 가능한 파장을 포함하는 장치.
  46. 맥관 조직에 삽입되는 광섬유;
    광섬유의 직경에 상당하는 주변 액상 매질의 부피로 상기 부피의 길이를 가로지르는 음향 통과 시간보다 짧은 시간 동안 레이저 에너지를 축적시키는 장치;
    공동 기포의 최대 크기가 거의 광섬유 직경과 동일하도록 상기 레이저 에너지를 조절하는 장치; 및
    본 방법의 다중 사이클이 주변 유체에 음향 방사장을 생성시키도록 레이저 에너지를 임의의 반복율로 진동시키는 장치를 포함하는, 맥관 조직내에 위치하는 주변 액상 매질의 열탄성 확장을 통하여 초음파 방사장을 생성시키는 장치.
  47. 제 46항에 있어서, 상기 레이저 에너지의 레이저 펄스 반복율을 공동 수명과 일치시키는 장치를 추가로 포함하는 장치.
  48. 맥관 조직에 삽입되는 광섬유;
    공동 기포를 생성시키기 위하여 주변 액상 매질에 레이저 에너지를 축적시키는 장치;
    공동 기포의 최대 크기가 거의 광섬유 직경과 동일하도록 상기 레이저 에너지를 조절하는 장치; 및
    기포 생성 및 붕괴 과정의 다중 사이클이 주변 액상 매질에 음향 방사장을 생성시키도록 레이저 에너지를 임의의 반복율로 진동시키는 장치를 포함하는, 맥관 조직내에 위치하는 주변 액상 매질의 증기 확장을 통하여 초음파 방사장을 생성시키는 장치.
KR1019980708637A 1996-04-24 1997-04-23 광-음향 혈전 용해법 KR20000010666A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/639,017 1996-04-24
US08/639,017 US6022309A (en) 1996-04-24 1996-04-24 Opto-acoustic thrombolysis

Publications (1)

Publication Number Publication Date
KR20000010666A true KR20000010666A (ko) 2000-02-25

Family

ID=24562391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980708637A KR20000010666A (ko) 1996-04-24 1997-04-23 광-음향 혈전 용해법

Country Status (10)

Country Link
US (1) US6022309A (ko)
EP (1) EP0959782B1 (ko)
JP (1) JP2000508938A (ko)
KR (1) KR20000010666A (ko)
CN (1) CN1216910A (ko)
AT (1) ATE274859T1 (ko)
AU (1) AU725515B2 (ko)
CA (1) CA2252739A1 (ko)
DE (1) DE69730525D1 (ko)
WO (1) WO1997039690A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081052A1 (ko) * 2012-11-22 2014-05-30 한국과학기술원 공진주파수를 이용한 혈관 및 혈관주변 조직의 노폐물 제거 장치
CN113905681A (zh) * 2019-06-04 2022-01-07 帕维尔·V·埃弗雷金 用于血管和体内手术的激光装置及其使用方法

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125291A1 (en) * 1995-08-31 2010-05-20 Rizoiu Ioana M Drill and flavored fluid particles combination
US6288499B1 (en) * 1997-06-12 2001-09-11 Biolase Technology, Inc. Electromagnetic energy distributions for electromagnetically induced mechanical cutting
US6231567B1 (en) * 1995-08-31 2001-05-15 Biolase Technology Inc. Material remover and method
US6405069B1 (en) * 1996-01-31 2002-06-11 Board Of Regents, The University Of Texas System Time-resolved optoacoustic method and system for noninvasive monitoring of glucose
GB9712524D0 (en) * 1997-06-16 1997-08-20 Nycomed Imaging As Method
KR20010031350A (ko) * 1997-10-21 2001-04-16 추후제출 혈관 폐색의 광음향적 제거
US6368318B1 (en) 1998-01-23 2002-04-09 The Regents Of The University Of California Opto-acoustic recanilization delivery system
US6290668B1 (en) * 1998-04-30 2001-09-18 Kenton W. Gregory Light delivery catheter and methods for the use thereof
US6440124B1 (en) 1998-07-22 2002-08-27 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6547779B2 (en) 1998-07-22 2003-04-15 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6210400B1 (en) 1998-07-22 2001-04-03 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6139543A (en) 1998-07-22 2000-10-31 Endovasix, Inc. Flow apparatus for the disruption of occlusions
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US6484052B1 (en) * 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
US6539944B1 (en) * 1999-06-11 2003-04-01 Brant D. Watson Dethrombosis facilitated by vasodilation
US6443976B1 (en) * 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
JP3868724B2 (ja) * 2000-07-18 2007-01-17 独立行政法人科学技術振興機構 超音波血管内視鏡システム
US20020133111A1 (en) * 2001-03-19 2002-09-19 Shadduck John H. Neuro-thrombectomy catheter and method of use
US6517531B2 (en) * 2001-04-27 2003-02-11 Scimed Life Systems, Inc. Medical suction device
US7117134B2 (en) 2001-10-18 2006-10-03 Lockheed Martin Corporation Method to optimize generation of ultrasound using mathematical modeling for laser ultrasound inspection
WO2003053496A2 (en) * 2001-12-19 2003-07-03 Ran Yaron Miniature refrigeration system for cryothermal ablation catheter
EP1458301A1 (en) 2001-12-28 2004-09-22 The Spectranetics Corporation Method for treatment of vascular occlusions with inhibition of platelet aggregation
EP1665998A3 (en) 2002-01-08 2010-10-20 Bio Scan Ltd. Ultrasonic transducer probe
JP4373792B2 (ja) * 2002-02-11 2009-11-25 ゴールド−ティー テック インコーポレイテッド 血栓形成を予防する方法
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US20030236533A1 (en) * 2002-06-20 2003-12-25 The Regents Of The University Of California Shape memory polymer actuator and catheter
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7220233B2 (en) 2003-04-08 2007-05-22 Flowcardia, Inc. Ultrasound catheter devices and methods
US6942677B2 (en) * 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
US7604608B2 (en) * 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
CA2522083A1 (en) * 2003-04-09 2004-10-21 Bioscan Ltd. Ultrasonic probing device with distributed sensing elements
US20040260182A1 (en) * 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
CN1867299B (zh) 2003-09-12 2010-09-29 明诺医学有限公司 动脉粥样硬化物的可选择偏心重塑和/或消融
US20050059993A1 (en) * 2003-09-17 2005-03-17 Kamal Ramzipoor Embolectomy device
RU2372117C2 (ru) * 2003-09-18 2009-11-10 Аркюо Медикал, Инк. Способ опто-термо-механического воздействия на биологическую ткань и устройство для его осуществления
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US6949072B2 (en) * 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US7744604B2 (en) * 2003-11-13 2010-06-29 Lawrence Livermore National Security, Llc Shape memory polymer medical device
US7740626B2 (en) * 2003-11-21 2010-06-22 Terumo Kabushiki Kaisha Laser induced liquid jet generating apparatus
EP1541091A1 (en) * 2003-12-10 2005-06-15 EL.EN. S.p.A. Device for treating tumors by laser thermotherapy
US7198549B2 (en) * 2004-06-16 2007-04-03 Cabot Microelectronics Corporation Continuous contour polishing of a multi-material surface
US7540852B2 (en) 2004-08-26 2009-06-02 Flowcardia, Inc. Ultrasound catheter devices and methods
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US8221343B2 (en) 2005-01-20 2012-07-17 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US20060206028A1 (en) * 2005-03-11 2006-09-14 Qi Yu Apparatus and method for ablating deposits from blood vessel
US7645290B2 (en) * 2005-05-05 2010-01-12 Lucas Paul R Multi-functional thrombectomy device
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US20070083120A1 (en) * 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US7450241B2 (en) * 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
JP4409499B2 (ja) 2005-10-25 2010-02-03 国立大学法人浜松医科大学 血栓溶解装置
US20080177220A1 (en) * 2006-01-06 2008-07-24 The Curators Of The University Of Missouri Ultrasound-Mediated Transcleral Drug Delivery
US20090054763A1 (en) * 2006-01-19 2009-02-26 The Regents Of The University Of Michigan System and method for spectroscopic photoacoustic tomography
WO2007087560A2 (en) * 2006-01-26 2007-08-02 The Board Of Trustees Of The University Of Illinois Stroke inducing and monitoring system and method for using the same
US20090227992A1 (en) * 2006-02-02 2009-09-10 Releaf Medical Ltd Shock-Wave Generating Device, Such as for the Treatment of Calcific Aortic Stenosis
US9282984B2 (en) * 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
EP2015698B1 (en) 2006-04-20 2017-11-15 Sonendo, Inc. Apparatus for treating root canals of teeth
US7927305B2 (en) * 2006-04-21 2011-04-19 Abbott Laboratories Systems, methods, and devices for injecting media contrast
US20080065014A1 (en) * 2006-04-21 2008-03-13 Abbott Laboratories Systems, Methods, and Devices to Facilitate Wire and Device Crossings of Obstructions in Body Lumens
US20070250149A1 (en) * 2006-04-21 2007-10-25 Abbott Laboratories Stiffening Support Catheters and Methods for Using the Same
US8206370B2 (en) * 2006-04-21 2012-06-26 Abbott Laboratories Dual lumen guidewire support catheter
US7993303B2 (en) 2006-04-21 2011-08-09 Abbott Laboratories Stiffening support catheter and methods for using the same
US8246574B2 (en) * 2006-04-21 2012-08-21 Abbott Laboratories Support catheter
WO2007127339A2 (en) * 2006-04-26 2007-11-08 Tyco Healthcare Group Lp Multi-stage microporation device
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
WO2007140331A2 (en) 2006-05-25 2007-12-06 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
JP2008036153A (ja) * 2006-08-07 2008-02-21 Hamamatsu Photonics Kk 光照射装置
US7980854B2 (en) 2006-08-24 2011-07-19 Medical Dental Advanced Technologies Group, L.L.C. Dental and medical treatments and procedures
AU2007310991B2 (en) 2006-10-18 2013-06-20 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
EP2076193A4 (en) 2006-10-18 2010-02-03 Minnow Medical Inc MATCHED RF-ENERGY AND ELECTRO-TISSUE CHARACTERIZATION FOR THE SELECTIVE TREATMENT OF TARGET TISSUE
EP2992850A1 (en) 2006-10-18 2016-03-09 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US8448644B2 (en) * 2006-11-02 2013-05-28 Cooltouch Incorporated Sonic endovenous catheter
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US20080123083A1 (en) * 2006-11-29 2008-05-29 The Regents Of The University Of Michigan System and Method for Photoacoustic Guided Diffuse Optical Imaging
US20080173093A1 (en) * 2007-01-18 2008-07-24 The Regents Of The University Of Michigan System and method for photoacoustic tomography of joints
WO2008103982A2 (en) * 2007-02-23 2008-08-28 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
WO2009020994A2 (en) * 2007-08-06 2009-02-12 Doheny Eye Institute Ultrasound and microbubbles in ocular diagnostics and therapies
US8728092B2 (en) 2008-08-14 2014-05-20 Monteris Medical Corporation Stereotactic drive system
US8747418B2 (en) * 2008-08-15 2014-06-10 Monteris Medical Corporation Trajectory guide
KR20110104504A (ko) 2008-11-17 2011-09-22 미노우 메디컬, 인코포레이티드 조직 토폴로지의 지식 여하에 따른 에너지의 선택적 축적
US8226566B2 (en) 2009-06-12 2012-07-24 Flowcardia, Inc. Device and method for vascular re-entry
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
AU2010289769B2 (en) 2009-08-26 2016-06-30 Histosonics, Inc. Micromanipulator control arm for therapeutic and imaging ultrasound transducers
EP2470087B1 (en) * 2009-08-26 2015-03-25 The Regents Of The University Of Michigan Devices for using controlled bubble cloud cavitation in fractionating urinary stones
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
ATE533427T1 (de) * 2009-12-10 2011-12-15 W & H Dentalwerk Buermoos Gmbh Medizinische, insbesondere dentale, behandlungsvorrichtung zur abgabe eines mediums
KR20130108067A (ko) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 조직 치료를 위한 발전 및 제어 장치
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9125677B2 (en) 2011-01-22 2015-09-08 Arcuo Medical, Inc. Diagnostic and feedback control system for efficacy and safety of laser application for tissue reshaping and regeneration
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
CN103813829B (zh) 2011-07-22 2016-05-18 波士顿科学西美德公司 具有可定位于螺旋引导件中的神经调制元件的神经调制系统
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
EP2765940B1 (en) 2011-10-11 2015-08-26 Boston Scientific Scimed, Inc. Off-wall electrode device for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
WO2013056125A2 (en) 2011-10-14 2013-04-18 RA Medical Systems Small flexible liquid core catheter for laser ablation in body lumens and methods for use
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
CN102500006B (zh) * 2011-11-22 2017-03-29 周相真 一种治疗血液所致疾病的医疗设备
CN102512206B (zh) * 2011-12-13 2014-04-09 苏州生物医学工程技术研究所 血管内超声超声诊断与光声治疗装置及其治疗方法
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
EP2793690B1 (en) 2011-12-23 2021-04-07 Vessix Vascular, Inc. Expandable balloon or an electrode pad with a heat sensing device
CN104135958B (zh) 2011-12-28 2017-05-03 波士顿科学西美德公司 用有聚合物消融元件的新消融导管调变神经的装置和方法
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9603615B2 (en) 2012-01-18 2017-03-28 C.R. Bard, Inc. Vascular re-entry device
WO2013142385A1 (en) 2012-03-22 2013-09-26 Sonendo, Inc. Apparatus and methods for cleanting teeth
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
JP2015516233A (ja) 2012-04-30 2015-06-11 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン ラピッドプロトタイピング方法を使用した超音波トランスデューサー製造
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
CN104602638B (zh) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 用于影响对组织进行治疗的系统
CN103565493B (zh) * 2012-07-26 2015-08-12 纳米新能源(唐山)有限责任公司 纳米超声振动机
US10238895B2 (en) 2012-08-02 2019-03-26 Flowcardia, Inc. Ultrasound catheter system
US20140073907A1 (en) 2012-09-12 2014-03-13 Convergent Life Sciences, Inc. System and method for image guided medical procedures
CN104540465A (zh) 2012-08-24 2015-04-22 波士顿科学西美德公司 带有含单独微孔隙区域的球囊的血管内导管
CN104780859B (zh) 2012-09-17 2017-07-25 波士顿科学西美德公司 用于肾神经调节的自定位电极系统及方法
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US20140100459A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
EP3572036B1 (en) 2012-12-20 2021-05-26 Sonendo, Inc. Apparatus for cleaning teeth and root canals
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9320530B2 (en) 2013-03-13 2016-04-26 The Spectranetics Corporation Assisted cutting balloon
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
EP2967734B1 (en) 2013-03-15 2019-05-15 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
AU2014237950B2 (en) 2013-03-15 2017-04-13 Boston Scientific Scimed, Inc. Control unit for use with electrode pads and a method for estimating an electrical leakage
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
CN103284774B (zh) * 2013-05-22 2015-08-26 刘凤永 一种喷气除栓装置及其应用
WO2014205399A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9877801B2 (en) 2013-06-26 2018-01-30 Sonendo, Inc. Apparatus and methods for filling teeth and root canals
CN105358084B (zh) 2013-07-01 2018-11-09 波士顿科学国际有限公司 用于肾神经消融的医疗器械
EP4166194A1 (en) 2013-07-03 2023-04-19 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
EP3019105B1 (en) 2013-07-11 2017-09-13 Boston Scientific Scimed, Inc. Devices for nerve modulation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
CN105555220B (zh) 2013-07-22 2019-05-17 波士顿科学国际有限公司 用于肾神经消融的医疗器械
EP3024405A1 (en) 2013-07-22 2016-06-01 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
JP6159888B2 (ja) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経変調バルーンへの接着性を向上させたフレキシブル回路
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
WO2015038947A1 (en) 2013-09-13 2015-03-19 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
EP3057488B1 (en) 2013-10-14 2018-05-16 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962527B2 (en) * 2013-10-16 2018-05-08 Ra Medical Systems, Inc. Methods and devices for treatment of stenosis of arteriovenous fistula shunts
WO2015057961A1 (en) 2013-10-18 2015-04-23 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
EP3060153A1 (en) 2013-10-25 2016-08-31 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
CN105744901B (zh) * 2013-11-18 2020-08-04 皇家飞利浦有限公司 用于血栓疏散的方法和设备
CN103706047A (zh) * 2013-12-17 2014-04-09 南京航空航天大学 一种基于超声处理溶栓药物的方法
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
JP6325121B2 (ja) 2014-02-04 2018-05-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 双極電極上の温度センサの代替配置
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US9433383B2 (en) 2014-03-18 2016-09-06 Monteris Medical Corporation Image-guided therapy of a tissue
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
EP3240604B1 (en) 2014-12-30 2019-05-15 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
WO2016109739A1 (en) 2014-12-30 2016-07-07 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
WO2016210133A1 (en) 2015-06-24 2016-12-29 The Regents Of The Universtiy Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US10555772B2 (en) 2015-11-23 2020-02-11 Ra Medical Systems, Inc. Laser ablation catheters having expanded distal tip windows for efficient tissue ablation
JP6804916B2 (ja) 2016-09-27 2020-12-23 浜松ホトニクス株式会社 モニタ装置及びモニタ装置の作動方法
US11730979B2 (en) 2016-10-05 2023-08-22 Board Of Regents, The University Of Texas System Nanopulse light therapy
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US10470748B2 (en) 2017-04-03 2019-11-12 C. R. Bard, Inc. Ultrasonic endovascular catheter with expandable portion
US10765440B2 (en) 2017-11-14 2020-09-08 Sonic Vascular, Inc. Focused intraluminal lithectomy catheter device and methods
CN111491578B (zh) * 2017-12-08 2023-11-21 莱斯桑百特医疗解决方案股份有限公司 组合的无创和微创机械能靶向
CN108187183B (zh) * 2017-12-22 2020-12-18 中国船舶重工集团公司第七一五研究所 一种内置式医用超声溶栓治疗仪
US20190290305A1 (en) * 2018-03-22 2019-09-26 Acoustic Wave Cell Therapy, Inc. Acoustic Shockwave Apparatus and Method
JP2019166289A (ja) 2018-03-22 2019-10-03 ラ メディカル システムズ, インコーポレイテッド オーバージャケットを伴う液体充填アブレーションカテーテル
EA202190494A1 (ru) * 2018-06-28 2021-12-09 Маризим Байотек Фармацевтические композиции и способы лечения тромбоза и доставки с помощью медицинских устройств
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
CN114630635A (zh) * 2019-11-12 2022-06-14 奥林巴斯株式会社 激光破碎装置、激光破碎系统以及激光破碎方法
EP4096782A4 (en) 2020-01-28 2024-02-14 Univ Michigan Regents SYSTEMS AND METHODS FOR IMMUNOSENSITIZATION BY HISTOTRIPSY
WO2021234811A1 (ja) * 2020-05-19 2021-11-25 オリンパス株式会社 レーザ光照射システムおよびレーザ光照射方法
EP4171419A1 (en) * 2020-06-30 2023-05-03 Koninklijke Philips N.V. Systems for laser catheter treatment in a vessel lumen
USD997355S1 (en) 2020-10-07 2023-08-29 Sonendo, Inc. Dental treatment instrument
CN112842522A (zh) * 2021-01-27 2021-05-28 北京航空航天大学 一种血管内光学相干断层成像激光消融导管
CN114734139B (zh) * 2022-05-17 2023-11-10 江苏大学 一种适用于内壁构件的激光空化微造型装置及其加工方法

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565062A (en) * 1968-06-13 1971-02-23 Ultrasonic Systems Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like
US3884236A (en) * 1971-10-28 1975-05-20 Mikhail M Krasnov Method of glaucoma treatment
US3866599A (en) * 1972-01-21 1975-02-18 Univ Washington Fiberoptic catheter
US3858577A (en) * 1974-04-05 1975-01-07 Univ Southern California Fiber optic laser light delivery system
US4204528A (en) * 1977-03-10 1980-05-27 Zafmedico Corp. Method and apparatus for fiber-optic intravascular endoscopy
US4207874A (en) * 1978-03-27 1980-06-17 Choy Daniel S J Laser tunnelling device
FR2442622A1 (fr) * 1978-06-08 1980-06-27 Aron Rosa Daniele Appareil de chirurgie ophtalmologique
JPS5777936A (en) * 1980-11-01 1982-05-15 Asahi Optical Co Ltd Safety device for detecting transmission fiber trouble
US4418688A (en) * 1981-07-06 1983-12-06 Laserscope, Inc. Microcatheter having directable laser and expandable walls
US5041108A (en) * 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
US4800876A (en) * 1981-12-11 1989-01-31 Fox Kenneth R Method of and apparatus for laser treatment of body lumens
US4448188A (en) * 1982-02-18 1984-05-15 Laserscope, Inc. Method for providing an oxygen bearing liquid to a blood vessel for the performance of a medical procedure
US5370675A (en) * 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
JPS60126171A (ja) * 1983-12-09 1985-07-05 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション レ−ザ・カテ−テル装置
US4686979A (en) * 1984-01-09 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Excimer laser phototherapy for the dissolution of abnormal growth
US4627436A (en) * 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4587972A (en) * 1984-07-16 1986-05-13 Morantte Jr Bernardo D Device for diagnostic and therapeutic intravascular intervention
US5188632A (en) * 1984-12-07 1993-02-23 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light
AT380634B (de) * 1985-01-14 1986-06-25 Schmidt Kloiber Heinz Einrichtung zur zerst!rung von harnwegkonkrementen
US4682594A (en) * 1985-03-11 1987-07-28 Mcm Laboratories, Inc. Probe-and-fire lasers
US4641650A (en) * 1985-03-11 1987-02-10 Mcm Laboratories, Inc. Probe-and-fire lasers
US5104392A (en) * 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US4887600A (en) * 1986-04-22 1989-12-19 The General Hospital Corporation Use of lasers to break down objects
IL78567A (en) * 1985-04-24 1991-12-15 Candela Corp Laser apparatus for medical use
US4862886A (en) * 1985-05-08 1989-09-05 Summit Technology Inc. Laser angioplasty
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4867141A (en) * 1986-06-18 1989-09-19 Olympus Optical Co., Ltd. Medical treatment apparatus utilizing ultrasonic wave
EP0268019A1 (de) * 1986-11-13 1988-05-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Vorrichtung zur Zertrümmerung eines von einem Fluid umgebenen festen Körpers
DE3689793T2 (de) * 1986-11-27 1994-09-22 Sumitomo Bakelite Co Chirurgische ultraschallvorrichtung.
US4785806A (en) * 1987-01-08 1988-11-22 Yale University Laser ablation process and apparatus
US4770653A (en) * 1987-06-25 1988-09-13 Medilase, Inc. Laser angioplasty
DE3733489A1 (de) * 1987-10-03 1989-04-20 Telemit Electronic Gmbh Verfahren und vorrichtung zur materialbearbeitung mit hilfe eines lasers
US4813930A (en) * 1987-10-13 1989-03-21 Dimed, Inc. Angioplasty guiding catheters and methods for performing angioplasty
US4788975B1 (en) * 1987-11-05 1999-03-02 Trimedyne Inc Control system and method for improved laser angioplasty
US4791926A (en) * 1987-11-10 1988-12-20 Baxter Travenol Laboratories, Inc. Method of controlling laser energy removal of plaque to prevent vessel wall damage
US5163421A (en) * 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US4887605A (en) * 1988-02-18 1989-12-19 Angelsen Bjorn A J Laser catheter delivery system for controlled atheroma ablation combining laser angioplasty and intra-arterial ultrasonic imagining
US5026367A (en) * 1988-03-18 1991-06-25 Cardiovascular Laser Systems, Inc. Laser angioplasty catheter and a method for use thereof
JPH01308544A (ja) * 1988-06-06 1989-12-13 Sumitomo Electric Ind Ltd 体腔内レーザ手術装置
DE3833993A1 (de) * 1988-10-06 1990-04-12 Messerschmitt Boelkow Blohm Lichtleiter- und bestrahlungseinrichtung
US5269778A (en) * 1988-11-01 1993-12-14 Rink John L Variable pulse width laser and method of use
DE3842916C1 (ko) * 1988-12-21 1990-02-01 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
AU4961590A (en) * 1989-01-23 1990-08-13 Medilase, Incorporated Acoustic monitoring and controlling of laser angioplasty
US5246447A (en) * 1989-02-22 1993-09-21 Physical Sciences, Inc. Impact lithotripsy
ATE159647T1 (de) * 1989-07-31 1997-11-15 Israel Barken Ultraschallaser-chirurgiegerät
US5005180A (en) * 1989-09-01 1991-04-02 Schneider (Usa) Inc. Laser catheter system
JP3046315B2 (ja) * 1989-09-05 2000-05-29 株式会社エス・エル・ティ・ジャパン レーザ光の照射装置
US5109859A (en) * 1989-10-04 1992-05-05 Beth Israel Hospital Association Ultrasound guided laser angioplasty
US5069664A (en) * 1990-01-25 1991-12-03 Inter Therapy, Inc. Intravascular ultrasonic angioplasty probe
US5059200A (en) * 1990-04-06 1991-10-22 John Tulip Laser lithotripsy
US5399158A (en) * 1990-05-31 1995-03-21 The United States Of America As Represented By The Secretary Of The Army Method of lysing thrombi
US5197470A (en) * 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
CA2048120A1 (en) * 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5496306A (en) * 1990-09-21 1996-03-05 Light Age, Inc. Pulse stretched solid-state laser lithotripter
US5304171A (en) * 1990-10-18 1994-04-19 Gregory Kenton W Catheter devices and methods for delivering
US5354324A (en) * 1990-10-18 1994-10-11 The General Hospital Corporation Laser induced platelet inhibition
US5254112A (en) * 1990-10-29 1993-10-19 C. R. Bard, Inc. Device for use in laser angioplasty
US5368558A (en) * 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having endoscopic component and method of using same
US5324255A (en) * 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
US5304115A (en) * 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
DE4105060A1 (de) * 1991-02-19 1992-08-20 Med Laserzentrum Luebeck Gmbh Verfahren und vorrichtung zur ueberwachung der materialbearbeitung mittels gepulstem laserlicht
US5116227A (en) * 1991-03-01 1992-05-26 Endo Technic Corporation Process for cleaning and enlarging passages
DE4108146C2 (de) * 1991-03-13 1995-04-20 Hohla Kristian Vorrichtung zum Abtragen von Material mit Laserlicht
DE4114492C2 (de) * 1991-05-03 1996-10-24 Baasel Carl Lasertech Verfahren und Vorrichtung zur Materialbearbeitung mit Hilfe eines Lasers
US5254114A (en) * 1991-08-14 1993-10-19 Coherent, Inc. Medical laser delivery system with internally reflecting probe and method
EP0606390A4 (en) * 1991-10-03 1994-12-07 Gen Hospital Corp VASODILATION APPARATUS AND METHOD.
EP0611289A4 (en) * 1991-10-15 1995-02-15 Seton Health Care Found SYSTEM FOR ANALYSIS AND EXTRACTION OF PATHOLOGICAL TISSUES.
US5224942A (en) * 1992-01-27 1993-07-06 Alcon Surgical, Inc. Surgical method and apparatus utilizing laser energy for removing body tissue
US5234667A (en) * 1992-02-03 1993-08-10 The Scripps Research Institute Centrifuge tube for improved pellet retention
US5281212A (en) * 1992-02-18 1994-01-25 Angeion Corporation Laser catheter with monitor and dissolvable tip
US5380273A (en) * 1992-05-19 1995-01-10 Dubrul; Will R. Vibrating catheter
US5242454A (en) * 1992-06-12 1993-09-07 Omega Universal Technologies, Ltd. Method for diagnosis and shock wave lithotripsy of stones in the submaxillary and parotid glands
WO1995022283A1 (en) * 1992-10-26 1995-08-24 Ultrasonic Sensing & Monitoring Systems, Inc. Catheter using optical fibers to transmit laser and ultrasonic energy
US5397293A (en) * 1992-11-25 1995-03-14 Misonix, Inc. Ultrasonic device with sheath and transverse motion damping
US5350375A (en) * 1993-03-15 1994-09-27 Yale University Methods for laser induced fluorescence intensity feedback control during laser angioplasty
US5334207A (en) * 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
US5656186A (en) * 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5395361A (en) * 1994-06-16 1995-03-07 Pillco Limited Partnership Expandable fiberoptic catheter and method of intraluminal laser transmission
US5586981A (en) * 1994-08-25 1996-12-24 Xin-Hua Hu Treatment of cutaneous vascular and pigmented lesions
DE4437578A1 (de) * 1994-10-20 1996-05-02 Medolas Ges Fuer Medizintechni Vorrichtung zum Abtragen von Gewebematerial in intrakorporalen Hohlkanälen mit einem Laserkatheter
US5571151A (en) * 1994-10-25 1996-11-05 Gregory; Kenton W. Method for contemporaneous application of laser energy and localized pharmacologic therapy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081052A1 (ko) * 2012-11-22 2014-05-30 한국과학기술원 공진주파수를 이용한 혈관 및 혈관주변 조직의 노폐물 제거 장치
CN113905681A (zh) * 2019-06-04 2022-01-07 帕维尔·V·埃弗雷金 用于血管和体内手术的激光装置及其使用方法

Also Published As

Publication number Publication date
JP2000508938A (ja) 2000-07-18
EP0959782A1 (en) 1999-12-01
EP0959782B1 (en) 2004-09-01
AU725515B2 (en) 2000-10-12
CN1216910A (zh) 1999-05-19
DE69730525D1 (en) 2004-10-07
ATE274859T1 (de) 2004-09-15
US6022309A (en) 2000-02-08
WO1997039690A1 (en) 1997-10-30
AU2991897A (en) 1997-11-12
CA2252739A1 (en) 1997-10-30

Similar Documents

Publication Publication Date Title
EP0959782B1 (en) Opto-acoustic thrombolysis
US20020045890A1 (en) Opto-acoustic thrombolysis
US6379325B1 (en) Opto-acoustic transducer for medical applications
US6368318B1 (en) Opto-acoustic recanilization delivery system
US6508816B2 (en) Medical instrument working end creating very high pressure gradients
US6123679A (en) Method for extracorporeal shock wave lithotripsy by applying an acoustic shock wave followed by a limited oscillating acoustic pressure wave train
US6210404B1 (en) Microjoule electrical discharge catheter for thrombolysis in stroke patients
US4887600A (en) Use of lasers to break down objects
Razvi et al. Intracorporeal lithotripsy with the holmium: YAG laser
KR101529367B1 (ko) 레이저 유발 증기/플라스마 매개 의학적 처치방법 및 장치
US6428531B1 (en) Photoacoustic removal of occlusions from blood vessels
US6544254B1 (en) Combination ultrasound and laser method and apparatus for removing cataract lenses
US5071422A (en) Use of lasers to break down objects
US7842006B2 (en) Thrombectomy microcatheter
JPH07502423A (ja) 血管拡張のための装置および方法
EP1018952A1 (en) Bubble detection
EP0220304B1 (en) Use of lasers to break down objects
US5135534A (en) Laser lithotripsy
EP3197381B1 (en) Laser lithotripsy system
Celliers et al. Opto-acoustic thrombolysis
MXPA98008850A (en) Optoacust thrombolism
EP3673853B1 (en) Laser lithotripsy system
Zharov New technology in surgery: combination of laser and ultrasound
Foth et al. Side effects of laser-tissue interaction studied by laser Doppler vibrometry
Benett et al. Opto-acoustic transducer for medical applications

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid