KR102548664B1 - 편광자, 편광 필름 및 편광자의 제조 방법 - Google Patents

편광자, 편광 필름 및 편광자의 제조 방법 Download PDF

Info

Publication number
KR102548664B1
KR102548664B1 KR1020170033159A KR20170033159A KR102548664B1 KR 102548664 B1 KR102548664 B1 KR 102548664B1 KR 1020170033159 A KR1020170033159 A KR 1020170033159A KR 20170033159 A KR20170033159 A KR 20170033159A KR 102548664 B1 KR102548664 B1 KR 102548664B1
Authority
KR
South Korea
Prior art keywords
polarizer
resin
resin layer
coating liquid
less
Prior art date
Application number
KR1020170033159A
Other languages
English (en)
Other versions
KR20170110023A (ko
Inventor
히카리 데자키
Original Assignee
스미또모 가가꾸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미또모 가가꾸 가부시키가이샤 filed Critical 스미또모 가가꾸 가부시키가이샤
Publication of KR20170110023A publication Critical patent/KR20170110023A/ko
Application granted granted Critical
Publication of KR102548664B1 publication Critical patent/KR102548664B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

[과제] 박형이면서 또한 두께 분포의 얼룩짐이 작은 편광자 및 그와 같은 편광자를 갖추는 편광 필름을 제공한다.
[해결수단] 본 발명의 편광자의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자로서, 편광자의 두께는 10 ㎛ 이하이고, 편광자의 투과축 방향에 있어서, 두께 분포의 최대 진폭이 0.4 ㎛ 이하인 것을 특징으로 한다.

Description

편광자, 편광 필름 및 편광자의 제조 방법{POLARIZER, POLARIZING FILM AND METHOD FOR MANUFACTURING POLARIZER}
본 발명은 편광자, 편광 필름 및 편광자의 제조 방법에 관한 것이다.
폴리비닐알코올(PVA: Poly Vinyl Alcohol)계 수지를 형성 재료로 하는 친수성 고분자층에 이색성 물질을 흡착시켜 얻어지는 편광자가 알려져 있다(예컨대, 특허문헌 1). 이러한 편광자를 이용한 편광 필름은, 퍼스널 컴퓨터, TV, 모니터, 휴대전화 및 PDA(Personal Digital Assistant) 등의 액정 표시 장치에 사용되고 있다. 최근에는, 액정 표시 장치의 고성능화, 박형화에 따라, 액정 표시 장치에 사용되는 편광 필름의 편광자에 대하여도 박형화가 요구되고 있다.
특허문헌 1: 일본 특허공개 2009-098653호 공보
비교적 박형의 편광자를 제조하기 위해서는, 예컨대 특허문헌 1에 기재되어 있는 것과 같이, 기재층에 친수성 고분자를 함유하는 수용액을 도공한 후에, 친수성 고분자를 함유하는 수용액을 건조하여, 기재층 상에 친수성 고분자층이 적층된 적층체를 형성한다. 그리고, 이 적층체에 대하여 연신 처리 및 염색 처리를 하여 편광자를 제조한다. 그러나, 이러한 방법을 이용하여 편광자를 제조하면, 투과축 방향(폭 방향)에 있어서의 편광자의 두께 분포의 얼룩짐이 커지는 문제가 있었다. 또한 최근에는, 시인성(視認性) 향상을 목적으로 한 백라이트의 고휘도화가 진행되고 있어, 종래보다도 편광자의 두께 분포 얼룩짐이 시인되기 쉬운 상황으로 되고 있다.
본 발명의 하나의 양태는, 상기 문제점에 감안하여, 박형이면서 또한 두께 분포의 얼룩짐이 작은 편광자 및 그와 같은 편광자를 갖추는 편광 필름을 제공하는 것을 목적의 하나로 한다. 또한, 본 발명의 하나의 양태는, 박형화할 수 있으면서 또한 두께 분포의 얼룩짐을 작게 할 수 있는 편광자의 제조 방법을 제공하는 것을 목적의 하나로 한다.
본 발명의 편광자의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자로서, 상기 편광자의 두께는 10 ㎛ 이하이고, 상기 편광자의 투과축 방향에 있어서, 두께 분포의 최대 진폭이 0.4 ㎛ 이하인 것을 특징으로 한다.
상기 편광자의 투과축 방향에 있어서, 두께 분포의 주기 강도가 0.13 ㎛ 이하인 구성으로 하여도 좋다.
본 발명의 편광자의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자로서, 상기 편광자의 두께는 10 ㎛ 이하이고, 상기 편광자의 투과축 방향에 있어서, 두께 분포의 주기 강도가 0.13 ㎛ 이하인 것을 특징으로 한다.
상기 편광자의 투과축 방향에 있어서, 상기 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭이 10 nm 이하인 구성으로 하여도 좋다.
본 발명의 편광자의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자로서, 상기 편광자의 두께는 10 ㎛ 이하이고, 상기 편광자의 투과축 방향에 있어서, 상기 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭이 10 nm 이하인 것을 특징으로 한다.
상기 편광자의 투과축 방향에 있어서, 상기 폴리비닐알코올계 수지의 위상차 분포의 주기 강도가 2 nm 이하인 구성으로 하여도 좋다.
본 발명의 편광자의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자로서, 상기 편광자의 두께는 10 ㎛ 이하이고, 상기 편광자의 투과축 방향에 있어서, 상기 폴리비닐알코올계 수지의 위상차 분포의 주기 강도가 2 nm 이하인 것을 특징으로 한다.
본 발명의 편광 필름의 하나의 양태는, 상기한 편광자와, 상기 편광자의 적어도 한쪽의 면에 설치된 보호 필름을 구비하는 것을 특징으로 한다.
본 발명의 편광자의 제조 방법의 하나의 양태는, 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자의 제조 방법으로서, 상기 편광자의 두께는 10 ㎛ 이하이고, 기재 상에 폴리비닐알코올계 수지를 형성 재료로 하는 수지층을 형성하는 수지층 형성 공정과, 상기 기재와 함께 상기 수지층을 연신하는 연신 공정과, 상기 수지층에 상기 이색성 색소를 흡착시키는 염색 공정을 포함하고, 상기 수지층 형성 공정은, 상기 기재 상에 폴리비닐알코올계 수지를 포함하는 수지층용 도공액을 도포하는 공정과, 도포된 상기 수지층용 도공액을 건조시키는 공정을 포함하고, 상기 수지층용 도공액을 건조시키는 공정의 길이는 180초 이하인 것을 특징으로 한다.
상기 수지층 형성 공정보다도 전에, 상기 기재 상에 프라이머층을 형성하는 프라이머층 형성 공정을 추가로 포함하고, 상기 프라이머층 형성 공정은, 상기 기재 상에 프라이머층용 도공액을 도포하는 공정과, 도포된 상기 프라이머층용 도공액을 건조시키는 공정을 포함하는 제조 방법으로 하여도 좋다.
본 발명의 하나의 양태에 따르면, 박형이면서 또한 투과축 방향의 두께 분포의 얼룩짐이 작은 편광자 및 그와 같은 편광자를 갖추는 편광 필름이 제공된다. 또한, 본 발명의 하나의 양태에 따르면, 박형화할 수 있으면서 또한 얼룩짐을 작게 할 수 있는 편광자의 제조 방법이 제공된다.
도 1은 본 실시형태의 편광 필름을 도시하는 단면도이다.
도 2는 본 실시형태의 편광 필름의 제조 방법의 수순을 도시하는 흐름도이다.
도 3은 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 모식도이다.
도 4는 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 단면도이다.
도 5는 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 단면도이다.
도 6은 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 단면도이다.
도 7은 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 단면도이다.
도 8은 본 실시형태의 편광 필름의 제조 방법의 수순의 일부를 도시하는 단면도이다.
도 9는 검증예의 적층체를 도시하는 단면도이다.
도 10은 폭 방향 위치에 대한 수지층의 두께를 도시하는 그래프이다.
도 11은 폭 방향 위치에 대한 편광자의 두께를 도시하는 그래프이다.
도 12는 편광자의 두께 분포의 얼룩짐 주기에 대한, 편광자의 두께 분포의 주기 강도를 도시하는 그래프이다.
도 13은 폭 방향 위치에 대한, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차를 도시하는 그래프이다.
도 14는 편광자의 두께 분포의 얼룩짐 주기에 대한, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차 분포의 주기 강도를 도시하는 그래프이다.
이하, 도면을 참조하면서 본 발명의 실시형태에 따른 편광 필름에 관해서 설명한다.
여기서, 본 발명의 범위는 이하의 실시형태에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 임의로 변경 가능하다. 또한, 이하의 도면에서는, 각 구성을 알기 쉽게 하기 위해서, 각 구조에 있어서의 축척 및 수 등을 실제의 구조에 있어서의 축척 및 수 등과 다르게 한 경우가 있다.
도 1은 본 실시형태의 편광 필름(1)을 도시하는 단면도이다. 도 1에 도시한 것과 같이, 편광 필름(1)은 편광자(10)와 보호 필름(11)과 접착층(12)을 구비하고 있다. 편광자(10)와 접착층(12)과 보호 필름(11)은 이 순서로 적층되어 있다. 도시하지는 않지만, 본 실시형태의 편광 필름(1)은 장척의 띠 형상이다. 편광 필름(1)은, 예컨대, 심재(芯材)에 권취되어, 롤로서 보관되거나 한다.
또한, 이하의 설명에서는, 편광 필름(1)에 있어서의 각 층이 적층된 방향을, 단순히 「적층 방향」이라고 부르는 경우가 있고, 편광 필름(1)에 있어서의 적층 방향과 직교하는 길이 방향을, 단순히 「길이 방향」이라고 부르는 경우가 있고, 편광 필름(1)에 있어서의 적층 방향과 길이 방향 양쪽과 직교하는 폭 방향을, 단순히 「폭 방향」이라고 부르는 경우가 있다.
또한, 도면에서는 적절하게 3차원 직교 좌표계(XYZ 좌표계)를 도시한다. 3차원 직교 좌표계에 있어서, Z축 방향은 적층 방향과 평행한 방향으로 하고, Y축 방향은 폭 방향과 평행한 방향으로 하고, X축 방향은 길이 방향과 평행한 방향으로 한다. 또한, 적층 방향에 있어서, Z축 방향의 플러스 측을 「상측」이라고 부르는 경우가 있고, Z축 방향의 마이너스 측을 「하측」이라고 부르는 경우가 있다. 상측 및 하측은, 단순히 각 부의 상대적인 위치 관계를 설명하기 위해서 이용하는 명칭이며, 편광 필름 제조 시에 있어서의 각 부의 자세, 편광 필름의 실제 자세 및 편광 필름의 사용 양태 등을 한정하지 않는다.
편광자(10)는 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 층이다. 본 실시형태에 있어서 편광자(10)의 흡수축은 예컨대 길이 방향(X축 방향)과 평행하고, 편광자(10)의 투과축은 예컨대 폭 방향(Y축 방향)과 평행하다.
편광자(10)의 형성 재료인 폴리비닐알코올계 수지로서는, 예컨대, 폴리비닐알코올 수지, 폴리비닐알코올 수지 유도체 및 폴리비닐알코올 수지 유도체의 변성체 등을 들 수 있다. 폴리비닐알코올 수지 유도체로서는, 예컨대, 폴리비닐포르말, 폴리비닐아세탈, 폴리비닐부티랄 등을 들 수 있다. 폴리비닐알코올 수지 유도체의 변성체로서는, 예컨대 상술한 폴리비닐알코올 수지 유도체를, 에틸렌, 프로필렌 등의 올레핀; 아크릴산, 메타크릴산, 크로톤산 등의 불포화 카르복실산; 불포화 카르복실산의 알킬에스테르; 또는 아크릴아미드 등으로 변성한 것을 들 수 있다.
폴리비닐알코올계 수지의 평균 중합도는 100 이상 10000 이하가 바람직하고, 1000 이상 10000 이하가 보다 바람직하고, 1500 이상 8000 이하가 더윽 바람직하고, 2000 이상 5000 이하가 보다 더욱 바람직하다. 폴리비닐알코올계 수지의 평균중합도가 100 미만인 경우에는, 적합한 광학 특성을 얻기가 어렵고, 10000보다도 큰 경우에는, 물에의 용해성이 낮아져, 후술하는 수지층용 도공액(33)을 제작하기가 어렵게 되기 때문이다. 본 명세서에 있어서, 폴리비닐알코올계 수지의 평균 중합도는 예컨대 JIS K 6727(1994)에 의해서 정해진 방법에 의해서 구해진다.
편광자(10)의 형성 재료인 폴리비닐알코올계 수지는 비누화된 것이 바람직하다. 폴리비닐알코올계 수지의 비누화도는, 80.0 몰% 이상 100.0 몰% 이하가 바람직하고, 90.0 몰% 이상 99.5% 몰 이하가 보다 바람직하고, 93.0 몰% 이상 99.5 몰% 이하인 것이 더욱 바람직하다. 폴리비닐알코올계 수지의 비누화도를 80 몰% 이상으로 함으로써 적합한 광학 특성을 얻기가 쉽다.
여기서, 폴리비닐알코올계 수지의 비누화도란, 폴리비닐알코올계 수지의 원료인 폴리아세트산비닐계 수지에 포함되는 아세트산기가 비누화 공정에 의해 수산기로 변화된 비율을 몰%로 나타낸 것으로, 하기의 (식 1)으로 정의된다.
(식 1) 비누화도(몰%)=(수산기의 수)÷(수산기의 수+아세트산기의 수)×100
본 명세서에 있어서, 폴리비닐알코올계 수지의 비누화도는 예컨대 JIS K 6727(1994)에 의해서 정해진 방법에 의해서 구해진다.
편광자(10)에는 가소제, 계면활성제 등의 첨가제가 포함되어 있어도 좋다. 가소제로서는, 예컨대, 폴리올 및 폴리올의 축합물을 들 수 있다. 폴리올 및 폴리올의 축합물로서는, 예컨대, 글리세린, 디글리세린, 트리글리세린, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜 등을 들 수 있다. 편광자(10) 중의 가소제의 함유량은, 특별히 제한되지 않지만, 예컨대, 20 질량% 이하가 바람직하다.
편광자(10)의 두께 T1는 10 ㎛ 이하이고, 바람직하게는 5 ㎛ 이하이다. 편광자(10)의 폭 방향(투과축 방향, Y축 방향)에 있어서, 편광자(10)의 두께 분포의 최대 진폭은 0.4 ㎛ 이하이고, 바람직하게는 0.2 ㎛ 이하이며, 보다 바람직하게는 0.1 ㎛ 이하이다. 측정 장치의 분해능을 고려하면 편광자(10)의 두께 분포의 최대 진폭은 통상 0.01 ㎛ 이상이다. 두께 분포의 최대 진폭이란, 편광자(10)의 두께 T1중 최대치와 최소치와의 차이다. 본 명세서에 있어서, 편광자(10)의 두께 T1는, 예컨대, 백색 간섭식의 비접촉 막후계(예컨대, Filmetrics사 제조, 형번: F20)를 이용하여 측정된다. 이에 따라, 측정하는 대상(편광자(10))에 닿는 일없이 정밀한 측정이 가능하고, 측정하는 대상이 적층체의 일부의 층이라도, 각 층을 박리하지 않고서 대상의 막 두께를 측정할 수 있다.
편광자(10)의 폭 방향(투과축 방향, Y축 방향)에 있어서, 편광자(10)의 두께 분포의 주기 강도는, 바람직하게는 0.13 ㎛ 이하이고, 보다 바람직하게는 0.05 ㎛ 이하이며, 더욱 바람직하게는 0.04 ㎛ 이하이다. 또한, 편광자(10)의 두께 분포의 주기 강도는 통상 0.0025 ㎛ 이상이다. 본 명세서에 있어서 편광자(10)의 두께 분포의 주기 강도는 예컨대 다음과 같이 하여 구한다.
폭 방향의 편광자(10)의 두께 분포를 고속 푸리에 변환(FFT: Fast Fourier Transform)한다. 고속 푸리에 변환의 알고리즘으로서는 예컨대 Cooley-Tukey형 FFT 알고리즘을 이용한다. Cooley-Tukey형 FFT 알고리즘을 이용한 고속 푸리에 변환은, 예컨대, 마이크로소프트사 제조 표 계산 소프트 「Excel(등록상표) 2010」의 애드인인 「ATPVBAEN.XLAM! Fourier」를 실행함으로써 행할 수 있다. 측정한 편광자(10)의 두께 T1의 소점(素点) 데이터를 대상으로 하여 이 애드인을 실행함으로써, 폭 방향의 편광자(10)의 두께 분포를 고속 푸리에 변환할 수 있다.
일반적으로, 고속 푸리에 변환은, 시간의 파형 함수를 주파수의 분포 함수로 변환한다. 본 실시형태의 경우, 폭 방향 위치 L(Y축 방향 위치)에 있어서의 편광자(10)의 두께 분포를 나타내는 파형 함수 f(L)를 고속 푸리에 변환함으로써, 편광자(10)의 두께 분포의 주파수 ω의 분포 함수 f(ω)를 얻을 수 있다. 이 때, 샘플링 주기는 1/ω이다.
본 명세서에 있어서, 편광자(10)의 두께 분포의 주기 강도는, |f(ωN)|/(N/2)으로 나타내어진다. |f(ωN)|는, N번째의 표본점에 대응하는 파형 함수 f(LN)를 고속 푸리에 변환하여 얻어지는 분포 함수의 절대치이다. LN은 N번째의 표본점의 폭 방향 위치 L이다. 편광자(10)의 두께 분포의 주기 강도의 물리량은 편광자(10)의 두께 분포의 물리량과 같다. 이 때, 표본점의 최대수는, 얻어진 막 두께 분포의 소점수(素点數) A 이하이며 또한 A에 가장 가까운 2의 거듭제곱의 값이다.
상기한 것과 같이 하여 얻어지는 편광자(10)의 두께 분포의 주기 강도를 종축, 표본점의 주기를 횡축으로 하여, 파워 스펙트럼을 얻을 수 있다. 표본점의 주기는 LN/N이다.
또, 본 명세서에 있어서, 주기 강도가 소정치 이하란, 주기가 10 mm 이상 70 mm 이하인 영역에 있어서의 주기 강도가 소정치 이하임을 포함한다. 즉, 편광자(10)의 두께 분포의 주기 강도가 0.05 ㎛ 이하란, 주기가 10 mm 이상 70 mm 이하인 영역에 있어서의 편광자(10)의 두께 분포의 주기 강도가 0.05 ㎛ 이하임을 포함한다. 다시 말해서, 편광자(10)의 두께 분포의 주기 강도가 0.05 ㎛ 이하란, 주기가 10 mm 이상 70 mm 이하인 영역에 있어서, 편광자(10)의 두께 분포의 주기 강도의 최대치가 0.05 ㎛ 이하임을 포함한다.
또한, 본 명세서에 있어서, 어떤 필름(층)의 두께란, 어떤 필름(층)의 적층방향(Z축 방향)의 치수이며, 어떤 필름(층)의 평균 두께도 포함한다. 즉, 편광자의 두께란, 편광자의 평균 두께도 포함한다.
편광자(10)의 폭 방향(투과축 방향, Y축 방향)에 있어서, 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭은, 바람직하게는 10 nm 이하이고, 보다 바람직하게는 5.7 nm 이하이고, 더욱 바람직하게는 5.3 nm 이하이다. 또한, 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭은 통상 0.3 nm 이상이다. 위상차 분포의 최대 진폭이란, 주기가 10 mm 이상 20 mm 이하인 영역에 있어서의 폴리비닐알코올계 수지의 위상차 Rpva의 최대치이다.
폴리비닐알코올계 수지의 위상차 Rpva는, 이색성 색소의 흡수대가 없는 파장 영역에 있어서의 편광자(10)의 위상차 R(λ)로부터 구할 수 있다. 이 때, 본 명세서에 있어서 폴리비닐알코올계 수지의 위상차 Rpva는 파장 1000 nm에 있어서의 위상차를 말한다. 구체적으로는, 파장 850 nm 이상의 복수의 파장 λ마다 편광자(10)의 위상차 R(λ)를 측정하고, 측정한 파장 λ과 측정된 위상차 R(λ)와의 플롯을 행하여, 하기의 셀마이어의 식(식 2)에 최소제곱법으로 피팅시킨다. 여기서, (식 2)에 있어서의 E 및 F는 피팅 파라미터이며, 최소제곱법에 의해 결정되는 계수이다.
(식 2) R(λ)=E+F/(λ2-6002)
(식 2)에 있어서의 E가 폴리비닐알코올계 수지의 위상차 Rpva에 상당한다. 또, F/(λ2-6002)는 이색성 색소의 위상차에 상당한다. 본 명세서에 있어서, 편광자(10)의 위상차 R(λ)의 측정은, 예컨대, 위상차 측정 장치(오우지게이소쿠키가부시키가이샤 제조, 형식: KOBRA-WPR/IR)을 이용하여 실시한다.
편광자(10)의 폭 방향(투과축 방향, Y축 방향)에 있어서, 폴리비닐알코올계 수지의 위상차 분포의 주기 강도는, 바람직하게는 2 nm 이하이고, 보다 바람직하게는 0.9 nm 이하이고, 더욱 바람직하게는 0.8 nm 이하이다. 또한, 폴리비닐알코올계 수지의 위상차 분포의 주기 강도는 통상 0.075 nm 이상이다. 폴리비닐알코올계 수지의 위상차 분포의 주기 강도란, 폭 방향의 폴리비닐알코올계 수지의 위상차 분포를 고속 푸리에 변환에 걸어 얻어지는 파수(波數) 스펙트럼 중, 주기가 10 mm 이상 20 mm 이하인 영역에 있어서의 최대 진폭의 값이다. 위상차 분포의 주기 강도를 산출하는 방법은, 상술한 편광자(10)의 두께 분포의 주기 강도와 마찬가지다.
폴리비닐알코올계 수지 중에 배향된 이색성 색소로서는, 예컨대, 요오드, 유기 염료 등을 들 수 있다.
보호 필름(11)은 편광자(10)의 상면(10a)에 형성되어 있다. 보다 상세하게는, 본 실시형태에 있어서 보호 필름(11)은, 접착층(12)을 통해 편광자(10)의 상면(10a)에 접착되어 있다. 보호 필름(11)은, 광학 기능을 갖지 않는 단순한 보호 필름이라도 좋고, 위상차 필름 및 휘도 향상 필름과 같은 광학 기능을 더불어 갖는 보호 필름이라도 좋다.
보호 필름(11)의 형성 재료로서는, 특별히 한정되지 않고, 예컨대, 환상 폴리올레핀계 수지 필름; 트리아세틸셀룰로오스, 디아세틸셀룰로오스 등의 수지로 이루어지는 아세트산셀룰로오스계 수지 필름; 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 수지로 이루어지는 폴리에스테르계 수지 필름; 폴리카보네이트계 수지 필름; 아크릴계 수지 필름; 및 폴리프로필렌계 수지 필름 등을 들 수 있다.
환상 폴리올레핀계 수지 필름은, 일축 연신된 것이라도 좋고, 이축 연신된 것이라도 좋다. 연신함으로써 환상 폴리올레핀계 수지 필름에 임의의 위상차를 부여할 수 있다.
환상 폴리올레핀계 수지 필름은 일반적으로 표면 활성이 뒤떨어진다. 그 때문에, 보호 필름(11)이 환상 폴리올레핀계 수지 필름인 경우, 보호 필름(11)에 있어서의 편광자(10)와 접착되는 하면에는, 플라즈마 처리, 코로나 처리, 자외선 조사 처리, 플레임(화염) 처리, 비누화 처리 등의 표면 처리를 실시하는 것이 바람직하다. 특히, 비교적 용이하게 실시할 수 있는 플라즈마 처리, 코로나 처리가 적합하다.
보호 필름(11)이 아세트산셀룰로오스계 수지 필름인 경우, 보호 필름(11)의 표면에는 시야각 특성을 개량하기 위해서 액정층 등을 형성하여도 좋다. 또한, 보호 필름(11)은, 위상차를 부여하기 위해서 아세트산셀룰로오스계 수지 필름을 연신시킨 것이라도 좋다. 보호 필름(11)이 아세트산셀룰로오스계 수지 필름인 경우, 편광 필름(1)과의 접착성을 높이기 위해서, 보호 필름(11)의 하면에는 통상 비누화 처리가 실시된다. 비누화 처리로서는, 수산화나트륨 및 수산화칼륨과 같은 알칼리의 수용액에 침지하는 방법을 채용할 수 있다.
보호 필름(11)의 표면에는, 하드코트층, 방현층, 반사방지층 등의 광학층을 형성할 수도 있다. 보호 필름(11)의 표면에 이들 광학층을 형성하는 방법은 특별히 한정되지 않고, 공지된 방법을 이용할 수 있다.
보호 필름(11)의 두께 T2는, 박형화의 요구 때문에, 가능한 한 얇은 것이 바람직하며, 90 ㎛ 이하가 바람직하고, 50 ㎛ 이하가 보다 바람직하다. 보호 필름(11)의 두께 T2가 지나치게 얇으면, 보호 필름(11)의 강도가 저하하여 가공성이 뒤떨어지기 때문에, 보호 필름(11)의 두께 T2는 5 ㎛ 이상인 것이 바람직하다.
본 실시형태에 있어서 보호 필름(11)은, 편광자(10)의 상면(10a)에만 형성되어 있지만, 이것에 한정되지 않는다. 보호 필름(11)은, 편광자(10)의 적어도 한쪽의 면에 형성되면 되고, 편광자(10)의 상면(10a)과 하면(10b) 양쪽에 형성되어 있더라도 좋다.
접착층(12)은 편광자(10)의 상면(10a)에 적층되어 있다. 접착층(12)은, 편광자(10)와 보호 필름(11)을 상호 접착하는 층이다. 접착층(12)의 형성 재료로서는, 예컨대, 수계 접착제, 자외 경화형 접착제 및 전자선 경화형 접착제 등이 바람직하고, 수계 접착제가 보다 바람직하다. 수계 접착제로서는, 예컨대, 폴리비닐알코올계 수지의 수용액, 폴리비닐알코올계 수지의 수용액에 일반적인 가교제를 배합한 수용액 및 우레탄계 에멀젼 접착제 등을 들 수 있다. 또한, 접착층(12)의 형성 재료에는 금속 화합물 필러를 함유시킬 수 있다.
이어서, 본 실시형태의 편광 필름(1)의 제조 방법에 관해서 설명한다. 도 2는 본 실시형태의 편광 필름(1)의 제조 방법의 수순을 도시하는 흐름도이다. 도 3은 편광 필름(1)의 제조 방법의 수순의 일부를 도시하는 모식도이다. 도 4 내지 도 8은 편광 필름(1)의 제조 방법의 수순의 일부를 도시하는 단면도이다. 도 4는 도 3에 도시하는 P1의 위치에 있어서의 단면도이다. 도 5는 도 3에 도시하는 P2의 위치에 있어서의 단면도이다. 도 6은 도 3에 도시하는 P3의 위치에 있어서의 단면도이다. 도 7은 도 3에 도시하는 P4의 위치에 있어서의 단면도이다. 또, 도 5 내지 도 8에서는, 후술하는 기재 필름(20)의 열수축에 의한 요철 형상 및 기재 필름(20)의 열수축에 동반되는 각 층의 요철 형상을 모식적으로 강조하여 도시하고 있다.
본 실시형태의 편광 필름(1)의 제조 방법은, 도 2에 도시한 것과 같이, 수지층 형성 공정 S2와, 연신 공정 S3과, 염색 공정 S4와, 접합 공정 S5와, 박리 공정 S6을 포함한다. 도 2에 도시한 것과 같이, 수지층 형성 공정 S2 전에, 프라이머층 형성 공정 S1을 포함하고 있어도 좋다. 도 3에 도시한 것과 같이, 본 실시형태에서는, 롤 형상의 기재 필름(기재)(20)을 닙 롤 및 반송 롤에 의해서 길이 방향으로 반송하면서 편광 필름(1)을 제조한다. 여기서, 도 3은 각 공정을 연속으로 행하는 형태를 도시하고 있지만, 공정이 종료될 때마다 필름을 일단 롤에 권취하여도 좋다.
기재 필름(20)의 재질은, 연신 공정 S3에 있어서 후술하는 수지층(34)과 함께 연신할 수 있으면 특별히 한정되지 않는다. 기재 필름(20)의 재질은, 예컨대 열가소성 수지이다. 기재 필름(20)의 재질로서 이용되는 열가소성 수지로서는, 투명성, 기계적 강도, 열 안정성 및 연신성 등이 우수한 것이 바람직하다.
구체적으로, 기재 필름(20)의 재질로서 이용되는 열가소성 수지로서는, 예컨대, 쇄상 폴리올레핀계 수지, 환상 폴리올레핀계 수지(노르보르넨계 수지 등) 등의 폴리올레핀계 수지; 폴리에틸렌테레프탈레이트 등의 폴리에스테르계 수지; (메트)아크릴계 수지; 셀룰로오스트리아세테이트, 셀룰로오스디아세테이트 등의 셀룰로오스에스테르계 수지; 폴리카보네이트계 수지; 폴리비닐알코올계 수지; 폴리아세트산비닐계 수지; 폴리아릴레이트계 수지; 폴리스티렌계 수지; 폴리에테르술폰계 수지; 폴리술폰계 수지; 폴리아미드계 수지; 폴리이미드계 수지; 및 이들 수지의 혼합물, 공중합물 등을 들 수 있다.
기재 필름(20)은, 상술한 열가소성 수지 중 1종 또는 2종 이상의 열가소성 수지로 구성된다. 기재 필름(20)은 단층 구조라도 좋고, 다층 구조라도 좋다.
기재 필름(20)의 두께는, 특별히 한정되지 않지만, 강도 및 취급성 등의 관점에서, 1 ㎛ 이상 500 ㎛ 이하가 바람직하고, 1 ㎛ 이상 300 ㎛ 이하가 보다 바람직하고, 5 ㎛ 이상 200 ㎛ 이하가 더욱 바람직하고, 5 ㎛ 이상 150 ㎛ 이하가 보다 더욱 바람직하다. 기재 필름(20)의 폭 방향(Y축 방향)의 치수는 예컨대 500 mm 이상이다.
기재 필름(20)의 길이 방향에 있어서의 인장 탄성율은, 예컨대, 80℃에 있어서 140 MPa 이상이다. 기재 필름(20)의 길이 방향에 있어서의 인장 탄성율은, 80℃에 있어서 150 MPa 이상이 바람직하고, 155 MPa 이상이 보다 바람직하다. 이러한 기재 필름을 사용함으로써, 후술하는 제1 건조 공정 S1b 및 제2 건조 공정 S2b에 있어서의 기재 필름(20)의 열수축을 억제할 수 있다. 본 명세서에 있어서, 기재 필름(20)의 길이 방향에 있어서의 인장 탄성율은, 예컨대 오토그라프(등록상표)(가부시키가이샤시마즈세이사쿠쇼 제조, 형번: AG-IS)에 의해서 측정된다. 구체적으로는 JIS K 7163에 준거하여 측정된다.
프라이머층 형성 공정 S1은, 기재 필름(20) 상에 프라이머층(32)(도 5 참조)을 형성하는 공정이다. 프라이머층(32)은, 기재 필름(20)과 후술하는 수지층(34)과의 밀착력을 향상시키기 위해서 설치되는 층이다. 프라이머층 형성 공정 S1은, 도 2에 도시한 것과 같이, 제1 도포 공정 S1a과 제1 건조 공정 S1b을 포함한다. 도 3에 도시한 것과 같이, 제1 도포 공정 S1a에서는, 제1 도포 장치(41)에 의해서, 기재 필름(20)의 상면(20a)에 프라이머층용 도공액(31)이 도포된다.
프라이머층용 도공액(31)은, 예컨대, 수지의 분말을 용매에 용해시켜 얻어지는 수지 용액이다. 프라이머층용 도공액(31)에 포함되는 수지는, 상술한 밀착력을 향상시킬 수 있는 성분을 포함하는 수지이며, 투명성, 열안정성, 연신성 등이 우수한 열가소성 수지인 것이 바람직하다. 프라이머층용 도공액(31)에 포함되는 수지로서는, 예컨대, (메트)아크릴계 수지, 폴리비닐알코올계 수지 등을 들 수 있다. 특히, 프라이머층용 도공액(31)에 포함되는 수지로서는 폴리비닐알코올계 수지가 바람직하다. 기재 필름(20)과 후술하는 수지층(34)과의 밀착력이 양호하게 얻어지기 때문이다.
프라이머층용 도공액(31)에 포함되는 수지로서 이용되는 폴리비닐알코올계 수지는, 상술한 편광자(10)의 폴리비닐알코올계 수지와 같은 식으로 선택할 수 있다. 프라이머층용 도공액(31)에 포함되는 수지는, 편광자(10)의 폴리비닐알코올계 수지와 동일하여도 좋고, 다르더라도 좋다.
프라이머층용 도공액(31)의 용매로서는, 상술한 수지를 용해할 수 있는 유기용매 및 수계 용매 등을 들 수 있다. 유기 용매로서는, 예컨대, 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소류; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 아세트산에틸, 아세트산이소부틸 등의 에스테르류; 염화메틸렌, 트리클로로에틸렌, 클로로포름 등의 염소화탄화수소류; 및 에탄올, 1-프로판올, 2-프로판올, 1-부탄올 등의 알코올류를 들 수 있다. 프라이머층용 도공액(31)의 용매로서는 예컨대 물이 바람직하다. 기재 필름(20)의 재질에 상관없이 기재 필름(20)이 용해하기 어렵고, 환경에 미치는 영향도 작게 할 수 있기 때문이다. 프라이머층용 도공액(31)에 있어서의 수지의 농도는, 1 질량% 이상 25 질량% 이하 정도가 바람직하다.
제1 도포 장치(41)를 이용한 프라이머층용 도공액(31)의 도포 방법은, 기재 필름(20)의 상면(20a)에 프라이머층용 도공액(31)을 도포할 수 있으면 특별히 한정되지 않는다. 제1 도포 장치(41)를 이용한 프라이머층용 도공액(31)의 도포 방법으로서는, 예컨대, 와이어바 코팅법, 리버스 코팅, 그라비아 코팅 등의 롤 코팅법, 다이 코트법, 콤마 코트법, 립 코트법, 스크린 코팅법, 파운틴 코팅법, 디핑법, 스프레이법 등을 들 수 있다. 제1 도포 장치(41)로서는, 각 도포 방법에 따른 도포 장치를 적절하게 선택할 수 있다.
제1 도포 공정 S1a에 의해, 도 4에 도시한 것과 같이, 기재 필름(20)의 상면(20a)에 프라이머층용 도공액(31)의 층이 형성된다.
제1 건조 공정 S1b은, 도 3에 도시한 것과 같이, 제1 건조로(51)를 이용하여, 기재 필름(20) 상에 도포된 프라이머층용 도공액(31)을 건조시키는 공정이다. 제1 건조로(51) 내에서는, 예컨대, 분무되는 열풍 등에 의해 프라이머층용 도공액(31)에 열이 가해져, 프라이머층용 도공액(31)이 건조되어 경화한다. 제1 건조로(51)는, 프라이머층용 도공액(31)을 건조할 수 있다면 특별히 한정되지 않는다. 제1 건조로(51)에 있어서의 건조 온도는, 예컨대, 50℃ 이상 200℃ 이하이고, 60℃ 이상 150℃ 이하가 바람직하다. 제1 건조로(51)에 있어서의 건조 온도는, 프라이머층용 도공액(31)에 포함되는 용매의 종류에 따라서 적절하게 설정할 수 있다. 프라이머층용 도공액(31)의 용매가 물을 포함하는 경우, 제1 건조로(51)의 건조 온도는 80℃ 이상인 것이 바람직하다.
제1 건조로(51)에 있어서의 건조 시간, 즉 제1 건조 공정 S1b의 길이는, 예컨대 30초 이상 20분 이하이다. 제1 건조 공정 S1b의 길이는, 프라이머층용 도공액(31)이 도포되고 나서, 프라이머층용 도공액(31)이 건조되어 프라이머층(32)이 형성될 때까지 동안의 길이이다.
제1 건조 공정 S1b에 의해, 도 5에 도시한 것과 같이, 기재 필름(20) 상에, 프라이머층용 도공액(31)이 건조되어 경화된 프라이머층(32)이 형성된다.
여기서, 제1 건조 공정 S1b에서는, 프라이머층용 도공액(31)과 함께 기재 필름(20)에도 열이 가해진다. 기재 필름(20)의 재질은 열가소성 수지이기 때문에, 기재 필름(20)은, 열이 가해짐으로써 폭 방향(Y축 방향)으로 열수축한다. 이에 따라, 기재 필름(20)이 파상으로 되고, 기재 필름(20)의 상면(20a) 및 하면(20b)은 요철 형상으로 된다. 기재 필름(20)의 상면(20a)의 요철 형상과 기재 필름(20)의 하면(20b)의 요철 형상은, 폭 방향을 따라서, 오목부와 볼록부가 번갈아 있게 되도록 형성되어 있다. 즉, 폭 방향에 있어서, 상면(20a)의 오목부가 형성되어 있는 위치에는 하면(20b)의 볼록부가 형성되어 있고, 상면(20a)의 볼록부가 형성되어 있는 위치에는 하면(20b)의 오목부가 형성되어 있다.
프라이머층(32)은, 기재 필름(20)의 상면(20a)에 형성되어 있기 때문에, 상면(20a)의 요철 형상을 따라서 파상으로 형성되어 있다. 프라이머층(32)의 두께는, 예컨대 0.05 ㎛ 이상 1 ㎛ 이하인 것이 바람직하고, 0.1 ㎛ 이상 0.4 ㎛ 이하인 것이 보다 바람직하다. 프라이머층(32)의 두께가 0.05 ㎛보다도 작은 경우, 기재 필름(20)과 후술하는 수지층(34)과의 밀착력이 작아지고, 1 ㎛보다도 큰 경우, 제조되는 편광 필름(1)의 두께가 커지기 쉬운 경우가 있다.
수지층 형성 공정 S2는, 기재 필름(20) 상에 폴리비닐알코올계 수지를 형성 재료로 하는 수지층(34)(도 7 참조)을 형성하는 공정이다. 도 2에 도시한 것과 같이, 수지층 형성 공정 S2는 제2 도포 공정 S2a과 제2 건조 공정 S2b을 포함한다.
제2 도포 공정 S2a은, 기재 필름(20) 상에 폴리비닐알코올계 수지를 포함하는 수지층용 도공액(33)을 도포하는 공정이다. 도 3에 도시한 것과 같이, 제2 도포 공정 S2a에서는, 제2 도포 장치(42)에 의해서, 기재 필름(20)의 상면(20a)에, 프라이머층(32)을 통해 수지층용 도공액(33)이 도포된다.
수지층용 도공액(33)은, 예컨대, 폴리비닐알코올계 수지의 분말을 용매에 용해시켜 얻어지는 폴리비닐알코올계 수지 용액이다. 폴리비닐알코올계 수지로서는, 편광자(10)의 형성 재료의 설명에서 상술한 것과 같다. 용매는 예컨대 물이다. 수지층용 도공액(33) 중의 폴리비닐알코올계 수지의 농도는, 5 질량% 이상이 바람직하고, 5 질량% 이상 15 질량% 이하가 보다 바람직하고, 5 질량% 이상 10 질량% 이하가 더욱 바람직하다. 수지층용 도공액(33) 중의 폴리비닐알코올계 수지의 농도가 5 질량% 미만인 경우, 수지층용 도공액(33) 중의 액체 성분의 비율이 많아지기 때문에 제2 건조 공정 S2b에 있어서 건조 효율이 저하되는 경우가 있다. 또한, 수지층용 도공액(33) 중의 폴리비닐알코올계 수지의 농도가 15 질량% 이상인 경우, 수지층용 도공액(33)의 점도가 지나치게 커져, 수지층용 도공액(33)을 도포하기 어렵게 되는 경우가 있다.
수지층용 도공액(33)의 점도는, 기재 필름(20) 상에 도포하기 쉬우면서 또한 기재 필름(20) 상에 형성되는 수지층용 도공액(33)의 층의 두께에 얼룩짐이 생기기 어려운 범위라면 특별히 한정되지 않는다. 수지층용 도공액(33)의 점도는, 기재 필름(20) 상에 도포할 때에 있어서, 예컨대, 0.5 Pa·s 이상 10 Pa·s 이하가 바람직하고, 0.8 Pa·s 이상 7 Pa·s 이하가 보다 바람직하고, 1 Pa·s 이상 5 Pa·s 이하가 더욱 바람직하다.
수지층용 도공액(33)의 점도가 0.5 Pa·s 미만인 경우, 도포한 수지층용 도공액(33)이 유동하여 수지층(34)의 두께 정밀도가 저하하는 경우가 있다. 또한, 수지층용 도공액(33)의 점도가 10 Pa·s보다도 큰 경우, 수지층용 도공액(33)을 도포하는 제2 도포 장치(42)에 있어서 사용할 수 있는 필터가 제한되거나 함으로써, 형성되는 수지층(34)의 품질이 저하하는 경우가 있다.
또, 수지층용 도공액(33)의 점도는, 기재 필름(20) 상에 도포할 때에 상기 수치 범위 내가 되면 된다. 그 때문에, 예컨대, 제2 도포 장치(42)에 접속된 수지층용 도공액(33)을 저장하는 탱크(도시하지 않음) 내에서, 수지층용 도공액(33)의 점도는 상기 수치 범위 밖이라도 좋다. 이 경우, 예컨대, 수지층용 도공액(33)을 가온 혹은 냉각함으로써, 수지층용 도공액(33)의 점도를 상기 수치 범위 내로 할 수 있다.
수지층용 도공액(33)은, 가소제, 계면활성제 등의 첨가재를 포함하고 있어도 좋다. 가소제의 종류는 상술한 것과 같다. 수지층용 도공액(33)에 있어서의 첨가재의 배합량은, 폴리비닐알코올계 수지의 양에 대하여 20 질량% 이하로 하는 것이 바람직하다.
제2 도포 장치(42)를 이용한 수지층용 도공액(33)의 도포 방법은, 기재 필름(20) 상에 수지층용 도공액(33)을 도포할 수 있으면 특별히 한정되지는 않는다. 제2 도포 장치(42)를 이용한 수지층용 도공액(33)의 도포 방법으로서는, 상술한 프라이머층용 도공액(31)의 도포 방법과 같은 방법을 들 수 있다. 제2 도포 장치(42)를 이용한 수지층용 도공액(33)의 도포 방법은, 제1 도포 장치(41)를 이용한 프라이머층용 도공액(31)의 도포 방법과 동일하여도 좋고, 다르더라도 좋다. 제2 도포 장치(42)로서는 각 도포 방법에 따른 도포 장치를 적절하게 선택할 수 있다.
제2 도포 공정 S2a에 의해, 도 6에 도시한 것과 같이, 기재 필름(20)의 상면(20a)에, 프라이머층(32)을 통해 수지층용 도공액(33)의 층이 형성된다. 수지층용 도공액(33)의 층은, 기재 필름(20)의 상면(20a)을 따라서 파상으로 형성된다. 수지층용 도공액(33)의 층의 두께는, 예컨대 50 ㎛ 이상 200 ㎛ 이하이며, 바람직하게는 150 ㎛ 이하이다.
제2 건조 공정 S2b은, 기재 필름(20) 상에 도포된 수지층용 도공액(33)을 건조시키는 공정이다. 제2 건조 공정 S2b에서는, 도 3에 도시한 것과 같이, 제2 건조로(52)를 이용하여, 기재 필름(20) 상에 도포된 수지층용 도공액(33)을 건조시킨다. 제2 건조로(52) 내에서는, 예컨대, 분무되는 열풍 등에 의해, 수지층용 도공액(33)의 층에 열이 가해져, 수지층용 도공액(33)이 건조되어 경화된다. 제2 건조로(52)는, 수지층용 도공액(33)을 건조할 수 있다면 특별히 한정되지 않는다. 제2 건조로(52)에 있어서의 건조 온도는, 예컨대, 50℃ 이상 200℃ 이하이고, 60℃ 이상 150℃ 이하가 바람직하다. 제2 건조로(52)에 있어서의 건조 온도는, 수지층용 도공액(33)에 포함되는 용매의 종류에 따라서 적절하게 설정할 수 있다. 수지층용 도공액(33)의 용매가 물을 포함하는 경우, 제2 건조로(52)의 건조 온도는 80℃ 이상인 것이 바람직하다.
제2 건조로(52)에 있어서의 건조 시간, 즉 제2 건조 공정 S2b의 길이는, 예컨대 180초 이하이고, 바람직하게는 150초 이하이며, 보다 바람직하게는 140초 이하이다. 자세한 것은 후술하지만, 제2 건조 공정 S2b의 길이를 이와 같이 설정함으로써, 편광자(10)의 두께 분포의 얼룩짐을 작게 할 수 있다. 제2 건조 공정 S2b의 길이는, 수지층용 도공액(33)이 도포되고 나서 수지층용 도공액(33)이 건조되어 수지층(34)이 형성될 때까지 사이의 길이이다. 즉, 예컨대, 수지층용 도공액(33)이 도포되고 나서 제2 건조로(52) 내에서 수지층(34)이 나오기까지의 시간이 150초보다 큰 경우라도, 수지층용 도공액(33)이 도포되고 나서 수지층(34)이 형성되기까지의 시간이 180초 이하이면 된다.
제2 건조 공정 S2b의 길이를 180초 이하로 하는 방법은, 180초 이하로 수지층용 도공액(33)을 건조하여 수지층(34)을 형성할 수 있으면 특별히 한정되지 않는다. 예컨대, 제2 건조로(52)의 출력(예컨대, 풍량)을 크게 하더라도 좋고, 수지층용 도공액(33)의 층의 두께를 작게 하더라도 좋고, 수지층용 도공액(33)의 용매를 예컨대 알코올 등의 휘발하기 쉬운 물질로 하여도 좋다. 예컨대, 수지층용 도공액(33)의 건조 속도는, 1.6 질량%/초 이상인 것이 바람직하고, 2.0 질량%/초 이상인 것이 바람직하다. 또, 수지층용 도공액(33)이 도포된 기재 필름(20)의 반송 속도는, 제2 건조 공정 S2b의 길이에 따라서 적절하게 조정되더라도 좋다.
여기서, 본 명세서에 있어서의 건조 속도란, 예컨대, 수지층용 도공액(33)의 건조가 시작된 후, 비교적 초기 단계에서의 건조 속도이다. 구체적으로는, 본 명세서에 있어서의 건조 속도란, 예컨대, 수지층용 도공액(33)에 포함되는 용매가 30 질량%에서 10 질량%까지 저감할 때까지 사이에 있어서의 건조 속도이다.
제2 건조 공정 S2b에 의해, 도 7에 도시한 것과 같이, 기재 필름(20) 상, 바람직하게는 프라이머층(32) 상에 수지층(34)이 형성된다. 이에 따라, 기재 필름(20)과 프라이머층(32)과 수지층(34)이 적층된 적층 필름(70)이 형성된다. 수지층(34)의 상면(34a)은 요철 형상이다. 수지층(34)의 상면(34a)의 요철 형상은, 도 6에 도시하는 수지층용 도공액(33)의 층의 상면(33a)의 요철 형상보다도 평탄화되어 있다. 수지층용 도공액(33)이 도포된 직후부터, 수지층용 도공액(33)이 건조되어 수지층(34)으로 될 때까지 사이에, 수지층용 도공액(33)이 유동하여 상면(33a)이 평탄화되기 때문이다. 건조 시간을 짧게 할 수 있다고 하는 점에서, 수지층(34)의 두께 T4는, 예컨대 3 ㎛ 이상 20 ㎛ 이하이고, 바람직하게는 5 ㎛ 이상 20 ㎛ 이하이다.
연신 공정 S3은, 기재 필름(20)과 함께 수지층(34)을 연신하는 공정이다. 연신 공정 S3에서는, 도 3에 도시한 것과 같이, 연신 장치(60)를 이용하여 적층 필름(70)을 길이 방향으로 일축 연신한다. 이에 따라, 수지층(34)이 연신된다. 수지층(34)의 두께 T4는 연신됨으로써 작아진다. 연신 공정 S3 전에 수지층(34)의 두께 T4가 10 ㎛보다도 큰 경우, 연신 공정 S3에 의해서 수지층(34)의 두께 T4는 10 ㎛ 이하가 된다.
수지층(34)의 연신 배율은, 원하는 편광자(10)의 편광 특성에 따라서 적절하게 선택할 수 있다. 수지층(34)의 연신 배율은, 연신하기 전의 수지층(34)의 길이 방향의 치수에 대하여, 5배보다 크고, 17배 이하가 바람직하고, 5배보다 크고, 8배 이하인 것이 보다 바람직하다. 수지층(34)의 연신 배율이 5배 이하인 경우, 수지층(34)의 배향이 불충분하게 되어 제조되는 편광자(10)의 편광도가 충분히 커지지 않지 않는 경우가 있다. 또한, 수지층(34)의 연신 배율이 17배보다도 큰 경우, 적층 필름(70)이 파단되기 쉽게 되거나, 적층 필름(70)의 두께가 지나치게 작아져, 후속 공정에 있어서의 가공성 및 취급성이 저하하거나 하는 경우가 있다.
연신 장치(60)는, 수지층(34)을 소정의 연신 배율로 연신할 수 있으면 특별히 한정되지 않는다. 연신 장치(60)를 이용한 적층 필름(70)의 연신 방법은, 반송 롤의 주속도의 차를 붙여 연신을 하는 롤간 연신이라도 좋고, 텐터 연신이라도 좋다. 또한, 연신 처리는 다단계에 걸쳐 행하여도 좋다. 이 경우, 다단계에 걸친 연신 처리 전부를 염색 공정 S4 전에 행하여도 좋고, 2번째 단계 이후의 연신 처리의 일부 혹은 모두를 염색 공정 S4 중에 행하여도 좋다.
연신 장치(60)를 이용하여 적층 필름(70)(수지층(34))을 연신할 때의 연신 온도는, 기재 필름(20) 및 수지층(34)이 연신 가능할 정도로 유동성을 보이는 온도 이상으로 설정된다. 연신 온도는, 예컨대, 기재 필름(20)의 상전이 온도(융점 또는 글라스 전이 온도)의 -30℃ 이상 +30℃ 이하의 범위가 바람직하고, -30℃ 이상 +5℃ 이하의 범위가 보다 바람직하고, -25℃ 이상 ±0℃ 이하의 범위가 더욱 바람직하다. 연신 온도가 기재 필름(20)의 상전이 온도의 -30℃보다도 작은 경우, 기재 필름(20)의 유동성이 지나치게 작아, 기재 필름(20) 및 수지층(34)을 연신하기 어려운 경우가 있다. 또한, 연신 온도가 기재 필름(20)의 상전이 온도의 +30℃보다도 큰 경우, 기재 필름(20)의 유동성이 지나치게 커, 기재 필름(20) 및 수지층(34)을 연신하기 어려운 경우가 있다. 기재 필름(20)이 다층인 경우, 기재 필름(20)의 상전이 온도란, 복수 층의 상전이 온도 중 가장 높은 온도를 말한다.
염색 공정 S4은 수지층(34)에 이색성 색소를 흡착시키는 공정이다. 염색 공정 S4에서는, 도 3에 도시한 것과 같이, 연신된 적층 필름(70) 전체를, 이색성 색소를 포함하는 염색 용액(80)에 침지한다. 염색 용액(80)은 이색성 색소를 용매에 용해시킨 용액이다. 염색 용액(80)의 용매는 예컨대 물이다. 염색 용액(80)의 용매에는, 물에 더하여, 물과 상용성이 있는 유기 용매가 첨가되어 있어도 좋다. 염색 용액(80)에 있어서의 이색성 색소의 농도는, 0.01 질량% 이상 10 질량% 이하가 바람직하고, 0.02 질량% 이상 7 질량% 이하가 보다 바람직하고, 0.025 질량% 이상 5 질량% 이하가 더욱 바람직하다.
이색성 색소를 요오드로 하는 경우, 요오드가 포함된 염색 용액(80)에 요오드화물을 추가로 첨가하는 것이 바람직하다. 염색 효율을 향상시킬 수 있기 때문이다. 요오드화물로서는, 예컨대, 요오드화칼륨, 요오드화리튬, 요오드화나트륨, 요오드화아연, 요오드화알루미늄, 요오드화납, 요오드화구리, 요오드화바륨, 요오드화칼슘, 요오드화주석, 요오드화티탄 등을 들 수 있다. 염색 용액(80)에 있어서의 요오드화물의 농도는 0.01 질량% 이상 20 질량% 이하가 바람직하다.
요오드화물 중에서도 요오드화칼륨을 첨가하는 것이 바람직하다. 요오드화칼륨을 첨가하는 경우, 요오드의 질량에 대한 요오드화칼륨의 질량의 비는, 5 이상 100 이하가 바람직하고, 6 이상 80 이하가 보다 바람직하고, 7 이상 70 이하가 더욱 바람직하다.
염색 용액(80)에의 적층 필름(70)의 침지 시간은, 특별히 한정되지 않지만, 15초 이상, 15분 이하가 바람직하고, 1분 이상, 3분 이하가 보다 바람직하다. 염색 용액(80)의 온도는, 10℃ 이상 60℃ 이하가 바람직하고, 20℃ 이상 40℃ 이하가 보다 바람직하다.
상기한 염색 처리를 행함으로써, 수지층(34)에는, 배향된 이색성 색소가 흡착되어, 도 8에 도시한 것과 같이, 기재 필름(20) 상에 프라이머층(32)을 통해 적층된 편광자(10)를 얻을 수 있다. 이에 따라, 기재 필름(20)과 프라이머층(32)과 편광자(10)이 적층된 편광성 적층 필름(71)을 얻을 수 있다.
또, 염색 공정 S4은, 상술한 염색 처리에 이어서 실시되는 가교 처리 공정을 포함하고 있어도 좋다. 가교 처리 공정은, 염색된 적층 필름(70) 전체를, 가교제를 포함하는 가교 용액 중에 침지한다. 가교제로서는, 예컨대, 붕산, 붕사 등의 붕소 화합물; 글리옥살; 및 글루타르알데히드 등을 들 수 있다. 가교제는 1 종류라도 좋고, 2 종류 이상을 병용하여도 좋다.
가교 용액으로서, 가교제를 용매에 용해한 용액을 사용할 수 있다. 가교 용액의 용매는 예컨대 물이다. 가교 용액의 용매에는, 물에 더하여, 물과 상용성이 있는 유기 용매가 첨가되어 있더라도 좋다. 가교 용액에 있어서의 가교제의 농도는, 예컨대, 1 질량% 이상 20 질량% 이하가 바람직하고, 6 질량% 이상 15 질량% 이하가 보다 바람직하다.
가교 용액 중에는 요오드화물을 첨가하여도 좋다. 요오드화물의 첨가에 의해, 수지층(34)의 면내에 있어서의 편광 특성을 보다 균일화시킬 수 있다. 가교 용액에 첨가되는 요오드화물로서는, 예컨대, 상술한 염색 용액(80)에 첨가되는 요오드화물과 같은 요오드화물을 들 수 있다. 가교 용액에 첨가되는 요오드화물과 염색 용액(80)에 첨가되는 요오드화물은 동일하여도 좋고, 다르더라도 좋다. 가교 용액에 있어서의 요오드화물의 농도는 0.05 질량% 이상 15 질량% 이하가 바람직하고, 0.5 질량% 이상 8 질량% 이하가 보다 바람직하다.
가교 용액에의 적층 필름(70)의 침지 시간은 15초 이상 20분 이하가 바람직하고, 30초 이상 15분 이하가 보다 바람직하다. 가교 용액의 온도는 10℃ 이상 80℃ 이하가 바람직하다.
또한, 가교 처리는, 가교제를 염색 용액(80) 중에 배합함으로써, 염색 처리와 동시에 행하여도 좋다. 또한, 조성이 다른 2종 이상의 가교 용액을 이용하여, 가교 용액에 침지하는 처리를 2회 이상 행하여도 좋다.
접합 공정 S5은, 편광자(10) 상에 보호 필름(11)을 접합하는 공정이다. 편광자(10)의 상면(10a)에 접착층(12)을 형성하여, 접착층(12)을 통해 보호 필름(11)을 편광자(10)의 상면(10a)에 접합한다. 접착층(12)의 형성 방법은 특별히 한정되지 않고, 예컨대, 프라이머층 형성 공정 S1 및 수지층 형성 공정 S2 등에 있어서 각 층을 형성한 방법과 같은 방법을 채용할 수 있다.
보호 필름(11)의 접합 방법은 특별히 한정되지 않는다. 예컨대, 롤 형상으로 감긴 보호 필름(11)을 풀어내어 접착층(12) 상에 보호 필름(11)을 얹은 상태에서, 보호 필름(11)과 편광성 적층 필름(71)을 사이에 끼워 넣는 2개의 롤러 사이를 통과시킴으로써 보호 필름(11)을 접합할 수 있다.
박리 공정 S6은, 보호 필름(11)이 접합된 편광성 적층 필름(71)으로부터 기재 필름(20)을 박리 제거하는 공정이다. 기재 필름(20)을 박리 제거하는 방법은, 특별히 한정되지 않고, 예컨대, 점착제를 지닌 편광판에서 행해지는 세퍼레이터(박리 필름)의 박리 공정과 같은 방법을 채용할 수 있다. 기재 필름(20)은, 접합 공정 S5 후 그대로 곧바로 박리하여도 좋고, 접합 공정 S5 후 한 번 보호 필름(11)이 접합된 편광성 적층 필름(71)을 롤 형상으로 권취하고, 그 후의 공정에서 풀어내면서 박리하여도 좋다.
박리 공정 S6에 의해서 기재 필름(20)이 박리 제거됨으로써, 도 1에 도시하는 본 실시형태의 편광 필름(1)이 제조된다. 편광 필름(1)을 소정의 크기로 잘라냄으로써 편광판을 얻을 수 있다.
본 실시형태에 따르면, 박형이면서 또한 투과축 방향의 두께 분포의 얼룩짐이 작은 편광자(10)를 얻을 수 있다. 이하 상세히 설명한다.
두께가 10 ㎛ 이하인 박형의 편광자를 제조하는 경우, 상술한 것과 같이, 기재 필름 상에 폴리비닐알코올계 수지를 포함하는 수지층용 도공액을 도포하고, 수지층용 도공액을 건조시켜 수지층을 형성한다. 그리고, 수지층을 기재 필름과 함께 연신하는 제조 방법(이하, 박형 편광자 제조 방법이라고 부른다)이 채용된다. 이 방법을 이용하는 경우, 제조되는 편광자의 얼룩짐이 큰 문제가 있었다. 그 이유는 다음과 같은 이유에 의한 것이라고 생각된다.
박형 편광자 제조 방법을 채용하는 경우, 기재 필름은, 수지층과 함께 연신 가능한 재질일 필요가 있기 때문에, 열이 가해짐으로써 열수축하기 쉽다. 그 때문에, 예컨대, 상술한 프라이머층 형성 공정 S1의 제1 건조 공정 S1b 등에서 기재 필름에 열이 가해지면, 기재 필름이 열수축하여, 도 5에 도시하는 기재 필름(20)과 같이, 상하면에 요철 형상이 생긴다. 이 상태에서, 기재 필름 상에 수지층용 도공액의 층이 형성되면, 수지층용 도공액의 층의 상면도 기재 필름의 상면의 형상을 따라서 요철 형상으로 된다.
수지층용 도공액은 유동성을 갖고 있기 때문에, 수지층용 도공액이 건조되어 수지층이 형성될 때까지 사이에, 수지층용 도공액의 상면은 서서히 평탄화되어 간다. 여기서, 예컨대, 제2 건조 공정 S2b의 길이가 충분히 큰 경우, 제2 도포 공정 S2a에서 도포된 수지층용 도공액(33)이 건조되어 수지층(34)으로 될 때까지 사이에, 수지층용 도공액(33)의 상면(33a)이 완전히 평탄화된다. 이에 따라, 수지층(34)의 상면이, 도 7에 2점쇄선으로 나타내는 것과 같은 평탄면(35)으로 된다.
이 경우, 수지층의 하면 중 상측으로 오목하게 되는 부분의 최상점(34c)과 평탄면(35) 사이의 적층 방향의 거리인 두께 T3a와, 수지층의 하면 중 하측으로 볼록하게 되는 부분의 최하점(34d)과 평탄면(35) 사이의 적층 방향의 거리인 두께 T3b의 차가 커진다. 두께 T3b는 두께 T3a보다도 크다. 따라서, 종래 박형 편광자 제조 방법을 이용하는 경우에 있어서는, 수지층의 두께 분포의 얼룩짐이 커져, 결과적으로 편광자의 두께 분포의 얼룩짐이 커지는 문제가 생기고 있었던 것으로 생각된다.
또, 예컨대, 비교적 두께가 큰 편광자를 제조하는 경우에는, 상술한 박형 제조 방법을 채용할 필요는 없고, 기재 필름을 사용하지 않으므로, 열수축된 기재 필름의 형상이 수지층에 전사되는 일이 없어 상기한 문제는 생기지 않는다.
또한, 그 밖에, 제2 건조로(52) 내에서 수지층용 도공액에 분무되는 열풍의 풍량이 폭 방향에 있어서 불균일하게 되기 쉽다는 것, 제2 건조 공정 S2b에서 기재 필름이 반송 시에 진동하기 쉽다는 것 등에 의해, 수지층용 도공액이 유동하여 수지층의 두께 분포의 얼룩짐이 커져, 결과적으로 편광자의 두께 분포의 얼룩짐이 커지는 문제가 생기고 있었던 것으로 생각된다.
또, 예컨대, 비교적 두께가 큰 편광자를 제조하는 경우에는, 상술한 박형 제조 방법을 채용할 필요는 없기 때문에, 반송되는 기재 필름 상에서 수지층을 형성할 필요가 없어, 상기한 문제는 생기지 않는다.
이상 설명한, 박형 편광자 제조 방법에 있어서 얼룩짐이 생기는 원인에 관한 지견은 본 발명자들에 의해서 새롭게 얻어진 지견이다.
이에 대하여, 본 실시형태에 따르면, 제2 건조 공정 S2b의 길이는 바람직하게는 150초 이하이다. 그 때문에, 제2 건조 공정 S2b의 길이가 비교적 작아, 수지층용 도공액(33)의 상면(33a)이 평탄화되어 평탄면(35)으로 되기 전에, 수지층용 도공액(33)의 층은 건조되어 수지층(34)으로 된다. 이에 따라, 수지층(34)의 상면(34a)은 수지층용 도공액(33)의 상면(33a)보다는 평탄화되어 있지만, 요철 형상을 가진 채 그대로이다. 따라서, 수지층(34)의 하면(34b)에 있어서의 최상점(34c)과 상면(34a)과의 거리인 두께 T4a와, 수지층(34)의 하면(34b)에 있어서의 최하점(34d)과 상면(34a)과의 거리인 두께 T4b의 차가 작아진다. 즉, 폭 방향에 있어서 수지층(34)의 두께 T4가 균일에 가깝게 되어, 수지층(34)의 두께 분포의 얼룩짐이 작아진다. 따라서, 편광자(10)의 두께 분포의 얼룩짐을 작게 할 수 있다.
또, 두께 T4a는, 하면(34b)의 최상점(34c)과 상면(34a) 중 상측으로 볼록하게 되는 부분의 최상점(34e) 사이의 거리이다. 두께 T4b는, 하면(34b)의 최하점(34d)과 상면(34a) 중 하측으로 오목하게 되는 부분의 최하점(34f) 사이의 거리이다.
또한, 제2 건조 공정 S2b의 길이가 비교적 작음으로써, 제2 건조로(52)에 있어서 수지층용 도공액(33)에 열풍이 분무되는 시간이 줄어들며, 또한 수지층용 도공액(33)이 도포되고 나서 건조되어 수지층(34)으로 되기까지의 기재 필름(20)이 반송되는 시간이 줄어든다. 따라서, 제2 건조로(52)에 있어서 분무되는 열풍 및 기재 필름(20)의 진동에 의한 수지층용 도공액(33)의 유동이 억제되어, 수지층(34)의 두께 분포의 얼룩짐이 작아진다. 따라서, 편광자(10)의 두께 분포의 얼룩짐을 작게 할 수 있다.
이상에 의해, 본 실시형태에 따르면, 두께가 10 ㎛ 이하인 박형의 편광자를 얻기 위해서 박형 편광자 제조 방법을 채용하는 경우라도, 두께 분포의 얼룩짐이 작은 편광자(10)를 얻을 수 있다. 구체적으로는, 두께 T1가 10 ㎛ 이하이면서 또한 두께 분포의 최대 진폭이 0.4 ㎛ 이하인 편광자(10)를 얻을 수 있다. 두께 T1가 10 ㎛ 이하이면서 또한 두께 분포의 주기 강도가 0.13 ㎛ 이하인 편광자(10)를 얻을 수 있다. 두께 T1가 10 ㎛ 이하이면서 또한 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭이 10 nm 이하인 편광자(10)를 얻을 수 있다. 두께 T1가 10 ㎛ 이하이면서 또한 폴리비닐알코올계 수지의 위상차 분포의 주기 강도가 2 nm 이하인 편광자(10)를 얻을 수 있다.
이들 특징을 갖는 편광자(10)는, 박형 편광자 제조 방법에 있어서 편광자의 두께 분포의 얼룩짐이 커지는 원인에 관한 새로운 지견에 기초하여, 상술한 본 실시형태의 제조 방법을 채용함으로써 얻어진 새로운 편광자이다. 바꿔 말하면, 두께가 10 ㎛ 이하인 박형의 편광자를 제조하는 경우, 박형 편광자 제조 방법을 채용할 필요가 있지만, 종래에는 상술한 두께 분포의 얼룩짐이 커지는 원인에 관한 지견은 없고, 본 실시형태의 편광자의 제조 방법도 채용되지 않았다. 그 때문에, 종래 본 실시형태의 편광자(10)를 실현할 수는 없었다.
또한, 박형 편광자 제조 방법에 있어서, 편광자의 두께 분포의 얼룩짐이 생기는 원인으로서는, 열수축된 기재 필름의 형상이 수지층용 도공액에 전사되어, 수지층용 도공액이 평탄화되는 것이 가장 크다고 생각된다. 그 때문에, 본 실시형태와 같이, 수지층 형성 공정 S2보다도 전에, 제1 건조 공정 S1b을 포함하는 프라이머층 형성 공정 S1을 가짐으로써, 기재 필름이 열수축하여 편광자의 두께 분포의 얼룩짐이 특히 커지기 쉽다. 따라서, 상술한 편광자(10)의 두께 분포의 얼룩짐을 작게 할 수 있는 효과는, 프라이머층 형성 공정 S1을 갖고 있는 경우에 특히 효과가 높다. 또한, 프라이머층 형성 공정 S1 이외에, 수지층 형성 공정 S2보다도 전에, 기재 필름(20)에 열이 가해지는 공정을 포함하는 경우도 마찬가지이다.
또, 본 실시형태에서는 이하의 방법을 채용할 수도 있다.
상기 설명에서는, 제2 건조 공정 S2b의 길이를 조정하는 방법에 의해, 편광자(10)의 두께 분포의 얼룩짐을 작게 했지만, 이것에 한정되지 않는다. 상술한 두께 분포의 얼룩짐이 커지는 원인에 관한 새로운 지견의 하나에 기초하면, 기재 필름(20) 상에 도포된 수지층용 도공액(33)의 상면(33a)이 완전히 평탄화하기 전에, 수지층용 도공액(33)을 건조하여 수지층(34)을 형성할 수 있으면, 두께 분포의 얼룩짐이 작은 편광자(10)를 얻을 수 있다. 그 때문에, 예컨대, 수지층용 도공액(33)의 점도를 비교적 크게 하여, 수지층용 도공액(33)의 상면(33a)이 평탄화하는 속도를 느리게 하거나, 수지층용 도공액(33)의 도공량을 조정하여, 얻어지는 수지층(34)의 두께를 작게 하거나 하여도 좋다. 이 경우에는, 수지층용 도공액(33)의 상면(33a)이 완전히 평탄화하기 전에, 수지층용 도공액(33)을 건조하여 수지층(34)을 형성하기 쉽다. 따라서, 두께 분포의 얼룩짐이 작은 편광자(10)를 제조할 수 있다. 또한, 상기 설명한 방법을 조합시키는 것도 두께 분포의 얼룩짐이 작은 편광자(10)를 제조하기 쉽다고 하는 점에서 바람직하다.
또한, 프라이머층 형성 공정 S1보다도 전에, 프라이머층용 도공액(31)이 도포되는 기재 필름(20)의 상면(20a)에 코로나 처리를 실시하는 공정을 갖더라도 좋다.
또한, 수지층 형성 공정 S2에 있어서의 수지층(34)의 형성에 가소제를 이용하고 있는 경우에는, 염색 공정 S4보다도 전에, 가소제를 제거하는 처리를 하여도 좋다. 가소제의 제거는, 예컨대, 적층 필름(70)을 실온 이상, 50℃ 이하 정도의 물에 침지하여 적층 필름(70)에 물을 팽윤시킴으로써 적층 필름(70)으로부터 가소제를 용출시킴으로써 행한다.
또한, 염색 공정 S4에 있어서 가교 처리를 두는 경우, 가교 처리 후에는, 편광성 적층 필름(71)을, 순수, 이온교환수, 증류수, 수돗물 등의 물에 침지하여 물 세정하여 붕산 등을 씻어버리는 처리를 행하여도 좋다. 세정액은 요오드화물을 포함하고 있어도 좋다. 그리고, 그 후, 편광성 적층 필름(71)을 건조시키는 처리를 행하여도 좋다. 건조 처리는, 자연 건조, 가열 건조, 송풍 건조, 감압 건조 등, 공지된 방법을 채용할 수 있다.
또한, 염색 공정 S4은, 연신 공정 S3보다 전에 행하여도 좋고, 염색 공정 S4와 연신 공정 S3이 동시에 행하여도 좋다. 또한, 프라이머층 형성 공정 S1은 두지 않아도 좋다.
또, 상술한 각 방법 및 각 구성은 모순되지 않는 범위 내에서 서로 조합할 수 있다.
[실시예]
박형 편광자 제조 방법에 있어서, 편광자의 두께 분포의 얼룩짐이 커지는 원인 중, 기재 필름의 열수축 형상에 대한 수지층용 도공액의 평탄화에 관해서 검증했다. 도 9는 검증예로서 제조한 검증용 적층체(2)를 도시하는 단면도이다. 또한 도 9에서는, 상술한 실시형태와 같은 구성에 관해서는 동일한 부호를 부여하고 있다.
검증용 적층체(2)는 기재 필름(20)과 프라이머층(32)과 수지층(134a, 134b)을 구비하고 있다. 수지층(134a)은 기재 필름(20)의 상면(20a)에 프라이머층(32)을 통해 형성되어 있다. 수지층(134b)은 기재 필름(20)의 하면(20b)에 프라이머층(32)을 통해 형성되어 있다. 수지층(134a)의 상면 및 수지층(134b)의 하면은 평탄면이다.
본 검증예에 있어서 기재 필름(20)의 재질은 폴리프로필렌으로 했다. 본 검증예에 있어서 프라이머층(32)의 평균 두께는 0.2 ㎛로 했다. 또한, 제1 건조 공정 S1b에서는, 건조 온도를 90℃로 하고, 기재 필름(20)의 반송 속도를 20 m/분으로 했다. 본 검증예에 있어서 수지층용 도공액의 용매는 물로 했다. 수지층용 도공액에 있어서의 폴리비닐알코올계 수지의 농도는 8 질량%로 했다. 제2 도포 공정 S2a에 있어서, 도포했을 때의 수지층용 도공액의 층의 평균 두께는 140 ㎛로 했다.
제2 건조 공정 S2b의 길이를, 제2 도포 공정 S2a에서 도포한 수지층용 도공액의 층의 상면이 완전히 평탄화되는 길이로 하여 수지층(134a, 134b)을 형성하고, 수지층(134a)의 두께 T5a와 수지층(134b)의 두께 T5b를 폭 방향(Y축 방향)마다 측정했다.
결과를 도 10에 도시한다.
도 10은 폭 방향(Y축 방향) 위치에 대한 수지층(134a, 134b)의 두께 T5를 도시하는 그래프이다. 도 10에서, 종축은 수지층(134a, 134b)의 두께 T5를 나타내고 있고, 횡축은 수지층(134a, 134b)의 폭 방향 위치를 나타내고 있다. 도 10에서는, 수지층(134a)의 두께 T5a와 수지층(134b)의 두께 T5b를 각각 도시하고 있다.
도 10으로부터, 수지층(134a)의 두께 T5a와 수지층(134b)의 두께 T5b는, 번갈아서 증감을 반복하고 있음이 확인되었다. 즉, 수지층(134a)의 두께 T5a가 커지는 폭 방향 위치에서는 수지층(134b)의 두께 T5b는 작아지고, 수지층(134a)의 두께 T5a가 작아지는 폭 방향 위치에서는 수지층(134b)의 두께 T5b는 커지는 것이 확인되었다.
도 10에 도시하는 결과는, 수지층용 도공액의 평탄화에 의해서, 편광자의 두께 분포의 얼룩짐이 생기는 것을 뒷받침하는 결과이다. 도 9에 도시한 것과 같이, 기재 필름(20)이 열수축하여 표면에 요철 형상이 형성되는 경우, 기재 필름(20)의 상면(20a)의 요철 형상과 기재 필름(20)의 하면(20b)의 요철 형상은, 폭 방향(Y축 방향)을 따라서 오목부와 볼록부가 번갈아 있게 된다. 그 때문에, 기재 필름(20)의 양면에 수지층이 형성되면, 수지층(134a)의 하면의 요철 형상과 수지층(134b)의 상면의 요철 형상에서는, 폭 방향을 따라서 오목부와 볼록부가 번갈아 있게 된다. 이에 따라, 수지층(134a)의 두께 T5a가 최대가 되는 폭 방향 위치에서는 수지층(134b)의 두께 T5b가 최소가 되고, 수지층(134a)의 두께 T5a가 최소가 되는 폭 방향 위치에서는 수지층(134b)의 두께 T5b가 최대가 된다. 그 결과, 수지층(134a)의 두께 T5a와 수지층(134b)의 두께 T5b는, 폭 방향 위치에 따라서 도 10에 도시하는 변화를 하는 것으로 생각된다.
이상에 의해, 편광자의 두께 분포의 얼룩짐이 커지는 원인의 적어도 하나가, 열수축된 기재 필름(20) 상에 형성된 수지층용 도공액의 평탄화로 인한 것임이 확인되었다.
이어서, 상술한 실시형태의 편광 필름(1)의 제조 방법을 이용하여 실시예 1~3의 편광 필름을 제조하여, 비교예의 편광 필름과 비교했다.
실시예 1에 있어서 기재 필름은 다음과 같이 하여 제작했다. 우선, 프로필렌의 단독 중합체인 호모폴리프로필렌(스미토모카가쿠가부시키가이샤 제조 「스미토모노브렌(등록상표) FLX80E4」, 융점 163℃)에, 고밀도 폴리에틸렌으로 이루어지는 조핵제를 1 질량% 배합하여, 조핵제가 들어간 폴리프로필렌을 제작했다. 이 폴리프로필렌과 에틸렌 유닛을 약 5 질량% 포함하는 프로필렌/에틸렌의 랜덤 공중합체 「스미토모노브렌(등록상표) W151」로부터, 다층 압출 성형기를 이용한 공압출 성형에 의해서 장척의 폴리프로필렌계 적층 필름을 제작하고, 이것을 기재 필름으로 했다. 폴리프로필렌계 적층 필름은, 「스미토모노브렌(등록상표) W151」으로 이루어지는 수지층의 양측에, 상술한 조핵제가 들어간 폴리프로필렌으로 이루어지는 수지층이 배치된 3층 구조로 했다. 실시예 1의 기재 필름의 평균 두께는 100 ㎛로 했다. 기재 필름에 있어서의 각 층의 두께의 비는, 조핵제가 들어간 폴리프로필렌:스미토모노브렌(등록상표) W151:조핵제가 들어간 폴리프로필렌=3:4:3으로 했다. 기재 필름의 길이 방향의 인장 탄성율은 210 MPa였다.
실시예 1에 있어서 프라이머층용 도공액은 다음과 같이 하여 제작했다. 폴리비닐알코올 분말(닛폰고세이카가쿠고교가부시키가이샤 제조 「Z-200」, 평균 분자량 1100, 평균 비누화도 99.5 몰%)을 95℃의 열수에 용해하여, 농도 3 질량%의 폴리비닐알코올 수용액으로 했다. 얻어진 수용액에 가교제(스미토모카가쿠 제조 「스미레즈레진(등록상표) 650」)을, 2 질량부의 폴리비닐알코올에 대하여 1 질량부 혼합하여 프라이머층용 도공액을 제작했다.
실시예 1에 있어서 수지층용 도공액은 다음과 같이 하여 제작했다. 폴리비닐알코올 분말(가부시키가이샤쿠라레 제조 「PVA124」, 평균 중합도 2400, 평균 비누화도 98.0 몰% 이상, 99.0 몰% 이하)을 95℃의 열수에 용해하여 농도 8 질량%의 폴리비닐알코올 수용액으로 하여, 이것을 수지층용 도공액으로 했다.
상술한 것과 같이 하여 얻어진 기재 필름을 연속적으로 반송하면서, 그 한 면에 코로나 처리를 실시하고, 코로나 처리된 면에 마이크로그라비아 코터(제1 도포 장치)를 이용하여 상술한 프라이머층용 도공액을 연속적으로 도포했다. 도포한 프라이머층용 도공액을, 제1 건조 장치에 있어서, 60℃에서 3분 건조시킴으로써, 평균 두께 0.2 ㎛의 프라이머층을 형성했다.
프라이머층이 형성된 기재 필름을 연속적으로 반송하면서, 프라이머층 상에 립 코터(제2 도포 장치)를 이용하여 상술한 수지층용 도공액을 연속적으로 도포했다. 도포한 수지층용 도공액을, 제2 건조 장치를 이용하여 90℃에서 130초 건조시킴으로써, 프라이머층 상에 수지층을 형성했다. 이 때, 수지층용 도공액의 건조 속도는 2.1 질량%/초였다. 형성한 수지층에 있어서, 건조 얼룩짐 등은 확인되지 않고, 문제점은 인정되지 않았다. 편광자의 평균 두께는 3.6 ㎛였다.
기재 필름 상에 프라이머층 및 수지층이 형성된 적층 필름을, 연속적으로 반송하면서 롤간 공중 연신 장치를 이용하여 길이 방향(필름 반송 방향)으로 자유단 일축 연신했다. 연신 온도는 150℃로 했다. 연신 배율은 5.3배로 했다.
상기 연신된 적층 필름을 요오드와 요오드화칼륨을 포함하는 30℃의 염색 용액에 체류 시간이 150초간 정도가 되도록 침지하여 폴리비닐알코올계 수지로 이루어지는 수지층의 염색 처리를 했다. 이어서, 10℃의 순수에 의해 여분의 염색 용액을 씻어 버렸다. 이어서, 붕산과 요오드화칼륨을 포함하는 76℃의 가교 용액에 체류 시간이 600초간이 되도록 침지하여 가교 처리했다. 그 후, 10℃의 순수로 4초간 세정하고, 80℃에서 300초간 건조시킴으로써, 기재 필름과 프라이머층과 편광자가 적층된 편광성 적층 필름을 얻었다.
위에서 얻어진 편광성 적층 필름을 연속적으로 반송하면서 접착제 용액을 편광자 상에 도포하여 접착층을 형성했다. 접합면에 비누화 처리가 실시된 트리아세틸셀룰로오스(TAC) 필름(코니카미놀타옵트가부시키가이샤 제조 「KC4UY」, 두께 40 ㎛)을, 접착층을 통해 편광자에 접합했다.
접착제 용액은 다음과 같이 제작했다. 폴리비닐알코올 분말(가부시키가이샤쿠라레 제조 「KL-318」, 평균 중합도 1800)을 95℃의 열수에 용해하여, 농도 3 질량%의 폴리비닐알코올 수용액으로 했다. 얻어진 수용액에 가교제(스미토모카가쿠가부시키가이샤 제조 「스미레즈레진(등록상표) 650」)을 2 질량부의 폴리비닐알코올에 대하여 1 질량부의 비율로 혼합하여 접착제 용액으로 했다.
TAC 필름(보호 필름)이 접합된 편광성 적층 필름으로부터 기재 필름을 박리제거하여, 실시예 1의 편광 필름을 얻었다.
실시예 2에서는, 프라이머층을 통해 기재 필름 상에 도포한 수지층용 도공액을, 제2 건조 장치를 이용하여 90℃에서 150초 건조시킴으로써, 프라이머층 상에 수지층을 형성했다. 이 때, 수지층용 도공액의 건조 속도는 1.9 질량%/초였다.
형성한 수지층에 있어서, 건조 얼룩짐 등은 확인되지 않고, 문제점은 인정되지 않았다. 편광자의 평균 두께는 4.0 ㎛였다. 실시예 2의 그 이외의 점에 관해서는 실시예 1과 같은 식으로 했다.
실시예 3에서는, 프라이머층을 통해 기재 필름 상에 도포한 수지층용 도공액을, 제2 건조 장치를 이용하여 90℃에서 170초 건조시킴으로써, 프라이머층 상에 수지층을 형성했다. 이 때, 수지층용 도공액의 건조 속도는 1.7 질량%/초였다.
형성한 수지층에 있어서, 건조 얼룩짐 등은 확인되지 않고, 문제점은 인정되지 않았다. 편광자의 평균 두께는 4.5 ㎛ 였다. 실시예 3의 그 이외의 점에 관해서는 실시예 1과 같은 식으로 했다.
비교예에서는, 프라이머층을 통해 기재 필름 상에 도포한 수지층용 도공액을, 제2 건조 장치를 이용하여 90℃에서 188초 건조시킴으로써, 프라이머층 상에 수지층을 형성했다. 이 때, 수지층용 도공액의 건조 속도는 1.5 질량%/초였다. 형성한 수지층에 있어서, 건조 얼룩짐 등은 확인되지 않고, 문제점은 인정되지 않았다. 편광자의 평균 두께는 5.0 ㎛였다. 비교예의 그 이외의 점에 관해서는 실시예 1과 같은 식으로 했다.
실시예 1~3의 편광 필름 및 비교예의 편광 필름의 각각을, 길이 방향(흡수축 방향)으로 100 mm 잘라내어 편광판으로 했다. 각 편광판에 관해서, 폭 방향 위치마다 편광자의 두께 및 파장마다의 위상차를 측정했다. 편광자의 두께 측정은, 편광자에 있어서의 폭 방향 중앙의 약 200 mm 폭 부분에 있어서, 측정 위치를 폭 방향(투과축 방향)으로 5 mm 간격으로 변화시켜 측정했다. 측정 위치는 측정기를 자동 스테이지에 의해서 이동시킴으로써 변화시켰다.
편광자의 두께 분포로부터, 고속 푸리에 변환을 이용하여 두께 분포의 주기 강도를 산출했다. 편광자의 파장마다의 위상차로부터, 폭 방향 위치마다 폴리비닐알코올계 수지의 위상차를 산출했다. 폴리비닐알코올계 수지의 위상차 분포로부터, 고속 푸리에 변환을 이용하여 폴리비닐알코올계 수지의 위상차 분포의 주기 강도를 산출했다. 또한, 각 편광판을 105℃의 환경 하에 30분 둔 후, 백라이트 상에서 다른 편광판과 직교 니콜로 하여, 편광판의 얼룩짐을 눈으로 보아 관찰했다. 결과를 표 1, 표 2 및 도 11 내지 도 14에 나타낸다.
Figure 112017026136493-pat00001
Figure 112017026136493-pat00002
표 1에서는, 실시예 1~3 및 비교예에 관해서, 제2 건조 공정의 길이(초)와, 두께 분포의 최대 진폭(㎛)과, 두께 분포의 주기 강도의 최대치를 나타내고 있다. 표 2에서는, 실시예 1~3 및 비교예에 관해서, 제2 건조 공정의 길이(초)와, 위상차 분포의 최대 진폭(nm)과, 위상차 분포의 주기 강도의 최대치를 나타내고 있다. 또한, 표 1 및 표 2에서는, 실시예 1~3 및 비교예에 관해서 얼룩짐의 외관 평가를 나타내고 있다. 얼룩짐의 외관 평가에 있어서 「○」은 얼룩짐이 거의 시인되지 않음을 나타내고 있고, 「×」는 강하게 시인하기 쉬운 줄기 형상의 얼룩짐이 시인되었음을 나타내고 있다.
도 11은 폭 방향 위치에 대한 편광자의 두께를 도시하는 그래프이다. 도 11에서, 종축은 편광자의 두께(㎛)를 나타내고 있고, 횡축은 편광자의 폭 방향 위치(mm)를 나타내고 있다.
도 12는, 편광자의 두께 분포의 얼룩짐 주기에 대한, 편광자의 두께 분포의 주기 강도를 도시하는 그래프이다. 종축은 편광자의 두께 분포의 주기 강도를 나타내고 있고, 횡축은 편광자의 두께 분포의 얼룩짐 주기(mm)를 나타내고 있다.
도 13은, 폭 방향 위치에 대한, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차 Rpva를 도시하는 그래프이다. 도 13에서, 종축은 폴리비닐알코올계 수지의 위상차 Rpva(nm)를 나타내고 있고, 횡축은 편광자의 폭 방향 위치(mm)를 나타내고 있다.
도 14는, 편광자의 두께 분포의 얼룩짐 주기에 대한, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차 분포의 주기 강도를 도시하는 그래프이다. 종축은 폴리비닐알코올계 수지의 위상차 분포의 주기 강도를 나타내고 있고, 횡축은 편광자의 두께 분포의 얼룩짐 주기(mm)를 나타내고 있다.
도 11 내지 도 14에서는 각각 실시예 1, 2 및 비교예의 결과에 관해서 정리하여 나타내고 있다.
도 11로부터, 비교예에서는 편광자의 두께가 폭 방향 위치에 따라 비교적 크게 변동하고 있는 데 대하여, 실시예 1, 2에서는 폭 방향 위치에 상관없이 편광자의 두께가 비교적 균일한 것을 확인할 수 있었다. 이에 따라, 비교예의 두께 분포의 얼룩짐에 대하여, 실시예 1, 2의 두께 분포의 얼룩짐이 작은 것을 확인할 수 있었다. 또한, 표 1로부터, 비교예의 두께 분포의 최대 진폭은 0.67 ㎛인 데 대하여, 실시예 1~3의 두께 분포의 최대 진폭은 0.4 ㎛ 이하임을 확인할 수 있었다. 이상에 의해, 제2 건조 공정의 길이를 제어함으로써, 편광자의 두께 분포의 얼룩짐을 작게할 수 있고, 편광자의 두께 분포의 최대 진폭을 0.4 ㎛ 이하로 할 수 있다는 것이 확인되었다.
또한, 실시예 2에 있어서의 두께 분포의 최대 진폭이 실시예 3에 있어서의 두께 분포의 최대 진폭보다도 작으며 또한 실시예 1에 있어서의 두께 분포의 최대 진폭이 실시예 2에 있어서의 두께 분포의 최대 진폭보다도 작으므로, 제2 건조 공정의 길이를 작게 할수록 편광자의 두께 분포의 최대 진폭을 작게 할 수 있고, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있다는 것이 확인되었다.
도 12로부터, 비교예에서는, 얼룩짐 주기가 12 mm 이상 17 mm 이하 정도의 범위에서, 두께 분포의 주기 강도가 커지고 있는 데 대하여, 실시예 1, 2에서는, 얼룩짐 주기에 상관없이 두께 분포의 주기 강도가 거의 같음이 확인되었다. 이것은, 비교예에 있어서, 폭 방향을 따라서 12 mm 이상 17 mm 이하 정도의 주기로 두께가 비교적 크게 변동하고 있음을 나타내고 있고, 편광자의 두께 분포의 얼룩짐이 크다는 것을 보여주고 있다. 한편, 실시예 1, 2에서는, 특정 주기로 두께가 크게 변동하는 일이 없고, 편광자의 두께 분포의 얼룩짐이 작다는 것을 보여주고 있다. 또한, 표 1로부터, 비교예의 두께 분포의 주기 강도의 최대치는 0.15 ㎛인 데 대하여, 실시예 1~3의 두께 분포의 주기 강도의 최대치는 0.13 ㎛ 이하임을 확인할 수 있었다. 이상에 의해, 제2 건조 공정의 길이를 제어함으로써, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있고, 편광자의 두께 분포의 주기 강도를 0.13 ㎛ 이하로 할 수 있다는 것이 확인되었다.
또한, 실시예 2에 있어서의 두께 분포의 주기 강도의 최대치가 실시예 3에 있어서의 두께 분포의 주기 강도의 최대치보다도 작으면서 또한 실시예 1에 있어서의 두께 분포의 주기 강도의 최대치가 실시예 2에 있어서의 두께 분포의 주기 강도의 최대치보다도 작으므로, 제2 건조 공정의 길이를 작게 할수록 편광자의 두께 분포의 주기 강도를 작게 할 수 있고, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있다는 것이 확인되었다.
도 13으로부터, 비교예에서는 위상차 Rpva가 폭 방향 위치에 따라서 비교적 크게 변동하고 있는 데 대하여, 실시예 1, 2에서는 폭 방향 위치에 상관없이 위상차 Rpva가 비교적 균일하다는 것을 확인할 수 있었다. 이에 따라, 비교예의 위상차 Rpva의 얼룩짐에 대하여, 실시예 1, 2의 위상차 Rpva의 얼룩짐이 작다는 것을 확인할 수 있었다. 위상차 Rpva의 얼룩짐은, 편광자의 두께 분포의 얼룩짐에 기인하여 생기기 때문에, 비교예의 편광자의 두께 분포의 얼룩짐에 대하여, 실시예 1, 2의 편광자의 두께 분포의 얼룩짐이 작다는 것을 확인할 수 있었다. 또한, 표 2로부터, 비교예의 위상차 분포의 최대 진폭은 18 nm인 데 대하여, 실시예 1~3의 위상차 분포의 최대 진폭은 10 nm 이하라는 것이 확인되었다. 이상에 의해, 제2 건조 공정의 길이를 제어함으로써, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있어, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차 분포의 최대 진폭을 10 nm 이하로 할 수있다는 것이 확인되었다.
또한, 실시예 2에 있어서의 위상차 분포의 최대 진폭이 실시예 3에 있어서의 위상차 분포의 최대 진폭보다도 작으면서 또한 실시예 1에 있어서의 위상차 분포의 최대 진폭이 실시예 2에 있어서의 위상차 분포의 최대 진폭보다도 작으므로, 제2 건조 공정의 길이를 작게 할수록 편광자의 위상차 분포의 최대 진폭을 작게 할 수 있고, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있다는 것이 확인되었다.
도 14로부터, 비교예에서는, 얼룩짐 주기가 12 mm 이상 17 mm 이하 정도의 범위에서, 위상차 분포의 주기 강도가 커지고 있는 데 대하여, 실시예 1, 2에서는, 얼룩짐 주기에 상관없이 위상차 분포의 주기 강도가 거의 같음이 확인되었다. 이것은, 비교예에서는, 폭 방향을 따라서 12 mm 이상 17 mm 이하 정도의 주기로 위상차 Rpva가 비교적 크게 변동하고 있음을 보여주고 있고, 편광자의 두께 분포의 얼룩짐이 크다는 것을 보여주고 있다. 한편, 실시예 1, 2에서는, 특정 주기로 위상차 Rpva가 크게 변동하는 일이 없고, 편광자의 두께 분포의 얼룩짐이 작다는 것을 보여주고 있다. 또한, 표 2로부터, 비교예의 위상차 분포의 주기 강도의 최대치는 4.8 nm인 데 대하여, 실시예 1~3의 위상차 분포의 주기 강도의 최대치는 2 nm 이하라는 것을 확인할 수 있었다. 이로부터, 제2 건조 공정의 길이를 제어함으로써 편광자의 두께 분포의 얼룩짐을 작게 할 수 있고, 편광자에 있어서의 폴리비닐알코올계 수지의 위상차 분포의 주기 강도를 2 nm 이하로 할 수 있다는 것이 확인되었다.
또한, 실시예 2에 있어서의 위상차 분포의 주기 강도의 최대치가 실시예 3에 있어서의 위상차 분포의 주기 강도의 최대치보다도 작으면서 또한 실시예 1에 있어서의 위상차 분포의 주기 강도의 최대치가 실시예 2에 있어서의 위상차 분포의 주기 강도의 최대치보다도 작으므로, 제2 건조 공정의 길이를 작게 할수록 편광자의 위상차 분포의 주기 강도를 작게 할 수 있고, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있다는 것이 확인되었다.
표 1 및 표 2로부터, 비교예에서는 강하게 시인하기 쉬운 줄기 형상의 얼룩짐이 시인된 데 대하여, 실시예 1~3에서는 얼룩짐이 거의 시인되지 않았음이 확인되었다. 이에 따라, 제2 건조 공정의 길이를 제어함으로써, 편광자의 두께 분포의 얼룩짐을 작게 할 수 있다는 것이 확인되었다.
이상의 각 결과로부터, 실시예 1~3에 따르면, 박형이면서 또한 두께 분포의 얼룩짐이 작은 편광자를 얻을 수 있다는 것이 확인되었다.
1: 편광 필름, 10: 편광자, 11: 보호 필름, 20: 기재 필름(기재), 31: 프라이머층용 도공액, 32: 프라이머층, 33: 수지층용 도공액, 34: 수지층, S1: 프라이머층 형성 공정, S2: 수지층 형성 공정, S3: 연신 공정, S4: 염색 공정

Claims (11)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 폴리비닐알코올계 수지 중에 이색성 색소가 배향된 편광자의 제조 방법으로서, 상기 편광자의 두께는 10 ㎛ 이하이고,
    기재 상에 폴리비닐알코올계 수지를 형성 재료로 하는 수지층을 형성하는 수지층 형성 공정과,
    상기 기재와 함께 상기 수지층을 연신하는 연신 공정과,
    상기 수지층에 상기 이색성 색소를 흡착시키는 염색 공정을 포함하고,
    상기 수지층 형성 공정은,
    상기 기재 상에 폴리비닐알코올계 수지를 포함하는 수지층용 도공액을 도포하는 공정과, 도포된 상기 수지층용 도공액을 건조시키는 공정을 포함하고,
    상기 수지층용 도공액을 건조시키는 공정의 길이는 140초 이하이고,
    상기 수지층용 도공액의 건조 속도는 1.6 질량%/초 이상이고, 상기 건조 속도는 수지층용 도공액에 포함되는 용매가 30 질량%에서 10 질량%까지 저감할 때까지 사이에 있어서의 건조 속도이고,
    상기 수지층용 도공액 중의 폴리비닐알코올계 수지의 농도가 15 질량% 이하이고,
    상기 수지층의 두께는 20 ㎛ 이하인 것을 특징으로 하는 편광자의 제조 방법.
  10. 제9항에 있어서, 상기 수지층 형성 공정보다도 전에, 상기 기재 상에 프라이머층을 형성하는 프라이머층 형성 공정을 추가로 포함하고,
    상기 프라이머층 형성 공정은,
    상기 기재 상에 프라이머층용 도공액을 도포하는 공정과,
    도포된 상기 프라이머층용 도공액을 건조시키는 공정을 포함하는 편광자의 제조 방법.
  11. 제9항 또는 제10항에 있어서, 상기 수지층용 도공액은 물을 추가로 포함하고,
    상기 수지층용 도공액을 건조시키는 공정은 80℃ 이상에서 행하는 편광자의 제조 방법.
KR1020170033159A 2016-03-22 2017-03-16 편광자, 편광 필름 및 편광자의 제조 방법 KR102548664B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2016-056782 2016-03-22
JP2016056782 2016-03-22
JPJP-P-2016-236868 2016-12-06
JP2016236868A JP2017173793A (ja) 2016-03-22 2016-12-06 偏光子、偏光フィルム、および偏光子の製造方法

Publications (2)

Publication Number Publication Date
KR20170110023A KR20170110023A (ko) 2017-10-10
KR102548664B1 true KR102548664B1 (ko) 2023-06-27

Family

ID=59972996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170033159A KR102548664B1 (ko) 2016-03-22 2017-03-16 편광자, 편광 필름 및 편광자의 제조 방법

Country Status (3)

Country Link
JP (2) JP2017173793A (ko)
KR (1) KR102548664B1 (ko)
TW (1) TWI823832B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358739B2 (ja) * 2018-03-02 2023-10-11 住友化学株式会社 偏光板および偏光板の製造方法
JP7041017B2 (ja) * 2018-07-25 2022-03-23 日東電工株式会社 偏光膜および偏光膜の製造方法
US11351710B2 (en) * 2018-11-05 2022-06-07 Case Western Reserve University Multilayered structures and uses thereof in security markings
JP6678274B1 (ja) * 2018-11-22 2020-04-08 住友化学株式会社 積層フィルム巻回体、ハードコートフィルム付き積層体、及び偏光板
JP7469893B2 (ja) * 2020-02-04 2024-04-17 住友化学株式会社 偏光フィルムの製造方法及び偏光フィルムの製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058754A (ja) * 2004-11-02 2012-03-22 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製造方法
JP2014085616A (ja) * 2012-10-26 2014-05-12 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP2015106054A (ja) * 2013-11-29 2015-06-08 住友化学株式会社 偏光子及びそれを含む偏光板
JP2016028875A (ja) * 2014-07-16 2016-03-03 日東電工株式会社 積層体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098653A (ja) 2007-09-27 2009-05-07 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
KR20120076888A (ko) * 2010-12-30 2012-07-10 제일모직주식회사 편광판 및 그 제조방법
CN104311853B (zh) * 2011-03-29 2018-05-25 可乐丽股份有限公司 聚乙烯醇系聚合物薄膜及其制造方法
JP6066707B2 (ja) * 2012-12-13 2017-01-25 日東電工株式会社 偏光フィルムの製造方法
US20160252660A1 (en) * 2013-10-29 2016-09-01 Sumitomo Chemical Company, Limited Polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058754A (ja) * 2004-11-02 2012-03-22 Nippon Synthetic Chem Ind Co Ltd:The ポリビニルアルコール系フィルムの製造方法
JP2014085616A (ja) * 2012-10-26 2014-05-12 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP2015106054A (ja) * 2013-11-29 2015-06-08 住友化学株式会社 偏光子及びそれを含む偏光板
JP2016028875A (ja) * 2014-07-16 2016-03-03 日東電工株式会社 積層体の製造方法

Also Published As

Publication number Publication date
TW201802168A (zh) 2018-01-16
KR20170110023A (ko) 2017-10-10
TWI823832B (zh) 2023-12-01
JP2017173793A (ja) 2017-09-28
JP2018041113A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
KR102548664B1 (ko) 편광자, 편광 필름 및 편광자의 제조 방법
TWI657275B (zh) 偏光性積層膜及偏光板的製造方法、偏光板以及顯示裝置
TWI795379B (zh) 偏光膜及偏光性積層膜之製造方法
TWI565976B (zh) 偏光性積層膜的製造方法及偏光板的製造方法
JP2019053267A (ja) 偏光膜、偏光板、および偏光膜の製造方法
JP6296107B2 (ja) 積層フィルム、積層フィルムの製造方法、偏光性積層フィルムの製造方法、偏光板の製造方法
TW201411204A (zh) 偏光板之製造方法
TW201921053A (zh) 偏光板、偏光板捲材及偏光膜之製造方法
TW201625998A (zh) 偏光板之製造方法
TW201921004A (zh) 偏光板、偏光板捲材及偏光膜之製造方法
JP2015203828A (ja) 延伸積層体およびその製造方法
TW201524772A (zh) 光學積層體之製造方法
KR101796893B1 (ko) 적층 필름의 제조 방법
JP6543447B2 (ja) 偏光性積層フィルムの製造方法およびプロテクトフィルム付延伸フィルム
JP6076449B1 (ja) 偏光フィルムの製造方法
JP6109862B2 (ja) 積層体の製造方法
WO2015133269A1 (ja) 偏光板の製造方法
TWI716454B (zh) 偏光件及其製造方法
CN107219583B (zh) 偏振片、偏振膜以及偏振片的制造方法
JP6594915B2 (ja) 偏光フィルムの製造方法
JP5563412B2 (ja) 薄型偏光膜の製造方法
JP2019194656A (ja) 偏光膜、偏光板、偏光板ロール、および偏光膜の製造方法
JP6050881B2 (ja) 積層体の製造方法
KR102496756B1 (ko) 편광판의 제조 방법
TW201945202A (zh) 偏光板、偏光板捲材、及偏光膜之製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant