KR102545861B1 - Conductive material - Google Patents

Conductive material Download PDF

Info

Publication number
KR102545861B1
KR102545861B1 KR1020227015751A KR20227015751A KR102545861B1 KR 102545861 B1 KR102545861 B1 KR 102545861B1 KR 1020227015751 A KR1020227015751 A KR 1020227015751A KR 20227015751 A KR20227015751 A KR 20227015751A KR 102545861 B1 KR102545861 B1 KR 102545861B1
Authority
KR
South Korea
Prior art keywords
particles
conductive
resin core
circuit member
insulating
Prior art date
Application number
KR1020227015751A
Other languages
Korean (ko)
Other versions
KR20220068267A (en
Inventor
겐이치 히라야마
히로미 구보데
고지 에지마
Original Assignee
데쿠세리아루즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015201767A external-priority patent/JP2016089153A/en
Application filed by 데쿠세리아루즈 가부시키가이샤 filed Critical 데쿠세리아루즈 가부시키가이샤
Publication of KR20220068267A publication Critical patent/KR20220068267A/en
Application granted granted Critical
Publication of KR102545861B1 publication Critical patent/KR102545861B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/188Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping having an uneven wire-receiving surface to improve the contact

Abstract

산화물층에 대해 우수한 도통 신뢰성이 얻어지는 도전 재료를 제공한다. 도전 재료는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 배치되어, 돌기 (30a) 를 형성하는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면에 배치되는 도전층 (30) 을 구비하고, 절연성 입자 (20) 의 모스 경도가 7 보다 큰 도전성 입자를 함유한다. 이로써, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다.A conductive material from which excellent conduction reliability can be obtained with respect to an oxide layer. The conductive material includes resin core particles 10, insulating particles 20 arranged in plurality on the surface of the resin core particles 10 to form projections 30a, resin core particles 10 and insulating particles 20 ), and the Mohs hardness of the insulating particle 20 contains electrically conductive particle larger than 7. As a result, the conductive particles penetrate the oxide layer on the surface of the electrode and penetrate sufficiently, and excellent conduction reliability is obtained.

Description

도전 재료 {CONDUCTIVE MATERIAL}Conductive material {CONDUCTIVE MATERIAL}

본 발명은 회로 부재끼리를 전기적으로 접속하는 도전 재료에 관한 것이다. 본 출원은, 일본에 있어서 2014년 10월 29일에 출원된 일본 특허출원 2014-220448, 및 2015년 10월 13일에 출원된 일본 특허출원 2015-201767 을 기초로 하여 우선권을 주장하는 것이며, 본 출원은 참조됨으로써, 본 출원에 원용된다.The present invention relates to a conductive material that electrically connects circuit members to each other. This application claims priority based on Japanese Patent Application No. 2014-220448, filed on October 29, 2014, and Japanese Patent Application No. 2015-201767, filed on October 13, 2015 in Japan. The application is incorporated herein by reference.

최근, 회로 부재의 배선으로서, 생산 비용이 높은 ITO (Indium Tin Oxide) 대신에, IZO (Indium Zinc Oxide) 가 사용되고 있다. IZO 배선은, 표면이 평활하고, 표면에 산화물층 (부동태) 이 형성되어 있다. 또, 예를 들어 알루미늄 배선에서는, 부식을 방지하기 위해서 표면에 TiO2 등의 산화물층의 보호층이 형성되는 경우가 있다.In recent years, IZO (Indium Zinc Oxide) has been used as wiring for circuit members instead of ITO (Indium Tin Oxide), which is expensive to produce. The surface of the IZO wiring is smooth, and an oxide layer (passive state) is formed on the surface. Further, for example, in aluminum wiring, a protective layer of an oxide layer such as TiO 2 may be formed on the surface to prevent corrosion.

그러나, 산화물층은 단단하기 때문에, 종래의 도전 재료에서는, 도전성 입자가 산화물층을 뚫고 충분히 파고들지 않아, 충분한 도통 신뢰성이 얻어지지 않는 경우가 있었다.However, since the oxide layer is hard, in conventional conductive materials, conductive particles do not penetrate the oxide layer sufficiently, and sufficient conduction reliability cannot be obtained in some cases.

일본 공개특허공보 2013-149613호Japanese Unexamined Patent Publication No. 2013-149613

본 발명은, 이와 같은 종래의 실정을 감안하여 제안된 것으로, 산화물층에 대해 우수한 도통 신뢰성이 얻어지는 도전 재료를 제공한다.The present invention has been proposed in view of such a conventional situation, and provides a conductive material capable of obtaining excellent conduction reliability with respect to an oxide layer.

본 발명자는 예의 검토를 실시한 결과, 도전성 입자의 돌기를 형성하는 절연성 입자의 모스 경도를 소정값보다 큰 것으로 함으로써, 우수한 도통 저항이 얻어지는 것을 알아내었다.As a result of intensive studies, the present inventors have found that excellent conduction resistance can be obtained by setting the Mohs hardness of the insulating particles forming the protrusions of the conductive particles to be larger than a predetermined value.

즉, 본 발명에 관련된 도전 재료는, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 것을 특징으로 한다.That is, the conductive material according to the present invention includes resin core particles, insulating particles arranged in plurality on the surface of the resin core particles to form projections, and a conductive layer arranged on the surfaces of the resin core particles and the insulating particles. It is characterized in that it contains conductive particles having a Mohs hardness of the insulating particles greater than 7.

또, 본 발명에 관련된 접속 구조체는, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자에 의해 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지는 것을 특징으로 한다.Further, the bonded structure according to the present invention includes resin core particles, insulating particles arranged in plurality on the surface of the resin core particles to form projections, and a conductive layer arranged on the surfaces of the resin core particles and the insulating particles. and the terminal of the first circuit member and the terminal of the second circuit member are connected by conductive particles having a Mohs hardness of the insulating particles greater than 7.

또, 본 발명에 관련된 접속 구조체의 제조 방법은, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 도전 재료를 개재하여, 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착하는 것을 특징으로 한다.Further, the method for manufacturing a bonded structure according to the present invention includes resin core particles, insulating particles arranged in plurality on the surface of the resin core particles to form protrusions, and arranged on the surfaces of the resin core particles and the insulating particles. A conductive layer is provided, and the terminal of the first circuit member and the terminal of the second circuit member are crimped through a conductive material containing conductive particles having a Mohs hardness of more than 7 of the insulating particles.

본 발명에 의하면, 돌기를 형성하는 절연성 입자의 모스 경도가 크기 때문에, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다.According to the present invention, since the Mohs hardness of the insulating particles forming the projections is large, the conductive particles penetrate the oxide layer on the surface of the electrode sufficiently to penetrate, and excellent conduction reliability is obtained.

도 1 은, 도전성 입자의 제 1 구성예의 개략을 나타내는 단면도이다.
도 2 는, 도전성 입자의 제 2 구성예의 개략을 나타내는 단면도이다.
도 3 은, 도전성 입자의 제 3 구성예의 개략을 나타내는 단면도이다.
도 4 는, 압착시의 도전성 입자의 개략을 나타내는 단면도이다.
1 is a cross-sectional view schematically illustrating a first structural example of conductive particles.
2 is a cross-sectional view schematically illustrating a second structural example of conductive particles.
3 is a cross-sectional view schematically illustrating a third structural example of conductive particles.
4 is a cross-sectional view schematically illustrating conductive particles at the time of crimping.

이하, 본 발명의 실시형태에 대해, 도면을 참조하면서 하기 순서로 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail in the following order, referring drawings.

1. 도전성 입자1. Conductive Particles

2. 도전 재료2. Challenge material

3. 접속 구조체의 제조 방법3. Manufacturing method of connection structure

4. 실시예4. Examples

<1. 도전성 입자><1. Conductive Particles>

본 실시형태에 관련된 도전성 입자는, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 것이다. 이로써, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다. 특히, 피착체인 회로 부재가 PET (Poly Ethylene Terephthalate) 기판 등의 저탄성률의 플라스틱 기판인 경우, 압착시의 압력을 높게 하는 일 없이, 기재 변형의 영향을 경감시켜 저저항을 실현할 수 있기 때문에, 매우 유효하다.The conductive particle according to the present embodiment includes a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form projections, and a conductive layer disposed on the resin core particle and the surface of the insulating particle, The Mohs hardness of the insulating particles is greater than 7. As a result, the conductive particles penetrate the oxide layer on the surface of the electrode and penetrate sufficiently, and excellent conduction reliability is obtained. In particular, when the circuit member as an adherend is a plastic substrate with a low elastic modulus such as a PET (Poly Ethylene Terephthalate) substrate, the effect of deformation of the substrate can be reduced without increasing the pressure during compression, so that low resistance can be realized. Valid.

[제 1 구성예][First configuration example]

도 1 은, 도전성 입자의 제 1 구성예의 개략을 나타내는 단면도이다. 제 1 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 돌기 (30a) 의 심재가 되는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 를 피복하는 도전층 (30) 을 구비한다.1 is a cross-sectional view schematically illustrating a first structural example of conductive particles. The conductive particles of the first structural example include resin core particles 10, insulating particles 20 attached to the surface of the resin core particles 10 in plural numbers and serving as core materials of the projections 30a, and resin core particles 10 and a conductive layer (30) covering the insulating particles (20).

수지 코어 입자 (10) 로는, 벤조구아나민 수지, 아크릴 수지, 스티렌 수지, 실리콘 수지, 폴리부타디엔 수지 등을 들 수 있고, 또, 이들 수지를 구성하는 모노머에 기초하는 반복 단위의 적어도 2 종 이상을 조합한 구조를 갖는 공중합체를 들 수 있다. 이들 중에서도, 디비닐벤젠, 테트라메틸올메탄테트라아크릴레이트 및 스티렌을 조합하여 얻어지는 공중합체를 사용하는 것이 바람직하다.Examples of the resin core particles 10 include benzoguanamine resins, acrylic resins, styrene resins, silicone resins, polybutadiene resins, and the like, and at least two or more types of repeating units based on monomers constituting these resins. and copolymers having combined structures. Among these, it is preferable to use a copolymer obtained by combining divinylbenzene, tetramethylolmethane tetraacrylate and styrene.

또, 수지 코어 입자 (10) 는, 20 % 압축되었을 때의 압축 탄성률 (20 % K 값) 이 500 ∼ 20000 N/㎟ 인 것이 바람직하다. 수지 코어 입자 (10) 의 20 % K 값이 상기 범위 내임으로써, 결과적으로 돌기가 전극 표면의 산화물층을 뚫을 수 있다. 이 때문에, 전극과 도전성 입자의 도전층이 충분히 접촉하여, 전극간의 접속 저항을 저하시킬 수 있다.Moreover, it is preferable that the compressive elastic modulus (20% K value) of the resin core particle 10 when compressed by 20% is 500-20000 N/mm<2>. When the 20% K value of the resin core particle 10 is within the above range, as a result, the projections can penetrate the oxide layer on the surface of the electrode. For this reason, an electrode and the conductive layer of electroconductive particle fully contact, and connection resistance between electrodes can be reduced.

수지 코어 입자 (10) 의 압축 탄성률 (20 % K 값) 은, 다음과 같이 측정할 수 있다. 미소 압축 시험기를 사용하여, 원주 (직경 50 μm, 다이아몬드제) 의 평활 압자 단면에서, 압축 속도 2.6 mN/초, 및 최대 시험 하중 10 gf 의 조건하에서 도전성 입자를 압축한다. 이 때의 하중값 (N) 및 압축 변위 (㎜) 를 측정한다. 얻어진 측정값으로부터, 압축 탄성률 (20 % K 값) 을 하기 식에 의해 구할 수 있다. 또한, 미소 압축 시험기로서 예를 들어, 피셔사 제조 「피셔스코프 H-100」 등이 사용된다.The compressive modulus (20% K value) of the resin core particles 10 can be measured as follows. Using a micro compression tester, conductive particles are compressed in a smooth indenter cross section of circumference (50 μm in diameter, made of diamond) under conditions of a compression rate of 2.6 mN/sec and a maximum test load of 10 gf. The load value (N) and compression displacement (mm) at this time are measured. From the obtained measured values, the compressive modulus (20% K value) can be obtained by the following formula. In addition, as a micro-compression tester, "Fisher Scope H-100" by Fischer, etc. is used, for example.

K 값 (N/㎟) = (3/21/2)·F·S-3/2·R-1/2 K value (N/㎟) = (3/2 1/2 ) F S -3/2 R R -1/2

F : 도전성 입자가 20 % 압축 변형되었을 때의 하중값 (N)F: Load value when conductive particles are compressed and deformed by 20% (N)

S : 도전성 입자가 20 % 압축 변형되었을 때의 압축 변위 (㎜)S: Compression displacement (mm) when conductive particles are compressed and deformed by 20%

R : 도전성 입자의 반경 (㎜)R: Radius of conductive particles (mm)

수지 코어 입자 (10) 의 평균 입자경은 2 ∼ 10 μm 인 것이 바람직하다. 본 명세서에 있어서, 평균 입자경이란, 레이저 회절·산란법에 의해 구한 입도 분포에 있어서의 적산값 50 % 에서의 입경 (D50) 을 의미한다.It is preferable that the average particle diameter of the resin core particle 10 is 2-10 micrometers. In this specification, the average particle diameter means the particle diameter (D50) at 50% of the integrated value in the particle size distribution determined by the laser diffraction/scattering method.

절연성 입자 (20) 는, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 전극 표면의 산화물층을 뚫기 위한 돌기 (30a) 의 심재가 된다. 절연성 입자 (20) 는, 모스 경도가 7 보다 크고, 9 이상인 것이 바람직하다. 절연성 입자 (20) 의 경도가 높음으로써, 돌기 (30a) 가 전극 표면의 산화물을 뚫을 수 있다. 또, 돌기 (30a) 의 심재가 절연성 입자 (20) 임으로써, 도전성 입자를 사용했을 때에 비해 마이그레이션의 요인이 적어진다.A plurality of insulating particles 20 are attached to the surface of the resin core particle 10 and serve as a core material for the protrusion 30a for piercing the oxide layer on the surface of the electrode. The insulating particle 20 has a Mohs hardness greater than 7, and it is preferable that it is 9 or more. When the hardness of the insulating particle 20 is high, the protrusion 30a can pierce the oxide on the surface of the electrode. Moreover, compared with the case where electroconductive particle is used because the core material of processus|protrusion 30a is the insulating particle 20, the factor of migration is reduced.

절연성 입자 (20) 로는, 지르코니아 (모스 경도 8 ∼ 9), 알루미나 (모스 경도 9), 탄화텅스텐 (모스 경도 9) 및 다이아몬드 (모스 경도 10) 등을 들 수 있고, 이들은 단독으로 사용해도 되고, 2 종류 이상을 조합하여 사용해도 된다. 이들 중에서도, 경제성의 관점에서 알루미나를 사용하는 것이 바람직하다.As the insulating particle 20, zirconia (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9), diamond (Mohs hardness 10), etc. are mentioned, These may be used independently, You may use it combining two or more types. Among these, it is preferable to use alumina from a viewpoint of economical efficiency.

또, 절연성 입자 (20) 의 평균 입자경은, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 100 ㎚ 이상 200 ㎚ 이하이다. 또, 수지 코어 입자 (20) 의 표면에 형성된 돌기의 개수는, 바람직하게는 1 ∼ 500, 보다 바람직하게는 30 ∼ 200 이다. 이와 같은 평균 입자경의 절연성 입자 (20) 를 사용하여, 수지 코어 입자 (20) 의 표면에 소정수의 돌기 (30a) 를 형성함으로써, 돌기 (30a) 가 전극 표면의 산화물을 뚫어, 전극간의 접속 저항을 효과적으로 낮게 할 수 있다.In addition, the average particle diameter of the insulating particles 20 is preferably 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less. Moreover, the number of projections formed on the surface of the resin core particle 20 is preferably 1 to 500, more preferably 30 to 200. By forming a predetermined number of protrusions 30a on the surface of the resin core particle 20 using insulating particles 20 having such an average particle diameter, the protrusions 30a pierce the oxide on the surface of the electrode, thereby reducing the connection resistance between the electrodes. can be effectively lowered.

도전층 (30) 은, 수지 코어 입자 (10) 및 절연성 입자 (20) 를 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (30a) 를 갖는다. 도전층 (30) 은, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The conductive layer 30 covers the resin core particles 10 and the insulating particles 20 and has projections 30a raised by the plurality of insulating particles 20 . The conductive layer 30 is preferably nickel or a nickel alloy. As a nickel alloy, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P, etc. are mentioned. Among these, it is preferable to use low-resistance Ni-W-B.

또, 도전층 (30) 의 두께는, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 도전층 (30) 의 두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 두께가 지나치게 크면 돌기 (30a) 의 높이가 없어져 버린다.Moreover, the thickness of the conductive layer 30 is preferably 50 nm or more and 250 nm or less, more preferably 80 nm or more and 150 nm or less. When the thickness of the conductive layer 30 is too small, it becomes difficult to make it function as conductive particles, and when the thickness is too large, the height of the protrusion 30a disappears.

제 1 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를 부착시킨 후, 도전층 (30) 을 형성하는 방법에 의해 얻을 수 있다. 또, 수지 코어 입자 (10) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 수지 코어 입자 (10) 의 분산액 중에, 절연성 입자 (20) 를 첨가하고, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 도전층을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.The electroconductive particle of the 1st structural example can be obtained by the method of forming the conductive layer 30 after making the insulating particle 20 adhere to the surface of the resin core particle 10. In addition, as a method of depositing the insulating particles 20 on the surface of the resin core particles 10, for example, adding the insulating particles 20 to a dispersion of the resin core particles 10, and then adding the resin core particles The insulating particle 20 is accumulated and adhered to the surface of (10) by, for example, van der Waals force. Moreover, as a method of forming a conductive layer, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. Among these, the method by electroless plating which is easy to form a conductive layer is preferable.

[제 2 구성예][Second configuration example]

도 2 는, 도전성 입자의 제 2 구성예의 개략을 나타내는 단면도이다. 제 2 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 돌기 (32a) 의 심재가 되는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면을 피복하는 제 1 도전층 (31) 과, 도전층 (31) 을 피복하는 제 2 도전층 (32) 을 구비한다. 즉, 제 2 구성예는, 제 1 구성예의 도전층 (30) 을 2 층 구조로 한 것이다. 도전층을 2 층 구조로 함으로써, 최외각을 구성하는 제 2 도전층 (32) 의 밀착성을 향상시켜, 도통 저항을 저하시킬 수 있다.2 is a cross-sectional view schematically illustrating a second structural example of conductive particles. The conductive particles of the second structural example include resin core particles 10, insulating particles 20 attached to the surface of the resin core particles 10 in plural numbers and serving as core materials for the projections 32a, and resin core particles 10 And the 1st conductive layer 31 which coat|covers the surface of the insulating particle 20, and the 2nd conductive layer 32 which coat|covers the conductive layer 31 are provided. That is, in the second configuration example, the conductive layer 30 of the first configuration example has a two-layer structure. By making the conductive layer a two-layer structure, the adhesion of the second conductive layer 32 constituting the outermost shell can be improved, and the conduction resistance can be reduced.

수지 코어 입자 (10) 및 절연성 입자 (20) 는, 제 1 구성예와 동일하기 때문에, 여기서는 설명을 생략한다.Since the resin core particles 10 and the insulating particles 20 are the same as those in the first structural example, descriptions thereof are omitted here.

제 1 도전층 (31) 은, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면을 피복하고, 제 2 도전층 (32) 의 하지가 된다. 제 1 도전층 (31) 으로는, 제 2 도전층 (32) 의 밀착성이 향상되면 특별히 한정되지 않고, 예를 들어, 니켈, 니켈 합금, 구리, 은 등을 들 수 있다.The first conductive layer 31 covers the surfaces of the resin core particles 10 and the insulating particles 20 and serves as a base for the second conductive layer 32 . It will not specifically limit as long as the adhesiveness of the 2nd conductive layer 32 improves as 1st conductive layer 31, For example, nickel, a nickel alloy, copper, silver etc. are mentioned.

제 2 도전층 (32) 은, 제 1 도전층 (31) 을 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (32a) 를 갖는다. 제 2 도전층 (32) 은, 제 1 구성예와 동일하게, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The second conductive layer 32 covers the first conductive layer 31 and has projections 32a raised by a plurality of insulating particles 20 . It is preferable that the 2nd conductive layer 32 is nickel or a nickel alloy similarly to the 1st structural example. As a nickel alloy, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P, etc. are mentioned. Among these, it is preferable to use low-resistance Ni-W-B.

또, 제 1 도전층 (31) 및 제 2 도전층 (32) 의 총두께는, 제 1 구성예의 도전층 (30) 과 동일하게, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 총두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 총두께가 지나치게 크면 돌기 (32a) 의 높이가 없어져 버린다.In addition, the total thickness of the first conductive layer 31 and the second conductive layer 32 is the same as that of the conductive layer 30 of the first configuration example, preferably 50 nm or more and 250 nm or less, more preferably 80 nm. nm or more and 150 nm or less. When the total thickness is too small, it becomes difficult to function as conductive particles, and when the total thickness is too large, the height of the projections 32a disappears.

제 2 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를 부착시킨 후, 제 1 도전층 (31) 을 형성한 후, 제 2 도전층 (32) 을 형성하는 방법에 의해 얻을 수 있다. 또, 수지 코어 입자 (10) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 수지 코어 입자 (10) 의 분산액 중에 절연성 입자 (20) 를 첨가하고, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 제 1 도전층 (31) 및 제 2 도전층 (32) 을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.The method of forming the second conductive layer 32 after the insulating particle 20 is adhered to the surface of the resin core particle 10, the first conductive layer 31 is formed, and then the conductive particle of the second structural example is formed. can be obtained by Further, as a method of adhering the insulating particles 20 on the surface of the resin core particles 10, for example, adding the insulating particles 20 to a dispersion of the resin core particles 10, and then adding the resin core particles ( 10), the insulating particles 20 are accumulated and adhered to the surface by, for example, van der Waals force. Moreover, as a method of forming the 1st conductive layer 31 and the 2nd conductive layer 32, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. there is. Among these, the method by electroless plating which is easy to form a conductive layer is preferable.

[제 3 구성예][Example of the 3rd configuration]

도 3 은, 도전성 입자의 제 3 구성예의 개략을 나타내는 단면도이다. 제 3 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면을 피복하는 제 1 도전층 (33) 과, 제 1 도전층 (33) 의 표면에 복수 부착되어, 돌기 (34a) 의 심재가 되는 절연성 입자 (20) 와, 제 1 도전층 (33) 및 절연성 입자 (20) 의 표면을 피복하는 제 2 도전층 (34) 을 구비한다. 즉, 제 3 구성예는, 제 1 도전층 (33) 의 표면에 절연성 입자 (20) 를 부착시키고, 추가로 제 2 도전층 (34) 을 형성한 것이다. 이로써, 압착시에 절연성 입자 (20) 가 수지 코어 입자 (10) 에 파고드는 것을 방지하여, 돌기가 전극 표면의 산화물층을 용이하게 뚫을 수 있다.3 is a cross-sectional view schematically illustrating a third structural example of conductive particles. The conductive particles of the third structural example are adhered in plurality to the resin core particles 10, the first conductive layer 33 covering the surface of the resin core particle 10, and the surface of the first conductive layer 33, Insulating particles 20 serving as the core of the protrusion 34a, a first conductive layer 33, and a second conductive layer 34 covering the surfaces of the insulating particles 20 are provided. That is, the 3rd structural example is what made the insulating particle 20 adhere to the surface of the 1st conductive layer 33, and also formed the 2nd conductive layer 34. This prevents the insulating particles 20 from penetrating into the resin core particles 10 during compression, so that the projections can easily pierce the oxide layer on the surface of the electrode.

수지 코어 입자 (10) 및 절연성 입자 (20) 는, 제 1 구성예와 동일하기 때문에 여기서는 설명을 생략한다.Since the resin core particles 10 and the insulating particles 20 are the same as those in the first structural example, descriptions thereof are omitted here.

제 1 도전층 (33) 은, 수지 코어 입자 (10) 의 표면을 피복하고, 절연성 입자 (20) 의 부착면 및 제 2 도전층 (34) 의 하지가 된다. 제 1 도전층 (33) 으로는, 제 2 도전층 (34) 의 밀착성이 향상되면 특별히 한정되지 않고, 예를 들어, 니켈, 니켈 합금, 구리, 은 등을 들 수 있다.The 1st conductive layer 33 covers the surface of the resin core particle 10, and becomes the adhesion surface of the insulating particle 20 and the base of the 2nd conductive layer 34. It will not specifically limit as long as the adhesiveness of the 2nd conductive layer 34 improves as 1st conductive layer 33, For example, nickel, a nickel alloy, copper, silver etc. are mentioned.

또, 제 1 도전층 (33) 의 두께는, 바람직하게는 10 ㎚ 이상 200 ㎚ 이하, 보다 바람직하게는 50 ㎚ 이상 150 ㎚ 이하이다. 두께가 지나치게 크면 수지 코어 입자 (10) 의 탄성의 효과가 저하되기 때문에, 도통 신뢰성이 저하되어 버린다.In addition, the thickness of the first conductive layer 33 is preferably 10 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less. Since the effect of elasticity of the resin core particle 10 will fall when thickness is too large, conduction reliability will fall.

제 2 도전층 (34) 은, 절연성 입자 (20) 및 제 1 도전층 (33) 을 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (34a) 를 갖는다. 제 2 도전층 (34) 은, 제 1 구성예와 동일하게, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The second conductive layer 34 covers the insulating particles 20 and the first conductive layer 33 and has projections 34a raised by the plurality of insulating particles 20 . It is preferable that the 2nd conductive layer 34 is nickel or a nickel alloy similarly to the 1st structural example. As a nickel alloy, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P, etc. are mentioned. Among these, it is preferable to use low-resistance Ni-W-B.

또, 제 2 도전층 (34) 의 두께는, 제 1 구성예의 도전층 (30) 과 동일하게, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 총두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 총두께가 지나치게 크면 돌기 (34a) 의 높이가 없어져 버린다.In addition, the thickness of the second conductive layer 34 is preferably 50 nm or more and 250 nm or less, more preferably 80 nm or more and 150 nm or less, similarly to the conductive layer 30 of the first structural example. When the total thickness is too small, it becomes difficult to function as conductive particles, and when the total thickness is too large, the height of the projections 34a disappears.

제 3 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 제 1 도전층 (33) 을 형성한 후, 절연성 입자 (20) 를 부착시켜, 제 2 도전층 (34) 을 형성하는 방법에 의해 얻을 수 있다. 또, 제 1 도전층 (33) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 제 1 도전층 (33) 이 형성된 수지 코어 입자 (10) 의 분산액 중에, 절연성 입자 (20) 를 첨가하고, 제 1 도전층 (33) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 제 1 도전층 (33) 및 제 2 도전층 (34) 을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.The conductive particle of the third configuration example is a method in which the first conductive layer 33 is formed on the surface of the resin core particle 10, and then the insulating particle 20 is attached to form the second conductive layer 34. can be obtained by In addition, as a method of adhering the insulating particles 20 on the surface of the first conductive layer 33, for example, in a dispersion of the resin core particles 10 on which the first conductive layer 33 is formed, the insulating particles (20) is added, and the insulating particle 20 is integrated and adhered to the surface of the first conductive layer 33 by, for example, van der Waals force. In addition, as a method of forming the 1st conductive layer 33 and the 2nd conductive layer 34, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. there is. Among these, the method by electroless plating which is easy to form a conductive layer is preferable.

<2. 도전 재료><2. conductive material>

본 실시형태에 관련된 도전 재료는, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유한다. 도전 재료로는, 필름상, 페이스트상 등의 형상을 들 수 있고, 예를 들어, 이방성 도전 필름 (ACF : Anisotropic Conductive Film), 이방성 도전 페이스트 (ACP : Anisotropic Conductive Paste) 등을 들 수 있다. 또, 도전 재료의 경화형으로는, 열 경화형, 광 경화형, 광열 병용 경화형 등을 들 수 있다.The electrically-conductive material according to the present embodiment includes resin core particles, insulating particles disposed in a plurality on the surface of the resin core particles to form protrusions, and a conductive layer disposed on the surfaces of the resin core particles and the insulating particles, and has insulating properties. It contains electroconductive particle whose Mohs hardness is greater than 7. Examples of the conductive material include films and pastes, and examples thereof include an anisotropic conductive film (ACF) and an anisotropic conductive paste (ACP). Moreover, as a hardening type of an electrically-conductive material, a thermosetting type, a photocuring type, a light-heat combined use hardening type, etc. are mentioned.

이하에서는, 도전성 입자를 함유하는 ACF 층과 도전성 입자를 함유하지 않는 NCF (Non Conductive Film) 층이 적층된 2 층 구조의 열 경화형의 이방성 도전 필름을 예로 들어 설명한다. 또, 열 경화형의 이방성 도전 필름으로는, 예를 들어, 카티온 경화형, 아니온 경화형, 라디칼 경화형, 또는 이들을 병용할 수 있지만, 여기서는 아니온 경화형의 이방성 도전 필름에 대해 설명한다.Hereinafter, a thermosetting anisotropic conductive film having a two-layer structure in which an ACF layer containing conductive particles and a non-conductive film (NCF) layer containing no conductive particles are laminated will be described as an example. In addition, as a thermosetting type anisotropic conductive film, a cation-curing type, anion-curing type, a radical curing type, or these can be used together, for example, but an anion-curing type anisotropic conductive film is demonstrated here.

아니온 경화형의 이방성 도전 필름은, ACF 층 및 NCF 층은, 바인더로서, 막형성 수지와, 에폭시 수지와, 아니온 중합 개시제를 함유한다.In the anion-curing type anisotropic conductive film, the ACF layer and the NCF layer contain a film-forming resin, an epoxy resin, and an anionic polymerization initiator as binders.

막형성 수지는, 예를 들어 평균 분자량이 10000 이상인 고분자량 수지에 상당하고, 필름 형성성의 관점에서, 10000 ∼ 80000 정도의 평균 분자량인 것이 바람직하다. 막형성 수지로는, 페녹시 수지, 폴리에스테르 수지, 폴리우레탄 수지, 폴리에스테르우레탄 수지, 아크릴 수지, 폴리이미드 수지, 부티랄 수지 등의 여러 가지 수지를 들 수 있고, 이들은 단독으로 사용해도 되고, 2 종류 이상을 조합하여 사용해도 된다. 이들 중에서도, 막형성 상태, 접속 신뢰성 등의 관점에서 페녹시 수지를 바람직하게 사용하는 것이 바람직하다.The film-forming resin corresponds to, for example, a high molecular weight resin having an average molecular weight of 10000 or more, and from the viewpoint of film formation, it is preferable that the average molecular weight is about 10000 to 80000. Examples of the film-forming resin include various resins such as phenoxy resins, polyester resins, polyurethane resins, polyester urethane resins, acrylic resins, polyimide resins, and butyral resins. These may be used alone, You may use it combining two or more types. Among these, it is preferable to use a phenoxy resin suitably from viewpoints of film formation state, connection reliability, etc.

에폭시 수지는, 3 차원 망목 구조를 형성하고, 양호한 내열성, 접착성을 부여하는 것이고, 고형 에폭시 수지와 액상 에폭시 수지를 병용하는 것이 바람직하다. 여기서, 고형 에폭시 수지란, 상온에서 고체인 에폭시 수지를 의미한다. 또, 액상 에폭시 수지란, 상온에서 액상인 에폭시 수지를 의미한다. 또, 상온이란, JIS Z 8703 에서 규정되는 5 ∼ 35 ℃ 의 온도 범위를 의미한다.The epoxy resin forms a three-dimensional network structure and imparts good heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin together. Here, the solid epoxy resin means an epoxy resin that is solid at room temperature. Moreover, a liquid epoxy resin means a liquid epoxy resin at normal temperature. In addition, normal temperature means the temperature range of 5-35 degreeC prescribed|regulated by JIS Z8703.

고형 에폭시 수지로는, 액상 에폭시 수지와 상용하여, 상온에서 고체상이면 특별히 한정되지 않고, 비스페놀 A 형 에폭시 수지, 비스페놀 F 형 에폭시 수지, 다관능형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 노볼락 페놀형 에폭시 수지, 비페닐형 에폭시 수지, 나프탈렌형 에폭시 수지 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 이들 중에서도, 비스페놀 A 형 에폭시 수지를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 신닛테츠 스미킨 화학 (주) 의 상품명 「YD-014」 등을 들 수 있다.The solid epoxy resin is not particularly limited as long as it is compatible with liquid epoxy resin and is solid at room temperature, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin, novolac phenol A type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned, One type can be used individually or in combination of 2 or more types among these. Among these, it is preferable to use a bisphenol A type epoxy resin. As a specific example available on the market, Nippon Steel Sumikin Chemical Co., Ltd. trade name "YD-014", etc. are mentioned.

액상 에폭시 수지로는, 상온에서 액상이면 특별히 한정되지 않고, 비스페놀 A 형 에폭시 수지, 비스페놀 F 형 에폭시 수지, 노볼락 페놀형 에폭시 수지, 나프탈렌형 에폭시 수지 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 특히, 필름의 택성, 유연성 등의 관점에서, 비스페놀 A 형 에폭시 수지를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 미츠비시 화학 (주) 의 상품명 「EP828」 등을 들 수 있다.The liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac phenol type epoxy resins, and naphthalene type epoxy resins. or two or more may be used in combination. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoints of film tackiness, flexibility and the like. As a specific example available on the market, Mitsubishi Chemical Corporation's brand name "EP828" etc. are mentioned.

아니온 중합 개시제로는, 통상 사용되는 공지된 경화제를 사용할 수 있다. 예를 들어, 유기산 디하이드라지드, 디시안디아미드, 아민 화합물, 폴리아미드아민 화합물, 시아네이트에스테르 화합물, 페놀 수지, 산 무수물, 카르복실산, 3 급 아민 화합물, 이미다졸, 루이스산, 브렌스테드산염, 폴리메르캅탄계 경화제, 우레아 수지, 멜라민 수지, 이소시아네이트 화합물, 블록 이소시아네이트 화합물 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 이들 중에서도, 이미다졸 변성체를 핵으로 하고 그 표면을 폴리우레탄으로 피복하여 이루어지는 마이크로 캡슐형 잠재성 경화제를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 아사히 카세이 이 머티리얼즈 (주) 의 상품명 「노바큐어 3941HP」 등을 들 수 있다.As the anionic polymerization initiator, a commonly used known curing agent can be used. For example, organic acid dihydrazide, dicyandiamide, amine compounds, polyamide amine compounds, cyanate ester compounds, phenolic resins, acid anhydrides, carboxylic acids, tertiary amine compounds, imidazoles, Lewis acids, brens tedate salts, polymercaptan-based curing agents, urea resins, melamine resins, isocyanate compounds, block isocyanate compounds, and the like, and among these, one type may be used alone or in combination of two or more types. Among these, it is preferable to use a microcapsule type latent curing agent obtained by using an imidazole modified product as a nucleus and covering the surface with polyurethane. As a specific example available on the market, "Novacure 3941HP", a trade name of Asahi Kasei E-Materials Co., Ltd., etc. is mentioned.

또, 바인더로서, 필요에 따라, 응력 완화제, 실란 커플링제, 무기 필러 등을 배합해도 된다. 응력 완화제로는, 수첨 스티렌-부타디엔 블록 공중합체, 수첨 스티렌-이소프렌 블록 공중합체 등을 들 수 있다. 또, 실란 커플링제로는, 에폭시계, 메타크릴옥시계, 아미노계, 비닐계, 메르캅토·술파이드계, 우레이드계 등을 들 수 있다. 또, 무기 필러로는, 실리카, 탤크, 산화티탄, 탄산칼슘, 산화마그네슘 등을 들 수 있다.Moreover, as a binder, you may mix|blend a stress reliever, a silane coupling agent, an inorganic filler, etc. as needed. Examples of the stress reliever include hydrogenated styrene-butadiene block copolymers and hydrogenated styrene-isoprene block copolymers. Moreover, as a silane coupling agent, an epoxy type, a methacryloxy type, an amino type, a vinyl type, a mercapto sulfide type, a ureide type, etc. are mentioned. Moreover, as an inorganic filler, a silica, a talc, a titanium oxide, a calcium carbonate, magnesium oxide, etc. are mentioned.

<3. 접속 구조체의 제조 방법><3. Manufacturing Method of Connected Structure>

본 실시형태에 관련된 접속 구조체의 제조 방법은, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 도전 재료를 개재하여, 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착한다. 이로써 전술한 도전성 입자에 의해 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지는 접속 구조체를 얻을 수 있다.The method for manufacturing a bonded structure according to the present embodiment includes resin core particles, insulating particles arranged in plurality on the surfaces of the resin core particles to form protrusions, and a conductive layer arranged on the surfaces of the resin core particles and the insulating particles. And the terminal of the 1st circuit member and the terminal of a 2nd circuit member are crimped|bonded through the electrically-conductive material containing the electrically-conductive particle whose Mohs hardness of insulating particle is larger than 7. Thereby, the connection structure which the terminal of a 1st circuit member and the terminal of a 2nd circuit member are connected by the above-mentioned electroconductive particle can be obtained.

제 1 회로 부재 및 제 2 회로 부재는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있다. 제 1 회로 부재로는, 예를 들어, LCD (Liquid Crystal Display) 패널 용도, 플라즈마 디스플레이 패널 (PDP) 용도 등의 플라스틱 기판, 유리 기판, 프린트 배선판 (PWB) 등을 들 수 있다. 또, 제 2 회로 부재로는, 예를 들어, IC (Integrated Circuit), COF (Chip On Film) 등의 플렉시블 기판 (FPC : Flexible Printed Circuits), 테이프 캐리어 패키지 (TCP) 기판 등을 들 수 있다.The first circuit member and the second circuit member are not particularly limited and can be appropriately selected according to the purpose. Examples of the first circuit member include plastic substrates, glass substrates, printed wiring boards (PWBs), and the like for LCD (Liquid Crystal Display) panel applications and plasma display panel (PDP) applications. Moreover, as a 2nd circuit member, flexible printed circuits (FPC: Flexible Printed Circuits), such as IC (Integrated Circuit) and COF (Chip On Film), a tape carrier package (TCP) board|substrate, etc. are mentioned, for example.

도 4 는, 압착시의 도전성 입자의 개략을 나타내는 단면도이다. 도 4 에 있어서 도전층은 생략한다. 도전성 입자 (40) 는, 돌기를 형성하는 절연성 입자 (42) 가 수지 코어 입자 (41) 의 표면에 복수 배치되어 있기 때문에, 제 1 회로 부재 (50) 의 단자 (51) 상에 형성된 산화물층 (52) 을 뚫는 것이 가능해진다. 산화물층 (52) 은, 배선의 부식을 방지하는 보호층으로서 기능하고, 예를 들어 TiO2, SnO2, SiO2 등을 들 수 있다.4 is a cross-sectional view schematically illustrating conductive particles at the time of crimping. In Fig. 4, the conductive layer is omitted. Since the conductive particles 40 have a plurality of insulating particles 42 forming projections arranged on the surface of the resin core particles 41, the oxide layer formed on the terminal 51 of the first circuit member 50 ( 52) becomes possible. The oxide layer 52 functions as a protective layer that prevents corrosion of wiring, and examples thereof include TiO 2 , SnO 2 , and SiO 2 .

본 실시형태에서는, 절연성 입자 (41) 의 모스 경도가 7 보다 크기 때문에, 압착시의 압력을 높게 하는 일 없이, 산화물층 (52) 을 뚫을 수 있어, 배선 크랙의 발생을 억제할 수 있다. 특히, 제 1 회로 부재 (50) 가 PET (Poly Ethylene Terephthalate) 기판 등의 저탄성률의 플라스틱 기판인 경우, 압착시의 압력을 높게 하는 일 없이, 기재 변형의 영향을 경감시켜 저저항을 실현할 수 있기 때문에, 매우 유효하다. 또한, 플라스틱 기판의 탄성률은, 접속체에 요구되는 플렉서빌리티나, 굴곡성과 후술하는 구동 회로 소자 (3) 등의 전자 부품과의 접속 강도의 관계 등의 요소를 고려하여 구할 수 있지만, 일반적으로 2000 ㎫ ∼ 4100 ㎫ 가 된다.In the present embodiment, since the Mohs hardness of the insulating particles 41 is greater than 7, the oxide layer 52 can be pierced without increasing the pressure during crimping, and the occurrence of wiring cracks can be suppressed. In particular, when the first circuit member 50 is a plastic substrate with a low modulus of elasticity such as a PET (Poly Ethylene Terephthalate) substrate, low resistance can be realized by reducing the effect of deformation of the substrate without increasing the pressure during compression. Because of this, it is very effective. The modulus of elasticity of the plastic substrate can be determined by taking into account factors such as flexibility and flexibility required for the connection body and the relationship between the connection strength with electronic components such as the drive circuit element 3 described later. It becomes 2000 Mpa - 4100 Mpa.

제 1 회로 부재의 단자와 제 2 회로 부재의 단자의 압착에서는, 제 2 회로 부재 상에서, 소정 온도로 가온된 압착 툴에 의해, 소정의 압력 및 소정의 시간, 열가압되어 본압착된다. 여기서, 소정의 압력은, 회로 부재의 배선 크랙을 방지하는 관점에서, 10 ㎫ 이상 80 ㎫ 이하인 것이 바람직하다. 또, 소정 온도는, 압착시에 있어서의 이방성 도전 필름의 온도이고, 80 ℃ 이상 230 ℃ 이하인 것이 바람직하다.In the crimping of the terminals of the first circuit member and the terminals of the second circuit member, the second circuit member is thermally pressed with a crimping tool heated to a predetermined temperature for a predetermined period of time to perform main crimping. Here, the predetermined pressure is preferably 10 MPa or more and 80 MPa or less from the viewpoint of preventing wiring cracks in circuit members. In addition, the predetermined temperature is the temperature of the anisotropic conductive film during compression, and is preferably 80°C or more and 230°C or less.

압착 툴로는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있고, 가압 대상보다 대면적인 가압 부재를 사용하여 가압을 1 회로 실시해도 되고, 또, 가압 대상보다 소면적인 가압 부재를 사용하여 가압을 몇 차례로 나누어 실시해도 된다. 압착 툴의 선단 형상으로는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있고, 예를 들어, 평면상, 곡면상 등을 들 수 있다. 또한, 선단 형상이 곡면상인 경우, 곡면상을 따라 가압하는 것이 바람직하다.The crimping tool is not particularly limited and can be appropriately selected according to the purpose, and pressing may be performed once using a pressing member having a larger area than the pressing target, or pressing several times using a pressing member having a smaller area than the pressing target. You may carry out by dividing in sequence. The tip shape of the crimping tool is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include a flat shape and a curved shape. Further, when the shape of the tip is a curved surface, it is preferable to press along the curved surface.

또, 압착 툴과 제 2 회로 부재 사이에 완충재를 개재하여 장착하여 열압착해도 된다. 완충재를 개재하여 장착함으로써, 가압 편차를 저감시킬 수 있음과 함께, 압착 툴이 오염되는 것을 방지할 수 있다. 완충재는, 시트상의 탄성재 또는 소성체로 이루어지고, 예를 들어 실리콘 러버나 폴리 4 불화에틸렌이 사용된다.Moreover, you may heat-compress by attaching a shock absorber between a crimping tool and a 2nd circuit member. By attaching with a buffer material interposed, while being able to reduce pressure variation, it is possible to prevent the crimping tool from being contaminated. The buffer material is made of a sheet-like elastic material or a plastic body, and for example, silicone rubber or polytetrafluoroethylene is used.

이와 같은 접속 구조체의 제조 방법에 의하면, 절연성 입자의 모스 경도가 크기 때문에, 압착시의 압력을 높게 하는 일 없이, 산화물층을 뚫을 수 있어, 배선 크랙의 발생을 억제할 수 있다. 또, 도전층을 Ni-W-B 등의 경도가 큰 것으로 함으로써, 압착시의 압력을 높게 하는 일 없이, 산화물층을 용이하게 뚫을 수 있어, 배선 크랙의 발생을 더욱 억제할 수 있다.According to the manufacturing method of such a bonded structure, since the Mohs hardness of the insulating particles is large, the oxide layer can be pierced without increasing the pressure during crimping, and the occurrence of wiring cracks can be suppressed. In addition, by making the conductive layer of a material having a high hardness such as Ni-W-B, the oxide layer can be easily pierced without increasing the pressure at the time of crimping, and the occurrence of wiring cracks can be further suppressed.

실시예Example

<3. 실시예><3. Example>

이하, 본 발명의 실시예에 대해 설명한다. 본 실시예에서는, 돌기를 갖는 도전성 입자를 제조하고, 이것을 함유하는 이방성 도전 필름을 사용하여 접속 구조체를 제조하였다. 그리고, 접속 구조체의 도통 저항, 및 배선 크랙의 발생률에 대해 평가하였다. 또한, 본 발명은 이들의 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described. In this example, conductive particles having protrusions were prepared, and a connected structure was prepared using an anisotropic conductive film containing the conductive particles. Then, the conduction resistance of the bonded structure and the incidence rate of wiring cracks were evaluated. In addition, this invention is not limited to these Examples.

이방성 도전 필름의 제조, 접속 구조체의 제조, 도통 저항의 측정, 및 배선 크랙의 발생률의 산출은 다음과 같이 실시하였다.Production of the anisotropic conductive film, production of the bonded structure, measurement of conduction resistance, and calculation of the occurrence rate of wiring cracks were performed as follows.

[이방성 도전 필름의 제조][Manufacture of anisotropic conductive film]

ACF 층과 NCF 층이 적층된 2 층 구조의 이방성 도전 필름을 제조하였다. 먼저, 페녹시 수지 (YP50, 신닛테츠 화학 (주)) 20 질량부, 액상 에폭시 수지 (EP828, 미츠비시 화학 (주)) 30 질량부, 고형 에폭시 수지 (YD-014, 신닛테츠 화학 (주)) 10 질량부, 마이크로 캡슐형 잠재성 경화제 (노바큐어 3941H, 아사히 카세이 이 머티리얼즈) 30 질량부, 도전성 입자 10 질량부를 배합하여, 두께 6 μm 의 ACF 층을 얻었다. 다음으로, 페녹시 수지 (YP50, 신닛테츠 화학 (주)) 20 질량부, 액상 에폭시 수지 (EP828, 미츠비시 화학 (주)) 30 질량부, 고형 에폭시 수지 (YD-014, 신닛테츠 화학 (주)) 10 질량부, 마이크로 캡슐형 잠재성 경화제 (노바큐어 3941H, 아사히 카세이 이 머티리얼즈) 30 질량부를 배합하여, 두께 12 μm 의 NCF 층을 얻었다. 그리고, ACF 층과 NCF 층을 첩합 (貼合) 하여, 두께 18 μm 의 2 층 구조의 이방성 도전 필름을 얻었다.An anisotropic conductive film having a two-layer structure in which an ACF layer and an NCF layer are laminated was prepared. First, 20 parts by mass of phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) 10 parts by mass, 30 parts by mass of a microcapsule type latent curing agent (Novacure 3941H, Asahi Kasei E Materials), and 10 parts by mass of conductive particles were blended to obtain an ACF layer having a thickness of 6 µm. Next, 20 parts by mass of phenoxy resin (YP50, Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), solid epoxy resin (YD-014, Nippon Steel Chemical Co., Ltd.) ) 10 parts by mass and 30 parts by mass of a microcapsule type latent curing agent (Novacure 3941H, Asahi Kasei E-Materials) were blended to obtain an NCF layer having a thickness of 12 μm. Then, the ACF layer and the NCF layer were bonded together to obtain an anisotropic conductive film having a two-layer structure with a thickness of 18 µm.

[접속 구조체의 제조][Manufacture of connection structure]

평가 기재로서, TiO2/Al 코팅 유리 기판 (0.3 ㎜t, TiO2 두께 : 50 ㎚, Al 두께 : 300 ㎚), TiO2/Al 코팅 PET (Poly Ethylene Terephthalate) 기판 (0.3 ㎜t, TiO2 두께 : 50 ㎚, Al 두께 : 300 ㎚), 및 IC (1.8 ㎜ × 20 ㎜, T : 0.3 ㎜, Au-plated bump : 30 μm × 85 μm, h=15 μm) 를 준비하였다. 또, 압착 조건은, 190 ℃-60 ㎫-5 sec, 또는 190 ℃-100 ㎫-5 sec 로 하였다.As evaluation substrates, TiO 2 /Al coated glass substrate (0.3 mmt, TiO 2 thickness: 50 nm, Al thickness: 300 nm), TiO 2 /Al coated PET (Poly Ethylene Terephthalate) substrate (0.3 mmt, TiO 2 thickness : 50 nm, Al thickness: 300 nm), and IC (1.8 mm × 20 mm, T: 0.3 mm, Au-plated bump: 30 μm × 85 μm, h = 15 μm) were prepared. In addition, the crimping conditions were 190°C-60 MPa-5 sec or 190°C-100 MPa-5 sec.

먼저, TiO2/Al 코팅 유리 기판 상 또는 TiO2/Al 코팅 PET 기판 상에, 1.5 ㎜ 폭으로 슬릿된 이방성 도전 필름을 압착기를 사용하여 가접착하고, 박리 PET 필름을 벗긴 후, IC 를 압착기를 사용하여 소정의 압착 조건으로 압착하여, 접속 구조체를 얻었다.First, on a TiO 2 /Al-coated glass substrate or on a TiO 2 /Al-coated PET substrate, an anisotropic conductive film slit into a 1.5 mm width is temporarily adhered using a press, and after peeling off the peeling PET film, an IC is pressed with a press was used and crimped under predetermined crimping conditions to obtain a bonded structure.

[도통 저항의 측정][Measurement of conduction resistance]

디지털 멀티미터 (상품명 : 디지털 멀티미터 7561, 요코가와 전기사 제조) 를 사용하여, 초기의 접속 구조체의 도통 저항 (Ω) 의 측정을 실시하였다. 또, 접속 구조체를, 85 ℃, 85 %RH 의 고온 고습 환경하에 500 h 방치하여 신뢰성 시험을 실시한 후, 접속 구조체의 도통 저항 (Ω) 의 측정을 실시하였다.The conduction resistance (Ω) of the initial connected structure was measured using a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Co., Ltd.). Moreover, after carrying out the reliability test by leaving the bonded structure to stand in a high-temperature, high-humidity environment of 85°C and 85%RH for 500 h, the conduction resistance (Ω) of the bonded structure was measured.

[배선 크랙의 발생률][Rate of wiring cracks]

접속 구조체의 기판측의 배선의 임의의 20 지점을 금속 현미경으로 관찰하고, 배선 크랙을 카운트하여 발생률을 산출하였다.Arbitrary 20 points of wiring on the substrate side of the bonded structure were observed with a metallographic microscope, and wiring cracks were counted to calculate the occurrence rate.

[종합 판정][Total judgment]

초기의 도통 저항과 신뢰성 시험 후의 도통 저항의 차가 0.3 Ω 이하, 또한 배선 크랙의 발생률이 0 % 인 경우를 「OK」 로 평가하고, 그 이외를 「NG」 로 평가하였다.A case where the difference between the initial conduction resistance and the conduction resistance after the reliability test was 0.3 Ω or less, and the occurrence rate of wiring cracks was 0% was evaluated as "OK", and other cases were evaluated as "NG".

<실시예 1><Example 1>

수지 코어 입자로서, 다음과 같이 디비닐벤젠계 수지 입자를 제조하였다. 디비닐벤젠, 스티렌, 부틸메타크릴레이트의 혼합비를 조정한 용액에 중합 개시제로서 벤조일퍼옥사이드를 투입하여 고속으로 균일 교반하면서 가열을 실시하고, 중합 반응을 실시함으로써 미립자 분산액을 얻었다. 미립자 분산액을 여과하고, 감압 건조시킴으로써 미립자의 응집체인 블록체를 얻었다. 그리고, 블록체를 분쇄함으로써, 평균 입자경 3.0 μm 의 디비닐벤젠계 수지 입자를 얻었다. 이 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률 (20 % K 값) 은, 12000 N/㎟ 였다.As resin core particles, divinylbenzene-based resin particles were prepared as follows. A fine particle dispersion was obtained by introducing benzoyl peroxide as a polymerization initiator into a solution of divinylbenzene, styrene, and butyl methacrylate in an adjusted mixing ratio, heating the mixture while stirring uniformly at high speed, and conducting a polymerization reaction. A block body, which is an aggregate of fine particles, was obtained by filtering the fine particle dispersion and drying under reduced pressure. Then, divinylbenzene-based resin particles having an average particle diameter of 3.0 µm were obtained by pulverizing the block body. The compressive elastic modulus (20% K value) of these resin core particles when compressed by 20% was 12000 N/mm 2 .

또, 절연성 입자로서, 평균 입자경이 150 ㎚ 인 알루미나 (Al2O3) 를 사용하였다. 또, 도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 및 시트르산나트륨 0.5 ㏖/ℓ 를 함유하는 니켈 도금액 (pH8.5) 을 함유하는 니켈 도금액을 사용하였다.Also, as the insulating particles, alumina (Al 2 O 3 ) having an average particle diameter of 150 nm was used. In addition, as the plating solution for the conductive layer, a nickel plating solution containing a nickel plating solution (pH 8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, and 0.5 mol/L of sodium citrate was used.

먼저, 팔라듐 촉매액을 5 wt% 함유하는 알칼리 용액 100 질량부에 대해, 수지 코어 입자 (10) 질량부를 초음파 분산기로 분산시킨 후, 용액을 여과하고, 수지 코어 입자를 취출하였다. 이어서, 수지 코어 입자 10 질량부를 디메틸아민보란 1 wt% 용액 100 질량부에 첨가하여, 수지 코어 입자의 표면을 활성화시켰다. 그리고, 수지 코어 입자를 충분히 수세한 후, 증류수 500 질량부에 첨가하고, 분산시킴으로써, 팔라듐이 부착된 수지 코어 입자를 함유하는 분산액을 얻었다.First, with respect to 100 parts by mass of an alkali solution containing 5 wt% of a palladium catalyst liquid, a mass part of the resin core particles 10 was dispersed with an ultrasonic disperser, and then the solution was filtered to take out the resin core particles. Then, 10 parts by mass of the resin core particles were added to 100 parts by mass of a 1 wt% solution of dimethylamine borane to activate the surface of the resin core particles. Then, after sufficiently washing the resin core particles with water, 500 parts by mass of distilled water were added and dispersed to obtain a dispersion liquid containing the resin core particles to which palladium adhered.

다음으로, 절연성 입자 1 g 을 3 분간에 걸쳐 분산액에 첨가하여, 절연성 입자가 부착된 입자를 함유하는 슬러리를 얻었다. 그리고, 슬러리를 60 ℃ 에서 교반하면서, 슬러리 중에 니켈 도금액을 서서히 적하하여, 무전해 니켈 도금을 실시하였다. 수소의 발포가 정지되는 것을 확인한 후, 입자를 여과하고, 수세하고, 알코올 치환한 후에 진공 건조시켜, 알루미나로 형성된 돌기와, Ni-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 주사형 전자 현미경 (SEM) 으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.Next, 1 g of insulating particles was added to the dispersion over 3 minutes to obtain a slurry containing particles with insulating particles. And stirring the slurry at 60 degreeC, the nickel plating liquid was gradually dripped in the slurry, and electroless nickel plating was performed. After confirming that the hydrogen expansion had stopped, the particles were filtered, washed with water, substituted with alcohol, and vacuum dried to obtain conductive particles having protrusions formed of alumina and a conductive layer of Ni-B plating. As a result of observing these conductive particles with a scanning electron microscope (SEM), the average particle diameter was 3 to 4 μm, the number of projections per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.6 Ω, 신뢰성 시험 후의 저항값은 0.9 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, a TiO 2 /Al coated glass substrate and an IC were bonded under compression conditions of 190°C-60 MPa-5 sec using the anisotropic conductive film to which the conductive particles were added, to obtain a bonded structure. The initial resistance value of the bonded structure was 0.6 Ω, the resistance value after the reliability test was 0.9 Ω, the wiring crack generation rate was 0%, and the overall judgment was OK.

<실시예 2><Example 2>

표 1 에 나타내는 바와 같이, 실시예 1 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the same anisotropic conductive film to which conductive particles were added as in Example 1, the TiO 2 /Al-coated PET substrate and the IC were bonded under compression conditions of 190°C-60 MPa-5 sec, and connected. got a struct. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.0 Ω, the wiring crack generation rate was 0%, and the overall judgment was OK.

<실시예 3><Example 3>

도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 시트르산나트륨 0.5 ㏖/ℓ 및 텅스텐산나트륨 0.35 ㏖/ℓ 를 함유하는 Ni-W-B 도금액 (pH8.5) 을 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 알루미나로 형성된 돌기와, Ni-W-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 금속 현미경으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the plating solution for the conductive layer, a Ni-W-B plating solution (pH 8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, 0.5 mol/L of sodium citrate and 0.35 mol/L of sodium tungstate was used. . Except for this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the protrusion formed from alumina, and the electroconductive layer of Ni-W-B plating. As a result of observing these conductive particles with a metal microscope, the average particle diameter was 3 to 4 μm, the number of projections per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.3 Ω, 신뢰성 시험 후의 저항값은 0.5 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, a TiO 2 /Al coated glass substrate and an IC were bonded under compression conditions of 190°C-60 MPa-5 sec using the anisotropic conductive film to which the conductive particles were added, to obtain a bonded structure. The initial resistance value of the bonded structure was 0.3 Ω, the resistance value after the reliability test was 0.5 Ω, the wiring crack incidence rate was 0%, and the overall judgment was OK.

<실시예 4><Example 4>

표 1 에 나타내는 바와 같이, 실시예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.6 Ω, 신뢰성 시험 후의 저항값은 0.8 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the same anisotropic conductive film to which conductive particles were added as in Example 3, the TiO 2 /Al-coated PET substrate and the IC were bonded under compression conditions of 190°C-60 MPa-5 sec, and connected. got a struct. The initial resistance value of the bonded structure was 0.6 Ω, the resistance value after the reliability test was 0.8 Ω, the wiring crack generation rate was 0%, and the overall judgment was OK.

<비교예 1><Comparative Example 1>

절연성 입자로서, 평균 입자경이 150 ㎚ 인 실리카 (SiO2) 를 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 실리카로 형성된 돌기와, Ni-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 금속 현미경으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the insulating particles, silica (SiO 2 ) having an average particle diameter of 150 nm was used. Except for this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the processus|protrusion formed from silica, and the electroconductive layer of Ni-B plating. As a result of observing these conductive particles with a metal microscope, the average particle diameter was 3 to 4 μm, the number of projections per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 1.5 Ω, 신뢰성 시험 후의 저항값은 3.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, a TiO 2 /Al coated glass substrate and an IC were bonded under compression conditions of 190°C-60 MPa-5 sec using the anisotropic conductive film to which the conductive particles were added, to obtain a bonded structure. The initial resistance value of the bonded structure was 1.5 Ω, the resistance value after the reliability test was 3.0 Ω, the occurrence rate of wiring cracks was 0%, and the overall judgment was NG.

<비교예 2><Comparative Example 2>

표 1 에 나타내는 바와 같이, 비교예 1 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 3.0 Ω, 신뢰성 시험 후의 저항값은 6.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the same anisotropic conductive film to which conductive particles were added as in Comparative Example 1, the TiO 2 /Al-coated PET substrate and the IC were bonded under compression conditions of 190°C-60 MPa-5 sec, and connected. got a struct. The initial resistance value of the bonded structure was 3.0 Ω, the resistance value after the reliability test was 6.0 Ω, the wiring crack incidence rate was 0%, and the overall judgment was NG.

<비교예 3><Comparative Example 3>

절연성 입자로서, 평균 입자경이 150 ㎚ 인 실리카 (SiO2) 를 사용하였다. 또, 도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 시트르산나트륨 0.5 ㏖/ℓ 및 텅스텐산나트륨 0.35 ㏖/ℓ 를 함유하는 Ni-W-B 도금액 (pH8.5) 을 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 실리카로 형성된 돌기와, Ni-W-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 주사형 전자 현미경 (SEM) 으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the insulating particles, silica (SiO 2 ) having an average particle diameter of 150 nm was used. Further, as a plating solution for the conductive layer, a Ni-WB plating solution (pH 8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, 0.5 mol/L of sodium citrate and 0.35 mol/L of sodium tungstate was used. used Except for this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the processus|protrusion formed from silica, and the conductive layer of Ni-WB plating. As a result of observing these conductive particles with a scanning electron microscope (SEM), the average particle diameter was 3 to 4 μm, the number of projections per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.1 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, a TiO 2 /Al coated glass substrate and an IC were bonded under compression conditions of 190°C-60 MPa-5 sec using the anisotropic conductive film to which the conductive particles were added, to obtain a bonded structure. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.1 Ω, the wiring crack generation rate was 0%, and the overall judgment was NG.

<비교예 4><Comparative Example 4>

표 1 에 나타내는 바와 같이, 비교예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 1.8 Ω, 신뢰성 시험 후의 저항값은 3.6 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the same anisotropic conductive film to which conductive particles were added as in Comparative Example 3, the TiO 2 /Al-coated PET substrate and the IC were bonded under compression conditions of 190°C-60 MPa-5 sec, and connected. got a struct. The initial resistance value of the bonded structure was 1.8 Ω, the resistance value after the reliability test was 3.6 Ω, the wiring crack incidence rate was 0%, and the overall judgment was NG.

<비교예 5><Comparative Example 5>

표 1 에 나타내는 바와 같이, 비교예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-100 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.0 Ω, 배선 크랙의 발생률은 25 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the same anisotropic conductive film to which conductive particles were added as in Comparative Example 3, the TiO 2 /Al-coated PET substrate and the IC were bonded under compression conditions of 190°C-100 MPa-5 sec, and connected. got a struct. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.0 Ω, the wiring crack incidence rate was 25%, and the overall judgment was NG.

Figure 112022049670239-pat00001
Figure 112022049670239-pat00001

비교예 1 과 같이, 도전층으로서 Ni-B 를 형성하고, 절연성 입자로서 모스 경도가 7 인 실리카를 사용한 경우, 신뢰성 시험 후의 저항이 상승하였다. 또, 비교예 2 와 같이 비교예 1 의 도전성 입자를 사용하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항이 크게 상승하였다. 또, 비교예 3 과 같이, 도전층으로서 Ni-W-B 를 형성하고, 절연성 입자로서 모스 경도가 7 인 실리카를 사용한 경우도, 신뢰성 시험 후의 저항이 상승하였다. 또, 비교예 4 와 같이 비교예 2 의 도전성 입자를 사용하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항이 크게 상승하였다. 또, 비교예 5 와 같이 압착시의 압력을 높게 하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항의 상승을 억제할 수 있었지만, 크랙이 발생해 버렸다.As in Comparative Example 1, when Ni-B was formed as the conductive layer and silica having a Mohs hardness of 7 was used as the insulating particle, the resistance after the reliability test increased. In addition, when PET substrates were connected using the conductive particles of Comparative Example 1 as in Comparative Example 2, the resistance after the reliability test greatly increased. Also, as in Comparative Example 3, when Ni-W-B was formed as the conductive layer and silica having a Mohs hardness of 7 was used as the insulating particle, the resistance after the reliability test increased. Further, when PET substrates were connected using the conductive particles of Comparative Example 2 as in Comparative Example 4, the resistance after the reliability test greatly increased. Further, when the PET substrates were connected by increasing the pressure during crimping as in Comparative Example 5, the increase in resistance after the reliability test could be suppressed, but cracks occurred.

한편, 실시예 1 ∼ 4 와 같이, 절연성 입자로서 모스 경도가 9 인 알루미나를 사용한 경우, 압착시의 압력을 높게 하는 일 없이, 신뢰성 시험 후의 저항의 상승을 억제할 수 있고, 크랙의 발생을 방지할 수 있었다. 또, 실시예 2, 4 와 같이, PET 기판의 접속에서도 저저항을 실현할 수 있었다. 또, 실시예 4 와 같이, 도전층으로서 Ni-W-B 를 형성함으로써, PET 기판의 접속에 있어서 더욱 저저항을 실현할 수 있었다. 이들은, 절연성 입자의 경도가 크기 때문에, 압착시의 압력을 높게 하지 않아도, 배선 표면의 산화물층을 뚫어, 배선과 도전성 입자의 접점이 증가했기 때문인 것으로 생각된다.On the other hand, as in Examples 1 to 4, when alumina having a Mohs hardness of 9 is used as the insulating particle, the increase in resistance after the reliability test can be suppressed without increasing the pressure during compression, and the occurrence of cracks can be prevented Could. In addition, as in Examples 2 and 4, low resistance could be realized even in the connection of PET substrates. Further, as in Example 4, by forming Ni-W-B as the conductive layer, further low resistance was realized in the connection of PET substrates. These are considered to be because the contact between the wiring and the conductive particles was increased by piercing the oxide layer on the surface of the wiring without increasing the pressure at the time of crimping, since the hardness of the insulating particles was large.

10 수지 코어 입자
20 절연성 입자
30, 31, 32, 33, 34 도전층
40 도전성 입자
41 수지 코어 입자
42 절연성 입자
50 제 1 회로 부재
51 단자
52 산화물층
10 resin core particles
20 insulating particles
30, 31, 32, 33, 34 conductive layer
40 conductive particles
41 resin core particles
42 insulating particles
50 1st circuit member
51 terminal
52 oxide layer

Claims (18)

수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자를 함유하는 도전 재료를 개재하여,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착하는 접속 구조체의 제조 방법으로서,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 접속 구조체의 제조 방법.
A plurality of resin core particles, insulating particles attached to the surface of the resin core particles to form protrusions, and a conductive layer disposed on the surfaces of the resin core particles and the insulating particles, wherein the Mohs hardness of the insulating particles is Through a conductive material containing conductive particles having a compressive elastic modulus greater than 7 and having a compressive elastic modulus of 500 to 20000 N/mm when the resin core particles are compressed by 20%,
A method for manufacturing a connection structure in which a terminal of a first circuit member and a terminal of a second circuit member, which are plastic substrates having an elastic modulus of 2000 MPa to 4100 MPa, are crimped together,
The manufacturing method of the connection structure in which an oxide layer is formed on the terminal of the said 1st circuit member.
제 1 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 접속 구조체의 제조 방법.
According to claim 1,
The manufacturing method of the bonded structure in which the conductive layer of the said electroconductive particle is nickel or a nickel alloy.
제 1 항 또는 제 2 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 접속 구조체의 제조 방법.
According to claim 1 or 2,
The method for producing a bonded structure in which the insulating particles of the conductive particles are at least one of zirconia, alumina, tungsten carbide, and diamond.
제 1 항 또는 제 2 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 접속 구조체의 제조 방법.
According to claim 1 or 2,
The average particle diameter of insulating particles of the conductive particles is 100 to 200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The manufacturing method of the bonded structure whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 1 항 또는 제 2 항에 있어서,
상기 제 2 회로 부재측으로부터 가압되어 이루어지는, 접속 구조체의 제조 방법.
According to claim 1 or 2,
The manufacturing method of the connection structure formed by pressing from the said 2nd circuit member side.
제 1 항 또는 제 2 항에 있어서,
상기 제 1 회로 부재의 단자와 상기 제 2 회로 부재의 단자를 10 ∼ 80 ㎫ 의 압력으로 압착하는, 접속 구조체의 제조 방법.
According to claim 1 or 2,
A method for producing a bonded structure comprising crimping a terminal of the first circuit member and a terminal of the second circuit member with a pressure of 10 to 80 MPa.
제 1 항 또는 제 2 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 접속 구조체의 제조 방법.
According to claim 1 or 2,
The manufacturing method of the connection structure in which a TiO2 layer is formed on the terminal of the said 1st circuit member.
수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자에 의해,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지고,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 접속 구조체.
A plurality of resin core particles, insulating particles attached to the surface of the resin core particles to form protrusions, and a conductive layer disposed on the surfaces of the resin core particles and the insulating particles, wherein the Mohs hardness of the insulating particles is 7 or more, and the compressive elastic modulus when the resin core particles are compressed by 20% is 500 to 20000 N/mm 2 By conductive particles,
A terminal of a first circuit member, which is a plastic substrate having an elastic modulus of 2000 MPa to 4100 MPa, and a terminal of a second circuit member are connected,
The connection structure formed by forming an oxide layer on the terminal of the said 1st circuit member.
제 8 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 접속 구조체.
According to claim 8,
The connection structure in which the conductive layer of the said electroconductive particle is nickel or a nickel alloy.
제 8 항 또는 제 9 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 접속 구조체.
According to claim 8 or 9,
A bonded structure in which the insulating particles of the conductive particles are at least one or more of zirconia, alumina, tungsten carbide, and diamond.
제 8 항 또는 제 9 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 접속 구조체.
According to claim 8 or 9,
The average particle diameter of insulating particles of the conductive particles is 100 to 200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The connection structure whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 8 항 또는 제 9 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 접속 구조체.
According to claim 8 or 9,
A connection structure in which a TiO 2 layer is formed on the terminal of the first circuit member.
수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자를 함유하고,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 접속하는 도전 재료로서,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 도전 재료.
A plurality of resin core particles, insulating particles attached to the surface of the resin core particles to form protrusions, and a conductive layer disposed on the surfaces of the resin core particles and the insulating particles, wherein the Mohs hardness of the insulating particles is Containing conductive particles having a compressive modulus greater than 7 and having a compressive elastic modulus of 500 to 20000 N/mm when the resin core particles are compressed by 20%,
As a conductive material for connecting the terminal of the first circuit member and the terminal of the second circuit member, which is a plastic substrate having an elastic modulus of 2000 MPa to 4100 MPa,
The conductive material formed by forming an oxide layer on the terminal of the said 1st circuit member.
제 13 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 도전 재료.
According to claim 13,
The conductive material in which the conductive layer of the said conductive particle is nickel or a nickel alloy.
제 13 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 도전 재료.
According to claim 13,
The conductive material in which the insulating particles of the conductive particles are at least one or more of zirconia, alumina, tungsten carbide, and diamond.
제 13 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 도전 재료.
According to claim 13,
The average particle diameter of insulating particles of the conductive particles is 100 to 200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The electrically-conductive material whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 13 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 도전 재료.
According to claim 13,
A conductive material comprising a TiO 2 layer formed on a terminal of the first circuit member.
제 13 항 내지 제 17 항 중 어느 한 항에 기재된 도전 재료가 필름상으로 형성된 도전 필름.A conductive film in which the conductive material according to any one of claims 13 to 17 is formed in a film form.
KR1020227015751A 2014-10-29 2015-10-28 Conductive material KR102545861B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPJP-P-2014-220448 2014-10-29
JP2014220448 2014-10-29
JP2015201767A JP2016089153A (en) 2014-10-29 2015-10-13 Conductive material
JPJP-P-2015-201767 2015-10-13
KR1020197002161A KR20190009852A (en) 2014-10-29 2015-10-28 Conductive material
PCT/JP2015/080327 WO2016068165A1 (en) 2014-10-29 2015-10-28 Conductive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197002161A Division KR20190009852A (en) 2014-10-29 2015-10-28 Conductive material

Publications (2)

Publication Number Publication Date
KR20220068267A KR20220068267A (en) 2022-05-25
KR102545861B1 true KR102545861B1 (en) 2023-06-21

Family

ID=55857500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227015751A KR102545861B1 (en) 2014-10-29 2015-10-28 Conductive material

Country Status (4)

Country Link
KR (1) KR102545861B1 (en)
CN (1) CN112863732B (en)
TW (1) TWI740807B (en)
WO (1) WO2016068165A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149611A (en) 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026432B2 (en) * 1997-05-23 2000-03-27 日立化成工業株式会社 Circuit connection structure
JP2004164910A (en) * 2002-11-11 2004-06-10 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
EP2282374A1 (en) * 2003-06-25 2011-02-09 Hitachi Chemical Company, Ltd. Circuit material
JP4724369B2 (en) * 2003-09-29 2011-07-13 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing conductive particles
CN1906705B (en) * 2004-01-30 2010-04-21 积水化学工业株式会社 Conductive fine particle and anisotropic conductive material
JP2005266644A (en) * 2004-03-22 2005-09-29 Sharp Corp Method for manufacturing liquid crystal display device
JP4877230B2 (en) * 2005-11-18 2012-02-15 日立化成工業株式会社 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP4905352B2 (en) * 2006-05-09 2012-03-28 日立化成工業株式会社 Adhesive sheet, circuit member connection structure using the same, and semiconductor device
KR101063710B1 (en) * 2006-09-26 2011-09-07 히다치 가세고교 가부시끼가이샤 Anisotropic conductive adhesive composition, anisotropic conductive film, the connection structure of a circuit member, and the manufacturing method of a coating particle
JP5272368B2 (en) * 2007-03-05 2013-08-28 日立化成株式会社 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive
KR101130377B1 (en) * 2007-10-18 2012-03-27 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP5430093B2 (en) * 2008-07-24 2014-02-26 デクセリアルズ株式会社 Conductive particles, anisotropic conductive film, joined body, and connection method
JP4916494B2 (en) * 2008-08-08 2012-04-11 ソニーケミカル&インフォメーションデバイス株式会社 Crimping apparatus, crimping method, and pressing plate
WO2011002084A1 (en) * 2009-07-02 2011-01-06 日立化成工業株式会社 Conductive particle
WO2012002508A1 (en) * 2010-07-02 2012-01-05 積水化学工業株式会社 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
KR101242235B1 (en) * 2010-07-28 2013-03-11 세키스이가가쿠 고교가부시키가이샤 Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure
KR101815336B1 (en) * 2010-09-30 2018-01-04 세키스이가가쿠 고교가부시키가이샤 Conductive particles, anisotropic conductive material and connection structure
CN103329217B (en) * 2011-01-25 2016-06-29 株式会社日本触媒 Electrically conductive microparticle and resin particle and employ their anisotropic conductive material
CN103030728B (en) * 2011-09-06 2017-09-26 日立化成株式会社 Insulating wrapped particle, insulating wrapped conducting particles, anisotropic conductive material and connection structural bodies
JP5902717B2 (en) * 2011-12-08 2016-04-13 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP6049461B2 (en) * 2011-12-21 2016-12-21 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR101941721B1 (en) * 2011-12-21 2019-01-23 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
JP5737278B2 (en) * 2011-12-21 2015-06-17 日立化成株式会社 Circuit connection material, connection body, and method of manufacturing connection body
JP6009933B2 (en) * 2011-12-22 2016-10-19 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR101987509B1 (en) * 2012-01-19 2019-06-10 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
KR101953938B1 (en) * 2012-01-20 2019-03-04 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
KR101953937B1 (en) * 2012-01-20 2019-03-04 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
JP6212366B2 (en) * 2013-08-09 2017-10-11 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149611A (en) 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure

Also Published As

Publication number Publication date
TW201629989A (en) 2016-08-16
CN112863732B (en) 2023-01-17
KR20220068267A (en) 2022-05-25
CN112863732A (en) 2021-05-28
WO2016068165A1 (en) 2016-05-06
TWI740807B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7100088B2 (en) Conductive material
KR102649655B1 (en) Adhesive composition
JP6173215B2 (en) Conductive particles, resin particles, conductive materials, and connection structures
KR102517498B1 (en) Conductive material and manufacturing method of connection body
JP6337630B2 (en) Circuit connection material and circuit connection structure
KR20200080337A (en) Connection material
KR102545861B1 (en) Conductive material
KR20190133023A (en) Screening method of a conductive particle, a circuit connection material, a bonded structure, its manufacturing method, and conductive particle
JP7193512B2 (en) connecting material
KR20200140808A (en) Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant