KR20220068267A - Conductive material - Google Patents

Conductive material Download PDF

Info

Publication number
KR20220068267A
KR20220068267A KR1020227015751A KR20227015751A KR20220068267A KR 20220068267 A KR20220068267 A KR 20220068267A KR 1020227015751 A KR1020227015751 A KR 1020227015751A KR 20227015751 A KR20227015751 A KR 20227015751A KR 20220068267 A KR20220068267 A KR 20220068267A
Authority
KR
South Korea
Prior art keywords
particle
resin core
insulating
conductive layer
circuit member
Prior art date
Application number
KR1020227015751A
Other languages
Korean (ko)
Other versions
KR102545861B1 (en
Inventor
겐이치 히라야마
히로미 구보데
고지 에지마
Original Assignee
데쿠세리아루즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015201767A external-priority patent/JP2016089153A/en
Application filed by 데쿠세리아루즈 가부시키가이샤 filed Critical 데쿠세리아루즈 가부시키가이샤
Publication of KR20220068267A publication Critical patent/KR20220068267A/en
Application granted granted Critical
Publication of KR102545861B1 publication Critical patent/KR102545861B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/188Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping having an uneven wire-receiving surface to improve the contact

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

산화물층에 대해 우수한 도통 신뢰성이 얻어지는 도전 재료를 제공한다. 도전 재료는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 배치되어, 돌기 (30a) 를 형성하는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면에 배치되는 도전층 (30) 을 구비하고, 절연성 입자 (20) 의 모스 경도가 7 보다 큰 도전성 입자를 함유한다. 이로써, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다.An electrically-conductive material from which the conduction|electrical_connection reliability outstanding with respect to an oxide layer is obtained is provided. The conductive material includes a resin core particle 10 , a plurality of insulating particles 20 disposed on the surface of the resin core particle 10 to form the projection 30a, the resin core particle 10 and the insulating particle 20 . The conductive layer 30 arrange|positioned on the surface of ) is provided, and the Mohs' Hardness of the insulating particle 20 contains the larger electroconductive particle than 7. Thereby, electroconductive particle penetrates through the oxide layer on the surface of an electrode, and fully penetrates, and the outstanding conduction|electrical_connection reliability is acquired.

Description

도전 재료 {CONDUCTIVE MATERIAL}conductive material {CONDUCTIVE MATERIAL}

본 발명은 회로 부재끼리를 전기적으로 접속하는 도전 재료에 관한 것이다. 본 출원은, 일본에 있어서 2014년 10월 29일에 출원된 일본 특허출원 2014-220448, 및 2015년 10월 13일에 출원된 일본 특허출원 2015-201767 을 기초로 하여 우선권을 주장하는 것이며, 본 출원은 참조됨으로써, 본 출원에 원용된다.This invention relates to the electrically-conductive material which electrically connects circuit members. This application claims priority on the basis of Japanese Patent Application No. 2014-220448 for which it applied in Japan on October 29, 2014, and Japanese Patent Application No. 2015-201767 for which it applied on October 13, 2015, The application is incorporated herein by reference.

최근, 회로 부재의 배선으로서, 생산 비용이 높은 ITO (Indium Tin Oxide) 대신에, IZO (Indium Zinc Oxide) 가 사용되고 있다. IZO 배선은, 표면이 평활하고, 표면에 산화물층 (부동태) 이 형성되어 있다. 또, 예를 들어 알루미늄 배선에서는, 부식을 방지하기 위해서 표면에 TiO2 등의 산화물층의 보호층이 형성되는 경우가 있다.In recent years, IZO (Indium Zinc Oxide) is used as wiring of a circuit member instead of ITO (Indium Tin Oxide) with high production cost. The IZO wiring has a smooth surface, and an oxide layer (passivation) is formed on the surface. Moreover, in aluminum wiring, for example, in order to prevent corrosion, the protective layer of oxide layers, such as TiO2, may be formed in the surface.

그러나, 산화물층은 단단하기 때문에, 종래의 도전 재료에서는, 도전성 입자가 산화물층을 뚫고 충분히 파고들지 않아, 충분한 도통 신뢰성이 얻어지지 않는 경우가 있었다.However, since an oxide layer is hard, in the conventional electrically-conductive material, electroconductive particle did not penetrate fully through an oxide layer, but sufficient conduction|electrical_connection reliability was not acquired in some cases.

일본 공개특허공보 2013-149613호Japanese Patent Laid-Open No. 2013-149613

본 발명은, 이와 같은 종래의 실정을 감안하여 제안된 것으로, 산화물층에 대해 우수한 도통 신뢰성이 얻어지는 도전 재료를 제공한다.The present invention has been proposed in view of such a conventional situation, and provides an electrically conductive material having excellent conduction reliability with respect to an oxide layer.

본 발명자는 예의 검토를 실시한 결과, 도전성 입자의 돌기를 형성하는 절연성 입자의 모스 경도를 소정값보다 큰 것으로 함으로써, 우수한 도통 저항이 얻어지는 것을 알아내었다.As a result of this inventor earnestly examining, it discovered that the outstanding conduction resistance was obtained by making Mohs' Hardness of the insulating particle which forms the processus|protrusion of electroconductive particle larger than a predetermined value.

즉, 본 발명에 관련된 도전 재료는, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 것을 특징으로 한다.That is, the conductive material according to the present invention comprises a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form projections, and a conductive layer disposed on the surface of the resin core particle and the insulating particle. It is provided, and the Mohs' Hardness of the said insulating particle contains larger than 7 electroconductive particle, It is characterized by the above-mentioned.

또, 본 발명에 관련된 접속 구조체는, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자에 의해 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지는 것을 특징으로 한다.Further, the bonded structure according to the present invention comprises a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form a projection, and a conductive layer disposed on the surface of the resin core particle and the insulating particle. It is provided, and the terminal of a 1st circuit member and the terminal of a 2nd circuit member are connected by the electroconductive particle whose Mohs' Hardness of the said insulating particle is larger than 7, It is characterized by the above-mentioned.

또, 본 발명에 관련된 접속 구조체의 제조 방법은, 수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 도전 재료를 개재하여, 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착하는 것을 특징으로 한다.Further, in the method for manufacturing a bonded structure according to the present invention, a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form a projection, and the resin core particle and the insulating particle disposed on the surface of the insulating particle It is characterized by crimping|bonding the terminal of a 1st circuit member and the terminal of a 2nd circuit member through the electrically-conductive material which provided a conductive layer and contains the electroconductive particle whose Mohs' Hardness of the said insulating particle is larger than 7.

본 발명에 의하면, 돌기를 형성하는 절연성 입자의 모스 경도가 크기 때문에, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다.ADVANTAGE OF THE INVENTION According to this invention, since the Mohs' Hardness of the insulating particle which forms a processus|protrusion is large, electroconductive particle penetrates through the oxide layer of an electrode surface sufficiently, and the outstanding conduction|electrical_connection reliability is acquired.

도 1 은, 도전성 입자의 제 1 구성예의 개략을 나타내는 단면도이다.
도 2 는, 도전성 입자의 제 2 구성예의 개략을 나타내는 단면도이다.
도 3 은, 도전성 입자의 제 3 구성예의 개략을 나타내는 단면도이다.
도 4 는, 압착시의 도전성 입자의 개략을 나타내는 단면도이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the outline of the 1st structural example of electroconductive particle.
It is sectional drawing which shows the outline of the 2nd structural example of electroconductive particle.
3 : is sectional drawing which shows the outline of the 3rd structural example of electroconductive particle.
It is sectional drawing which shows the outline of the electroconductive particle at the time of crimping|bonding.

이하, 본 발명의 실시형태에 대해, 도면을 참조하면서 하기 순서로 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail in the following order, referring drawings.

1. 도전성 입자1. Conductive Particles

2. 도전 재료2. conductive material

3. 접속 구조체의 제조 방법3. Manufacturing method of bonded structure

4. 실시예4. Examples

<1. 도전성 입자><1. Electroconductive particle>

본 실시형태에 관련된 도전성 입자는, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 것이다. 이로써, 도전성 입자가 전극 표면의 산화물층을 뚫고 충분히 파고들어, 우수한 도통 신뢰성이 얻어진다. 특히, 피착체인 회로 부재가 PET (Poly Ethylene Terephthalate) 기판 등의 저탄성률의 플라스틱 기판인 경우, 압착시의 압력을 높게 하는 일 없이, 기재 변형의 영향을 경감시켜 저저항을 실현할 수 있기 때문에, 매우 유효하다.The conductive particles according to the present embodiment include a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form a projection, and a conductive layer disposed on the surface of the resin core particle and the insulating particle, Mohs' Hardness of insulating particle is larger than 7. Thereby, electroconductive particle penetrates through the oxide layer on the surface of an electrode, and fully penetrates, and the outstanding conduction|electrical_connection reliability is acquired. In particular, when the circuit member as an adherend is a low elastic modulus plastic substrate such as a PET (Poly Ethylene Terephthalate) substrate, it is possible to realize low resistance by reducing the effect of deformation of the substrate without increasing the pressure during compression. Valid.

[제 1 구성예][First configuration example]

도 1 은, 도전성 입자의 제 1 구성예의 개략을 나타내는 단면도이다. 제 1 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 돌기 (30a) 의 심재가 되는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 를 피복하는 도전층 (30) 을 구비한다.BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the outline of the 1st structural example of electroconductive particle. The electroconductive particle of a 1st structural example is the resin core particle 10, the insulating particle 20 which adheres to the surface of the resin core particle 10, and becomes the core material of the processus|protrusion 30a, The resin core particle 10 and a conductive layer (30) covering the insulating particles (20).

수지 코어 입자 (10) 로는, 벤조구아나민 수지, 아크릴 수지, 스티렌 수지, 실리콘 수지, 폴리부타디엔 수지 등을 들 수 있고, 또, 이들 수지를 구성하는 모노머에 기초하는 반복 단위의 적어도 2 종 이상을 조합한 구조를 갖는 공중합체를 들 수 있다. 이들 중에서도, 디비닐벤젠, 테트라메틸올메탄테트라아크릴레이트 및 스티렌을 조합하여 얻어지는 공중합체를 사용하는 것이 바람직하다.Examples of the resin core particles 10 include benzoguanamine resins, acrylic resins, styrene resins, silicone resins, polybutadiene resins, and the like, and at least two or more types of repeating units based on monomers constituting these resins The copolymer which has the combined structure is mentioned. Among these, it is preferable to use the copolymer obtained by combining divinylbenzene, tetramethylolmethane tetraacrylate, and styrene.

또, 수지 코어 입자 (10) 는, 20 % 압축되었을 때의 압축 탄성률 (20 % K 값) 이 500 ∼ 20000 N/㎟ 인 것이 바람직하다. 수지 코어 입자 (10) 의 20 % K 값이 상기 범위 내임으로써, 결과적으로 돌기가 전극 표면의 산화물층을 뚫을 수 있다. 이 때문에, 전극과 도전성 입자의 도전층이 충분히 접촉하여, 전극간의 접속 저항을 저하시킬 수 있다.Moreover, it is preferable that the compressive elastic modulus (20% K value) when the resin core particle 10 is compressed 20% is 500-20000 N/mm<2>. When the 20% K value of the resin core particle 10 is within the above range, as a result, the projections can penetrate the oxide layer on the electrode surface. For this reason, an electrode and the conductive layer of electroconductive particle fully contact and can reduce the connection resistance between electrodes.

수지 코어 입자 (10) 의 압축 탄성률 (20 % K 값) 은, 다음과 같이 측정할 수 있다. 미소 압축 시험기를 사용하여, 원주 (직경 50 μm, 다이아몬드제) 의 평활 압자 단면에서, 압축 속도 2.6 mN/초, 및 최대 시험 하중 10 gf 의 조건하에서 도전성 입자를 압축한다. 이 때의 하중값 (N) 및 압축 변위 (㎜) 를 측정한다. 얻어진 측정값으로부터, 압축 탄성률 (20 % K 값) 을 하기 식에 의해 구할 수 있다. 또한, 미소 압축 시험기로서 예를 들어, 피셔사 제조 「피셔스코프 H-100」 등이 사용된다.The compressive elastic modulus (20% K value) of the resin core particle 10 can be measured as follows. Electroconductive particles are compressed under the conditions of a compression rate of 2.6 mN/sec and a maximum test load of 10 gf in a smooth indenter cross section of a circumference (50 µm in diameter, made of diamond) using a micro compression tester. At this time, the load value (N) and the compression displacement (mm) are measured. From the obtained measured value, the compressive elastic modulus (20% K value) can be calculated|required by the following formula. Moreover, as a micro compression tester, "Fischer Scope H-100" by a Fisher company, etc. are used, for example.

K 값 (N/㎟) = (3/21/2)·F·S-3/2·R-1/2 K value (N/㎟) = (3/2 1/2 ) F S -3/2 R -1/2

F : 도전성 입자가 20 % 압축 변형되었을 때의 하중값 (N)F: Load value (N) when the conductive particles are compressed by 20%

S : 도전성 입자가 20 % 압축 변형되었을 때의 압축 변위 (㎜)S: Compressive displacement (mm) when conductive particles are compressed by 20%

R : 도전성 입자의 반경 (㎜)R: Radius of conductive particles (mm)

수지 코어 입자 (10) 의 평균 입자경은 2 ∼ 10 μm 인 것이 바람직하다. 본 명세서에 있어서, 평균 입자경이란, 레이저 회절·산란법에 의해 구한 입도 분포에 있어서의 적산값 50 % 에서의 입경 (D50) 을 의미한다.It is preferable that the average particle diameter of the resin core particle 10 is 2-10 micrometers. In this specification, the average particle diameter means the particle diameter (D50) at 50% of the integrated value in the particle size distribution calculated|required by the laser diffraction/scattering method.

절연성 입자 (20) 는, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 전극 표면의 산화물층을 뚫기 위한 돌기 (30a) 의 심재가 된다. 절연성 입자 (20) 는, 모스 경도가 7 보다 크고, 9 이상인 것이 바람직하다. 절연성 입자 (20) 의 경도가 높음으로써, 돌기 (30a) 가 전극 표면의 산화물을 뚫을 수 있다. 또, 돌기 (30a) 의 심재가 절연성 입자 (20) 임으로써, 도전성 입자를 사용했을 때에 비해 마이그레이션의 요인이 적어진다.The insulating particle 20 adheres to the surface of the resin core particle 10 in multiple numbers, and becomes the core material of the processus|protrusion 30a for piercing|piercing the oxide layer of the electrode surface. As for the insulating particle 20, Mohs' Hardness is larger than 7, and it is preferable that it is 9 or more. When the hardness of the insulating particle 20 is high, the projection 30a can penetrate the oxide on the electrode surface. Moreover, when the core material of the processus|protrusion 30a is the insulating particle 20, compared with the time of using electroconductive particle, the factor of migration decreases.

절연성 입자 (20) 로는, 지르코니아 (모스 경도 8 ∼ 9), 알루미나 (모스 경도 9), 탄화텅스텐 (모스 경도 9) 및 다이아몬드 (모스 경도 10) 등을 들 수 있고, 이들은 단독으로 사용해도 되고, 2 종류 이상을 조합하여 사용해도 된다. 이들 중에서도, 경제성의 관점에서 알루미나를 사용하는 것이 바람직하다.Examples of the insulating particles 20 include zirconia (Mohs hardness 8 to 9), alumina (Mohs hardness 9), tungsten carbide (Mohs hardness 9) and diamond (Mohs hardness 10), and these may be used alone, You may use it in combination of 2 or more types. Among these, it is preferable to use alumina from a viewpoint of economical efficiency.

또, 절연성 입자 (20) 의 평균 입자경은, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 100 ㎚ 이상 200 ㎚ 이하이다. 또, 수지 코어 입자 (20) 의 표면에 형성된 돌기의 개수는, 바람직하게는 1 ∼ 500, 보다 바람직하게는 30 ∼ 200 이다. 이와 같은 평균 입자경의 절연성 입자 (20) 를 사용하여, 수지 코어 입자 (20) 의 표면에 소정수의 돌기 (30a) 를 형성함으로써, 돌기 (30a) 가 전극 표면의 산화물을 뚫어, 전극간의 접속 저항을 효과적으로 낮게 할 수 있다.Moreover, the average particle diameter of the insulating particle 20 becomes like this. Preferably they are 50 nm or more and 250 nm or less, More preferably, they are 100 nm or more and 200 nm or less. Moreover, the number of the processus|protrusions formed on the surface of the resin core particle 20 becomes like this. Preferably it is 1-500, More preferably, it is 30-200. By forming a predetermined number of projections 30a on the surface of the resin core particle 20 using the insulating particles 20 having such an average particle diameter, the projections 30a penetrate the oxide on the electrode surface, and the connection resistance between the electrodes can be effectively lowered.

도전층 (30) 은, 수지 코어 입자 (10) 및 절연성 입자 (20) 를 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (30a) 를 갖는다. 도전층 (30) 은, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The conductive layer 30 coats the resin core particles 10 and the insulating particles 20 , and has projections 30a raised by the plurality of insulating particles 20 . The conductive layer 30 is preferably nickel or a nickel alloy. Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P etc. are mentioned as a nickel alloy. Among these, it is preferable to use low resistance Ni-W-B.

또, 도전층 (30) 의 두께는, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 도전층 (30) 의 두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 두께가 지나치게 크면 돌기 (30a) 의 높이가 없어져 버린다.Moreover, the thickness of the conductive layer 30 becomes like this. Preferably they are 50 nm or more and 250 nm or less, More preferably, they are 80 nm or more and 150 nm or less. When the thickness of the conductive layer 30 is too small, it will become difficult to make it function as electroconductive particle, and when thickness is too big|large, the height of the processus|protrusion 30a will disappear.

제 1 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를 부착시킨 후, 도전층 (30) 을 형성하는 방법에 의해 얻을 수 있다. 또, 수지 코어 입자 (10) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 수지 코어 입자 (10) 의 분산액 중에, 절연성 입자 (20) 를 첨가하고, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 도전층을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.The electroconductive particle of a 1st structural example can be obtained with the method of forming the conductive layer 30, after making the insulating particle 20 adhere to the surface of the resin core particle 10. Moreover, as a method of making the insulating particle 20 adhere on the surface of the resin core particle 10, for example, in the dispersion liquid of the resin core particle 10, the insulating particle 20 is added, and the resin core particle In the surface of (10), for example, making the insulating particle 20 accumulate|stacking by van der Waals force, making it adhere, etc. are mentioned. Moreover, as a method of forming a conductive layer, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. Among these, the method by electroless-plating which formation of a conductive layer is simple is preferable.

[제 2 구성예][Second configuration example]

도 2 는, 도전성 입자의 제 2 구성예의 개략을 나타내는 단면도이다. 제 2 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면에 복수 부착되어, 돌기 (32a) 의 심재가 되는 절연성 입자 (20) 와, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면을 피복하는 제 1 도전층 (31) 과, 도전층 (31) 을 피복하는 제 2 도전층 (32) 을 구비한다. 즉, 제 2 구성예는, 제 1 구성예의 도전층 (30) 을 2 층 구조로 한 것이다. 도전층을 2 층 구조로 함으로써, 최외각을 구성하는 제 2 도전층 (32) 의 밀착성을 향상시켜, 도통 저항을 저하시킬 수 있다.It is sectional drawing which shows the outline of the 2nd structural example of electroconductive particle. The electroconductive particle of a 2nd structural example is the resin core particle 10, the insulating particle 20 which adheres to the surface of the resin core particle 10, and becomes the core material of the protrusion 32a, The resin core particle 10 And the 1st conductive layer 31 which coat|covers the surface of the insulating particle 20, and the 2nd conductive layer 32 which coat|covers the conductive layer 31 are provided. That is, in the second structural example, the conductive layer 30 of the first structural example has a two-layer structure. By making a conductive layer into a two-layer structure, the adhesiveness of the 2nd conductive layer 32 which comprises outermost can be improved and conduction resistance can be reduced.

수지 코어 입자 (10) 및 절연성 입자 (20) 는, 제 1 구성예와 동일하기 때문에, 여기서는 설명을 생략한다.Since the resin core particle 10 and the insulating particle 20 are the same as that of a 1st structural example, description is abbreviate|omitted here.

제 1 도전층 (31) 은, 수지 코어 입자 (10) 및 절연성 입자 (20) 의 표면을 피복하고, 제 2 도전층 (32) 의 하지가 된다. 제 1 도전층 (31) 으로는, 제 2 도전층 (32) 의 밀착성이 향상되면 특별히 한정되지 않고, 예를 들어, 니켈, 니켈 합금, 구리, 은 등을 들 수 있다.The 1st conductive layer 31 coat|covers the surface of the resin core particle 10 and the insulating particle 20, and becomes the foundation|substrate of the 2nd conductive layer 32. As shown in FIG. It will not specifically limit as the 1st conductive layer 31, if the adhesiveness of the 2nd conductive layer 32 improves, For example, nickel, a nickel alloy, copper, silver, etc. are mentioned.

제 2 도전층 (32) 은, 제 1 도전층 (31) 을 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (32a) 를 갖는다. 제 2 도전층 (32) 은, 제 1 구성예와 동일하게, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The 2nd conductive layer 32 coat|covers the 1st conductive layer 31, and has the protrusion 32a protruded by the some insulating particle 20. It is preferable that the 2nd conductive layer 32 is nickel or a nickel alloy similarly to a 1st structural example. Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P etc. are mentioned as a nickel alloy. Among these, it is preferable to use Ni-W-B which is low resistance.

또, 제 1 도전층 (31) 및 제 2 도전층 (32) 의 총두께는, 제 1 구성예의 도전층 (30) 과 동일하게, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 총두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 총두께가 지나치게 크면 돌기 (32a) 의 높이가 없어져 버린다.The total thickness of the first conductive layer 31 and the second conductive layer 32 is the same as that of the conductive layer 30 of the first structural example, preferably 50 nm or more and 250 nm or less, more preferably 80 nm or more and 150 nm or less. When total thickness is too small, it will become difficult to make it function as electroconductive particle, and when total thickness is too big|large, the height of the processus|protrusion 32a will disappear.

제 2 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를 부착시킨 후, 제 1 도전층 (31) 을 형성한 후, 제 2 도전층 (32) 을 형성하는 방법에 의해 얻을 수 있다. 또, 수지 코어 입자 (10) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 수지 코어 입자 (10) 의 분산액 중에 절연성 입자 (20) 를 첨가하고, 수지 코어 입자 (10) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 제 1 도전층 (31) 및 제 2 도전층 (32) 을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.Method of forming the 2nd conductive layer 32, after the electroconductive particle of a 2nd structural example makes the insulating particle 20 adhere to the surface of the resin core particle 10, and forms the 1st conductive layer 31 can be obtained by Moreover, as a method of making the insulating particle 20 adhere on the surface of the resin core particle 10, for example, the insulating particle 20 is added to the dispersion liquid of the resin core particle 10, and the resin core particle ( 10), for example, making the insulating particle 20 accumulate|stacking by van der Waals force, making it adhere to the surface, etc. are mentioned. Moreover, as a method of forming the 1st conductive layer 31 and the 2nd conductive layer 32, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. have. Among these, the method by electroless-plating which formation of a conductive layer is simple is preferable.

[제 3 구성예][Third configuration example]

도 3 은, 도전성 입자의 제 3 구성예의 개략을 나타내는 단면도이다. 제 3 구성예의 도전성 입자는, 수지 코어 입자 (10) 와, 수지 코어 입자 (10) 의 표면을 피복하는 제 1 도전층 (33) 과, 제 1 도전층 (33) 의 표면에 복수 부착되어, 돌기 (34a) 의 심재가 되는 절연성 입자 (20) 와, 제 1 도전층 (33) 및 절연성 입자 (20) 의 표면을 피복하는 제 2 도전층 (34) 을 구비한다. 즉, 제 3 구성예는, 제 1 도전층 (33) 의 표면에 절연성 입자 (20) 를 부착시키고, 추가로 제 2 도전층 (34) 을 형성한 것이다. 이로써, 압착시에 절연성 입자 (20) 가 수지 코어 입자 (10) 에 파고드는 것을 방지하여, 돌기가 전극 표면의 산화물층을 용이하게 뚫을 수 있다.3 : is sectional drawing which shows the outline of the 3rd structural example of electroconductive particle. The conductive particles of the third structural example are adhered to the resin core particle 10, the first conductive layer 33 covering the surface of the resin core particle 10, and the surface of the first conductive layer 33, The insulating particle 20 used as the core material of the projection 34a, and the 1st conductive layer 33 and the 2nd conductive layer 34 which coat|cover the surface of the insulating particle 20 are provided. That is, in the 3rd structural example, the insulating particle 20 was made to adhere to the surface of the 1st conductive layer 33, and the 2nd conductive layer 34 was further formed. This prevents the insulating particles 20 from penetrating into the resin core particles 10 at the time of compression, so that the projections can easily penetrate the oxide layer on the electrode surface.

수지 코어 입자 (10) 및 절연성 입자 (20) 는, 제 1 구성예와 동일하기 때문에 여기서는 설명을 생략한다.Since the resin core particle 10 and the insulating particle 20 are the same as that of a 1st structural example, description is abbreviate|omitted here.

제 1 도전층 (33) 은, 수지 코어 입자 (10) 의 표면을 피복하고, 절연성 입자 (20) 의 부착면 및 제 2 도전층 (34) 의 하지가 된다. 제 1 도전층 (33) 으로는, 제 2 도전층 (34) 의 밀착성이 향상되면 특별히 한정되지 않고, 예를 들어, 니켈, 니켈 합금, 구리, 은 등을 들 수 있다.The 1st conductive layer 33 coat|covers the surface of the resin core particle 10, and serves as the attachment surface of the insulating particle 20, and the foundation|substrate of the 2nd conductive layer 34. As shown in FIG. It will not specifically limit as the 1st conductive layer 33, if the adhesiveness of the 2nd conductive layer 34 improves, For example, nickel, a nickel alloy, copper, silver, etc. are mentioned.

또, 제 1 도전층 (33) 의 두께는, 바람직하게는 10 ㎚ 이상 200 ㎚ 이하, 보다 바람직하게는 50 ㎚ 이상 150 ㎚ 이하이다. 두께가 지나치게 크면 수지 코어 입자 (10) 의 탄성의 효과가 저하되기 때문에, 도통 신뢰성이 저하되어 버린다.Moreover, the thickness of the 1st conductive layer 33 becomes like this. Preferably they are 10 nm or more and 200 nm or less, More preferably, they are 50 nm or more and 150 nm or less. Since the effect of elasticity of the resin core particle 10 will fall when thickness is too large, conduction|electrical_connection reliability will fall.

제 2 도전층 (34) 은, 절연성 입자 (20) 및 제 1 도전층 (33) 을 피복하고, 복수의 절연성 입자 (20) 에 의해 융기된 돌기 (34a) 를 갖는다. 제 2 도전층 (34) 은, 제 1 구성예와 동일하게, 니켈 또는 니켈 합금인 것이 바람직하다. 니켈 합금으로는, Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P 등을 들 수 있다. 이들 중에서도, 저저항인 Ni-W-B 를 사용하는 것이 바람직하다.The 2nd conductive layer 34 coat|covers the insulating particle 20 and the 1st conductive layer 33, and has the protrusion 34a protruded by the some insulating particle 20. As shown in FIG. It is preferable that the 2nd conductive layer 34 is nickel or a nickel alloy similarly to a 1st structural example. Ni-W-B, Ni-W-P, Ni-W, Ni-B, Ni-P etc. are mentioned as a nickel alloy. Among these, it is preferable to use Ni-W-B which is low resistance.

또, 제 2 도전층 (34) 의 두께는, 제 1 구성예의 도전층 (30) 과 동일하게, 바람직하게는 50 ㎚ 이상 250 ㎚ 이하, 보다 바람직하게는 80 ㎚ 이상 150 ㎚ 이하이다. 총두께가 지나치게 작으면 도전성 입자로서 기능시키는 것이 곤란해지고, 총두께가 지나치게 크면 돌기 (34a) 의 높이가 없어져 버린다.Moreover, the thickness of the 2nd conductive layer 34 becomes like the conductive layer 30 of 1st structural example, Preferably they are 50 nm or more and 250 nm or less, More preferably, they are 80 nm or more and 150 nm or less. When total thickness is too small, it will become difficult to make it function as electroconductive particle, and when total thickness is too big|large, the height of the processus|protrusion 34a will disappear.

제 3 구성예의 도전성 입자는, 수지 코어 입자 (10) 의 표면에 제 1 도전층 (33) 을 형성한 후, 절연성 입자 (20) 를 부착시켜, 제 2 도전층 (34) 을 형성하는 방법에 의해 얻을 수 있다. 또, 제 1 도전층 (33) 의 표면 상에 절연성 입자 (20) 를 부착시키는 방법으로는, 예를 들어, 제 1 도전층 (33) 이 형성된 수지 코어 입자 (10) 의 분산액 중에, 절연성 입자 (20) 를 첨가하고, 제 1 도전층 (33) 의 표면에 절연성 입자 (20) 를, 예를 들어, 반데르발스력에 의해 집적시켜, 부착시키는 것 등을 들 수 있다. 또, 제 1 도전층 (33) 및 제 2 도전층 (34) 을 형성하는 방법으로는, 예를 들어, 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적 증착에 의한 방법 등을 들 수 있다. 이들 중에서도 도전층의 형성이 간편한 무전해 도금에 의한 방법이 바람직하다.The electroconductive particle of a 3rd structural example forms the 1st conductive layer 33 on the surface of the resin core particle 10, After making the insulating particle 20 adhere, the method of forming the 2nd conductive layer 34 can be obtained by Moreover, as a method of making the insulating particle 20 adhere on the surface of the 1st conductive layer 33, for example, in the dispersion liquid of the resin core particle 10 in which the 1st conductive layer 33 was formed, insulating particle|grains (20) is added, the insulating particle 20 is accumulated on the surface of the 1st conductive layer 33 by van der Waals force, for example, and making it adhere, etc. are mentioned. Moreover, as a method of forming the 1st conductive layer 33 and the 2nd conductive layer 34, the method by electroless plating, the method by electroplating, the method by physical vapor deposition, etc. are mentioned, for example. have. Among these, the method by electroless-plating which formation of a conductive layer is simple is preferable.

<2. 도전 재료><2. Conductive material>

본 실시형태에 관련된 도전 재료는, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유한다. 도전 재료로는, 필름상, 페이스트상 등의 형상을 들 수 있고, 예를 들어, 이방성 도전 필름 (ACF : Anisotropic Conductive Film), 이방성 도전 페이스트 (ACP : Anisotropic Conductive Paste) 등을 들 수 있다. 또, 도전 재료의 경화형으로는, 열 경화형, 광 경화형, 광열 병용 경화형 등을 들 수 있다.The electrically-conductive material which concerns on this embodiment is provided with a resin core particle, the insulating particle which is arrange|positioned on the surface of a resin core particle in plurality and forms a projection, and a conductive layer arranged on the surface of the resin core particle and the insulating particle, and has insulating properties. The Mohs' Hardness of particle|grains contains the larger electroconductive particle than 7. As an electrically-conductive material, shapes, such as a film form and a paste form, are mentioned, For example, an anisotropic conductive film (ACF:Anisotropic Conductive Film), an anisotropic electrically conductive paste (ACP:Anisotropic Conductive Paste), etc. are mentioned. Moreover, as a hardening type of an electrically-conductive material, a thermosetting type, a photocuring type, a light-heat combined curing type, etc. are mentioned.

이하에서는, 도전성 입자를 함유하는 ACF 층과 도전성 입자를 함유하지 않는 NCF (Non Conductive Film) 층이 적층된 2 층 구조의 열 경화형의 이방성 도전 필름을 예로 들어 설명한다. 또, 열 경화형의 이방성 도전 필름으로는, 예를 들어, 카티온 경화형, 아니온 경화형, 라디칼 경화형, 또는 이들을 병용할 수 있지만, 여기서는 아니온 경화형의 이방성 도전 필름에 대해 설명한다.Hereinafter, a thermosetting anisotropic conductive film having a two-layer structure in which an ACF layer containing conductive particles and an NCF (Non Conductive Film) layer not containing conductive particles is laminated will be described as an example. Moreover, as a thermosetting type anisotropic conductive film, although a cation hardening type, an anion hardening type, a radical hardening type, or these can be used together, for example, An anion hardening type anisotropic conductive film is demonstrated here.

아니온 경화형의 이방성 도전 필름은, ACF 층 및 NCF 층은, 바인더로서, 막형성 수지와, 에폭시 수지와, 아니온 중합 개시제를 함유한다.As for the anion-curable anisotropic conductive film, an ACF layer and an NCF layer contain a film-forming resin, an epoxy resin, and an anionic polymerization initiator as a binder.

막형성 수지는, 예를 들어 평균 분자량이 10000 이상인 고분자량 수지에 상당하고, 필름 형성성의 관점에서, 10000 ∼ 80000 정도의 평균 분자량인 것이 바람직하다. 막형성 수지로는, 페녹시 수지, 폴리에스테르 수지, 폴리우레탄 수지, 폴리에스테르우레탄 수지, 아크릴 수지, 폴리이미드 수지, 부티랄 수지 등의 여러 가지 수지를 들 수 있고, 이들은 단독으로 사용해도 되고, 2 종류 이상을 조합하여 사용해도 된다. 이들 중에서도, 막형성 상태, 접속 신뢰성 등의 관점에서 페녹시 수지를 바람직하게 사용하는 것이 바람직하다.Film-forming resin corresponds to high molecular weight resin with an average molecular weight of 10000 or more, for example, It is preferable from a viewpoint of film formation that it is an average molecular weight of about 10000-80000. Various resins, such as a phenoxy resin, a polyester resin, a polyurethane resin, a polyester urethane resin, an acrylic resin, a polyimide resin, a butyral resin, are mentioned as a film-forming resin, These may be used independently, You may use it in combination of 2 or more types. Among these, it is preferable to use a phenoxy resin suitably from viewpoints, such as a film-forming state and connection reliability.

에폭시 수지는, 3 차원 망목 구조를 형성하고, 양호한 내열성, 접착성을 부여하는 것이고, 고형 에폭시 수지와 액상 에폭시 수지를 병용하는 것이 바람직하다. 여기서, 고형 에폭시 수지란, 상온에서 고체인 에폭시 수지를 의미한다. 또, 액상 에폭시 수지란, 상온에서 액상인 에폭시 수지를 의미한다. 또, 상온이란, JIS Z 8703 에서 규정되는 5 ∼ 35 ℃ 의 온도 범위를 의미한다.The epoxy resin forms a three-dimensional network structure and provides favorable heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin together. Here, a solid epoxy resin means the epoxy resin which is solid at normal temperature. In addition, a liquid epoxy resin means a liquid epoxy resin at normal temperature. In addition, normal temperature means the temperature range of 5-35 degreeC prescribed|regulated by JISZ8703.

고형 에폭시 수지로는, 액상 에폭시 수지와 상용하여, 상온에서 고체상이면 특별히 한정되지 않고, 비스페놀 A 형 에폭시 수지, 비스페놀 F 형 에폭시 수지, 다관능형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 노볼락 페놀형 에폭시 수지, 비페닐형 에폭시 수지, 나프탈렌형 에폭시 수지 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 이들 중에서도, 비스페놀 A 형 에폭시 수지를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 신닛테츠 스미킨 화학 (주) 의 상품명 「YD-014」 등을 들 수 있다.The solid epoxy resin is not particularly limited as long as it is compatible with the liquid epoxy resin and is in a solid state at room temperature, and bisphenol A epoxy resin, bisphenol F epoxy resin, polyfunctional epoxy resin, dicyclopentadiene epoxy resin, novolac phenol A type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned, Among these, 1 type can be used individually or in combination of 2 or more type. Among these, it is preferable to use a bisphenol A epoxy resin. As a specific example available in the market, the brand name "YD-014" of Shin-Nitetsu Sumikin Chemical Co., Ltd. etc. is mentioned.

액상 에폭시 수지로는, 상온에서 액상이면 특별히 한정되지 않고, 비스페놀 A 형 에폭시 수지, 비스페놀 F 형 에폭시 수지, 노볼락 페놀형 에폭시 수지, 나프탈렌형 에폭시 수지 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 특히, 필름의 택성, 유연성 등의 관점에서, 비스페놀 A 형 에폭시 수지를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 미츠비시 화학 (주) 의 상품명 「EP828」 등을 들 수 있다.The liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, etc. or in combination of two or more. In particular, it is preferable to use a bisphenol A epoxy resin from the viewpoints of film tackiness, flexibility, and the like. Specific examples available on the market include Mitsubishi Chemical Co., Ltd. trade name "EP828".

아니온 중합 개시제로는, 통상 사용되는 공지된 경화제를 사용할 수 있다. 예를 들어, 유기산 디하이드라지드, 디시안디아미드, 아민 화합물, 폴리아미드아민 화합물, 시아네이트에스테르 화합물, 페놀 수지, 산 무수물, 카르복실산, 3 급 아민 화합물, 이미다졸, 루이스산, 브렌스테드산염, 폴리메르캅탄계 경화제, 우레아 수지, 멜라민 수지, 이소시아네이트 화합물, 블록 이소시아네이트 화합물 등을 들 수 있고, 이들 중에서 1 종을 단독으로, 또는 2 종 이상을 조합하여 사용할 수 있다. 이들 중에서도, 이미다졸 변성체를 핵으로 하고 그 표면을 폴리우레탄으로 피복하여 이루어지는 마이크로 캡슐형 잠재성 경화제를 사용하는 것이 바람직하다. 시장에서 입수 가능한 구체예로는, 아사히 카세이 이 머티리얼즈 (주) 의 상품명 「노바큐어 3941HP」 등을 들 수 있다.As an anionic polymerization initiator, a well-known hardening|curing agent used normally can be used. For example, organic acid dihydrazide, dicyandiamide, amine compound, polyamideamine compound, cyanate ester compound, phenol resin, acid anhydride, carboxylic acid, tertiary amine compound, imidazole, Lewis acid, breth A ted acid salt, a polymercaptan type hardening|curing agent, a urea resin, a melamine resin, an isocyanate compound, a blocked isocyanate compound, etc. are mentioned, Among these, 1 type can be used individually or in combination of 2 or more types. Among these, it is preferable to use a microcapsule-type latent curing agent formed by using an imidazole-modified product as a nucleus and coating the surface with polyurethane. As a specific example available in the market, the brand name of Asahi Kasei Materials Co., Ltd. "Novacure 3941HP", etc. are mentioned.

또, 바인더로서, 필요에 따라, 응력 완화제, 실란 커플링제, 무기 필러 등을 배합해도 된다. 응력 완화제로는, 수첨 스티렌-부타디엔 블록 공중합체, 수첨 스티렌-이소프렌 블록 공중합체 등을 들 수 있다. 또, 실란 커플링제로는, 에폭시계, 메타크릴옥시계, 아미노계, 비닐계, 메르캅토·술파이드계, 우레이드계 등을 들 수 있다. 또, 무기 필러로는, 실리카, 탤크, 산화티탄, 탄산칼슘, 산화마그네슘 등을 들 수 있다.Moreover, as a binder, you may mix|blend a stress reliever, a silane coupling agent, an inorganic filler, etc. as needed. Examples of the stress reliever include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer. Moreover, as a silane coupling agent, an epoxy type, methacryloxy type, an amino type, a vinyl type, a mercapto sulfide type, a ureide type, etc. are mentioned. Moreover, as an inorganic filler, a silica, a talc, a titanium oxide, a calcium carbonate, magnesium oxide, etc. are mentioned.

<3. 접속 구조체의 제조 방법><3. Manufacturing method of bonded structure>

본 실시형태에 관련된 접속 구조체의 제조 방법은, 수지 코어 입자와, 수지 코어 입자의 표면에 복수 배치되어, 돌기를 형성하는 절연성 입자와, 수지 코어 입자 및 절연성 입자의 표면에 배치되는 도전층을 구비하고, 절연성 입자의 모스 경도가 7 보다 큰 도전성 입자를 함유하는 도전 재료를 개재하여, 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착한다. 이로써 전술한 도전성 입자에 의해 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지는 접속 구조체를 얻을 수 있다.A method for manufacturing a bonded structure according to the present embodiment includes a resin core particle, a plurality of insulating particles disposed on the surface of the resin core particle to form projections, and a conductive layer disposed on the surface of the resin core particle and the insulating particle And the terminal of a 1st circuit member and the terminal of a 2nd circuit member are crimped|bonded through the electrically-conductive material containing the electroconductive particle whose Mohs' Hardness of insulating particle|grains is larger than 7. Thereby, the bonded structure by which the terminal of a 1st circuit member and the terminal of a 2nd circuit member are connected with the electroconductive particle mentioned above can be obtained.

제 1 회로 부재 및 제 2 회로 부재는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있다. 제 1 회로 부재로는, 예를 들어, LCD (Liquid Crystal Display) 패널 용도, 플라즈마 디스플레이 패널 (PDP) 용도 등의 플라스틱 기판, 유리 기판, 프린트 배선판 (PWB) 등을 들 수 있다. 또, 제 2 회로 부재로는, 예를 들어, IC (Integrated Circuit), COF (Chip On Film) 등의 플렉시블 기판 (FPC : Flexible Printed Circuits), 테이프 캐리어 패키지 (TCP) 기판 등을 들 수 있다.There is no restriction|limiting in particular for a 1st circuit member and a 2nd circuit member, According to the objective, it can select suitably. As a 1st circuit member, plastic substrates, such as an LCD (Liquid Crystal Display) panel use, a plasma display panel (PDP) use, a glass substrate, a printed wiring board (PWB), etc. are mentioned, for example. Moreover, as a 2nd circuit member, flexible boards (FPC:Flexible Printed Circuits), such as IC (Integrated Circuit) and COF (Chip On Film), a tape carrier package (TCP) board|substrate, etc. are mentioned, for example.

도 4 는, 압착시의 도전성 입자의 개략을 나타내는 단면도이다. 도 4 에 있어서 도전층은 생략한다. 도전성 입자 (40) 는, 돌기를 형성하는 절연성 입자 (42) 가 수지 코어 입자 (41) 의 표면에 복수 배치되어 있기 때문에, 제 1 회로 부재 (50) 의 단자 (51) 상에 형성된 산화물층 (52) 을 뚫는 것이 가능해진다. 산화물층 (52) 은, 배선의 부식을 방지하는 보호층으로서 기능하고, 예를 들어 TiO2, SnO2, SiO2 등을 들 수 있다.It is sectional drawing which shows the outline of the electroconductive particle at the time of crimping|bonding. In FIG. 4, a conductive layer is abbreviate|omitted. The conductive particles 40 have an oxide layer formed on the terminals 51 of the first circuit member 50 ( 52) becomes possible. The oxide layer 52 functions as a protective layer which prevents corrosion of wiring, for example, TiO2, SnO2 , SiO2 , etc. are mentioned.

본 실시형태에서는, 절연성 입자 (41) 의 모스 경도가 7 보다 크기 때문에, 압착시의 압력을 높게 하는 일 없이, 산화물층 (52) 을 뚫을 수 있어, 배선 크랙의 발생을 억제할 수 있다. 특히, 제 1 회로 부재 (50) 가 PET (Poly Ethylene Terephthalate) 기판 등의 저탄성률의 플라스틱 기판인 경우, 압착시의 압력을 높게 하는 일 없이, 기재 변형의 영향을 경감시켜 저저항을 실현할 수 있기 때문에, 매우 유효하다. 또한, 플라스틱 기판의 탄성률은, 접속체에 요구되는 플렉서빌리티나, 굴곡성과 후술하는 구동 회로 소자 (3) 등의 전자 부품과의 접속 강도의 관계 등의 요소를 고려하여 구할 수 있지만, 일반적으로 2000 ㎫ ∼ 4100 ㎫ 가 된다.In this embodiment, since the Mohs' Hardness of the insulating particle 41 is larger than 7, the oxide layer 52 can be penetrated without raising the pressure at the time of crimping|compression-bonding, and generation|occurrence|production of a wiring crack can be suppressed. In particular, when the first circuit member 50 is a low elastic modulus plastic substrate such as a PET (Poly Ethylene Terephthalate) substrate, it is possible to realize low resistance by reducing the effect of deformation of the substrate without increasing the pressure during compression. Therefore, it is very effective. In addition, the elastic modulus of a plastic substrate can be calculated|required in consideration of factors, such as the relationship between the flexibility requested|required of a connection body, flexibility, and the connection strength with electronic components, such as the drive circuit element 3 mentioned later, although it is generally It becomes 2000 Mpa - 4100 Mpa.

제 1 회로 부재의 단자와 제 2 회로 부재의 단자의 압착에서는, 제 2 회로 부재 상에서, 소정 온도로 가온된 압착 툴에 의해, 소정의 압력 및 소정의 시간, 열가압되어 본압착된다. 여기서, 소정의 압력은, 회로 부재의 배선 크랙을 방지하는 관점에서, 10 ㎫ 이상 80 ㎫ 이하인 것이 바람직하다. 또, 소정 온도는, 압착시에 있어서의 이방성 도전 필름의 온도이고, 80 ℃ 이상 230 ℃ 이하인 것이 바람직하다.In crimping of the terminal of the first circuit member and the terminal of the second circuit member, on the second circuit member, the crimping tool heated to a predetermined temperature is used for a predetermined pressure and for a predetermined time, and is heat-pressed to perform main crimping. Here, it is preferable that predetermined pressure is 10 MPa or more and 80 MPa or less from a viewpoint of preventing the wiring crack of a circuit member. Moreover, predetermined temperature is the temperature of the anisotropic conductive film at the time of crimping|bonding, and it is preferable that they are 80 degreeC or more and 230 degrees C or less.

압착 툴로는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있고, 가압 대상보다 대면적인 가압 부재를 사용하여 가압을 1 회로 실시해도 되고, 또, 가압 대상보다 소면적인 가압 부재를 사용하여 가압을 몇 차례로 나누어 실시해도 된다. 압착 툴의 선단 형상으로는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있고, 예를 들어, 평면상, 곡면상 등을 들 수 있다. 또한, 선단 형상이 곡면상인 경우, 곡면상을 따라 가압하는 것이 바람직하다.There is no restriction|limiting in particular as a crimping tool, It can select suitably according to the objective, You may pressurize once using the pressurizing member larger area than the press object, Moreover, how many pressurizations are carried out using the pressurization member smaller in area than the press object. You may divide and carry out it sequentially. There is no restriction|limiting in particular as a front-end|tip shape of a crimping|compression-bonding tool, According to the objective, it can select suitably, For example, a flat shape, a curved shape, etc. are mentioned. Moreover, when the tip shape is curved, it is preferable to press along the curved shape.

또, 압착 툴과 제 2 회로 부재 사이에 완충재를 개재하여 장착하여 열압착해도 된다. 완충재를 개재하여 장착함으로써, 가압 편차를 저감시킬 수 있음과 함께, 압착 툴이 오염되는 것을 방지할 수 있다. 완충재는, 시트상의 탄성재 또는 소성체로 이루어지고, 예를 들어 실리콘 러버나 폴리 4 불화에틸렌이 사용된다.Moreover, you may attach and thermocompression-bonding between a crimping|compression-bonding tool and a 2nd circuit member via a cushioning material. By attaching via a cushioning material, while being able to reduce a pressurization deviation, it can prevent that a crimping|compression-bonding tool is contaminated. The cushioning material consists of a sheet-like elastic material or a calcined body, for example, silicone rubber or polytetrafluoroethylene is used.

이와 같은 접속 구조체의 제조 방법에 의하면, 절연성 입자의 모스 경도가 크기 때문에, 압착시의 압력을 높게 하는 일 없이, 산화물층을 뚫을 수 있어, 배선 크랙의 발생을 억제할 수 있다. 또, 도전층을 Ni-W-B 등의 경도가 큰 것으로 함으로써, 압착시의 압력을 높게 하는 일 없이, 산화물층을 용이하게 뚫을 수 있어, 배선 크랙의 발생을 더욱 억제할 수 있다.According to the manufacturing method of such a bonded structure, since the Mohs' Hardness of an insulating particle is large, an oxide layer can be penetrated without increasing the pressure at the time of crimping|compression-bonding, and generation|occurrence|production of a wiring crack can be suppressed. Moreover, when the conductive layer is made of a material having a high hardness such as Ni-W-B, the oxide layer can be easily penetrated without increasing the pressure at the time of crimping, and the occurrence of wiring cracks can be further suppressed.

실시예Example

<3. 실시예><3. Example>

이하, 본 발명의 실시예에 대해 설명한다. 본 실시예에서는, 돌기를 갖는 도전성 입자를 제조하고, 이것을 함유하는 이방성 도전 필름을 사용하여 접속 구조체를 제조하였다. 그리고, 접속 구조체의 도통 저항, 및 배선 크랙의 발생률에 대해 평가하였다. 또한, 본 발명은 이들의 실시예에 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described. In the present Example, the electroconductive particle which has processus|protrusion was manufactured, and the bonded structure was manufactured using the anisotropic conductive film containing this. And the conduction resistance of the bonded structure and the incidence rate of wiring cracks were evaluated. In addition, the present invention is not limited to these examples.

이방성 도전 필름의 제조, 접속 구조체의 제조, 도통 저항의 측정, 및 배선 크랙의 발생률의 산출은 다음과 같이 실시하였다.Manufacture of an anisotropic conductive film, manufacture of a bonded structure, the measurement of conduction resistance, and calculation of the incidence rate of a wiring crack were performed as follows.

[이방성 도전 필름의 제조][Production of anisotropic conductive film]

ACF 층과 NCF 층이 적층된 2 층 구조의 이방성 도전 필름을 제조하였다. 먼저, 페녹시 수지 (YP50, 신닛테츠 화학 (주)) 20 질량부, 액상 에폭시 수지 (EP828, 미츠비시 화학 (주)) 30 질량부, 고형 에폭시 수지 (YD-014, 신닛테츠 화학 (주)) 10 질량부, 마이크로 캡슐형 잠재성 경화제 (노바큐어 3941H, 아사히 카세이 이 머티리얼즈) 30 질량부, 도전성 입자 10 질량부를 배합하여, 두께 6 μm 의 ACF 층을 얻었다. 다음으로, 페녹시 수지 (YP50, 신닛테츠 화학 (주)) 20 질량부, 액상 에폭시 수지 (EP828, 미츠비시 화학 (주)) 30 질량부, 고형 에폭시 수지 (YD-014, 신닛테츠 화학 (주)) 10 질량부, 마이크로 캡슐형 잠재성 경화제 (노바큐어 3941H, 아사히 카세이 이 머티리얼즈) 30 질량부를 배합하여, 두께 12 μm 의 NCF 층을 얻었다. 그리고, ACF 층과 NCF 층을 첩합 (貼合) 하여, 두께 18 μm 의 2 층 구조의 이방성 도전 필름을 얻었다.An anisotropic conductive film having a two-layer structure in which an ACF layer and an NCF layer were laminated was prepared. First, 20 parts by mass of phenoxy resin (YP50, Shin-Nitetsu Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), 30 parts by mass of solid epoxy resin (YD-014, Shin-Nitetsu Chemical Co., Ltd.) 10 mass parts, 30 mass parts of microcapsule-type latent hardening|curing agents (Novacure 3941H, Asahi Kasei Materials), 10 mass parts of electroconductive particles were mix|blended, and the 6-micrometer-thick ACF layer was obtained. Next, 20 parts by mass of a phenoxy resin (YP50, Shin-Nitetsu Chemical Co., Ltd.), 30 parts by mass of a liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.), 30 parts by mass of a solid epoxy resin (YD-014, Shin-Nitetsu Chemical Co., Ltd.) ) 10 parts by mass and 30 parts by mass of a microcapsule latent curing agent (Novacure 3941H, Asahi Kasei Materials) were blended to obtain an NCF layer having a thickness of 12 µm. And the ACF layer and the NCF layer were bonded together, and the anisotropic conductive film of the 18 micrometer-thick 2-layer structure was obtained.

[접속 구조체의 제조][Manufacture of bonded structure]

평가 기재로서, TiO2/Al 코팅 유리 기판 (0.3 ㎜t, TiO2 두께 : 50 ㎚, Al 두께 : 300 ㎚), TiO2/Al 코팅 PET (Poly Ethylene Terephthalate) 기판 (0.3 ㎜t, TiO2 두께 : 50 ㎚, Al 두께 : 300 ㎚), 및 IC (1.8 ㎜ × 20 ㎜, T : 0.3 ㎜, Au-plated bump : 30 μm × 85 μm, h=15 μm) 를 준비하였다. 또, 압착 조건은, 190 ℃-60 ㎫-5 sec, 또는 190 ℃-100 ㎫-5 sec 로 하였다.As the evaluation substrate, TiO 2 /Al coated glass substrate (0.3 mmt, TiO 2 thickness: 50 nm, Al thickness: 300 nm), TiO 2 /Al coated PET (Poly Ethylene Terephthalate) substrate (0.3 mmt, TiO 2 thickness) : 50 nm, Al thickness: 300 nm), and IC (1.8 mm × 20 mm, T: 0.3 mm, Au-plated bump: 30 μm × 85 μm, h=15 μm) were prepared. In addition, crimping|compression-bonding conditions were 190 degreeC - 60 MPa-5 sec, or 190 degreeC - 100 MPa-5 sec.

먼저, TiO2/Al 코팅 유리 기판 상 또는 TiO2/Al 코팅 PET 기판 상에, 1.5 ㎜ 폭으로 슬릿된 이방성 도전 필름을 압착기를 사용하여 가접착하고, 박리 PET 필름을 벗긴 후, IC 를 압착기를 사용하여 소정의 압착 조건으로 압착하여, 접속 구조체를 얻었다.First, on a TiO 2 /Al-coated glass substrate or TiO 2 /Al-coated PET substrate, an anisotropic conductive film slit to a width of 1.5 mm is temporarily adhered using a press, and the peeled PET film is peeled off, and then the IC is pressed by a press. It was used and crimped|bonded under predetermined crimping|compression-bonding conditions, and the bonded structure was obtained.

[도통 저항의 측정][Measurement of continuity resistance]

디지털 멀티미터 (상품명 : 디지털 멀티미터 7561, 요코가와 전기사 제조) 를 사용하여, 초기의 접속 구조체의 도통 저항 (Ω) 의 측정을 실시하였다. 또, 접속 구조체를, 85 ℃, 85 %RH 의 고온 고습 환경하에 500 h 방치하여 신뢰성 시험을 실시한 후, 접속 구조체의 도통 저항 (Ω) 의 측정을 실시하였다.The conduction resistance (Ω) of the initial bonding structure was measured using the digital multimeter (Brand name: Digital multimeter 7561, the Yokogawa Electric company make). Moreover, after leaving the bonded structure to stand for 500 hours in 85 degreeC and the high-temperature, high-humidity environment of 85 %RH and performing a reliability test, the conduction resistance (Ω) of the bonded structure was measured.

[배선 크랙의 발생률][Rate of wiring cracks]

접속 구조체의 기판측의 배선의 임의의 20 지점을 금속 현미경으로 관찰하고, 배선 크랙을 카운트하여 발생률을 산출하였다.Arbitrary 20 points|pieces of the wiring by the side of the board|substrate of the bonded structure were observed with the metallurgical microscope, the wiring crack was counted, and the incidence rate was computed.

[종합 판정][Total judgment]

초기의 도통 저항과 신뢰성 시험 후의 도통 저항의 차가 0.3 Ω 이하, 또한 배선 크랙의 발생률이 0 % 인 경우를 「OK」 로 평가하고, 그 이외를 「NG」 로 평가하였다.The case where the difference between the initial conduction resistance and the conduction resistance after the reliability test was 0.3 Ω or less and the occurrence rate of wiring cracks was 0% was evaluated as "OK", and the others were evaluated as "NG".

<실시예 1><Example 1>

수지 코어 입자로서, 다음과 같이 디비닐벤젠계 수지 입자를 제조하였다. 디비닐벤젠, 스티렌, 부틸메타크릴레이트의 혼합비를 조정한 용액에 중합 개시제로서 벤조일퍼옥사이드를 투입하여 고속으로 균일 교반하면서 가열을 실시하고, 중합 반응을 실시함으로써 미립자 분산액을 얻었다. 미립자 분산액을 여과하고, 감압 건조시킴으로써 미립자의 응집체인 블록체를 얻었다. 그리고, 블록체를 분쇄함으로써, 평균 입자경 3.0 μm 의 디비닐벤젠계 수지 입자를 얻었다. 이 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률 (20 % K 값) 은, 12000 N/㎟ 였다.As the resin core particles, divinylbenzene-based resin particles were prepared as follows. Benzoyl peroxide as a polymerization initiator was added to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, heated while uniformly stirring at high speed, and polymerization was carried out to obtain a fine particle dispersion. The fine particle dispersion liquid was filtered and the block body which is an aggregate of fine particles was obtained by drying under reduced pressure. And divinylbenzene-type resin particle|grains with an average particle diameter of 3.0 micrometers were obtained by grind|pulverizing a block body. The compressive elastic modulus (20% K value) of this resin core particle|grains when it compressed 20% was 12000 N/mm<2>.

또, 절연성 입자로서, 평균 입자경이 150 ㎚ 인 알루미나 (Al2O3) 를 사용하였다. 또, 도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 및 시트르산나트륨 0.5 ㏖/ℓ 를 함유하는 니켈 도금액 (pH8.5) 을 함유하는 니켈 도금액을 사용하였다.Moreover, the alumina (Al2O3) whose average particle diameter is 150 nm was used as insulating particle|grains. Further, as the plating solution for the conductive layer, a nickel plating solution containing a nickel plating solution (pH8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, and 0.5 mol/L of sodium citrate was used.

먼저, 팔라듐 촉매액을 5 wt% 함유하는 알칼리 용액 100 질량부에 대해, 수지 코어 입자 (10) 질량부를 초음파 분산기로 분산시킨 후, 용액을 여과하고, 수지 코어 입자를 취출하였다. 이어서, 수지 코어 입자 10 질량부를 디메틸아민보란 1 wt% 용액 100 질량부에 첨가하여, 수지 코어 입자의 표면을 활성화시켰다. 그리고, 수지 코어 입자를 충분히 수세한 후, 증류수 500 질량부에 첨가하고, 분산시킴으로써, 팔라듐이 부착된 수지 코어 입자를 함유하는 분산액을 얻었다.First, with respect to 100 parts by mass of an alkali solution containing 5 wt% of a palladium catalyst solution, 10 parts by mass of the resin core particles were dispersed by an ultrasonic disperser, and then the solution was filtered to take out the resin core particles. Next, 10 parts by mass of the resin core particles were added to 100 parts by mass of a 1 wt% solution of dimethylamine borane to activate the surface of the resin core particles. And the dispersion liquid containing the resin core particle to which palladium adhered was obtained by adding and disperse|distributing the resin core particle to 500 mass parts of distilled water after fully washing with water.

다음으로, 절연성 입자 1 g 을 3 분간에 걸쳐 분산액에 첨가하여, 절연성 입자가 부착된 입자를 함유하는 슬러리를 얻었다. 그리고, 슬러리를 60 ℃ 에서 교반하면서, 슬러리 중에 니켈 도금액을 서서히 적하하여, 무전해 니켈 도금을 실시하였다. 수소의 발포가 정지되는 것을 확인한 후, 입자를 여과하고, 수세하고, 알코올 치환한 후에 진공 건조시켜, 알루미나로 형성된 돌기와, Ni-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 주사형 전자 현미경 (SEM) 으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.Next, 1 g of insulating particles were added to the dispersion over 3 minutes to obtain a slurry containing particles to which insulating particles adhered. And stirring the slurry at 60 degreeC, the nickel plating liquid was gradually dripped in the slurry, and electroless nickel plating was performed. After confirming that foaming of hydrogen stopped, it vacuum-dried after filtering particle|grains, washing with water, and alcohol substitution, and obtained the electroconductive particle which has the processus|protrusion formed from alumina, and the conductive layer of Ni-B plating. As a result of observing this electroconductive particle with a scanning electron microscope (SEM), the average particle diameter was 3-4 micrometers, the number of processus|protrusions per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.6 Ω, 신뢰성 시험 후의 저항값은 0.9 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the anisotropic conductive film to which this electroconductive particle was added, the TiO2/Al - coated glass substrate and IC were crimped|bonded under the crimping|compression-bonding conditions of 190 degreeC-60 Mpa-5 sec, and bonded structure was obtained. The initial resistance value of the bonded structure was 0.6 Ω, the resistance value after the reliability test was 0.9 Ω, and the rate of occurrence of wiring cracks was 0%, and overall judgment was OK.

<실시예 2><Example 2>

표 1 에 나타내는 바와 같이, 실시예 1 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the anisotropic conductive film to which the same conductive particles as in Example 1 were added, the TiO 2 /Al-coated PET substrate and the IC were pressed under the compression conditions of 190 ° C.-60 MPa-5 sec, and connected. struct was obtained. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.0 Ω, and the occurrence rate of wiring cracks was 0%, and overall judgment was OK.

<실시예 3><Example 3>

도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 시트르산나트륨 0.5 ㏖/ℓ 및 텅스텐산나트륨 0.35 ㏖/ℓ 를 함유하는 Ni-W-B 도금액 (pH8.5) 을 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 알루미나로 형성된 돌기와, Ni-W-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 금속 현미경으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the plating solution for the conductive layer, a Ni-W-B plating solution (pH8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, 0.5 mol/L of sodium citrate, and 0.35 mol/L of sodium tungstate was used. . Except this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the processus|protrusion formed from alumina, and the conductive layer of Ni-W-B plating. As a result of observing this electroconductive particle with the metallographic microscope, the average particle diameter was 3-4 micrometers, the number of processus|protrusions per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.3 Ω, 신뢰성 시험 후의 저항값은 0.5 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the anisotropic conductive film to which this electroconductive particle was added, the TiO2/Al - coated glass substrate and IC were crimped|bonded under the crimping|compression-bonding conditions of 190 degreeC-60 Mpa-5 sec, and bonded structure was obtained. The initial resistance value of the bonded structure was 0.3 Ω, the resistance value after the reliability test was 0.5 Ω, and the rate of occurrence of wiring cracks was 0%, and overall judgment was OK.

<실시예 4><Example 4>

표 1 에 나타내는 바와 같이, 실시예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.6 Ω, 신뢰성 시험 후의 저항값은 0.8 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 OK 였다.As shown in Table 1, using the anisotropic conductive film to which the same conductive particles as in Example 3 were added, the TiO 2 /Al-coated PET substrate and the IC were pressed under the compression conditions of 190° C.-60 MPa-5 sec, and connected. struct was obtained. The initial resistance value of the bonded structure was 0.6 Ω, the resistance value after the reliability test was 0.8 Ω, and the occurrence rate of wiring cracks was 0%, and overall judgment was OK.

<비교예 1><Comparative Example 1>

절연성 입자로서, 평균 입자경이 150 ㎚ 인 실리카 (SiO2) 를 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 실리카로 형성된 돌기와, Ni-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 금속 현미경으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the insulating particles, silica (SiO 2 ) having an average particle diameter of 150 nm was used. Except this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the processus|protrusion formed from silica, and the conductive layer of Ni-B plating. As a result of observing this electroconductive particle with the metallographic microscope, the average particle diameter was 3-4 micrometers, the number of processus|protrusions per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 1.5 Ω, 신뢰성 시험 후의 저항값은 3.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the anisotropic conductive film to which this electroconductive particle was added, the TiO2/Al - coated glass substrate and IC were crimped|bonded under the crimping|compression-bonding conditions of 190 degreeC-60 Mpa-5 sec, and bonded structure was obtained. The initial resistance value of the bonded structure was 1.5 Ω, the resistance value after the reliability test was 3.0 Ω, and the occurrence rate of wiring cracks was 0%, and the overall judgment was NG.

<비교예 2><Comparative Example 2>

표 1 에 나타내는 바와 같이, 비교예 1 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 3.0 Ω, 신뢰성 시험 후의 저항값은 6.0 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the anisotropic conductive film to which the same conductive particles as in Comparative Example 1 were added, the TiO 2 /Al-coated PET substrate and the IC were pressed under the compression conditions of 190 ° C.-60 MPa-5 sec, and connected. struct was obtained. The initial resistance value of the bonded structure was 3.0 Ω, the resistance value after the reliability test was 6.0 Ω, and the rate of occurrence of wiring cracks was 0%, and the overall judgment was NG.

<비교예 3><Comparative example 3>

절연성 입자로서, 평균 입자경이 150 ㎚ 인 실리카 (SiO2) 를 사용하였다. 또, 도전층용의 도금액으로서, 황산니켈 0.23 ㏖/ℓ, 디메틸아민보란 0.25 ㏖/ℓ, 시트르산나트륨 0.5 ㏖/ℓ 및 텅스텐산나트륨 0.35 ㏖/ℓ 를 함유하는 Ni-W-B 도금액 (pH8.5) 을 사용하였다. 이 이외는, 실시예 1 과 동일하게 하여, 실리카로 형성된 돌기와, Ni-W-B 도금의 도전층을 갖는 도전성 입자를 얻었다. 이 도전성 입자를 주사형 전자 현미경 (SEM) 으로 관찰한 결과, 평균 입자경은 3 ∼ 4 μm 이고, 입자 1 개당 돌기의 수는 약 70 이고, 또, 도전층의 두께는 약 100 ㎚ 였다.As the insulating particles, silica (SiO 2 ) having an average particle diameter of 150 nm was used. As the plating solution for the conductive layer, a Ni-WB plating solution (pH8.5) containing 0.23 mol/L of nickel sulfate, 0.25 mol/L of dimethylamine borane, 0.5 mol/L of sodium citrate, and 0.35 mol/L of sodium tungstate was used. was used. Except this, it carried out similarly to Example 1, and obtained the electroconductive particle which has the processus|protrusion formed from silica, and the conductive layer of Ni-WB plating. As a result of observing this electroconductive particle with the scanning electron microscope (SEM), the average particle diameter was 3-4 micrometers, the number of processus|protrusions per particle was about 70, and the thickness of the conductive layer was about 100 nm.

표 1 에 나타내는 바와 같이, 이 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 유리 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.1 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the anisotropic conductive film to which this electroconductive particle was added, the TiO2/Al - coated glass substrate and IC were crimped|bonded under the crimping|compression-bonding conditions of 190 degreeC-60 Mpa-5 sec, and bonded structure was obtained. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.1 Ω, the rate of occurrence of wiring cracks was 0%, and the overall judgment was NG.

<비교예 4><Comparative Example 4>

표 1 에 나타내는 바와 같이, 비교예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-60 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 1.8 Ω, 신뢰성 시험 후의 저항값은 3.6 Ω, 배선 크랙의 발생률은 0 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the anisotropic conductive film to which the same conductive particles as in Comparative Example 3 were added, the TiO 2 /Al-coated PET substrate and the IC were pressed under the crimping conditions of 190° C.-60 MPa-5 sec to connect, struct was obtained. The initial resistance value of the bonded structure was 1.8 Ω, the resistance value after the reliability test was 3.6 Ω, and the occurrence rate of wiring cracks was 0%, and the overall judgment was NG.

<비교예 5><Comparative example 5>

표 1 에 나타내는 바와 같이, 비교예 3 과 동일한 도전성 입자를 첨가한 이방성 도전 필름을 사용하여, TiO2/Al 코팅 PET 기판과 IC 를 190 ℃-100 ㎫-5 sec 의 압착 조건으로 압착하여, 접속 구조체를 얻었다. 접속 구조체의 초기의 저항값은 0.7 Ω, 신뢰성 시험 후의 저항값은 1.0 Ω, 배선 크랙의 발생률은 25 % 이고, 종합 판정은 NG 였다.As shown in Table 1, using the anisotropic conductive film to which the same conductive particles as in Comparative Example 3 were added, the TiO 2 /Al-coated PET substrate and the IC were pressed under compression conditions of 190 ° C.-100 MPa-5 sec, and connected struct was obtained. The initial resistance value of the bonded structure was 0.7 Ω, the resistance value after the reliability test was 1.0 Ω, and the occurrence rate of wiring cracks was 25%, and the overall judgment was NG.

Figure pat00001
Figure pat00001

비교예 1 과 같이, 도전층으로서 Ni-B 를 형성하고, 절연성 입자로서 모스 경도가 7 인 실리카를 사용한 경우, 신뢰성 시험 후의 저항이 상승하였다. 또, 비교예 2 와 같이 비교예 1 의 도전성 입자를 사용하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항이 크게 상승하였다. 또, 비교예 3 과 같이, 도전층으로서 Ni-W-B 를 형성하고, 절연성 입자로서 모스 경도가 7 인 실리카를 사용한 경우도, 신뢰성 시험 후의 저항이 상승하였다. 또, 비교예 4 와 같이 비교예 2 의 도전성 입자를 사용하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항이 크게 상승하였다. 또, 비교예 5 와 같이 압착시의 압력을 높게 하여 PET 기판을 접속시켰을 경우, 신뢰성 시험 후의 저항의 상승을 억제할 수 있었지만, 크랙이 발생해 버렸다.As in Comparative Example 1, when Ni-B was formed as the conductive layer and silica having a Mohs hardness of 7 was used as the insulating particle, the resistance after the reliability test was increased. Moreover, like the comparative example 2, when PET board|substrate was connected using the electroconductive particle of the comparative example 1, the resistance after a reliability test rose large. Moreover, like the comparative example 3, also when Ni-W-B was formed as a conductive layer and Mohs' Hardness 7 used silica as an insulating particle, the resistance after a reliability test rose. Moreover, like the comparative example 4, when PET board|substrate was connected using the electroconductive particle of the comparative example 2, the resistance after a reliability test rose largely. Moreover, when the pressure at the time of crimping|compression-bonding was made high like the comparative example 5 and PET board|substrate was connected, although the raise of the resistance after a reliability test could be suppressed, a crack has arisen.

한편, 실시예 1 ∼ 4 와 같이, 절연성 입자로서 모스 경도가 9 인 알루미나를 사용한 경우, 압착시의 압력을 높게 하는 일 없이, 신뢰성 시험 후의 저항의 상승을 억제할 수 있고, 크랙의 발생을 방지할 수 있었다. 또, 실시예 2, 4 와 같이, PET 기판의 접속에서도 저저항을 실현할 수 있었다. 또, 실시예 4 와 같이, 도전층으로서 Ni-W-B 를 형성함으로써, PET 기판의 접속에 있어서 더욱 저저항을 실현할 수 있었다. 이들은, 절연성 입자의 경도가 크기 때문에, 압착시의 압력을 높게 하지 않아도, 배선 표면의 산화물층을 뚫어, 배선과 도전성 입자의 접점이 증가했기 때문인 것으로 생각된다.On the other hand, as in Examples 1 to 4, when alumina having a Mohs hardness of 9 is used as the insulating particle, the increase in resistance after the reliability test can be suppressed without increasing the pressure at the time of compression, and the occurrence of cracks is prevented. Could. Also, as in Examples 2 and 4, low resistance was realized even in the connection of PET substrates. Further, as in Example 4, by forming Ni-W-B as the conductive layer, it was possible to realize further low resistance in the connection of the PET substrate. Since the hardness of insulating particle|grains is large, even if it did not raise the pressure at the time of crimping|compression-bonding, it is thought that these are because the oxide layer of the wiring surface was penetrated and the contact point of wiring and electroconductive particle increased.

10 수지 코어 입자
20 절연성 입자
30, 31, 32, 33, 34 도전층
40 도전성 입자
41 수지 코어 입자
42 절연성 입자
50 제 1 회로 부재
51 단자
52 산화물층
10 resin core particles
20 insulating particles
30, 31, 32, 33, 34 conductive layer
40 conductive particles
41 resin core particles
42 insulating particles
50 first circuit member
51 terminal
52 oxide layer

Claims (18)

수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자를 함유하는 도전 재료를 개재하여,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 압착하는 접속 구조체의 제조 방법으로서,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 접속 구조체의 제조 방법.
A resin core particle, a plurality of insulating particles attached to the surface of the resin core particle to form projections, and a conductive layer disposed on the surface of the resin core particle and the insulating particle, wherein the Mohs' Hardness of the insulating particle is It is larger than 7 and the compressive elastic modulus at the time of being compressed by 20% of the said resin core particle is 500-20000 N/mm<2> through the electrically-conductive material containing the electroconductive particle,
A method of manufacturing a connection structure for crimping a terminal of a first circuit member and a terminal of a second circuit member, which is a plastic substrate having an elastic modulus of 2000 MPa to 4100 MPa, comprising:
The manufacturing method of the bonded structure by which an oxide layer is formed on the terminal of the said 1st circuit member.
제 1 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 접속 구조체의 제조 방법.
The method of claim 1,
The manufacturing method of the bonded structure whose conductive layer of the said electroconductive particle is nickel or a nickel alloy.
제 1 항 또는 제 2 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 접속 구조체의 제조 방법.
3. The method of claim 1 or 2,
The manufacturing method of the bonded structure whose insulating particle|grains of the said electroconductive particle are at least 1 type or more in a zirconia, an alumina, a tungsten carbide, and a diamond.
제 1 항 또는 제 2 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 접속 구조체의 제조 방법.
3. The method of claim 1 or 2,
The average particle diameter of the insulating particle of the said electroconductive particle is 100-200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The manufacturing method of the bonded structure whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 1 항 또는 제 2 항에 있어서,
상기 제 2 회로 부재측으로부터 가압되어 이루어지는, 접속 구조체의 제조 방법.
3. The method of claim 1 or 2,
The manufacturing method of the bonded structure formed by pressurizing from the said 2nd circuit member side.
제 1 항 또는 제 2 항에 있어서,
상기 제 1 회로 부재의 단자와 상기 제 2 회로 부재의 단자를 10 ∼ 80 ㎫ 의 압력으로 압착하는, 접속 구조체의 제조 방법.
3. The method of claim 1 or 2,
The manufacturing method of the bonded structure which crimps|bonds the terminal of the said 1st circuit member and the terminal of the said 2nd circuit member with the pressure of 10-80 MPa.
제 1 항 또는 제 2 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 접속 구조체의 제조 방법.
3. The method of claim 1 or 2,
The manufacturing method of the bonded structure by which a TiO2 layer is formed on the terminal of the said 1st circuit member.
수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자에 의해,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자가 접속되어 이루어지고,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 접속 구조체.
A resin core particle, a plurality of insulating particles attached to the surface of the resin core particle to form a projection, and a conductive layer disposed on the surface of the resin core particle and the insulating particle, wherein the Mohs' Hardness of the insulating particle is By the electroconductive particle which is larger than 7 and whose compressive elastic modulus when 20% of the said resin core particle is compressed is 500-20000 N/mm<2>,
The terminal of the first circuit member, which is a plastic substrate having an elastic modulus of 2000 MPa to 4100 MPa, and the terminal of the second circuit member are connected,
A connection structure in which an oxide layer is formed on a terminal of the first circuit member.
제 8 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 접속 구조체.
9. The method of claim 8,
The bonded structure whose conductive layer of the said electroconductive particle is nickel or a nickel alloy.
제 8 항 또는 제 9 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 접속 구조체.
10. The method according to claim 8 or 9,
The bonded structure in which the insulating particle of the said electroconductive particle is at least 1 type or more in a zirconia, an alumina, a tungsten carbide, and a diamond.
제 8 항 또는 제 9 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 접속 구조체.
10. The method according to claim 8 or 9,
The average particle diameter of the insulating particle of the said electroconductive particle is 100-200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The bonded structure whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 8 항 또는 제 9 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 접속 구조체.
10. The method according to claim 8 or 9,
A connection structure in which a TiO 2 layer is formed on a terminal of the first circuit member.
수지 코어 입자와, 상기 수지 코어 입자의 표면에 복수 부착되어, 돌기를 형성하는 절연성 입자와, 상기 수지 코어 입자 및 상기 절연성 입자의 표면에 배치되는 도전층을 구비하고, 상기 절연성 입자의 모스 경도가 7 보다 크고, 상기 수지 코어 입자의 20 % 압축되었을 때의 압축 탄성률이 500 ∼ 20000 N/㎟ 인 도전성 입자를 함유하고,
2000 ㎫ ∼ 4100 ㎫ 의 탄성률을 갖는 플라스틱 기판인 제 1 회로 부재의 단자와 제 2 회로 부재의 단자를 접속하는 도전 재료로서,
상기 제 1 회로 부재의 단자 상에 산화물층이 형성되어 이루어지는, 도전 재료.
A resin core particle, a plurality of insulating particles attached to the surface of the resin core particle to form a projection, and a conductive layer disposed on the surface of the resin core particle and the insulating particle, wherein the Mohs' Hardness of the insulating particle is It is larger than 7 and contains the conductive particles having a compressive elastic modulus of 500 to 20000 N/mm 2 when compressed by 20% of the resin core particles,
A conductive material for connecting a terminal of a first circuit member that is a plastic substrate having an elastic modulus of 2000 MPa to 4100 MPa and a terminal of a second circuit member,
The conductive material in which an oxide layer is formed on the terminal of the said 1st circuit member.
제 13 항에 있어서,
상기 도전성 입자의 도전층이 니켈 또는 니켈 합금인, 도전 재료.
14. The method of claim 13,
The electrically-conductive material whose conductive layer of the said electroconductive particle is nickel or a nickel alloy.
제 13 항에 있어서,
상기 도전성 입자의 절연성 입자가, 지르코니아, 알루미나, 탄화텅스텐, 및 다이아몬드 내 중 적어도 1 종 이상인, 도전 재료.
14. The method of claim 13,
The electrically-conductive material whose insulating particle|grains of the said electroconductive particle are at least 1 type or more in a zirconia, an alumina, a tungsten carbide, and a diamond.
제 13 항에 있어서,
상기 도전성 입자의 절연성 입자의 평균 입자경이 100 ∼ 200 ㎚ 이고,
상기 도전성 입자의 수지 코어 입자의 표면에 형성된 돌기의 개수가 1 ∼ 500 이며,
상기 도전성 입자의 도전층의 두께가 80 ∼ 150 ㎚ 인, 도전 재료.
14. The method of claim 13,
The average particle diameter of the insulating particle of the said electroconductive particle is 100-200 nm,
The number of projections formed on the surface of the resin core particles of the conductive particles is 1 to 500,
The electrically-conductive material whose thickness of the conductive layer of the said electroconductive particle is 80-150 nm.
제 13 항에 있어서,
상기 제 1 회로 부재의 단자 상에 TiO2 층이 형성되어 이루어지는, 도전 재료.
14. The method of claim 13,
A conductive material in which a TiO 2 layer is formed on a terminal of the first circuit member.
제 13 항 내지 제 17 항 중 어느 한 항에 기재된 도전 재료가 필름상으로 형성된 도전 필름.The conductive film in which the electrically-conductive material in any one of Claims 13-17 was formed in the film form.
KR1020227015751A 2014-10-29 2015-10-28 Conductive material KR102545861B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014220448 2014-10-29
JPJP-P-2014-220448 2014-10-29
JPJP-P-2015-201767 2015-10-13
JP2015201767A JP2016089153A (en) 2014-10-29 2015-10-13 Conductive material
KR1020197002161A KR20190009852A (en) 2014-10-29 2015-10-28 Conductive material
PCT/JP2015/080327 WO2016068165A1 (en) 2014-10-29 2015-10-28 Conductive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197002161A Division KR20190009852A (en) 2014-10-29 2015-10-28 Conductive material

Publications (2)

Publication Number Publication Date
KR20220068267A true KR20220068267A (en) 2022-05-25
KR102545861B1 KR102545861B1 (en) 2023-06-21

Family

ID=55857500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227015751A KR102545861B1 (en) 2014-10-29 2015-10-28 Conductive material

Country Status (4)

Country Link
KR (1) KR102545861B1 (en)
CN (1) CN112863732B (en)
TW (1) TWI740807B (en)
WO (1) WO2016068165A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080072658A (en) * 2005-11-18 2008-08-06 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
KR20110034606A (en) * 2008-07-24 2011-04-05 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particle, anisotropic conductive film, joined body, and connecting method
KR20130016387A (en) * 2010-07-02 2013-02-14 세키스이가가쿠 고교가부시키가이샤 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
JP2013149613A (en) 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
JP2013149611A (en) * 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
KR20130114188A (en) * 2011-01-25 2013-10-16 가부시기가이샤 닛뽕쇼꾸바이 Conductive microparticle, resinparticle, and anisotropic conductive material using same
KR20140106385A (en) * 2011-12-21 2014-09-03 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
KR20140106384A (en) * 2011-12-21 2014-09-03 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
KR20140114806A (en) * 2012-01-20 2014-09-29 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
KR20140117340A (en) * 2012-01-20 2014-10-07 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026432B2 (en) * 1997-05-23 2000-03-27 日立化成工業株式会社 Circuit connection structure
JP2004164910A (en) * 2002-11-11 2004-06-10 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
CN100380741C (en) * 2003-06-25 2008-04-09 日立化成工业株式会社 Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
JP4724369B2 (en) * 2003-09-29 2011-07-13 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing conductive particles
CN1906705B (en) * 2004-01-30 2010-04-21 积水化学工业株式会社 Conductive fine particle and anisotropic conductive material
JP2005266644A (en) * 2004-03-22 2005-09-29 Sharp Corp Method for manufacturing liquid crystal display device
CN102942881B (en) * 2006-05-09 2015-03-18 日立化成株式会社 Adhesive sheet, and connecting structure for circuit member and semiconductor device which use the adhesive sheet
EP2073316A4 (en) * 2006-09-26 2010-07-21 Hitachi Chemical Co Ltd Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP5272368B2 (en) * 2007-03-05 2013-08-28 日立化成株式会社 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive
CN101828434A (en) * 2007-10-18 2010-09-08 日立化成工业株式会社 Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP4916494B2 (en) * 2008-08-08 2012-04-11 ソニーケミカル&インフォメーションデバイス株式会社 Crimping apparatus, crimping method, and pressing plate
CN102474024B (en) * 2009-07-02 2014-09-17 日立化成株式会社 Conductive particle
JP5025825B2 (en) * 2010-07-28 2012-09-12 積水化学工業株式会社 Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5054232B2 (en) * 2010-09-30 2012-10-24 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
CN103030728B (en) * 2011-09-06 2017-09-26 日立化成株式会社 Insulating wrapped particle, insulating wrapped conducting particles, anisotropic conductive material and connection structural bodies
WO2013085039A1 (en) * 2011-12-08 2013-06-13 株式会社日本触媒 Conductive fine particles and anisotropically conductive material containing same
JP5737278B2 (en) * 2011-12-21 2015-06-17 日立化成株式会社 Circuit connection material, connection body, and method of manufacturing connection body
WO2013108740A1 (en) * 2012-01-19 2013-07-25 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP6212366B2 (en) * 2013-08-09 2017-10-11 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080072658A (en) * 2005-11-18 2008-08-06 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
KR20110034606A (en) * 2008-07-24 2011-04-05 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Conductive particle, anisotropic conductive film, joined body, and connecting method
KR20130016387A (en) * 2010-07-02 2013-02-14 세키스이가가쿠 고교가부시키가이샤 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
KR20130114188A (en) * 2011-01-25 2013-10-16 가부시기가이샤 닛뽕쇼꾸바이 Conductive microparticle, resinparticle, and anisotropic conductive material using same
KR20140106385A (en) * 2011-12-21 2014-09-03 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
KR20140106384A (en) * 2011-12-21 2014-09-03 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
JP2013149613A (en) 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
JP2013149611A (en) * 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
KR20140114806A (en) * 2012-01-20 2014-09-29 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
KR20140117340A (en) * 2012-01-20 2014-10-07 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure

Also Published As

Publication number Publication date
CN112863732A (en) 2021-05-28
CN112863732B (en) 2023-01-17
WO2016068165A1 (en) 2016-05-06
KR102545861B1 (en) 2023-06-21
TW201629989A (en) 2016-08-16
TWI740807B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7100088B2 (en) Conductive material
TWI430726B (en) Circuit connecting material, film-form circuit connecting material using the same, circuit member connecting structure and method of manufacturing the same
KR101180571B1 (en) Circuit connecting material and connecting structure for circuit member
KR20090075749A (en) Circuit connection structure
KR102517498B1 (en) Conductive material and manufacturing method of connection body
KR20100039894A (en) Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
KR20100009540A (en) Circuit-connecting material, and connection structure for circuit member
KR20140035993A (en) Circuit-connecting material and connected circuit board structure
KR102707315B1 (en) Connection material
KR20190133023A (en) Screening method of a conductive particle, a circuit connection material, a bonded structure, its manufacturing method, and conductive particle
KR102545861B1 (en) Conductive material
CN101529574A (en) Circuit connection structure
JP7193512B2 (en) connecting material
KR20110136732A (en) Circuit connecting adhesive film and use thereof, circuit connecting structure and method for manufacturing the same and circuit member connecting method

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant