JP5272368B2 - Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive - Google Patents

Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive Download PDF

Info

Publication number
JP5272368B2
JP5272368B2 JP2007255270A JP2007255270A JP5272368B2 JP 5272368 B2 JP5272368 B2 JP 5272368B2 JP 2007255270 A JP2007255270 A JP 2007255270A JP 2007255270 A JP2007255270 A JP 2007255270A JP 5272368 B2 JP5272368 B2 JP 5272368B2
Authority
JP
Japan
Prior art keywords
conductive particles
coated
polymer electrolyte
conductive
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007255270A
Other languages
Japanese (ja)
Other versions
JP2008251522A (en
Inventor
健次 高井
卓也 茶山
信明 高根
潤 竹田津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007255270A priority Critical patent/JP5272368B2/en
Publication of JP2008251522A publication Critical patent/JP2008251522A/en
Application granted granted Critical
Publication of JP5272368B2 publication Critical patent/JP5272368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、接続信頼性に優れた被覆導電性粒子、被覆導電性粒子の製造方法、異方性導電接着剤及び導電性接着剤に関するものである。   The present invention relates to coated conductive particles having excellent connection reliability, a method for producing coated conductive particles, an anisotropic conductive adhesive, and a conductive adhesive.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)の2種類に大別することが出来る。COG実装では、導電性粒子を含む異方性導電接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電性粒子を含む異方性導電接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting a liquid crystal driving IC on a liquid crystal display glass panel can be broadly classified into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex). In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.

ここで用いる導電性粒子には、特開昭61−78069号公報や特開昭62−165886号公報、特開平6−283226号公報等に挙げられるように、樹脂コア粒子の表面にAuめっきされているものが挙げられる。樹脂コア粒子の上に直接Auめっきを行うと、Auと樹脂の接着性において問題があるので、樹脂コア粒子の表面にNi等のめっきを行い、最外層にAuめっきを行うのが一般的である。接着剤材料としてのAuは高価であるので、なるべく薄くめっきを行う必要がある。例えば近年出願された特開2005−197089号公報によれば、Auめっきの厚みは0.04μm程度である。   The conductive particles used here are plated with Au on the surface of the resin core particles, as described in JP-A-61-78069, JP-A-62-165886, JP-A-6-283226, and the like. Are listed. When Au plating is directly performed on the resin core particles, there is a problem in the adhesion between Au and the resin. Therefore, it is common to plate Ni on the surface of the resin core particles and Au plating on the outermost layer. is there. Since Au as an adhesive material is expensive, it is necessary to perform plating as thin as possible. For example, according to Japanese Patent Application Laid-Open No. 2005-197089 filed in recent years, the thickness of Au plating is about 0.04 μm.

また、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金バンプは狭ピッチ化、狭面積化しており、そのため、異方性導電接着剤の導電性粒子が隣接する回路電極間に流出してショートを発生させるといった問題がある。隣接する回路電極間に導電性粒子が流出すると、金バンプとガラスパネルとの間に補足される異方性導電接着剤中の導電性粒子数が減少し、対向する回路電極間の接続抵抗が上昇し、接続不良を起こすといった問題があった。そこで、これらの問題を解決するために、近年は導電性粒子の添加量を減らす傾向がある。
特開昭61−78069号公報 特開昭62−165886号公報 特開平6−283226号公報 特開2005−197089号公報 特開昭61−77278号公報 特開昭61−77279号公報 特開平9−198916号公報 特開2000−133050号公報 特開2004−156145号公報 特開2005−317270号公報
In addition, with recent high-definition liquid crystal display, gold bumps, which are circuit electrodes of liquid crystal driving ICs, have narrowed pitch and narrowed area, so that conductive particles of anisotropic conductive adhesive are adjacent to each other. There is a problem that a short circuit occurs between the circuit electrodes. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the gold bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes is reduced. There was a problem of rising and causing poor connection. Therefore, in order to solve these problems, there is a tendency in recent years to reduce the amount of conductive particles added.
JP-A-61-78069 Japanese Patent Laid-Open No. Sho 62-165886 JP-A-6-283226 Japanese Patent Laid-Open No. 2005-197089 JP-A-61-77278 JP-A-61-77279 JP-A-9-198916 JP 2000-1333050 A JP 2004-156145 A JP 2005-317270 A

現状の導電性粒子は最外層がAuであるので、金バンプ等との結合は物理的なものであり、極めて弱い。従って導電性粒子の添加量を減らすと導通抵抗が高くなるとの課題が近年顕著化してきた。又、金粒子と接着剤の結合力が弱く、各種信頼性試験で導電性が低下することが多かった。金バンプ等との結合を強くする為、金表面に低融点金属を被覆する方法はかなり古くから検討されてきた。具体的には特開昭61−77278号公報、特開昭61−77279号公報、特開平9−198916号公報、特開2000−133050号公報、特開2004−156145号公報、特開2005−317270号公報等が挙げられる。   Since the current conductive particles are Au in the outermost layer, the bonding with gold bumps is physical and extremely weak. Therefore, in recent years, the problem that the conduction resistance increases as the amount of conductive particles added is reduced. In addition, the bonding force between the gold particles and the adhesive is weak, and the conductivity often decreases in various reliability tests. In order to strengthen bonding with gold bumps and the like, a method of coating a low melting point metal on the gold surface has been studied for a long time. Specifically, JP-A-61-77278, JP-A-61-77279, JP-A-9-198916, JP-A-2000-133050, JP-A-2004-156145, JP-A-2005-2005. No. 317270.

金表面に低融点金属を被覆する場合、圧力を加えなくても金属表面が溶融する為、粒子間などでの導通が起こる。従って異方性導電接着剤としての能力が低下することは避けられない。また、導電性粒子が複雑な構造になる為、高価になるというのも製造レベルでは切実な課題である。本発明は、特に接続信頼性に優れた被覆導電性粒子、被覆導電性粒子の製造方法、異方性導電接着剤及び導電性接着剤を提供することを目的とするものである。   When a low melting point metal is coated on the gold surface, the metal surface melts without applying pressure, and conduction between particles occurs. Therefore, the ability as an anisotropic conductive adhesive is inevitably lowered. Further, since the conductive particles have a complicated structure, it is a serious problem at the manufacturing level that the conductive particles are expensive. An object of the present invention is to provide coated conductive particles, a method for producing coated conductive particles, an anisotropic conductive adhesive, and a conductive adhesive that are particularly excellent in connection reliability.

本発明は以下に関する。
1.導電性の金属表面を有する導電性粒子の前記金属表面の少なくとも一部が高分子電解質により被覆されてなる導電性粒子であって、前記金属表面に形成されたカルボキシル基と前記高分子電解質に含まれるアミノ基とが化学結合していることを特徴とする被覆導電性粒子
2.前記高分子電解質の重量平均分子量が600以上であることを特徴とする項1に記載の被覆導電性粒子。
3.前記高分子電解質がポリアミン類であることを特徴とする項1又は2に記載の被覆導電性粒子。
4.前記ポリアミン類がポリエチレンイミンであることを特徴とする項3に記載の被覆導電性粒子。
5.導電性粒子が、有機のコア粒子を金属被覆したものであることを特徴とする項1〜4のいずれか1項に記載の被覆導電性粒子。
6.前記金属表面に形成された前記カルボキシル基は、前記高分子電解質による被覆の前に、前記導電性粒子をメルカプト基、スルフィド基、ジスルフィド基のいずれかの官能基を有する化合物で処理することにより形成されたものであることを特徴とする項1〜5のいずれか1項に記載の被覆導電性粒子。
7.前記導電性粒子の表面に固着していない高分子電解質が除去されてなることを特徴とする項1〜6のいずれか1項に記載の被覆導電性粒子。
8.導電性の金属表面を有する導電性粒子の前記金属表面にカルボキシル基を形成する工程、前記導電性粒子の金属表面の少なくとも一部をアミノ基を有する高分子電解質で被覆する工程、前記カルボキシル基と前記アミノ基との化学結合を形成する工程を有する被覆導電性粒子の製造方法。
9.前記カルボキシル基を形成する工程は、前記導電性の金属表面を有する前記導電性粒子をメルカプト基、スルフィド基、ジスルフィド基のいずれかの官能基を有する化合物で処理してなることを特徴とする項8に記載の被覆導電性粒子の製造方法。
10.前記化学結合を形成する工程は、前記高分子電解質で被覆された前記導電性粒子を加熱乾燥することにより行うことを特徴とする項8〜9のいずれか1項に記載の被覆導電性粒子の製造方法。
11.前記高分子電解質で被覆する工程と前記化学結合を形成する工程との間に、前記導電性粒子の表面に固着していない前記高分子電解質の除去工程を有することを特徴とする項8〜10のいずれか1項に記載の被覆導電性粒子の製造方法。
12.項8〜11のいずれか1項に記載の被覆導電性粒子の製造方法によって製造されてなる被覆導電性粒子。
13.項1〜7及び12のいずれか1項に記載の被覆導電性粒子を、接着剤に分散してなる異方性導電接着剤。
14.項1〜7及び12のいずれか1項に記載の被覆導電性粒子を、接着剤に分散してなる導電性接着剤。
The present invention relates to the following.
1. Conductive particles having a conductive metal surface, wherein at least a part of the metal surface is coated with a polymer electrolyte, the carboxyl group formed on the metal surface and included in the polymer electrolyte Coated conductive particles, wherein the amino groups are chemically bonded .
2. The coated conductive particles according to claim 1, wherein the polymer electrolyte has a weight average molecular weight of 600 or more.
3. Item 3. The coated conductive particle according to Item 1 or 2, wherein the polymer electrolyte is a polyamine.
4). Item 4. The coated conductive particle according to Item 3, wherein the polyamine is polyethyleneimine.
5. Item 5. The coated conductive particle according to any one of Items 1 to 4, wherein the conductive particle is a metal-coated organic core particle.
6). The carboxyl group formed on the metal surface is formed by treating the conductive particles with a compound having a functional group of mercapto group, sulfide group, or disulfide group before coating with the polymer electrolyte. Item 6. The coated conductive particle according to any one of Items 1 to 5, wherein
7). Item 7. The coated conductive particle according to any one of Items 1 to 6, wherein a polymer electrolyte that is not fixed to the surface of the conductive particle is removed.
8). A step of forming a carboxyl group on the metal surface of the conductive particles having a conductive metal surface, a step of coating at least a part of the metal surface of the conductive particle with a polymer electrolyte having an amino group, and the carboxyl group and The manufacturing method of the covering electroconductive particle which has the process of forming a chemical bond with the said amino group.
9. The step of forming the carboxyl group is obtained by treating the conductive particles having the conductive metal surface with a compound having a functional group of any one of a mercapto group, a sulfide group, and a disulfide group. A method for producing the coated conductive particles according to claim 8.
10. The process of forming the chemical bond is performed by heating and drying the conductive particles coated with the polymer electrolyte. The coated conductive particles according to any one of claims 8 to 9, Production method.
11. Item 8-10, comprising a step of removing the polymer electrolyte not fixed to the surface of the conductive particles between the step of coating with the polymer electrolyte and the step of forming the chemical bond. The manufacturing method of the coated electroconductive particle of any one of these.
12 Item 12. A coated conductive particle produced by the method for producing a coated conductive particle according to any one of Items 8 to 11.
13. Item 13. An anisotropic conductive adhesive obtained by dispersing the coated conductive particles according to any one of Items 1 to 7 and 12 in an adhesive.
14 Item 13. A conductive adhesive obtained by dispersing the coated conductive particles according to any one of Items 1 to 7 and 12 in an adhesive.

本発明により、接続信頼性に優れた被覆導電性粒子、被覆導電性粒子の製造方法、異方性導電接着剤及び導電性接着剤を提供することが可能となった。   According to the present invention, it is possible to provide coated conductive particles having excellent connection reliability, a method for producing coated conductive particles, an anisotropic conductive adhesive, and a conductive adhesive.

以下、本発明の実施の形態について詳細に説明する。
本発明の被覆導電性粒子は、高分子電解質を導電性粒子の表面の少なくとも一部に有するものである。通常、高分子電解質は、接着補助剤として機能する。本発明の被覆導電性粒子は、異方性導電接着剤又は導電性接着剤に用いることができる。異方性導電接着剤と導電性接着剤の違いは、異方性導電接着剤の方が粒子の含有量が少なく加圧方向のみ導通する点である。通常、異方性導電接着剤は導電性接着剤のカテゴリーに含まれる。異方性導電接着剤における粒子の含有量は通常0.1〜30vol%の範囲、好ましくは0.1〜10vol%の範囲であり、また、導電性接着剤における粒子の含有量は通常60〜99.9vol%の範囲、好ましくは80〜99vol%の範囲である。
Hereinafter, embodiments of the present invention will be described in detail.
The coated conductive particles of the present invention have a polymer electrolyte on at least a part of the surface of the conductive particles. Usually, the polymer electrolyte functions as an adhesion aid. The coated conductive particles of the present invention can be used for anisotropic conductive adhesives or conductive adhesives. The difference between the anisotropic conductive adhesive and the conductive adhesive is that the anisotropic conductive adhesive has less particle content and conducts only in the pressing direction. Usually, anisotropic conductive adhesives are included in the category of conductive adhesives. The content of particles in the anisotropic conductive adhesive is usually in the range of 0.1 to 30 vol%, preferably in the range of 0.1 to 10 vol%, and the content of the particles in the conductive adhesive is usually 60 to It is in the range of 99.9 vol%, preferably in the range of 80 to 99 vol%.

以下は異方性導電接着剤についての説明を中心に行うが、当然のことながら粒子の含有量を増すことで導電性接着剤として用いることも可能である。   The following description will focus on the description of the anisotropic conductive adhesive, but naturally it can be used as a conductive adhesive by increasing the content of particles.

本発明による被覆導電性粒子を異方性導電接着剤に用いる場合、導電性粒子の平均粒径は、通常、基板の電極の最小の間隔よりも小さく、また、電極の高さばらつきがある場合は、高さばらつきよりも大きいことが好ましい。電極の高さばらつきとは、電極の最大高さと最小高さの差のことをいう。導電性粒子の平均粒径は1〜10μmの範囲が好ましく、2.5〜5μmの範囲がより好ましい。1μmより小さいと導通不良の原因となる傾向があり、10μmより大きいと絶縁不良の原因となる傾向がある。   When the coated conductive particles according to the present invention are used for an anisotropic conductive adhesive, the average particle size of the conductive particles is usually smaller than the minimum distance between the electrodes of the substrate, and there is a variation in the height of the electrodes Is preferably larger than the height variation. The height variation of the electrode means a difference between the maximum height and the minimum height of the electrode. The average particle size of the conductive particles is preferably in the range of 1 to 10 μm, and more preferably in the range of 2.5 to 5 μm. If it is smaller than 1 μm, it tends to cause conduction failure, and if it is larger than 10 μm, it tends to cause insulation failure.

導電性粒子は金属のみからなる粒子と有機或いは無機のコア粒子をめっき等の方法で金属被覆したもののいずれかを用いることが出来るが、中でも有機のコア粒子をめっき等で金属被覆したものが好ましい。めっき等で被覆する金属としては特に限定されないが、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属やITO、はんだといった金属化合物が挙げられる。上記金属層は、単層構造であってもよく、複数の層からなる積層構造であっても良い。積層構造の場合、耐食性や導電性の観点から最外層に金被覆をするのが好ましい。   The conductive particles may be either metal-only particles and organic or inorganic core particles that are metal-coated by a method such as plating. Among them, organic core particles that are metal-coated by plating or the like are preferable. . Although it does not specifically limit as a metal coat | covered by plating etc. Gold, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, cadmium etc. metals, ITO, solder, etc. A metal compound is mentioned. The metal layer may have a single layer structure or a laminated structure including a plurality of layers. In the case of a laminated structure, it is preferable to coat the outermost layer with gold from the viewpoint of corrosion resistance and conductivity.

金属被覆の方法としては、無電解めっきの他、置換めっき、電気めっき、スパッタリング等の方法がある。金属層の厚みは特に限定しないが、0.005〜1.0μmの範囲が好ましく、0.01〜0.3μmの範囲がより好ましい。金属層の厚みが0.005μm未満だと導通不良を起こし易い傾向があり、1.0μmを超えるとコスト面で好ましくない。有機コア粒子は特に限定しないが、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂、ポリスチレン樹脂等が挙げられる。   Examples of the metal coating method include electroless plating, displacement plating, electroplating, and sputtering. Although the thickness of a metal layer is not specifically limited, The range of 0.005-1.0 micrometer is preferable and the range of 0.01-0.3 micrometer is more preferable. If the thickness of the metal layer is less than 0.005 μm, poor conductivity tends to occur, and if it exceeds 1.0 μm, it is not preferable in terms of cost. The organic core particle is not particularly limited, and examples thereof include acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene, and polystyrene resins.

本発明において、高分子電解質による被覆とは、金属表面上に高分子電解質が固着した被覆を形成することをいい、固着手段としては、例えば、化学結合や静電的引力による吸着等が挙げられる。
導電性粒子が金等の金属表面を有する場合、金属に対して配位結合を形成するメルカプト基、スルフィド基、ジスルフィド基等の官能基のいずれかを有する化合物で処理することにより金属表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基等を形成すると良い。これにより後の高分子電解質処理を行ないやすくすることができる。これら化合物としては具体的には、メルカプト酢酸、2−メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が挙げられる。
In the present invention, the coating with a polymer electrolyte refers to forming a coating with a polymer electrolyte fixed on a metal surface, and examples of the fixing means include chemical bonding and adsorption by electrostatic attraction. .
When the conductive particles have a metal surface such as gold, a hydroxyl group is formed on the metal surface by treatment with a compound having any of a functional group such as a mercapto group, sulfide group, disulfide group or the like that forms a coordinate bond with the metal. A carboxyl group, an alkoxyl group, an alkoxycarbonyl group, or the like may be formed. This facilitates the subsequent polymer electrolyte treatment. Specific examples of these compounds include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, and cysteine.

金属表面を上記化合物で処理する方法としては特に限定しないが、例えばメタノールやエタノール等の有機溶媒中にメルカプト酢酸等の上記官能基を有する化合物を10〜100mmol/l程度分散して溶液を形成し、その中に金属表面を有する導電性粒子を分散させることにより処理する。水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基を有する導電性粒子の表面電位(ゼータ電位)は通常(pHが中性領域であれば)マイナスである。これにより高分子電解質が前記導電性粒子上に被覆される。より具体的な製造方法としては官能基を有する導電性粒子を、高分子電解質溶液に分散し、導電性粒子の表面に高分子電解質を吸着させた後、リンス工程等の、導電性粒子の表面に化学結合ないし静電気的に吸着せず、固着していない高分子電解質の除去工程を行うことで表面が高分子電解質で被覆された導電性粒子を製造できる。この除去工程としては、超純水等の水系媒体による洗浄、リンス等が挙げられる。この除去工程によって、被覆を形成していない高分子電解質を導電性粒子の表面から除去することができる。   The method for treating the metal surface with the above compound is not particularly limited. For example, a compound having the above functional group such as mercaptoacetic acid is dispersed in an organic solvent such as methanol or ethanol to form a solution. The treatment is performed by dispersing conductive particles having a metal surface therein. The surface potential (zeta potential) of the conductive particles having a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group is usually negative (if the pH is neutral). Thereby, the polymer electrolyte is coated on the conductive particles. As a more specific production method, conductive particles having functional groups are dispersed in a polymer electrolyte solution, the polymer electrolyte is adsorbed on the surface of the conductive particles, and then the surface of the conductive particles, such as a rinsing step, is used. Conductive particles whose surfaces are coated with the polymer electrolyte can be produced by performing a process of removing the polymer electrolyte that is not chemically bonded or electrostatically adsorbed to the substrate and is not fixed. Examples of the removing step include cleaning with an aqueous medium such as ultrapure water, rinsing, and the like. By this removal step, the polymer electrolyte not having a coating can be removed from the surface of the conductive particles.

この発明で使用する高分子電解質溶液は、高分子電解質を水または水と水溶性の有機溶媒の混合溶媒に溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどがあげられる。高分子電解質の溶解が問題ないのであれば、コスト環境面から水を用いるのが良い。   The polymer electrolyte solution used in the present invention is obtained by dissolving a polymer electrolyte in water or a mixed solvent of water and a water-soluble organic solvent. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like. If there is no problem in dissolving the polymer electrolyte, it is preferable to use water from the viewpoint of cost.

高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。このような高分子電解質としては、窒素含有高分子電解質が挙げられ、特に、ポリカチオンを用いるのが好ましい。このようなポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、たとえば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミドおよびそれらを少なくとも1種以上を含む共重合体などを用いることができる。   As the polymer electrolyte, a polymer that is ionized in an aqueous solution and has a charged functional group in the main chain or side chain can be used. Examples of such a polymer electrolyte include a nitrogen-containing polymer electrolyte, and it is particularly preferable to use a polycation. Such polycations generally have a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride. (PDDA), polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of them can be used.

高分子電解質の重量平均分子量は600以上であることが好ましく、10000〜300000の範囲であることが更に好ましい。重量平均分子量が600未満だと高分子電解質が殆ど吸着しない為、導電性向上の効果が薄まる傾向があり、重量平均分子量が300000を超えると粒子同士が凝集しやすくなる傾向がある。   The weight average molecular weight of the polymer electrolyte is preferably 600 or more, and more preferably in the range of 10,000 to 300,000. When the weight average molecular weight is less than 600, the polymer electrolyte hardly adsorbs, and therefore the effect of improving the conductivity tends to be reduced. When the weight average molecular weight exceeds 300000, the particles tend to aggregate.

高分子電解質の中でもポリエチレンイミンやポリアリルアミンは、電荷密度が高く、結合力が強いことから好ましい。また、ポリエチレンイミンの場合、CとNの比が2:1であり、ポリアリルアミンの場合、CとNの比が3:1であることが好ましい。   Among the polymer electrolytes, polyethyleneimine and polyallylamine are preferable because of their high charge density and strong bonding strength. In the case of polyethyleneimine, the ratio of C and N is preferably 2: 1, and in the case of polyallylamine, the ratio of C and N is preferably 3: 1.

本発明では、例えば、負電荷を有する導電性粒子に、正電荷を有する高分子電解質(ポリカチオン)を浸漬することで静電的引力によって吸着したポリカチオン膜を得ることもできる。静電的な引力によって、導電性粒子に形成された電荷と、溶液中の反対電荷を有する材料が引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することはない。   In the present invention, for example, a polycation film adsorbed by electrostatic attraction can be obtained by immersing a polymer electrolyte (polycation) having a positive charge in conductive particles having a negative charge. Electrostatic attractive force causes the film to grow by attracting the charge formed on the conductive particles and the material with the opposite charge in the solution, so if the adsorption proceeds and neutralization of the charge occurs, further adsorption Will not occur. Therefore, when reaching a certain saturation point, the film thickness does not increase any more.

また、カチオン性高分子電解質とアニオン性高分子電解質を交互に浸漬することで、粒子状にカチオン性高分子電解質とアニオン性高分子電解質よりなる厚膜を形成することができる。このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films, 210/211, p831(1992))。この方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)の水溶液に、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層して複合膜(交互積層膜)が得られるものである。この場合は複合膜の厚みが稼げる為、接着性が良好になる。   In addition, by alternately immersing the cationic polymer electrolyte and the anionic polymer electrolyte, a thick film made of the cationic polymer electrolyte and the anionic polymer electrolyte can be formed in the form of particles. Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method of forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)). In this method, a polycation adsorbed on a substrate by electrostatic attraction by alternately immersing the base material in an aqueous solution of a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion). A combination of polyanions is laminated to obtain a composite film (alternate laminated film). In this case, since the thickness of the composite film can be increased, the adhesiveness is improved.

以上のようにして完成した被覆された導電性粒子を加熱乾燥することで、通常、高分子電解質と導電性粒子の結合を強化することが出来る。結合力が増す理由としては、高分子電解質と導電性粒子の金属表面の官能基との化学結合等が挙げられ、このような化学結合としては、例えば金属表面のカルボキシル基等官能基と高分子電解質に含まれるアミノ基の化学結合が挙げられる。加熱乾燥の温度としては60℃〜200℃、加熱時間は10〜180分の範囲が良い。温度が60℃より低い場合や加熱時間が10分より短い場合は絶縁性子粒子(高分子電解質)が剥離しやすく、温度が200℃より高い場合や加熱時間が180分より長い場合は導電性粒子が変形しやすいので好ましくない。   By heating and drying the coated conductive particles completed as described above, the bond between the polymer electrolyte and the conductive particles can usually be strengthened. The reason why the binding force is increased includes a chemical bond between the polymer electrolyte and a functional group on the metal surface of the conductive particles. Examples of such a chemical bond include a functional group such as a carboxyl group on the metal surface and a polymer. The chemical bond of the amino group contained in electrolyte is mentioned. The temperature for heating and drying is preferably 60 ° C to 200 ° C, and the heating time is preferably in the range of 10 to 180 minutes. When the temperature is lower than 60 ° C. or when the heating time is shorter than 10 minutes, the insulator particles (polymer electrolyte) easily peel off, and when the temperature is higher than 200 ° C. or the heating time is longer than 180 minutes, the conductive particles. Is not preferred because it is easily deformed.

以上のようにして作製した被覆導電性粒子を接着剤に分散させ、異方性導電接着剤或いは導電性接着剤とする。   The coated conductive particles produced as described above are dispersed in an adhesive to obtain an anisotropic conductive adhesive or a conductive adhesive.

異方性導電接着剤及び導電性接着剤に用いられる接着剤には、例えば熱反応性樹脂と硬化剤の混合物が用いられる。好ましく用いられる接着剤としては、エポキシ樹脂と潜在性硬化剤との混合物である。潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。この他、接着剤には、ラジカル反応性樹脂と有機過酸化物の混合物や紫外線などのエネルギー線硬化性樹脂等が用いられる。   As the adhesive used for the anisotropic conductive adhesive and the conductive adhesive, for example, a mixture of a heat-reactive resin and a curing agent is used. The adhesive preferably used is a mixture of an epoxy resin and a latent curing agent. Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. In addition, for the adhesive, a mixture of a radical reactive resin and an organic peroxide, an energy ray curable resin such as an ultraviolet ray, or the like is used.

本発明において用いられるエポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独にあるいは2種以上を混合して用いることが可能である。これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止のために好ましい。 Epoxy resins used in the present invention include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol A, F, AD, etc., epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and skeletons containing a naphthalene ring. It is possible to use various epoxy compounds having two or more glycidyl groups in one molecule such as naphthalene type epoxy resin, glycidylamine, glycidyl ether, biphenyl, alicyclic, etc. Is possible. For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl −, etc.), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electromigration.

接着剤には接着後の応力を低減するため、あるいは接着性を向上するために、ブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等を混合することができる。また、接着剤としてはペースト状またはフィルム状のものが用いられる。フィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を配合することが効果的である。これらのフィルム形成性高分子は、反応性樹脂の硬化時の応力緩和にも効果がある。特に、フィルム形成性高分子が、水酸基等の官能基を有する場合、接着性が向上するためより好ましい。フィルム形成は、これら少なくともエポキシ樹脂、アクリルゴム、潜在性硬化剤からなる接着組成物を有機溶剤に溶解あるいは分散により、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。   In order to reduce the stress after bonding or to improve the adhesiveness, butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, or the like can be mixed in the adhesive. Further, as the adhesive, a paste or film is used. In order to form a film, it is effective to blend a thermoplastic resin such as a phenoxy resin, a polyester resin, or a polyamide resin. These film-forming polymers are also effective in stress relaxation when the reactive resin is cured. In particular, when the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable. For film formation, an adhesive composition comprising at least an epoxy resin, acrylic rubber, and a latent curing agent is liquefied by dissolving or dispersing in an organic solvent, applied onto a peelable substrate, and below the activation temperature of the curing agent. This is done by removing the solvent. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.

フィルム状の異方性導電接着剤の厚みは、導電性粒子の粒径及び異方性導電接着剤の特性を考慮して相対的に決定されるが、1〜100μmが好ましい。1μm未満では充分な接着性が得にくい傾向があり、100μmを超えると導電性を得るために多量の導電性粒子を必要とする傾向がある。こうした背景から、更に好ましい厚みは3〜50μmである。   The thickness of the film-like anisotropic conductive adhesive is relatively determined in consideration of the particle size of the conductive particles and the characteristics of the anisotropic conductive adhesive, but is preferably 1 to 100 μm. If it is less than 1 μm, sufficient adhesion tends to be difficult to obtain, and if it exceeds 100 μm, a large amount of conductive particles tend to be required to obtain conductivity. From such a background, a more preferable thickness is 3 to 50 μm.

このようにして作製した異方性導電接着剤を用いた接続構造体の製造方法を、図1を用いて説明する。
図1(a)は被覆導電性粒子を接着剤3に分散した異方導電性接着剤である。通常、被覆導電性粒子は、導電性粒子2と高分子電解質1より成る。次に図1(b)に示すように第一の基板4と第二の基板6を準備し、異方性導電接着剤をその間に配置する。このとき、第一の電極5と第二の電極7が対向するようにする。次に図1(c)に示すように第一の基板4と第二の基板6を加圧加熱しつつ積層する。ここでいう基板とは、ガラス基板やポリイミド等のテープ基板、ドライバーIC等のベアチップ、リジット型のパッケージ基板等が挙げられる。
A method for producing a connection structure using the anisotropic conductive adhesive thus produced will be described with reference to FIG.
FIG. 1A shows an anisotropic conductive adhesive in which coated conductive particles are dispersed in an adhesive 3. Usually, the coated conductive particles are composed of the conductive particles 2 and the polymer electrolyte 1. Next, as shown in FIG.1 (b), the 1st board | substrate 4 and the 2nd board | substrate 6 are prepared, and an anisotropic conductive adhesive is arrange | positioned among them. At this time, the first electrode 5 and the second electrode 7 are opposed to each other. Next, as shown in FIG. 1C, the first substrate 4 and the second substrate 6 are stacked while being heated under pressure. Examples of the substrate include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.

このようにして接続構造体を作製すると、高分子電解質は接着成分として機能するため、縦方向の導通が向上する。また、高分子電解質がバルクの接着剤と強固に結合するため、樹脂中に固定されて信頼性が増す。   When the connection structure is produced in this manner, the polymer electrolyte functions as an adhesive component, and thus the conduction in the vertical direction is improved. Further, since the polymer electrolyte is firmly bonded to the bulk adhesive, it is fixed in the resin and reliability is increased.

(導電性粒子A(参考))
平均粒径3.5μmの架橋ポリスチレン粒子の表面に、厚み0.2μmのニッケル層を無電解めっきで形成し、さらにそのニッケルの外側に厚み0.04μmの金層を設けることで導電性粒子Aを作製した。
(Conductive particles A (reference))
By forming a nickel layer having a thickness of 0.2 μm on the surface of the crosslinked polystyrene particles having an average particle size of 3.5 μm by electroless plating and further providing a gold layer having a thickness of 0.04 μm outside the nickel, the conductive particles A Was made.

(被覆導電性粒子1)
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を作製した。次に導電性粒子Aを1g上記反応液に加え、室温(25℃)で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、φ3μmのメンブレンフィルタ(ミリポア社製)で導電性粒子を濾過することで表面に(チオ)カルボキシル基を有する導電性粒子1gを得た。
(Coated conductive particles 1)
A reaction liquid was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol. Next, 1 g of conductive particles A was added to the reaction solution, and the mixture was stirred with a three-one motor and a stirring blade having a diameter of 45 mm at room temperature (25 ° C.) for 2 hours. After washing with methanol, the conductive particles were filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 μm to obtain 1 g of conductive particles having a (thio) carboxyl group on the surface.

次に重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た。前記カルボキシル基を有する導電性粒子1gを0.3重量%ポリエチレンイミン水溶液に加え、室温(25℃)で15分攪拌した。次にφ3μmのメンブレンフィルタ(ミリポア社製)で導電性粒子をろ過し、超純水200gに入れて室温(25℃)で5分攪拌した。更にφ3μmのメンブレンフィルタ(ミリポア社製)で導電性粒子をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、吸着していないポリエチレンイミンを除去した。その後80℃30分の条件で乾燥を行い、120℃1時間加熱乾燥行うことで被覆導電性粒子1を作製した。   Next, a 30% polyethyleneimine P-70 solution (manufactured by Wako Pure Chemical Industries, Ltd .: product name) having a weight average molecular weight of about 70,000 was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution. 1 g of the conductive particles having a carboxyl group was added to a 0.3 wt% polyethyleneimine aqueous solution and stirred at room temperature (25 ° C.) for 15 minutes. Next, the conductive particles were filtered through a membrane filter (manufactured by Millipore) having a diameter of 3 μm, put in 200 g of ultrapure water, and stirred at room temperature (25 ° C.) for 5 minutes. Further, the conductive particles were filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 μm, and washed with 200 g of ultrapure water on the membrane filter to remove unimsorbed polyethyleneimine. Thereafter, drying was performed under conditions of 80 ° C. for 30 minutes, and the coated conductive particles 1 were produced by heating and drying at 120 ° C. for 1 hour.

(被覆導電性粒子2)
重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)の代わりにポリエチレンイミン 平均分子量 約10000 (和光純薬社製:製品名)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得たこと以外は被覆導電性粒子1と同様の工程で被覆導電性粒子2を作製した。
(Coated conductive particles 2)
Instead of 30% polyethyleneimine P-70 solution with a weight average molecular weight of about 70,000 (product name), dilute polyethyleneimine with an average molecular weight of about 10,000 (product name) with ultrapure water. The coated conductive particles 2 were prepared in the same manner as the coated conductive particles 1 except that a 0.3 wt% polyethyleneimine aqueous solution was obtained.

(被覆導電性粒子3)
重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)の代わりにポリエチレンイミン 平均分子量 約600(和光純薬社製)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得たこと以外は被覆導電性粒子1と同様の工程で被覆導電性粒子3を作製した。
(Coated conductive particles 3)
A polyethyleneimine average molecular weight of about 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with ultrapure water instead of a 30% polyethyleneimine P-70 solution having a weight average molecular weight of about 70,000 (manufactured by Wako Pure Chemical Industries, Ltd .: product name). The coated conductive particles 3 were produced in the same process as the coated conductive particles 1 except that a 3% by weight polyethyleneimine aqueous solution was obtained.

(被覆導電性粒子4)
重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)の代わりに重量平均分子量100000〜200000の Poly (diallyldimethylammonium chloride)、(ALDRIC
H社製:商品名)を超純水で希釈し、0.3重量%ポリジアリルジメチルアンモニウムクロリド水溶液を得たこと以外は被覆導電性粒子1と同様の工程で被覆導電性粒子4を作製した。
(Coated conductive particles 4)
Instead of a 30% polyethyleneimine P-70 solution having a weight average molecular weight of about 70,000 (Wako Pure Chemical Industries, Ltd .: product name), Poly (diallydimethylammonium chloride) having a weight average molecular weight of 100,000 to 200,000 (ALDRIC)
Coated conductive particles 4 were produced in the same manner as the coated conductive particles 1 except that H brand: trade name) was diluted with ultrapure water to obtain a 0.3 wt% polydiallyldimethylammonium chloride aqueous solution. .

(被覆導電性粒子5)
重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)の代わりに重量平均分子量約70000のPoly(allylamine hydrochloride)(ALDRICH社製:商品名)を超純水で希釈し、0.3重量%ポリアリルアミンハイドロクロライド水溶液を得たこと以外は被覆導電性粒子1と同様の工程で被覆導電性粒子5を作製した。
(Coated conductive particles 5)
Instead of a 30% polyethyleneimine P-70 solution having a weight average molecular weight of about 70,000 (made by Wako Pure Chemical Industries, Ltd .: product name), Poly (allylamine hydrochloride) having a weight average molecular weight of about 70,000 (product name) is ultrapure water. The coated conductive particles 5 were produced in the same manner as the coated conductive particles 1 except that the aqueous solution was diluted with 0.3 to obtain a 0.3% by weight polyallylamine hydrochloride aqueous solution.

(被覆導電性粒子6)
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を作製した代わりに、メルカプト酢酸エチル8mmolをメタノール200mlに溶解させて反応液を作製した以外は被覆導電性粒子1と同様の工程で被覆導電性粒子6を作製した。
(Coated conductive particles 6)
Instead of preparing a reaction solution by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol, coated conductive particles were coated in the same manner as coated conductive particle 1 except that 8 mmol of mercaptoacetate was dissolved in 200 ml of methanol to prepare a reaction solution. 6 was produced.

(被覆導電性粒子7)
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を作製した代わりに、2−メルカプトエタノール8mmolをメタノール200mlに溶解させて反応液
を作製した以外は被覆導電性粒子1と同様の工程で被覆導電性粒子7を作製した。
(Coated conductive particles 7)
Instead of preparing a reaction solution by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol, the coated conductivity is the same as that of the coated conductive particle 1 except that a reaction solution is prepared by dissolving 8 mmol of 2-mercaptoethanol in 200 ml of methanol. Particle 7 was produced.

(被覆導電性粒子8)
導電性粒子1の表面にカルボキシル基を形成する工程を省略したこと以外は被覆導電性粒子1と同様の工程で被覆導電性粒子8を作製した。
(Coated conductive particles 8)
The coated conductive particles 8 were produced in the same process as the coated conductive particles 1 except that the step of forming a carboxyl group on the surface of the conductive particles 1 was omitted.

(導電性粒子9(参考))
重量平均分子量約70000の30%ポリエチレンイミン P−70溶液(和光純薬社製:製品名)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た後、カルボキシル基を有する導電性粒子1gを0.3重量%ポリエチレンイミン水溶液に加え、室温(25℃)で15分攪拌し、φ3μmのメンブレンフィルタ(ミリポア社製)で導電性粒子をろ過し、超純水200gに入れて室温(25℃)で5分攪拌した後φ3μmのメンブレンフィルタ(ミリポア社製)で導電性粒子をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、吸着していないポリエチレンイミンを除去する工程を省略したこと以外は被覆導電性粒子1と同様の工程で導電性粒子9を作製した。
(Conductive particles 9 (reference))
A 30% polyethyleneimine P-70 solution having a weight average molecular weight of about 70,000 (manufactured by Wako Pure Chemical Industries, Ltd .: product name) was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution, and then a conductive group having a carboxyl group. 1 g of conductive particles is added to a 0.3% by weight polyethyleneimine aqueous solution, stirred at room temperature (25 ° C.) for 15 minutes, and the conductive particles are filtered through a φ3 μm membrane filter (Millipore) and put in 200 g of ultrapure water. After stirring at room temperature (25 ° C) for 5 minutes, the conductive particles are filtered through a membrane filter (manufactured by Millipore) with a diameter of 3 µm, and washed twice with 200 g of ultrapure water on the membrane filter. The electroconductive particle 9 was produced in the process similar to the covering electroconductive particle 1 except having omitted the process of removing the polyethyleneimine which is not.

(実施例1)
得られた被覆導電性粒子1を下記の接着剤溶液に分散(接着剤に対して9体積%)し、この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃、10分乾燥し厚み25μmの異方性導電接着剤フィルムを作製した。
接着剤溶液の作製:フェノキシ樹脂(ユニオンカーバイド社製商品名、PKHC)100gと、アクリルゴム(ブチルアクリレート40重量部、エチルアクリレート30重量部、アクリロニトリル30重量部、グリシジルメタクリレート3重量部の共重合体、分子量:85万)75gを酢酸エチル400gに溶解し、30重量%溶液を得た。
Example 1
The obtained coated conductive particles 1 were dispersed in the following adhesive solution (9% by volume with respect to the adhesive), and this solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater. An anisotropic conductive adhesive film having a thickness of 25 μm was produced by drying at 90 ° C. for 10 minutes.
Preparation of adhesive solution: copolymer of 100 g of phenoxy resin (trade name, PKHC, manufactured by Union Carbide), acrylic rubber (40 parts by weight of butyl acrylate, 30 parts by weight of ethyl acrylate, 30 parts by weight of acrylonitrile, 3 parts by weight of glycidyl methacrylate) , Molecular weight: 850,000) 75 g was dissolved in 400 g of ethyl acetate to obtain a 30 wt% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、ノバキュアHX−3941)300gをこの溶液に加え、撹拌して接着剤溶液を作製した。次に、作製した異方性導電接着フィルムを用いて、金バンプ(面積:30×90μm、スペース30μm、高さ:15μm、バンブ数200)付きチップ(1.7×17mm、厚み:0.5μm)とAl回路付きガラス基板(厚み:0.7mm)の接続を、以下に示すように行った。異方性導電接着フィルム(2×19mm)をAl回路付きガラス基板に80℃、0.98MPa(10kgf/cm2)で貼り付けた後、セパレータを剥離し、チップのバンプとAl回路付きガラス基板の位置合わせを行った。次いで、190℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。   Next, 300 g of a liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., NovaCure HX-3941) containing a microcapsule-type latent curing agent was added to this solution and stirred to prepare an adhesive solution. Next, using the produced anisotropic conductive adhesive film, a chip (1.7 × 17 mm, thickness: 0.5 μm) with gold bumps (area: 30 × 90 μm, space: 30 μm, height: 15 μm, bump number: 200) ) And a glass substrate with an Al circuit (thickness: 0.7 mm) were connected as shown below. After an anisotropic conductive adhesive film (2 × 19 mm) was attached to a glass substrate with an Al circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2), the separator was peeled off, and the bumps of the chip and the glass substrate with an Al circuit Alignment was performed. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 190 ° C., 40 g / bump, and 10 seconds.

(実施例2)
被覆導電性粒子1の代わりに被覆導電性粒子2を用いた以外は実施例1と同様にサンプルを作製した。
(Example 2)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 2 were used instead of the coated conductive particles 1.

(実施例3)
被覆導電性粒子1の代わりに被覆導電性粒子3を用いた以外は実施例1と同様にサンプルを作製した。
(Example 3)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 3 were used instead of the coated conductive particles 1.

(実施例4)
被覆導電性粒子1の代わりに被覆導電性粒子4を用いた以外は実施例1と同様にサンプルを作製した。
Example 4
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 4 were used instead of the coated conductive particles 1.

(実施例5)
被覆導電性粒子1の代わり被覆導電性粒子5を用いた以外は実施例1と同様にサンプルを作製した。
(Example 5)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 5 were used instead of the coated conductive particles 1.

(実施例6)
被覆導電性粒子1の代わりに被覆導電性粒子6を用いた以外は実施例1と同様にサンプルを作製した。
(Example 6)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 6 were used instead of the coated conductive particles 1.

(実施例7)
被覆導電性粒子1の代わりに被覆導電性粒子7を用いた以外は実施例1と同様にサンプルを作製した。
(Example 7)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 7 were used instead of the coated conductive particles 1.

(実施例8)
被覆導電性粒子1の代わりに被覆導電性粒子8を用いた以外は実施例1と同様にサンプルを作製した。
(Example 8)
A sample was prepared in the same manner as in Example 1 except that the coated conductive particles 8 were used instead of the coated conductive particles 1.

(比較例1)
被覆導電性粒子1の代わりに導電性粒子Aを用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that the conductive particles A were used instead of the coated conductive particles 1.

(比較例2)
被覆導電性粒子1の代わりに導電性粒子9を用いた以外は実施例1と同様にサンプルを作製した。
(Comparative Example 2)
A sample was prepared in the same manner as in Example 1 except that the conductive particles 9 were used instead of the coated conductive particles 1.

(絶縁抵抗試験及び導通抵抗試験)
実施例1〜8、比較例1〜2で作製したサンプルの絶縁抵抗試験及び導通抵抗試験を行った。異方性導電接着フィルムはチップ電極間の絶縁抵抗が高く、チップ電極/ガラス電極間の導通抵抗が低いことが重要である。チップ電極間の絶縁抵抗は10サンプルを測定し、その最小値を測定した。更に導通抵抗>10(Ω)を良品とした場合の歩留まりを算出した。又、チップ電極/ガラス電極間の導通抵抗に関しては28サンプルの平均値を測定した。導通抵抗は初期値と吸湿耐熱試験(気温85℃、湿度85%の条件で250時間、500時間、1000時間放置)後の値を測定した。測定結果を表1及び図2に示した。
(Insulation resistance test and conduction resistance test)
The insulation resistance test and conduction resistance test of the samples produced in Examples 1-8 and Comparative Examples 1-2 were performed. It is important that the anisotropic conductive adhesive film has high insulation resistance between the chip electrodes and low conduction resistance between the chip electrode / glass electrode. Ten samples of the insulation resistance between the chip electrodes were measured, and the minimum value was measured. Further, the yield was calculated when the conduction resistance> 10 9 (Ω) was a non-defective product. Further, regarding the conduction resistance between the chip electrode and the glass electrode, an average value of 28 samples was measured. The conduction resistance was measured by an initial value and a value after a hygroscopic heat resistance test (standing for 250 hours, 500 hours, and 1000 hours under conditions of an air temperature of 85 ° C. and a humidity of 85%). The measurement results are shown in Table 1 and FIG.

Figure 0005272368
Figure 0005272368

表1に示した様に本発明により作製したサンプル(実施例1〜8)は従来の導電性粒子(比較例1〜2)と比較して、絶縁性を同程度に保ったまま、導通性を向上できることが分かった。また図2に示されるとおり、実施例1〜8では比較例1及び2に比較して時間経過にともなう導通抵抗の上昇が抑制され、導通性の劣化を抑制できることが分る。また、実施例1と実施例8を対比すると導電性粒子表面にカルボキシル基を形成した効果が見られる。高分子電解質のみを付着させた実施例8は導通抵抗が比較的高い。カルボキシル基がないと高分子電解質が外れやすいと考えられる。また実施例1〜実施例3を対比すると、分子量の大きい高分子電解質を用いると効果が大きい。また、実施例1は実施例4や実施例5より導通抵抗が低いので、高分子電解質の中ではポリエチレンイミンは効果が高いことが分かる。金属と金属の間にカチオン性高分子電解質が入ることで金属と金属の結合性が増し、導電性が良くなったと考えられる。この場合、高分子電解質の平均厚みは0.1Å以下であるので、導電性に悪影響を与えることはない。また、金属粒子表面に官能基を有する為、接着剤樹脂に導電性粒子が固定されて信頼性が増す効果も得られる。   As shown in Table 1, the samples prepared according to the present invention (Examples 1 to 8) were electrically conductive while maintaining the same level of insulation as compared with the conventional conductive particles (Comparative Examples 1 and 2). It was found that can be improved. In addition, as shown in FIG. 2, it can be seen that in Examples 1 to 8, an increase in conduction resistance with the passage of time is suppressed as compared with Comparative Examples 1 and 2, and deterioration in conductivity can be suppressed. Moreover, when Example 1 and Example 8 are contrasted, the effect which formed the carboxyl group on the electroconductive particle surface is seen. Example 8 to which only the polymer electrolyte was attached had a relatively high conduction resistance. If there is no carboxyl group, the polymer electrolyte is considered to be easily detached. Further, when Examples 1 to 3 are compared, the effect is large when a polymer electrolyte having a large molecular weight is used. Moreover, since Example 1 has a conduction | electrical_connection resistance lower than Example 4 or Example 5, it turns out that a polyethyleneimine has a high effect in a polymer electrolyte. It is considered that the cationic polymer electrolyte is inserted between the metals, so that the bonding property between the metals is increased and the conductivity is improved. In this case, since the average thickness of the polymer electrolyte is 0.1 mm or less, the conductivity is not adversely affected. Moreover, since it has a functional group on the surface of the metal particles, the effect of increasing the reliability by fixing the conductive particles to the adhesive resin can be obtained.

以上のように本発明によれば、導電性の金属表面を有する導電性粒子の表面の少なくとも一部を高分子電解質により被覆させることで安価に導電性粒子の導電性を向上させることができる。   As described above, according to the present invention, the conductivity of the conductive particles can be improved at low cost by covering at least a part of the surface of the conductive particles having a conductive metal surface with the polymer electrolyte.

異方性導電接着剤を用いた接続構造体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connection structure using an anisotropic conductive adhesive. 実施例、比較例における導通抵抗と経過時間の関係を表すグラフである。It is a graph showing the relationship between the conduction | electrical_connection resistance and elapsed time in an Example and a comparative example.

符号の説明Explanation of symbols

1:高分子電解質
2:導電性粒子
3:接着剤
4:第一の基板
5:第一の電極
6:第二の基板
7:第二の電極
1: Polymer electrolyte 2: Conductive particles 3: Adhesive 4: First substrate 5: First electrode 6: Second substrate 7: Second electrode

Claims (14)

導電性の金属表面を有する導電性粒子の前記金属表面の少なくとも一部が高分子電解質により被覆されてなる導電性粒子であって、前記金属表面に形成されたカルボキシル基と前記高分子電解質に含まれるアミノ基とが化学結合していることを特徴とする被覆導電性粒子Conductive particles having a conductive metal surface, wherein at least a part of the metal surface is coated with a polymer electrolyte, the carboxyl group formed on the metal surface and included in the polymer electrolyte Coated conductive particles, wherein the amino groups are chemically bonded . 前記高分子電解質の重量平均分子量が600以上であることを特徴とする請求項1に記載の被覆導電性粒子。   The coated conductive particles according to claim 1, wherein the polymer electrolyte has a weight average molecular weight of 600 or more. 前記高分子電解質がポリアミン類であることを特徴とする請求項1又は2に記載の被覆導電性粒子。   The coated conductive particle according to claim 1, wherein the polymer electrolyte is a polyamine. 前記ポリアミン類がポリエチレンイミンであることを特徴とする請求項3に記載の被覆導電性粒子。   4. The coated conductive particle according to claim 3, wherein the polyamine is polyethyleneimine. 導電性粒子が、有機のコア粒子を金属被覆したものであることを特徴とする請求項1〜4のいずれか1項に記載の被覆導電性粒子。The coated conductive particles according to any one of claims 1 to 4, wherein the conductive particles are obtained by metal-coating organic core particles. 前記金属表面に形成された前記カルボキシル基は、前記高分子電解質による被覆の前に、前記導電性粒子をメルカプト基、スルフィド基、ジスルフィド基のいずれかの官能基を有する化合物で処理することにより形成されたものであることを特徴とする請求項1〜5のいずれか1項に記載の被覆導電性粒子。The carboxyl group formed on the metal surface is formed by treating the conductive particles with a compound having a functional group of mercapto group, sulfide group, or disulfide group before coating with the polymer electrolyte. The coated conductive particles according to any one of claims 1 to 5, wherein the coated conductive particles are any of the above. 前記導電性粒子の表面に固着していない高分子電解質が除去されてなることを特徴とする請求項1〜6のいずれか1項に記載の被覆導電性粒子。The coated conductive particle according to any one of claims 1 to 6, wherein a polymer electrolyte not fixed to the surface of the conductive particle is removed. 導電性の金属表面を有する導電性粒子の前記金属表面にカルボキシル基を形成する工程、前記導電性粒子の金属表面の少なくとも一部をアミノ基を有する高分子電解質で被覆する工程、前記カルボキシル基と前記アミノ基との化学結合を形成する工程を有する被覆導電性粒子の製造方法。A step of forming a carboxyl group on the metal surface of the conductive particles having a conductive metal surface, a step of coating at least a part of the metal surface of the conductive particle with a polymer electrolyte having an amino group, and the carboxyl group and The manufacturing method of the covering electroconductive particle which has the process of forming a chemical bond with the said amino group. 前記カルボキシル基を形成する工程は、前記導電性の金属表面を有する前記導電性粒子をメルカプト基、スルフィド基、ジスルフィド基のいずれかの官能基を有する化合物で処理してなることを特徴とする請求項8に記載の被覆導電性粒子の製造方法。The step of forming the carboxyl group is obtained by treating the conductive particles having the conductive metal surface with a compound having a functional group of any one of a mercapto group, a sulfide group, and a disulfide group. Item 9. A method for producing coated conductive particles according to Item 8. 前記化学結合を形成する工程は、前記高分子電解質で被覆された前記導電性粒子を加熱乾燥することにより行うことを特徴とする請求項8〜9のいずれか1項に記載の被覆導電性粒子の製造方法。The coated conductive particles according to claim 8, wherein the step of forming the chemical bond is performed by heating and drying the conductive particles coated with the polymer electrolyte. Manufacturing method. 前記高分子電解質で被覆する工程と前記化学結合を形成する工程との間に、前記導電性粒子の表面に固着していない前記高分子電解質の除去工程を有することを特徴とする請求項8〜10のいずれか1項に記載の被覆導電性粒子の製造方法。9. A step of removing the polymer electrolyte that is not fixed to the surface of the conductive particles between the step of coating with the polymer electrolyte and the step of forming the chemical bond. 10. The method for producing coated conductive particles according to any one of 10 above. 請求項8〜11のいずれか1項に記載の被覆導電性粒子の製造方法によって製造されてなる被覆導電性粒子。The coated electroconductive particle manufactured by the manufacturing method of the coated electroconductive particle of any one of Claims 8-11. 請求項1〜7及び12のいずれか1項に記載の被覆導電性粒子を、接着剤に分散してなる異方性導電接着剤。 An anisotropic conductive adhesive obtained by dispersing the coated conductive particles according to any one of claims 1 to 7 and 12 in an adhesive. 請求項1〜7及び12のいずれか1項に記載の被覆導電性粒子を、接着剤に分散してなる導電性接着剤。 The conductive adhesive formed by disperse | distributing the covering electroconductive particle of any one of Claims 1-7 and 12 to an adhesive agent.
JP2007255270A 2007-03-05 2007-09-28 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive Active JP5272368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255270A JP5272368B2 (en) 2007-03-05 2007-09-28 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007054096 2007-03-05
JP2007054096 2007-03-05
JP2007255270A JP5272368B2 (en) 2007-03-05 2007-09-28 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive

Publications (2)

Publication Number Publication Date
JP2008251522A JP2008251522A (en) 2008-10-16
JP5272368B2 true JP5272368B2 (en) 2013-08-28

Family

ID=39976201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255270A Active JP5272368B2 (en) 2007-03-05 2007-09-28 Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive

Country Status (1)

Country Link
JP (1) JP5272368B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057224B2 (en) * 2012-08-31 2017-01-11 パナソニックIpマネジメント株式会社 Component mounting structure
JP6200318B2 (en) * 2013-01-10 2017-09-20 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
CN103680765B (en) * 2013-12-24 2016-08-17 苏州纳微科技有限公司 A kind of conductive composite microsphere preparation method of environment-friendly type
KR102545861B1 (en) * 2014-10-29 2023-06-21 데쿠세리아루즈 가부시키가이샤 Conductive material
CN108461172B (en) * 2018-02-22 2020-06-30 南方科技大学 Conductive particle and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254995B2 (en) * 2002-04-26 2009-04-15 日立化成工業株式会社 Anisotropic conductive adhesive and circuit board
JP2004232012A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Method for producing high-concentration metal microparticle dispersion
JP4428138B2 (en) * 2004-05-21 2010-03-10 住友金属鉱山株式会社 Copper fine particles, production method thereof, and copper fine particle dispersion
JP4978844B2 (en) * 2005-07-25 2012-07-18 住友金属鉱山株式会社 Copper fine particle dispersion and method for producing the same
JP4780197B2 (en) * 2006-10-17 2011-09-28 日立化成工業株式会社 Coated particle, method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film

Also Published As

Publication number Publication date
JP2008251522A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4780197B2 (en) Coated particle, method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film
JP5151920B2 (en) Conductive particles and method for producing conductive particles
JP4636183B2 (en) Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connection structure, and method for producing coated particles
JP4640532B2 (en) Coated conductive particles
JP5440645B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
JP5939063B2 (en) Insulating coated conductive particles and anisotropic conductive adhesive using the same
JP4640531B2 (en) Conductive particles
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
JP5644067B2 (en) Insulation coated conductive particles
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
JP2011029178A (en) Coated conductive particle and manufacturing method therefor
WO2011002084A1 (en) Conductive particle
JP5272368B2 (en) Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP5589361B2 (en) Conductive particles and method for producing the same
JP4254995B2 (en) Anisotropic conductive adhesive and circuit board
US20060261315A1 (en) Insulation-coated electroconductive particles
JP2008120990A (en) Anisotropically electroconductive adhesive composition, anisotropically electroconductive film, connection structure of circuit member and process for producing coated particle
JP6119130B2 (en) Composite particles and anisotropic conductive adhesive
JP2011175846A (en) Circuit member connecting adhesive film, and circuit member connecting structure and method of manufacturing the same
JP2016076338A (en) Conductive particle
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350