KR102537009B1 - 고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법 - Google Patents

고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법 Download PDF

Info

Publication number
KR102537009B1
KR102537009B1 KR1020177033940A KR20177033940A KR102537009B1 KR 102537009 B1 KR102537009 B1 KR 102537009B1 KR 1020177033940 A KR1020177033940 A KR 1020177033940A KR 20177033940 A KR20177033940 A KR 20177033940A KR 102537009 B1 KR102537009 B1 KR 102537009B1
Authority
KR
South Korea
Prior art keywords
light
solid
pixel
imaging device
state imaging
Prior art date
Application number
KR1020177033940A
Other languages
English (en)
Other versions
KR20180015134A (ko
Inventor
신이치로 노우도
Original Assignee
소니그룹주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니그룹주식회사 filed Critical 소니그룹주식회사
Publication of KR20180015134A publication Critical patent/KR20180015134A/ko
Application granted granted Critical
Publication of KR102537009B1 publication Critical patent/KR102537009B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

2 이상의 주광선 각도로의 입사광에 대응 가능한 상면위상차 화소를 실현한다. 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는, 고체 촬상 소자.

Description

고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법{SOLID-STATE IMAGE-CAPTURE ELEMENT, IMAGE-CAPTURE ELEMENT, AND METHOD FOR MANUFACTURING SOLID-STATE IMAGE-CAPTURE ELEMENT}
본 기술은, 고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법에 관한 것이다.
근래, 촬상시에 자동적 포커스 조정을 행하는 오토 포커스(AF) 기능을 탑재한 촬상 장치가 널리 보급되어 있다. AF의 방식은, 액티브 방식과 패시브 방식으로 대별된다. 액티브 방식에서는, 대상물(피사체)에 조사한 적외선·초음파 등의 반사파가 되돌아올 때까지의 시간이나 조사 각도에 의해 거리를 검출한다. 패시브 방식에서는, 렌즈로 파악한 화상을 이용하여 거리측정을 행한다. 패시브 방식에는, 콘트라스트 검출 방식과 위상차 검출 방식이 있다.
위상차 검출 방식에는, 촬상용의 이미지 센서와는 별도로 위상차 AF 전용의 이미지 센서를 마련하는 방식과, 촬상 센서에 위상차 검출 화소를 조립한 상면위상차(像面位相差) AF 방식이 있다. 어느 방식에서도, 렌즈로부터 들어오는 광을 2분할(동분할(瞳分割, pupil division))하고, 그 상(像)의 어긋남으로부터 합초(合焦) 위치를 검출한다. 전자는, 촬상용의 이미지 센서와는 별도로 위상차 AF 전용의 이미지 센서를 탑재하기 때문에, 촬상 장치의 사이즈가 커지는 결점이 있다. 후자는, 촬상용의 이미지 센서에 위상차 검출용의 화소(위상차 검출 화소)를 조립하기 때문에, 촬상 장치의 사이즈가 작아도 되는 메리트가 있다.
상면위상차 AF 방식에서는, 위상차 검출 화소로부터 취득한 위상차 신호에 의거하여 AF 동작을 행한다. 상면위상차 화소는, 화각(畵角) 내에 복수 배치되고, 수광 소자인 포토다이오드상의 개구부를 좌우 또는 상하로 반분 정도 차광한 화소 구조를 갖는다. 상면위상차 화소는, 피사체광의 일방의 반분을 차광한 상면위상차 화소와, 피사체광의 타방의 반분을 차광한 상면위상차 화소의 2개 1조(組)로 마련되고, 2개 1조의 상면위상차 화소가 각각 갖는 다른 사입사(斜入射) 특성으로부터 하나의 위상차 신호를 만들어 내고 있다(예를 들면, 특허문헌 1 참조).
특허문헌 1에는, 마이크로 렌즈의 결상점(結像点)의 위치와, 차광부의 입사구측의 연부(緣部)의 위치가 상고(像高, image height)의 변화에 응하여 떨어지도록 형성된 상면위상차 화소의 차광부에 관해 개시되어 있다. 이미지 센서에의 피사체광의 입사각은, 세트 렌즈의 축외(軸外)에서는 마이크로 렌즈의 결상점으로부터 서서히 어긋나 가는데, 특허문헌 1의 기술을 적용함에 의해, 칩 내의 좌표에 응하여 세트 렌즈로부터의 피사체광의 입사각에 맞도록, 차광부의 입사구측의 단부(端部)의 위치를 설계할 수 있다.
일본 특개2012-182332호 공보
그렇지만, 렌즈 교환식의 촬상 장치인 경우, 장착하는 렌즈마다 주광선(主光線, chief ray) 각도가 다르기 때문에, 각 렌즈의 주광선 각도에 응한 상면위상차 화소를 마련할 필요가 있다. 또한, 하나의 렌즈라도, 줌 포지션이 변하면 주광선 각도가 변하여, 각 줌 포지션의 주광선 각도에 응한 상면위상차 화소를 마련할 필요가 있다. 가령, 주광선 각도의 소성(素性)이 가까운 복수의 렌즈나 줌 포지션을 그룹화하여, 그룹마다 상면위상차 화소를 마련하였다고 하여도, 렌즈 라인업의 각도 범위나 줌 포지션의 각도 범위가 넓은 경우는, 다수의 상면위상차 화소를 마련할 필요가 있다. 상면위상차 화소는, 촬상 화상의 구성 요소로서 사용할 수 없는 결함 화소 취급이 되어, 상면위상차 화소의 증가는 촬상 화상의 화질 열화에 연결된다.
본 기술은, 상기 과제를 감안하여 이루어진 것으로, 2 이상의 주광선 각도로의 입사광에 대응 가능한 상면위상차 화소를 구비하는 고체 촬상 소자, 당해 고체 촬상 소자를 구비하는 고체 촬상 장치, 당해 고체 촬상 소자의 제조 방법을 실현하는 것을 목적으로 한다.
본 기술의 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는, 고체 촬상 소자이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 그 도중에 단차부(段差部)를 갖는, 고체 촬상 소자이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 화소는, 본 고체 촬상 소자의 화우(畵隅) 부분(corner section)에 형성되어 있고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는, 고체 촬상 소자이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는, 고체 촬상 소자와, 상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 그 도중에 단차부를 갖는, 고체 촬상 소자와, 상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 화소는, 본 고체 촬상 소자의 화우 부분에 형성되어 있고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는, 고체 촬상 소자와, 상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는, 고체 촬상 소자의 제조 방법이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 그 도중에 단차부를 갖는, 고체 촬상 소자의 제조 방법이다.
본 기술의 다른 양태의 하나는, 피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 수광 소자와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고, 상기 화소는, 본 고체 촬상 소자의 화우 부분에 형성되어 있고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는, 고체 촬상 소자의 제조 방법이다.
또한, 이상 설명한 고체 촬상 소자나 고체 촬상 장치는, 다른 기기에 조립된 상태에서 실시되거나 다른 방법과 함께 실시되거나 하는 등의 각종의 양태를 포함한다. 또한, 본 기술은 상기 고체 촬상 소자나 고체 촬상 장치를 구비하는 촬상 시스템으로서도 실현 가능하다. 또한, 상술한 고체 촬상 소자의 제조 방법은, 다른 방법의 일환으로서 실시되거나, 각 공정에 대응하는 수단을 구비한 고체 촬상 소자의 제조 장치나 그 제조 방법으로 작성된 고체 촬상 소자를 구비한 고체 촬상 장치로서 실현되거나 한 등의 각종의 양태를 포함한다.
본 기술에 의하면, 2 이상의 주광선 각도로의 입사광에 대응 가능한 상면위상차 화소를 구비하는 고체 촬상 소자, 당해 고체 촬상 소자를 구비하는 고체 촬상 장치, 당해 고체 촬상 소자의 제조 방법을 실현하는 것이 가능해진다. 또한, 본 명세서에 기재된 효과는 어디까지나 예시로서 한정된 것이 아니고, 또한 부가적인 효과가 있어도 좋다.
도 1은 제1의 실시 형태에 관한 고체 촬상 소자의 구조를 설명하는 도면.
도 2는 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 3은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 4는 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 5는 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 6은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 7은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 8은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 9는 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 10은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 11은 차광부의 연부에서의 제1 연부와 제2 연부를 설명하는 도면.
도 12는 차광부를 갖는 화소의 고체 촬상 소자상에서의 위치·배열 방향을 설명하는 도면.
도 13은 고체 촬상 장치의 구성을 도시하는 블록도.
도 14는 이면 조사형의 고체 촬상 소자의 주요부 구조를 단면적으로 도시한 도면.
도 15는 제2의 실시 형태에 관한 촬상 장치의 기능 구성의 한 예를 설명하는 도면.
도 16은 고체 촬상 소자에서의 화소 배치의 한 예를 도시하는 모식도.
도 17은 위상차 검출용 화소로부터 얻어지는 수광 데이터를 설명하는 도면.
도 18은 위상차 검출용 화소에서의 합초시의 결상 위치를 설명하는 도면.
도 19는 위상차 검출용 화소에서의 합초시의 결상 위치를 설명하는 도면.
도 20은 단차부를 마련함에 의한 수광 강도에의 영향을 설명하는 도면.
도 21은 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
도 22는 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
도 23은 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
도 24는 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
도 25는 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
도 26은 고체 촬상 소자의 제조 방법의 각 공정에서의 고체 촬상 소자의 주요부를 도시하는 도면.
이하, 하기한 순서에 따라 본 기술을 설명한다.
(A) 제1의 실시 형태 :
(B) 제2의 실시 형태 :
(C) 제3의 실시 형태 :
(A) 제1의 실시 형태 :
도 1은, 본 실시 형태에 관한 고체 촬상 소자(100)의 구조를 설명하는 도면이다.
고체 촬상 소자(100)는, 복수의 화소(P)가 2차원 평면상에 배열된 수광부(10)를 갖는다. 2차원 평면상의 배열에는, 다이아고날(diagonal) 배열, 델타(delta) 배열, 허니컴(honeycomb) 배열 등, 각종의 2차원 배열을 포함한다.
도 2는, 화소의 단면 형상을 개략적으로 도시한 도면이다. 동 도면에 도시하는 바와 같이, 각 화소(P)는, 입사광에 응한 전기 신호를 생성하는 광전변환부로서의 포토다이오드(20), 및, 포토다이오드(20)의 수광면부터 이간하여 마련한 마이크로 렌즈(30)를 구비하고 있다.
복수의 화소(P)의 일부 또는 전부는, 포토다이오드(20) 및 마이크로 렌즈(30)에 더하여, 포토다이오드(20)와 마이크로 렌즈(30)의 사이에 마련된 차광부(40)를 구비하고 있다. 이하, 차광부(40)를 구비하는 화소를, 화소(Ph)라고 기재한다. 차광부(40)는, 포토다이오드(20)의 수광면상을 통과하는 연부(41)를 갖는다.
도 3∼도 11은, 각종의 차광부(40)의 연부(41)에서의 제1 연부(411)와 제2 연부(412)를 설명하는 도면이다.
차광부(40)는, 포토다이오드(20)의 수광면상을 통과하는 연부(41)를 가지며, 연부(41)는, 고체 촬상 소자(100)의 출력 화상에서의 상하 방향에 대응하는 제1 방향(D1)과 당해 출력 화상의 좌우 방향에 대응하는 제2 방향(D2)의 쌍방에서 위치가 서로 다른 제1 연부(411)와 제2 연부(412)를 갖는다.
도 3(a)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph1)의 상변과 하변의 사이를 접속하고 있고, 도 3(b)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph2)의 상변과 하변의 사이를 접속하고 있고, 포토다이오드(20)의 수광면상을 개략 제1 방향(D1)(고체 촬상 소자(100)의 출력 화상에서의 상하 방향에 대응하는 방향)에 따라 가로질러서 통과하는 형상이다. 화소(Ph1, Ph2)의 연부(41)는, 포토다이오드(20)의 수광면상을 가로질러서 통과하는 도중에 단차부(41G)를 갖는다. 단차부(41G)는, 연부(41)에서의 제1 방향(D1)과는 다른 제2 방향(D2)으로 늘어나는 부분이다.
연부(41)에서, 단차부(41G)를 끼우고 일방의 측이 제1 연부(411)를 구성하고, 단차부(41G)를 끼우고 타방의 측이 제2 연부(412)를 구성한다. 제1 연부(411)와 제2 연부(412)는, 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)(도 9 참조)으로부터 늘어나는 적어도 하나의 방사선(放射線)(Dr)이, 제1 연부(411)와 제2 연부(412)의 쌍방과 교차하도록 마련한다.
즉, 제1 연부(411)와 제2 연부(412)는, 제1 방향(D1)에서 서로 다른 위치에 마련되고, 제2 방향(D2)에서도 단차부(41G)에 의한 오프셋에 의해 서로 다른 위치에 마련된다.
또한, 도 3에 도시하는 예에서는, 단차부(41G)의 수가 하나인 경우를 나타내고 있지만, 단차부(41G)의 수는 이것으로 한하는 것이 아니고, 2 이상의 임의의 수의 단차부(41G)를 연부(41)에 마련하여 연부를 3개 이상으로 분할하여도 좋다. 단차부(41G)에 의해 분할된 모든 연부가, 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터 늘어나는 적어도 1개의 방사선(Dr)과 교차하도록 마련한다.
도 4(a)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph1)의 좌변과 우변의 사이를 접속하고 있고, 도 4(b)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph2)의 좌변과 우변의 사이를 접속하고 있고, 포토다이오드(20)의 수광면상을 개략 제2 방향(D2)(고체 촬상 소자(100)의 출력 화상에서의 좌우 방향에 대응하는 방향)에 따라 가로질러서 통과하는 형상이다. 화소(Ph1, Ph2)의 연부(41)는, 포토다이오드(20)의 수광면상을 가로질러서 통과하는 도중에 단차부(41G)를 갖는다. 단차부(41G)는, 연부(41)에서의 제2 방향(D2)과는 다른 제1 방향(D1)으로 늘어나는 부분이다.
연부(41)에서, 단차부(41G)를 끼우고 일방의 측이 제1 연부(411)를 구성하고, 단차부(41G)를 끼우고 타방의 측이 제2 연부(412)를 구성한다. 제1 연부(411)와 제2 연부(412)는, 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터 늘어나는 적어도 1개의 방사선(Dr)이, 제1 연부(411)와 제2 연부(412)의 쌍방과 교차하도록 마련한다.
즉, 제1 연부(411)와 제2 연부(412)는, 제2 방향(D2)에서 서로 다른 위치에 마련되고, 제1 방향(D1)에서도 단차부(41G)에 의한 오프셋에 의해 서로 다른 위치에 마련된다.
또한, 도 4에 도시하는 예에서는, 단차부(41G)의 수가 하나인 경우를 나타내고 있지만, 단차부(41G)의 수는 이것으로 한하는 것이 아니고, 2 이상의 임의의 수의 단차부(41G)를 연부(41)에 마련하여 연부를 3개 이상으로 분할하여도 좋다. 단차부(41G)에 의해 분할된 모든 연부가, 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터 늘어나는 적어도 1개의 방사선(Dr)과 교차하도록 마련한다.
도 5(a)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph1)의 상변과 하변의 사이를 접속하고 있고, 도 5(b)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph2)의 상변과 하변의 사이를 접속하고 있고, 제1 방향(D1)과 제2 방향(D2)의 쌍방과 다른 제3 방향(D3)에 따라, 포토다이오드(20)의 수광부(10)상을 가로질러서 통과하는 형상이다. 즉, 화소(Ph1, Ph2)의 연부(41)가 상하 좌우 방향에 대해 경사한 방향으로 늘어나는 형상이다.
이 제3 방향(D3)에 따라 늘어나는 연부(41)에서, 서로 다른 부위가 제1 연부(411)와 제2 연부(412)를 구성한다. 연부(41)는, 제1 방향(D1)과 제2 방향(D2)의 어느 것과도 다른 제3 방향(D3)에 따라 늘어나기 때문에, 제1 연부(411)와 제2 연부(412)는, 제2 방향(D2)과 제1 방향(D1)의 쌍방에서 위치가 서로 다르다.
또한, 도 5에 도시하는 예에서는, 연부(41)상에는 제1 연부(411)와 제2 연부(412)의 2개를 설정한 경우를 나타내고 있지만, 연부(41)상에는 제1 연부(411)와 제2 연부(412) 이외에 임의의 수의 연부를 설정할 수 있다. 연부(41)상에 설정된 제1 연부(411)나 제2 연부(412), 기타 연부는, 모두 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터 늘어나는 적어도 1개의 방사선(Dr)과 교차한다.
도 6(a)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph1)의 좌변과 우변의 사이를 접속하고 있고, 도 6(b)에 도시하는 차광부(40)에서, 연부(41)는 화소(Ph2)의 좌변과 우변의 사이를 접속하고 있고, 제1 방향(D1)과 제2 방향(D2)의 쌍방과 다른 제4 방향(D4)에 따라, 포토다이오드(20)의 수광부(10)상을 가로질러서 통과하는 형상이다. 즉, 화소(Ph1, Ph2)의 연부(41)가 상하 좌우 방향에 대해 경사한 방향으로 늘어나는 형상이다.
이 제4 방향(D4)에 따라 늘어나는 연부(41)에서, 서로 다른 부위가 제1 연부(411)와 제2 연부(412)를 구성한다. 연부(41)는, 제1 방향(D1)과 제2 방향(D2)의 어느 것과도 다른 제4 방향(D4)에 따라 늘어나기 때문에, 제1 연부(411)와 제2 연부(412)는, 제2 방향(D2)과 제1 방향(D1)의 쌍방에서 위치가 서로 다르다.
또한, 도 5에 도시하는 예에서는, 연부(41)상에는 제1 연부(411)와 제2 연부(412)의 2개를 설정한 경우를 나타내고 있지만, 연부(41)상에는 제1 연부(411)와 제2 연부(412) 이외에 임의의 수의 연부를 설정할 수 있다. 연부(41)상에 설정된 제1 연부(411)나 제2 연부(412), 기타 연부는, 모두 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터 늘어나는 적어도 1개의 방사선(Dr)과 교차한다.
도 7에 도시하는 차광부(40)에서, 연부(41)는, 도 5에 도시하는 차광부(40)와 마찬가지로, 화소(Ph1, Ph2)의 상변과 하변의 사이를 접속하고 있고, 제1 방향(D1)과 제2 방향(D2)의 쌍방과 다른 제3 방향(D3)에 따라, 포토다이오드(20)의 수광면상을 가로질러서 통과하는 형상이다. 단, 도 7에 도시하는 연부(41)는, 제3 방향(D3)과는 다른방향(도 7에서는, 제1 방향(D1) 및 제2 방향(D2))으로 늘어나는 방향선의 조합에 의해 지그재그로 형성되어 있다.
제1 연부(411)와 제2 연부(412)는, 이 제3 방향(D3)에 따라 늘어나는 연부(41)상의 제1 방향(D1)으로 늘어나는 방향선의 위에 이간하여 마련된다. 이에 의해, 연부(41)는, 제1 방향(D1)과 제2 방향(D2)의 쌍방에서 위치가 서로 다른 제1 연부(411)와 제2 연부(412)를 갖게 된다. 또한, 상술한 도 3에 도시하는 화소(Ph)의 차광부(40)의 연부(41)는, 이와 같은 도 7에 도시하는 연부(41)를 지그재그로 한 양태의 하나로서 파악할 수도 있다.
도 8에 도시하는 차광부(40)에서, 연부(41)는, 도 6에 도시하는 차광부(40)와 마찬가지로, 화소(Ph1, Ph2)의 좌변과 우변의 사이를 접속하고 있고, 제1 방향(D1)과 제2 방향(D2)의 쌍방과 다른 제4 방향(D4)에 따라, 포토다이오드(20)의 수광면상을 가로질러서 통과하는 형상이다. 단, 도 8에 도시하는 연부(41)는, 제4 방향(D4)과는 다른 방향(도 8에서는, 제1 방향(D1) 및 제2 방향(D2))으로 늘어나는 방향선의 조합에 의해 지그재그로 형성되어 있다.
제1 연부(411)와 제2 연부(412)는, 이 제4 방향(D4)에 따라 늘어나는 연부(41)상의 제2 방향(D2)으로 늘어나는 방향선의 위에 이간하여 마련된다. 이에 의해, 연부(41)는, 제1 방향(D1)과 제2 방향(D2)의 쌍방에서 위치가 서로 다른 제1 연부(411)와 제2 연부(412)를 갖게 된다. 또한, 상술한 도 4에 도시하는 화소(Ph)의 차광부(40)의 연부(41)는, 이와 같은 도 8에 도시하는 연부(41)를 지그재그로 형성한 상태의 하나로서 파악할 수도 있다.
도 9에 도시하는 화소(Ph1, Ph2)의 차광부(40)에서, 연부(41)는, 고체 촬상 소자(100)의 수광면(10)의 광축 중심(11c)으로부터의 방사선(Dr)에 따라, 화소(Ph1, Ph2)를 가로질러서 통과하는 형상이다. 또한, 도 9에 도시하는 연부(41)에 대해서도, 도 7, 도 8에 도시하는 예와 마찬가지로, 방사선(Dr)과 다른 방향선의 조합에 의해 지그재그로 형성하여도 좋다. 제1 연부(411)와 제2 연부(412)는, 방사선(Dr)에 따라 늘어나는 연부(41)상에 이간하여 마련된다.
또한, 도 9에 도시하는 화소(Ph)의 차광부(40)와 같이, 방사선(Dr)에 따라 연부(41)를 형성하면, 연부(41)가 제1 방향(D1)이나 제2 방향(D2)에 따라 늘어나는 경우가 있고, 이 경우, 제1 연부(411)와 제2 연부(412)는, 제1 방향(D1) 또는 제2 방향(D2)에서 같은 위치에 마련되는 경우가 있다. 또한, 연부(41)가 제1 방향(D1)이나 제2 방향(D2)에 따라 늘어나는 경우는, 방사선(Dr)과 다른 방향선의 조합에 의해 지그재그로 형성할 필요는 없다.
도 10은, 연부(41)에 단차부(41G)를 갖는 화소(Ph)의 단차폭을 고체 촬상 소자(100) 내에서 대비(對比)한 도면이다. 도 10에는, 복수의 화소(Ph)를 일렬로 배열한 상태를 나타내고 있다.
이들 복수의 화소(Ph)는, 수광면(10)의 광축 중심(11c)으로부터의 이간 정도에 따라 단차부(41G)의 단차폭이 서서히 증가하는 구성으로 되어 있다. 즉, 광축 중심에 가까운 화소(Ph)로부터 차례로, 단차부(41G)의 단차폭은, d1, d2, d3, d4, d5, d6으로 되어 있고, 이들 단차폭은, d1<d2<d3<d4<d5<d6의 대소 관계를 갖고 있다.
도 11은, 연부(41)에 경사를 갖는 화소(Ph)의 경사각도를 고체 촬상 소자(100) 내에서 대비한 도면이다. 도 11에는, 복수의 화소(Ph)를 일렬로 배열한 상태를 나타내고 있다. 이들 복수의 화소(Ph)는, 수광면(10)의 광축 중심(11c)으로부터의 이간 정도에 따라 경사각도가 서서히 증가하는 구성으로 되어 있다. 즉, 광축 중심에 가까운 화소(Ph)로부터 차례로, 경사각도는, θ1, θ2, θ3, θ4, θ5, θ6으로 되어 있고, 이들 단차폭은, θ1<θ2<θ3<θ4<θ5<θ6의 대소 관계를 갖고 있다.
도 3∼도 11에 도시하는 화소(Ph)는, 화소 중심을 점대칭(粘對稱)의 축(軸)으로 하여 서로 180° 회전한 형상을 갖는 화소(Ph1)와 화소(Ph2)(도 3∼도 8에 도시하는 예에서는 (a)와 (b))의 2종류가 있다. 즉, 화소(Ph)에는, 연부(41)를 끼우고 일방측을 차광하면서 타방측을 개구한 화소(Ph1)와, 연부(41)를 끼우고 일방측을 개구하면서 타방측을 차광한 화소(Ph2)의 2종류가 있다.
이들 화소(Ph1)와 화소(Ph2)의 위치 관계로서는, 화소(Ph1)로부터 일정 범위 내에 적어도 하나의 화소(Ph2)가 배설되고, 화소(Ph2)로부터 일정 범위 내에 적어도 하나의 화소(Ph1)가 배설된다. 일정 범위 내로서는, 1∼수화소 정도이고, 각 화소에 입사하는 입사광의 주광선 각도가 개략 동등하다고 간주할 수 있을 정도로 근접한 범위이다. 즉, 화소(Ph1)와, 당해 화소(Ph1)로부터 일정 범위 내에 있는 화소(Ph2)와의 수광 결과를 대비하여, 후술하는 촬상 장치(200)에서의 합초 판정을 행할 수가 있다.
도 12는, 도 3∼도 8에 도시하는 차광부(40)를 갖는 화소(Ph)의 고체 촬상 소자(100)상에서 위치·배열 방향을 설명하는 도면이다.
도 3∼도 8에 도시하는 화소(Ph)는, 주로, 고체 촬상 소자(100)의 수광면(100)의 화우(畵隅) 부분(corner section)에 마련된다. 화우 부분은, 도 10에 도시하는 예에서는, 광축 중심(11c)을 통하여 제1 방향(D1)으로 늘어나는 제1선(L1) 및 광축 중심(11c)을 통하여 제2 방향(D2)으로 늘어나는 제2선(L2)과, 교차하는 화소를 제외한 화소 에어리어를 가리킨다. 또한, 제1선(L1)이나 제2선(L2)과, 교차하는 부위에 화소(Ph)를 마련하는 것을 금지하는 취지가 아니다. 한편, 도 9에 도시하는 화소(Ph)에 관해서는, 제1선(L1)상과 제2선(L20)상을 포함하는 수광면(10)상의 임의의 위치에 마련할 수 있다.
화소(Ph)는, 후술하는 촬상 장치(200)에서 적절히 선택되는 검파 방향(Dd)에 따라 이간(離間)적 또는 연속적으로 나열하여 배치된다. 도 12에 도시하는 예에서는, 고체 촬상 소자(100)의 출력 화상에서의 좌우 방향에 대응하는 제2 방향(D2)을 검파 방향(Dd)으로 하고 있고, 이 검파 방향(Dd)에 따라 복수의 화소(Ph)를 나열하여 배치한 위상차 검출 화소군(PL)이 마련되어 있다. 이 위상차 검출 화소군(PL)에서는, 전체적으로 화소(Ph1)와 화소(Ph2)가 개략 동등한 비율로 마련되어 있고, 예를 들면 화소(Ph1)와 화소(Ph2)가 교대로 마련되어 있다.
이상 설명한 고체 촬상 소자(100)는 다양한 구체적인 양태로 실현 가능하고, 이하에서는, 구체적인 양태의 한 예에 관해 설명한다.
도 13은, 고체 촬상 소자(100)의 구성을 도시하는 블록도이다. 또한, 본 실시 형태에서는, 고체 촬상 소자로서, X-Y 어드레스형 고체 촬상 소자의 일종인 CMOS(Complementary Metal Oxide Semiconductor) 이미지 센서를 예로 들어 설명을 행하지만, 물론, CCD(Charge Coupled Device) 이미지 센서를 채용하여도 좋다. 이하, 도 13을 참조하면서 CMOS 이미지 센서로서의 고체 촬상 소자의 구체적인 한 예에 관해 설명한다.
도 13에서, 고체 촬상 소자(100)는, 화소부(121), 수직 구동부(122), 아날로그 디지털 변환부(123)(AD 변환부(123)), 참조신호 생성부(124), 수평 구동부(125), 통신·타이밍 제어부(126) 및 신호 처리부(127)를 구비하고 있다.
화소부(121)에는, 광전변환부로서의 포토다이오드를 포함하는 복수의 화소(P)가 2차원 매트릭스형상으로 배치되어 있다. 포토다이오드는 수광량에 응한 전기 신호를 생성한다. 화소부(121)의 수광면측에는, 각 화소에 대응하여 필터의 색이 구분된 색 필터 어레이가 마련된다.
화소부(121)에는, n개의 화소 구동선(HSLn)(n=1, 2, …)과 m개의 수직 신호선(VSLm)(m=1, 2, …)이 배선되어 있다. 화소 구동선(HSLn)은, 도면의 좌우 방향(화소행의 화소 배열 방향/수평 방향)에 따라 배선되고, 도면의 상하 방향으로 등간격으로 배치되어 있다. 수직 신호선(VSLm)은, 도면의 상하 방향(화소열의 화소 배열 방향/수직 방향)에 따라 배선되고, 도면의 좌우 방향으로 등간격으로 배치되어 있다.
화소 구동선(HSLn)의 일단은, 수직 구동부(122)의 각 행에 대응한 출력 단자에 접속되어 있다. 수직 신호선(VSLm)은 각 열의 화소(P)에 접속되어 있고, 그 일단은, AD 변환부(123)에 접속되어 있다. 수직 구동부(122)나 수평 구동부(125)는, 통신·타이밍 제어부(126)의 제어하에, 화소부(121)를 구성하는 각 화소(P)로부터, 포토다이오드(PD)가 수광량에 응하여 생성한 아날로그의 전기 신호를 순차적으로 판독하는 제어를 행한다.
통신·타이밍 제어부(126)는, 예를 들면, 타이밍 제너레이터와 통신 인터페이스를 구비한다. 타이밍 제너레이터는, 외부로부터 입력되는 클록(마스터 클록)에 의거하여, 각종의 클록 신호를 생성한다. 통신 인터페이스는, 고체 촬상 소자(100)의 외부로부터 주어지는 동작 모드를 지령하는 데이터 등을 수취하고, 고체 촬상 소자(100)의 내부 정보를 포함하는 데이터를 외부에 출력한다.
통신·타이밍 제어부(126)는, 마스터 클록에 의거하여, 마스터 클록과 같은 주파수의 클록, 그것을 2분주한 클록에서 분주한 저속의 클록, 등을 생성하고, 디바이스 내의 각 부분(수직 구동부(122), 수평 구동부(125), AD 변환부(123), 참조신호 생성부(124), 신호 처리부(127), 등)에 공급한다.
수직 구동부(122)는, 예를 들면, 시프트 레지스터나 어드레스 디코더 등에 의해 구성되어 있다. 수직 구동부(122)는, 외부로부터 입력되는 영상 신호를 디코드한 신호에 의거하여, 행 어드레스를 제어하기 위한 수직 어드레스 설정부나 행 주사를 제어하기 위한 행 주사 제어부를 구비하고 있다.
수직 구동부(122)는, 판독 주사와 소출 주사(sweep scanning)가 가능하다.
판독 주사란, 신호를 판독하는 단위 화소를 차례로 선택하는 주사이다. 판독 주사는, 기본적으로는 행 단위로 차례로 행하여지지만, 소정의 위치 관계에 있는 복수 화소의 출력을 가산 또는 가산평균함에 의해 화소의 솎아냄을 행하는 경우는, 소정의 순번에 의해 행하여진다.
소출 주사란, 판독 주사에서 판독을 행하는 행 또는 화소 조합에 대해, 이 판독 주사보다도 셔터 스피드의 시간분만큼 선행하여, 판독을 행하는 행 또는 화소 조합에 속하는 단위 화소를 리셋시키는 주사이다.
수평 구동부(125)는, 통신·타이밍 제어부(126)가 출력하는 클록에 동기하여 AD 변환부(123)를 구성하는 각 ADC 회로를 순번대로 선택한다. AD 변환부(123)는, 수직 신호선(VSLm)마다 마련된 ADC 회로(m=1, 2, …)를 구비하고, 각 수직 신호선(VSLm)으로부터 출력되는 아날로그 신호를 디지털 신호로 변환하고, 수평 구동부(125)의 제어에 따라 수평 신호선(Ltrf)에 출력한다.
수평 구동부(125)는, 예를 들면, 수평 어드레스 설정부나 수평 주사부를 구비하고 있고, 수평 어드레스 설정부가 규정한 수평 방향의 판독 열에 대응하는 AD 변환부(123)의 개개의 ADC 회로를 선택함에 의해, 선택된 ADC 회로에서 생성된 디지털 신호를 수평 신호선(Ltrf)에 유도한다.
이와 같이 하여 AD 변환부(123)로부터 출력된 디지털 신호는, 수평 신호선(Ltrf)을 통하여 신호 처리부(127)에 입력된다. 신호 처리부(127)는, 화소부(121)로부터 AD 변환부(123)를 경유하여 출력되는 신호를, 연산 처리하여, 색 필터 어레이의 색 배열에 대응한 화상 신호로 변환하는 처리를 행한다.
또한, 신호 처리부(127)는, 필요에 응하여, 수평 방향이나 수직 방향의 화소 신호를 가산이나 가산평균 등에 의해 솎아내는 처리를 행한다. 이와 같이 하여 생성된 화상 신호는, 고체 촬상 소자(100)의 외부에 출력된다.
참조신호 생성부(124)는, DAC(Digtal Analog Converter)를 구비하고 있고, 통신·타이밍 제어부(126)로부터 공급되는 카운트 클록에 동기하여, 참조신호(Vramp)(후술하는 도 4 등 참조)를 생성한다. 참조신호(Vramp)는, 통신·타이밍 제어부(126)로부터 공급되는 초기치로부터 계단형상으로 시간 변화하는 톱니형상파(램프파형)이다. 이 참조신호(Vramp)는, AD 변환부(123)의 개개의 ADC 회로에 공급된다.
AD 변환부(123)는, 복수의 ADC 회로를 구비하고 있다. ADC 회로는, 각 화소(P)로부터 출력된 아날로그 전압을 AD 변환함에 있어서, 소정의 AD 변환 기간(후술하는 P상 기간이나 D상 기간)에 참조신호(Vramp)와 수직 신호선(VSLm)의 전압을 비교기에서 비교하여, 참조신호(Vramp)와 수직 신호선(VSLm)의 전압의 전압(화소 전압)과의 대소 관계가 반전하는 전후 어느 하나의 시간을 카운터에서 카운트한다. 이에 의해, 아날로그의 화소 전압에 응한 디지털 신호를 생성할 수 있다. 또한, AD 변환부(123)의 구체례에 관해서는 후술한다.
도 14는, 이면 조사형의 고체 촬상 소자(300)의 주요부 구조를 단면적으로 도시한 도면이다. 또한, 본 실시 형태에서는, 이면 조사형의 CMOS 이미지 센서를 예로 들어 설명을 행하지만, 물론, 이것으로 한하는 것이 아니고, 표면 조사형의 CMOS 이미지 센서나 이면 조사형, 표면 조사형의 CCD 이미지 센서에 적용할 수도 있다.
또한, 후술하는 고체 촬상 소자(300)의 구조는 한 예이고, 집광 구조를 한정하는 것이 아니다. 또한, 예를 들면, 집광 파워를 올리기 위한 층내 렌즈, 혼색이나 플레어를 억제하기 위해 층간 절연막(321)으로부터 컬러 필터층(318)까지의 사이에서 화소 사이에 마련된 차광벽, 등을 조합시켜도 좋다.
동 도면에 도시하는 고체 촬상 소자(300)는, 이면 조사형의 CMOS 이미지 센서이고, 예를 들면, 실리콘에 의한 반도체 기판(301)에 복수의 단위 화소(311)가 배열된 화소 영역(310)(이른바, 촬상 영역)과, 화소 영역(310)의 주변에 배치된 주변 회로부(부도시)를 형성하여 구성된다.
화소 트랜지스터는, 기판 표면(301A)의 측에 형성되고, 도 14에서는 게이트 전극(312)을 나타내어 모식적으로 화소 트랜지스터의 존재를 나타내고 있다. 각 포토다이오드(PD)는 불순물 확산층에 의한 소자 분리 영역(313)으로 분리된다.
반도체 기판(301)의 화소 트랜지스터가 형성된 표면측에는, 층간 절연막(315)을 통하여, 복수의 배선(314)을 형성한 다층 배선층(316)이 형성된다. 이 때문에, 이면 조사형의 CMOS 이미지 센서에서는, 포토다이오드(PD)의 위치에 관계없이 배선(314)을 형성할 수 있다.
반도체 기판(301)의 포토다이오드(PD)가 임하는 이면(301B)상에는, 반사 방지막으로서 기능하는 층간 절연막(321)이 형성된다. 층간 절연막(321)은, 서로 굴절율이 다른 복수의 막이 적층된 적층 구조를 갖는다.
층간 절연막(321)은, 예를 들면, 반도체 기판(301)의 측부터 차례로 적층된, 하프늄산화막(HfO2)막과 실리콘산화막(SiO2)의 2층 구조로 구성된다. 하프늄산화막은, 실리콘산화막보다도 유전율이 높은 고유전율 절연층(high-k막)이다. 그 밖에, 층간 절연막(321)에는 실리콘질화막을 이용하여도 좋다.
층간 절연막(321)상에는, 차광막(320)이 형성된다. 차광막(320)은, 광을 차단하는 재료라면 좋지만, 차광성이 강하고, 또한 미세 가공이 가능한 재료, 예를 들면 에칭으로 정밀도 좋게 가공할 수 있는 재료로 형성하는 것이 바람직하다. 보다 구체적으로는, 알루미늄(Al), 텅스텐(W), 또는 구리(Cu)가 예시된다. 이 차광막(320)은, 상술한 고체 촬상 소자(100)의 차광부(40)에 상당한다. 또한, 표면 조사형의 이미지 센서의 경우, 차광막(320) 대신에 포토다이오드와 컬러 필터층의 사이에 마련된 배선층을 이용하여 상술한 차광부(40)를 구성하여도 좋다.
층간 절연막(321)과 차광막(320)의 위에는, 필요에 응하여 평탄화막(317)이 형성되고, 평탄화막(317)의 위에는, 포토다이오드(PD) 각각의 위치에 대응하도록 형성된 복수의 컬러 필터로 구성되는 컬러 필터층(318)이 형성된다. 또한, 평탄화막(317)은, 층간 절연막(321)과 평탄화막(317)의 상면(上面)의 단차를 허용 가능하면 형성하지 않아도 상관없다.
컬러 필터층(318)의 상면에는, 포토다이오드(PD) 각각에 대응하도록 마이크로 렌즈(319)가 형성된다. 마이크로 렌즈(319)는, 도 14에 도시하는 바와 같이, 반도체 기판(301)의 이면으로서, 차광막(320)의 상방에 마련된다. 마이크로 렌즈(319)는, 화소 영역(310)에 배열된 복수의 포토다이오드(PD)에 대응하도록, 복수가 동일 형상으로 배치되어 있다. 마이크로 렌즈(319)는, 수광면(JS)으로부터 컬러 필터층(318)의 측을 향하는 방향에서, 중심이 언저리(緣)보다도 두껍게 형성된 볼록형 렌즈이다.
(B) 제2의 실시 형태 :
다음에, 상술한 제1의 실시 형태에 관한 고체 촬상 소자를 포함하여 구성되는 촬상 장치(200)에 관해 설명한다. 도 15는, 본 실시 형태에 관한 촬상 장치의 기능 구성의 한 예를 설명하는 도면이다.
촬상 장치(200)는, 피사체를 촬상하여 화상 데이터(촬상 화상)를 생성하고, 생성된 화상 데이터를 화상 콘텐츠(정지화 콘텐츠 또는 동화 콘텐츠)로서 기록하는 촬상 장치이다. 또한, 이하에서는, 화상 콘텐츠(화상 파일)로서 정지화 콘텐츠(정지화 파일)를 기록하는 예를 주로 나타낸다.
촬상 장치(200)는, 렌즈부(210), 조작부(220), 제어부(230), 고체 촬상 소자(240), 신호 처리부(250), 기억부(260), 표시부(270), 합초 판정부(280), 및, 구동부(290)를 구비한다. 고체 촬상 소자(240)는, 상술한 제1의 실시 형태에 관한 고체 촬상 소자(100)에 의해 구성된다.
렌즈부(210)는, 피사체로부터의 광(피사체 광)을 집광한다. 이 렌즈부(210)는, 예를 들면, 줌렌즈(211)와, 조리개(212)와, 포커스 렌즈(213)와, 렌즈 제어부(214)(부도시)를 구비한다.
본 실시 형태에서 렌즈부(210)는 교환 가능하고, 이하에서는, 필요에 응하여, 제1 렌즈부(210A)와 제2 렌즈부(210B)로 교환 가능한 경우를 예로 들어 설명을 행하다. 또한, 교환 가능한 렌즈부의 수는 2 이상으로 하여도 좋고, 이 경우 상술한 단차부(41G)에 의해 분할하는 연부의 수를 각 화소에 입사하는 입사광의 주광선 각도의 수(또는 주광선 각도의 소성(素性)이 가까운 복수의 렌즈나 줌 포지션의 그룹 수)에 응하여 증가시킨다. 또한, 이하에서는, 제1 렌즈부(210A)를 촬상 장치(200)에 장착한 경우와 제2 렌즈부(210B)를 촬상 장치(200)에 장착한 경우에서, 각 화소에 입사하는 광의 주광선 입사각도가 서로 다른 것으로 한다.
줌렌즈(211)는, 구동부(290)의 구동에 의해 광축 방향으로 이동하여 초점 거리를 변동시켜, 촬상 화상에 포함되는 피사체의 배율을 조정한다. 조리개(212)는, 구동부(290)의 구동에 의해 개구의 정도를 변화시켜서 고체 촬상 소자(240)에 입사하는 피사체광의 광량을 조정한다. 포커스 렌즈(213)는, 구동부(290)의 구동에 의해 광축 방향으로 이동하여, 고체 촬상 소자(240)에의 입사광의 초점을 조정한다.
조작부(220)는, 유저로부터의 조작을 접수하는 것이다. 이 조작부(220)는, 예를 들면, 셔터 버튼이 압하 조작된 경우에, 당해 압하 조작에 응한 신호를 조작 신호로서 제어부(230)에 공급한다.
제어부(230)는, 촬상 장치(200)를 구성하는 각 부분의 동작을 제어한다. 예를 들면, 제어부(230)는, 위상차 검출 방식에 의해 포커스의 합초 판정을 행하는 경우에는, 이 합초 판정을 행하는 동작(위상차 검출 동작)을 나타내는 신호(위상차 검출 동작 신호)를 신호 처리부(250)에 공급한다. 위상차 검출 방식이란, 촬상 렌즈를 통과한 광을 동분할하여 한 쌍의 상을 형성하고, 그 형성된 상의 간격(상 사이의 어긋남량)을 계측(위상차를 검출)함에 의해 합초의 정도를 검출하는 초점 검출 방법이다.
고체 촬상 소자(240)는, 피사체광을 수광하여, 수광한 피사체광을 전기 신호로 광전변환한다.
고체 촬상 소자(240)에는, 수광한 피사체광에 의거하여 촬상 화상을 생성하기 위한 신호를 생성하는 화소(화상 생성 화소)와, 위상차 검출을 행하기 위한 신호를 생성하는 화소(위상차 검출 화소)가 배치된다. 고체 촬상 소자(240)는, 광전변환에 의해 발생한 전기 신호를 신호 처리부(250)에 공급한다.
신호 처리부(250)는, 고체 촬상 소자(240)로부터 공급된 전기 신호에 대해 각종의 신호 처리를 시행한다. 신호 처리부(250)는, 예를 들면, 제어부(230)로부터 정지화상 촬상 동작 신호가 공급되고 있는 경우에는, 각종의 신호 처리를 시행하여, 정지화상의 데이터(정지화상 데이터)를 생성한다. 신호 처리부(250)는, 생성한 화상 데이터를 기억부(260)에 공급하고, 기억부(260)에 기억시킨다.
신호 처리부(250)는, 제어부(230)로부터 위상차 검출 동작 신호가 공급되고 있는 경우에는, 고체 촬상 소자(240)의 위상차 검출 화소로부터의 출력 신호에 의거하여, 위상차를 검출하기 위한 데이터(위상차 검출용 데이터)를 생성한다. 신호 처리부(250)는, 생성한 위상차 검출용 데이터를 합초 판정부(280)에 공급한다.
신호 처리부(250)는, 제어부(230)로부터 라이브 뷰 표시 신호가 공급되고 있는 경우에는, 고체 촬상 소자(240)에서의 화상 생성 화소로부터의 출력 신호에 의거하여, 라이브 뷰 화상의 데이터(라이브 뷰 화상 데이터)를 생성한다. 신호 처리부(250)는, 생성한 라이브 뷰 화상 데이터를 표시부(270)에 공급한다.
기억부(260)는, 신호 처리부(250)로부터 공급된 화상 데이터를 화상 콘텐츠(화상 파일)로서 기록한다. 기억부(260)에는, 예를 들면, 반도체 메모리 등의 리무버블 기록 매체나 내장 기록 매체를 이용할 수 있다.
표시부(270)는, 신호 처리부(250)로부터 공급된 화상 데이터에 의거하여, 표시 화면에 화상을 표시한다. 표시부(270)는, 예를 들면, 액정 패널에 의해 실현된다. 표시부(270)는, 예를 들면, 신호 처리부(250)로부터 라이브 뷰 화상 데이터가 공급된 경우에는, 표시 화면에 라이브 뷰 화상을 표시한다.
합초 판정부(280)는, 신호 처리부(250)로부터 공급된 위상차 검출용 데이터에 의거하여, 포커스를 맞추는 대상의 물체(합초 대상물)에 대해 포커스가 맞아 있는지의 여부를 판정한다.
합초 판정부(280)는, 포커싱을 행하는 영역(포커스 에어리어)에서의 물체(합초 대상물)에 대해 합초하고 있는 경우에는, 합초하고 있는 것을 나타내는 정보를 합초 판정 결과 정보로서, 구동부(290)에 공급한다.
합초 판정부(280)는, 포커스 에어리어에서의 합초 대상물에 포커스가 맞지 않은 경우에는, 포커스의 어긋남의 양(디포커스(defocus)량)을 산출하고, 그 산출한 디포커스량을 나타내는 정보를 합초 판정 결과 정보로서 구동부(290)에 공급한다.
여기서, 디포커스량의 산출의 한 예에 관해 설명한다. 도 16은, 고체 촬상 소자(240)에서의 화소 배치의 한 예를 도시하는 모식도이다. 동 도면에서는, 상하 방향을 Y축, 좌우 방향을 X축으로 하고, 고체 촬상 소자(240)에서의 신호의 판독 방향은 X축방향이라고 한다(행 단위로 판독된다). 본 실시 형태에서는, 검파 방향(Dd)을 X축방향으로 한다.
고체 촬상 소자(240)에서는, 화상 생성 화소가 배치되는 행과 위상차 검출 화소가 배치되는 행이 교대로 배치된다. 도 16에 도시하는 예에서는, 화소군을 구성한 각 화소를 X축방향으로 나열한 위상차 검출 화소군(PL), 화상 생성 화소군(PG), 위상차 검출 화소군(PL), 화상 생성 화소군(PG, …)이, Y축방향에 따라 교대로 배치되어 있다.
또한, 고체 촬상 소자(240)에서는, 연부(41)의 왼쪽을 개구한 화소(Ph1)와 연부(41)의 오른쪽을 개구한 화소(Ph2)가 교대로 배치된 라인(PL1)과, 연부(41)의 위를 개구한 화소(Ph1)와 연부(41)의 아래를 개구한 화소(Ph2)가 교대로 배치된 라인(PL2)이, 화상 생성 화소군(PG)을 끼우고 교대로 되도록 배치된다. 즉, 위상차 검출 화소군(PL)으로서는, 동일 방향(판독 방향(좌우) 또는 판독 방향에 직교하는 방향(상하))으로 동분할을 행하는 위상차 검출 화소가 행 단위로 배치된다.
도 17은, 화소(Ph)로부터 얻어지는 수광 데이터를 설명하는 도면이다. 동 도면에는, 라인(PL1)으로부터 얻어지는 수광 데이터를 나타내고 있다. 라인(PL1)의 나열 방향은 상술한 검파 방향(Dd)에 상당한다. 이하에서는, 라인(PL1)으로부터 얻어지는 수광 데이터 중, 화소(Ph1)로부터 얻어지는 수광 데이터를 수광 데이터(Da)라고 부르고, 화소(Ph2)로부터 얻어지는 수광 데이터를 수광 데이터(Db)라고 한다.
수광 데이터(Da)와 수광 데이터(Db)를 비교하면, 수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열은 거의 같은 파형이고, 디포커스량에 응한 위상차로 검파 방향(Dd)으로 서로 오프셋한 형상이다. 수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열은, 디포커스량이 클수록 위상차량(횡(橫)어긋남량)이 증대한다.
수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열 사이의 위상차량은, 각종의 연산에 의해 산출 가능하고, 예를 들면 각 수광 데이터의 중심(重心) 위치의 차에 의거하여 산출 가능하다. 이 위상차량에 의거하여 피사체까지의 거리를 산출할 수 있다. 또한, 이 위상차량은, 수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열 사이의 상관 연산을 행함으로써 구하는 것도 가능하다. 수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열 사이의 상관량의 평가치를 구하는 방법은, 공지의 또는 금후 개발되는 각종의 방법을 채용할 수 있다.
예를 들면, 일방의 파형 데이터(곡선)를 화소 단위로 시프트하면서 타방의 곡선과의 차분의 총합(總和)를 취하고, 총합이 최소가 될 때의 거리를 위상차량으로서 구하는 방법이 있다. 보다 구체적으로는, 수광 데이터(Da)를 구성하는 각 점과 수광 데이터(Db)를 구성하는 각 점과의 차분의 절대치의 적산치를 구하고, 최소의 적산치가 얻어진 점 사이의 차분을 위상차량으로 한다. 이하, 최소의 적산치를 상관치(相關値)라고 한다. 수광 데이터(Da)와 수광 데이터(Db)의 상관이 높을 수록 상관치의 최소치는 작아진다.
수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열의 오프셋량과 디포커스량은 비례관계로 되어 있고, 이 비례관계의 비례 계수는 공장시험 등에 의해 사전에 취득할 수 있다.
합초 판정부(280)는, 수광 데이터(Da)의 데이터 계열과 수광 데이터(Db)의 데이터 계열의 위상차량으로부터 디포커스량을 산출하고, 산출된 디포커스량에 상당하는 구동량을 구동부(290)에 준다. 또한, 디포커스량과 포커스 렌즈(213)의 구동량과의 관계는, 촬상 장치(200)에 장착되어 있는 렌즈부(210)의 설계치에 의해 일의적으로 정하여지는 것이다.
구동부(290)는, 렌즈부(210)를 구성하는 줌렌즈(211), 조리개(212) 및 포커스 렌즈(213)를 구동한다.
구동부(290)는, 예를 들면, 합초 판정부(280)로부터 출력된 합초 판정 결과 정보에 의거하여, 포커스 렌즈(213)의 구동량을 산출하고, 그 산출한 구동량에 응하여 포커스 렌즈(213)를 이동시킨다. 이에 의해, 합초 판정부(280)가 검출한 초점 위치에 포커스 렌즈(213)를 이동시키는 오토 포커스(AF) 제어가 실행된다.
구동부(290)는, 포커스가 맞아 있는 경우에는, 포커스 렌즈(213)의 현재의 위치를 유지시킨다. 구동부(290)는, 포커스가 어긋나 있는 경우에는, 디포커스량을 나타내는 합초 판정 결과 정보 및 포커스 렌즈(213)의 위치 정보에 의거하여 구동량(이동 거리)을 산출하고, 그 구동량에 응하여 포커스 렌즈(213)를 이동시킨다.
도 18은, 화소(Ph)에서의 합초시의 결상 위치를 설명하는 도면이다. 동 도면에 도시하는 예에서는, 각 화소에 입사하는 입사광에 관해, 서로 다른 2종류의 주광선 각도를 전환하여 사용한 경우(제1 렌즈부(210A)와 제2 렌즈부(210B)를 교환하고 사용한 경우나 줌 포지션을 전환하여 사용하는 경우)를 나타내고 있다. 예를 들면, 제1 렌즈부(210A)와 제2 렌즈부(210B)를 교환하고 사용하는 경우, 화소(Ph1, Ph2)에서, 제1 렌즈부(210A)를 이용하여 합초시킨 경우에는 제1 연부(411) 부근에 집광하고, 제2 렌즈부(210B)를 이용하여 합초시킨 경우에는 제2 연부(412) 부근에 집광하도록, 제1 연부(411) 및 제2 연부(412)의 위치가 조정되어 있다. 이에 의해, 같은 위상차 검출 화소군(PL)을 이용하여 주광선 각도의 서로 다른 2종류의 렌즈부 또는 주광선 각도의 서로 다른 2종류의 줌 포지션의 합초 판정을 행하는 것이 가능해진다.
도 19는, 화소(Ph)에서의 합초시의 결상 위치를 설명하는 도면이다. 동 도면에 도시하는 예에서는, 각 화소에 입사하는 입사광에 관해, 3 이상의 서로 다른 복수의 주광선 각도를 전환하여 사용한 경우(복수종류의 렌즈부를 교환하여 사용하는 경우나 복수의 줌 포지션을 전환하여 사용하는 경우)를 나타내고 있다. 이때, 화소(Ph1, Ph2)에서, 제1 주광선 각도로부터 일정 범위 내에 주광선 각도를 갖는 렌즈부 또는 줌 포지션(제1 주광선 각도 그룹(G1))으로 합초시킨 경우에는 제1 연부(411) 부근에 집광하고, 제2 주광선 각도로부터 일정 범위 내의 주광선 각도를 갖는 렌즈부 또는 줌 포지션(제2 주광선 각도 그룹(G2))으로 합초시킨 경우에는 제2 연부(412) 부근에 집광하도록, 제1 연부(411) 및 제2 연부(412)의 위치가 조정되어 있다. 이에 의해, 같은 위상차 검출 화소군(PL)을 이용하여, 제1 주광선 각도 그룹(G1) 및 제2 주광선 각도 그룹(G2)에 속하는 복수종류의 렌즈부 또는 줌 포지션의 합초 판정을 행하는 것이 가능해진다.
도 20은, 연부(41)의 도중에 단차부(41G)를 마련함에 의한 수광 강도에 대한 영향을 설명하는 도면이다.
도 20(a)에 도시하는 화소(Ph1)와 같이, 단차부(41G)의 볼록각(凸角)에 인접하는 제1 연부(411)에 집광하는 경우는, 단차부(41G)가 없는 경우에는 차광부(40)가 커트되어야 할의 광의 일부가 단차부(41G)로부터의 연누설광(緣漏泄光, edge leakage light)으로서 포토다이오드(PD)에 여분으로 입사한다. 한편, 도 20(b)에 도시하는 화소(Ph2)와 같이 단차부(41G)의 오목각(凹角)에 인접하는 집광하는 경우는, 단차부(41G)가 없는 경우에는 포토다이오드(PD)에 입하여야 할 광의 일부를 차광부(40)가 여분으로 커트하여 버린다.
그래서, 본 실시 형태에 관한 촬상 장치(200)에서는, 단차부(41G)의 볼록각에 인접하는 연부에 집광하는 경우의 여분의 연누설광 성분에 의한 영향과, 단차부(41G)의 오목각에 인접하는 연부에 집광하는 경우의 여분의 차광 성분에 의한 영향을, 연산에 의해 조정하여 제거하기 위한 구성을 마련하고 있다.
구체적으로는, 단차부(41G)의 볼록각에 인접하는 연부에 집광하는 화소로부터 얻어지는 수광 데이터에 관해서는, 신호 강도로부터 소정량을 감산하고 나서 상술한 위상차량의 연산을 행하고, 단차부(41G)의 오목각에 인접하는 연부에 집광한 화소로부터 얻어지는 수광 데이터에 관해서는, 신호 강도에 소정량을 가산하고 나서 상술한 위상차량의 연산을 행한다. 감산량 및 가산량은 실측 또는 시뮬레이션 등에 의해 미리 설정된다. 물론, 신호 강도의 조정의 방법은 적절하게 변경 가능하고, 어느 일방의 수광 데이터에 타방의 가산분 또는 감산분을 추가하여 감산 또는 가산을 행하여도 상관없다.
(C) 제3의 실시 형태 :
이하, 상술한 고체 촬상 소자(300)를 제조하기 위한 제조 방법의 한 예에 관해 설명한다. 도 21∼도 26은, 고체 촬상 소자(300)의 제조 방법의 각 공정에서의 고체 촬상 소자(300)의 주요부를 도시하는 도면이다. 또한, 본 실시 형태에서는, 상술한 이면 조사형의 CMOS 이미지 센서의 제조 방법을 나타내고 있다.
우선, 도 21에 도시하는 바와 같이, 반도체 기판(301)의 화소 영역을 형성하여야 할 영역에, 각 화소에 대응시켜서 광전변환부로서의 포토다이오드(PD)를 각각 형성하는 제1 공정을 행한다.
포토다이오드(PD)는, 기판 두께 방향의 전역에 걸치는 n형 반도체 영역과, n형 반도체 영역에 접하여 형성되고 기판의 표리 양면에 임하는 p형 반도체 영역으로 이루어지는 pn접합을 갖고서 형성된다. 이들의 p형 반도체 영역이나 n형 반도체 영역은, 예를 들면, 이온 주입법을 이용하여, 불순물을 반도체 기판에 도입함에 의해 형성된다. 각 포토다이오드(PD)는, p형 반도체로 형성된 소자 분리 영역에 의해 분리된다.
기판 표면(301A)의 각 화소에 대응하는 영역에는, 각각 소자 분리 영역에 접하는 p형 반도체 웰 영역을 형성하고, 이 p형 반도체 웰 영역 내에 각각 화소 트랜지스터를 형성한다. 화소 트랜지스터는, 각각 소스 영역 및 드레인 영역과, 게이트 절연막과, 게이트 전극(312)에 의해 형성된다. 또한, 기판 표면(301A)의 상부에는, 층간 절연막(315)을 통하여 복수층의 배선(314)을 배치한 다층 배선층(316)을 형성한다.
다음에, 도 22에 도시하는 바와 같이, 수광면이 되는 기판 이면(301B)상에, 반사 방지막으로서 기능하는 층간 절연막(321)을 형성한다. 층간 절연막(321)은, 예를 들면, 반도체 기판(301)의 이면측부터 차례로 실리콘산화막(SiO2), 하프늄산화막(HfO2)을 적층한 이층막으로 형성할 수 있다. 하프늄산화막은 반사 방지에 최적의 막두께로 형성된다. 층간 절연막(321)은, 예를 들면, 열산화법이나 CVD(Chemical Vapor Deposition)법에 의해 형성된다.
다음에, 도 23에 도시하는 바와 같이, 층간 절연막(321)을 통하여 반도체 기판(301)의 기판 이면(301B)상에, 차광막(320)을 형성한다. 구체적으로는, 층간 절연막(321)의 전면(全面)에 차광막을 성막한 성막 공정과, 그 차광막을 에칭에 의해 패턴 가공하는 패턴 가공 공정을 행하여 차광막(320)을 형성한다. 또한, 차광막(320)은, 단독으로 형성하여도 좋지만, 주변 회로나 광학적 흑레벨을 결정하는 화소상의 차광막과 동시에 형성하여도 좋다.
차광막(320)의 재료는, 차광성이 강하고, 예를 들면 에칭으로 정밀도 좋게 가공할 수 있는, 섬세 가공에 적합한 것이 바람직하다. 이들의 특성을 갖는 재료로서는, 예를 들면, 알루미늄(Al), 텅스텐(W), 티탄(Ti), 구리(Cu), 등의 금속재료가 예시된다.
차광막(320)의 성막 공정은, 예를 들면, 스퍼터링법, CVD(Chemical Vapor Deposition)법, 도금 처리 등에 의해 행하여진다. 이에 의해, 상술한 알루미늄 등의 금속막이 층간 절연막(321)의 전면에 형성된다.
차광막(320)의 패턴 가공 공정에서는, 화상 생성용 화소에 관해서는 화소 사이의 경계에 대응하는 부분에 따라 레지스트 마스크가 형성되고, 위상차 검출용 화소에 관해서는 화소 사이의 경계에 대응하는 부분 및 연부(41)를 끼우고 어느 하나 차폐되는 측에 레지스트 마스크가 형성되고, 레지스트 마스크가 형성되지 않는 부분의 차광막(320)이, 웨트 에칭이나 드라이 에칭 등의 에칭에 의해 선택적으로 에칭 제거된다.
이에 의해, 차광막(320)은, 화상 생성용 화소에 관해서는, 서로 인접하는 화소의 경계선에 따라 형성되고, 포토다이오드(PD)의 수광면의 부분을 개구한 패턴이 형성된다. 한편, 위상차 검출용 화소에 관해서는, 마찬가지의 경계선에 따라 차광막(320)이 형성됨과 함께, 상술한 화소(Ph1)에 관해서는 연부(41)를 경계로 하여 한쪽을 차폐하도록 형성되고, 상술한 화소(Ph2)에 관해서는 연부(41)를 경계로 하여 타방측을 차폐하도록 형성된다.
다음에, 도 24에 도시하는 바와 같이, 층간 절연막(321) 및 차광막(320)을 통하여 기판 이면(301B)상에, 투명한 평탄화막(317)을 형성한다. 평탄화막(317)은, 예를 들면, 열가소성 수지를 스핀 코트법에 의해 성막한 후, 열경화 처리를 행함에 의해 형성된다. 또한, 평탄화막(317)은, 실리콘산화막 등의 무기막을 성막하고 화학 기계 연마에 의해 평탄화하여 형성하여도 좋다. 이에 의해, 평탄화막(317) 내에 차광막(320)이 마련된 상태가 된다.
다음에, 도 25에 도시하는 바와 같이, 평탄화막(317)의 위에 컬러 필터층(318) 및 격벽부(350)를 형성한다. 컬러 필터층(318) 및 격벽부(350)는, 예를 들면, 안료나 염료 등의 색재(色材)와 감광성 수지를 포함하는 도포액을, 스핀 코트법 등의 코팅 방법에 의해 도포하여 도막을 형성하고, 그 도막을 리소그래피 기술로 패턴 가공함에 의해 형성된다.
각 색의 컬러 필터의 형성은, 예를 들면, 다음과 같이 하여 행할 수 있다. 우선, 형성하고 싶은 색의 분광 특성을 얻기 위한 색재와 감광성 수지를 포함하는 도포액을, 스핀 코트법에 의해 도포하고, 포토레지스트막(도시 없음)을 성막한다. 그 후, 프리베이크 처리를 실시한 후에, 그 포토레지스트막에 대해 패턴 가공함으로써, 소망하는 색의 컬러 필터가 형성된다.
다음에, 도 26에 도시하는 바와 같이, 컬러 필터층(318)상에, 마이크로 렌즈(319)를 형성한다. 마이크로 렌즈(319)는, 예를 들면, 포지형의 포토레지스트막을 컬러 필터층(318)상에 성막 후, 가공함에 의해 형성된다. 여기서는, 수광면(JS)으로부터 컬러 필터층(318)의 측을 향하는 방향에서, 중심이 언저리보다도 두껍게 형성된 볼록형 렌즈로서, 마이크로 렌즈(319)를 마련한다.
마이크로 렌즈의 재료로서는, 스티렌계 수지나 아크릴계 수지, 스티렌-아크릴 공중합계 수지, 실록산계 수지 등의 유기 재료가 예시된다. 렌즈의 형상 형성에는, 예를 들면 주성분으로서 노볼락 수지의 감광성 재료를 포토레지스트로 하여 리소그래피 기술로 패터닝하여, 패턴 형성한 포토레지스트를 열연화점보다 높은 온도로 열처리를 행하여, 렌즈 형상을 형성한다. 이 렌즈 형상의 레지스트를 마스크로 하여, 드라이 에칭법을 이용하여 그 렌즈 형상을 기초의 렌즈 재료에 패턴 전사하고, 렌즈를 전 화소에 형성한다. 또한, 마이크로 렌즈의 형성은, 이 수법으로 한정하는 것이 아니고, 예를 들면, 감광성 수지로 이루어지는 렌즈재의 성막과, 프리베이크, 노광, 현상, 블리칭 노광(bleaching exposure) 처리를 순차적으로 행한 후에, 감광성 수지의 열연화점 이상의 온도로 열처리를 행하는 방법을 채용하여도 좋다.
또한, 본 기술은 상술한 각 실시 형태로 한정되지 않고, 상술한 각 실시 형태 중에서 개시한 각 구성을 서로 치환하거나 조합하는 변경하거나 한 구성, 공지 기술 및 상술한 각 실시 형태 중에서 개시한 각 구성을 상호 치환하거나 조합을 변경하거나 한 구성, 등도 포함된다. 또한, 본 기술의 기술적 범위는 상술한 실시 형태로 한정되지 않고, 특허청구의 범위에 기재된 사항과 그 균등물까지 미치는 것이다.
그리고, 본 기술은, 이하와 같은 구성을 취할 수 있다.
(1)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는 고체 촬상 소자.
(2)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 그 도중에 단차부를 갖는 고체 촬상 소자.
(3)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고,
상기 화소는, 본 고체 촬상 소자의 화우 부분에 형성되어 있고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는 고체 촬상 소자.
(4)
상기 제3 방향은, 본 고체 촬상 소자의 수광면의 광축 중심으로부터 늘어나는 방사선에 따른 방향인 상기 (3)에 기재된 고체 촬상 소자.
(5)
상기 연부는, 상기 방사선에 따른 방향과 다른 방향선의 조합에 의해 지그재그로 형성되어 있는 상기 (4)에 기재된 고체 촬상 소자.
(6)
본 고체 촬상 소자는, 복수의 화소를 가지며,
상기 차광부를 갖는 화소는, 2개 1조로 마련되어 있고,
당해2개 1조의 각 화소의 차광부는, 화소의 수광면의 서로 다른 범위를 차광하는 형상인 상기 (1)∼상기 (5)의 어느 한 항에 기재된 고체 촬상 소자.
(7)
피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는 고체 촬상 소자와,
상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치.
(8)
피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 그 도중에 단차부를 갖는 고체 촬상 소자와,
상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치.
(9)
피사체로부터의 광을 집광하는 마이크로 렌즈와, 상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와, 상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고, 상기 화소는, 본 고체 촬상 소자의 화우 부분에 형성되어 있고, 상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며, 상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는 고체 촬상 소자와,
상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 촬상 장치.
(10)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방에서 위치가 서로 다른 제1 연부와 제2 연부를 갖는 고체 촬상 소자의 제조 방법.
(11)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 그 도중에 단차부를 갖는 고체 촬상 소자의 제조 방법.
(12)
피사체로부터의 광을 집광하는 마이크로 렌즈와,
상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 형성하는 공정을 포함하고,
상기 화소는, 본 고체 촬상 소자의 화우 부분에 형성되어 있고,
상기 차광부는, 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
상기 연부는, 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하는 고체 촬상 소자의 제조 방법.
10 : 수광부
12 : 고체 촬상 장치
20 : 포토다이오드
11 : 수광면
10c : 광축 중심
30 : 마이크로 렌즈
40 : 차광부
41 : 연부
41G : 단차부
100 : 고체 촬상 소자
110 : 수광면
121 : 화소부
122 : 수직 구동부
123 : 아날로그 디지털 변환부(AD 변환부)
124 : 참조신호 생성부
125 : 수평 구동부
126 : 타이밍 제어부
127 : 신호 처리부
200 : 촬상 장치
210 : 렌즈부
210A : 제1 렌즈부
210B : 제2 렌즈부
211 : 줌렌즈
212 : 조리개
213 : 포커스 렌즈
214 : 렌즈 제어부
220 : 조작부
230 : 제어부
240 : 고체 촬상 소자
250 : 신호 처리부
260 : 기억부
270 : 표시부
280 : 합초 판정부
290 : 구동부
300 : 고체 촬상 소자
301 : 반도체 기판
301A : 기판 표면
301B : 기판 이면
310 : 화소 영역
311 : 단위 화소
312 : 게이트 전극
313 : 소자 분리 영역
314 : 배선
315 : 층간 절연막
316 : 다층 배선층
317 : 평탄화막
318 : 컬러 필터층
319 : 마이크로 렌즈
320 : 차광막
321 : 층간 절연막
350 : 격벽부
411 : 제1 연부
412 : 제2 연부
D1 : 제1 방향
D2 : 제2 방향
D3 : 제3 방향
D4 : 제4 방향
Da : 수광 데이터
Db : 수광 데이터
Dd : 검파 방향
Dr : 방사선
G1 : 제1 주광선 각도 그룹
G2 : 제2 주광선 각도 그룹
L1 : 제1선
L2 : 제2선
P : 화소
PD : 포토다이오드
PG : 화상 생성 화소군
PL : 위상차 검출 화소군
Ph : 화소
Ph1 : 화소
Ph2 : 화소

Claims (12)

  1. 피사체로부터의 광을 집광하는 마이크로 렌즈와,
    상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
    상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고,
    상기 화소는 본 고체 촬상 소자의 화우 부분에 형성되어 있고,
    상기 차광부는 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
    상기 연부는 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하며,
    상기 제3 방향은 본 고체 촬상 소자의 수광면의 광축 중심으로부터 늘어나는 방사선에 따른 방향인 것을 특징으로 하는 고체 촬상 소자.
  2. 제1항에 있어서,
    상기 연부는 상기 방사선에 따른 방향과 다른 방향선의 조합에 의해 지그재그로 형성되어 있는 것을 특징으로 하는 고체 촬상 소자.
  3. 제2항에 있어서,
    본 고체 촬상 소자는 복수의 화소를 가지며,
    상기 차광부를 갖는 화소는 2개 1조로 마련되어 있고,
    당해 2개 1조의 각 화소의 차광부는 화소의 수광면의 서로 다른 범위를 차광하는 형상인 것을 특징으로 하는 고체 촬상 소자.
  4. 피사체로부터의 광을 집광하는 마이크로 렌즈와,
    상기 마이크로 렌즈가 집광한 피사체광을 수광하여 수광량에 응한 전기 신호를 생성하는 광전변환부와,
    상기 광전변환부와 상기 마이크로 렌즈의 사이에 마련된 차광부를 갖는 화소를 구비하고,
    상기 화소는 본 고체 촬상 소자의 화우 부분에 형성되어 있고,
    상기 차광부는 상기 광전변환부의 수광면상을 통과하는 연부를 가지며,
    상기 연부는 출력 화상의 상하 방향에 대응하는 제1 방향과 출력 화상의 좌우 방향에 대응하는 제2 방향의 쌍방과 다른 제3 방향으로 상기 광전변환부의 수광면상을 통과하며,
    상기 제3 방향은 본 고체 촬상 소자의 수광면의 광축 중심으로부터 늘어나는 방사선에 따른 방향인 고체 촬상 소자와,
    상기 화소가 생성하는 신호에 의거하여 위상차 검출에 의한 합초 판정을 행하는 합초 판정부를 구비하는 것을 특징으로 하는 촬상 장치.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020177033940A 2015-06-03 2016-04-19 고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법 KR102537009B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015113289 2015-06-03
JPJP-P-2015-113289 2015-06-03
PCT/JP2016/062411 WO2016194501A1 (ja) 2015-06-03 2016-04-19 固体撮像素子、撮像装置、及び、固体撮像素子の製造方法

Publications (2)

Publication Number Publication Date
KR20180015134A KR20180015134A (ko) 2018-02-12
KR102537009B1 true KR102537009B1 (ko) 2023-05-26

Family

ID=57441031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177033940A KR102537009B1 (ko) 2015-06-03 2016-04-19 고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법

Country Status (5)

Country Link
US (2) US10672813B2 (ko)
JP (1) JP6812969B2 (ko)
KR (1) KR102537009B1 (ko)
CN (1) CN107615484B (ko)
WO (1) WO2016194501A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103430A1 (ja) * 2014-12-25 2016-06-30 キヤノン株式会社 ラインセンサ、画像読取装置、画像形成装置
US10672813B2 (en) * 2015-06-03 2020-06-02 Sony Corporation Solid-state imaging device, imaging apparatus, and manufacturing method of solid-state imaging device with pixels that include light shielding portions
US10148864B2 (en) 2015-07-02 2018-12-04 Pixart Imaging Inc. Imaging device having phase detection pixels and regular pixels, and operating method thereof
US9978154B2 (en) * 2015-07-02 2018-05-22 Pixart Imaging Inc. Distance measurement device base on phase difference and distance measurement method thereof
KR102375989B1 (ko) 2017-08-10 2022-03-18 삼성전자주식회사 화소 사이의 신호 차이를 보상하는 이미지 센서
JP7375746B2 (ja) * 2018-03-26 2023-11-08 ソニーグループ株式会社 撮像素子、撮像装置、並びに、情報処理方法
CN112866548B (zh) * 2019-11-12 2022-06-14 Oppo广东移动通信有限公司 相位差的获取方法和装置、电子设备
KR20220105850A (ko) * 2021-01-21 2022-07-28 에스케이하이닉스 주식회사 이미지 센싱 장치
GB2618466A (en) * 2021-02-20 2023-11-08 Boe Technology Group Co Ltd Image acquisition device, image acquisition apparatus, image acquisition method and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003080A (ja) * 2010-06-17 2012-01-05 Olympus Corp 撮像装置
JP2014228671A (ja) * 2013-05-22 2014-12-08 ソニー株式会社 信号処理装置および信号処理方法、固体撮像装置、並びに、電子機器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075669B2 (ja) * 2003-04-03 2008-04-16 ソニー株式会社 固体撮像素子
JP2008209761A (ja) 2007-02-27 2008-09-11 Nikon Corp 焦点検出装置および撮像装置
JP5191168B2 (ja) * 2007-06-11 2013-04-24 株式会社ニコン 焦点検出装置および撮像装置
JP5040458B2 (ja) * 2007-06-16 2012-10-03 株式会社ニコン 固体撮像素子及びこれを用いた撮像装置
JP5364995B2 (ja) * 2007-10-01 2013-12-11 株式会社ニコン 固体撮像素子及びこれを用いた電子カメラ
JP2011221290A (ja) * 2010-04-09 2011-11-04 Olympus Corp 撮像装置及びカメラ
JP2012182332A (ja) 2011-03-02 2012-09-20 Sony Corp 撮像素子および撮像装置
JP2012211942A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 固体撮像素子及び撮像装置
JP5825817B2 (ja) * 2011-04-01 2015-12-02 キヤノン株式会社 固体撮像素子及び撮像装置
JP5956782B2 (ja) * 2011-05-26 2016-07-27 キヤノン株式会社 撮像素子及び撮像装置
JP5814626B2 (ja) * 2011-05-27 2015-11-17 キヤノン株式会社 光電変換装置及び光電変換装置の製造方法
JP2013157883A (ja) * 2012-01-31 2013-08-15 Sony Corp 固体撮像素子およびカメラシステム
JP2014056014A (ja) * 2012-09-11 2014-03-27 Canon Inc 撮像素子および撮像装置
JP6308717B2 (ja) * 2012-10-16 2018-04-11 キヤノン株式会社 固体撮像装置、固体撮像装置の製造方法、および撮像システム
JP6103301B2 (ja) * 2013-07-03 2017-03-29 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP2015032640A (ja) * 2013-07-31 2015-02-16 株式会社東芝 固体撮像装置および固体撮像装置の製造方法
JP6518071B2 (ja) 2015-01-26 2019-05-22 キヤノン株式会社 固体撮像装置およびカメラ
JP6598473B2 (ja) * 2015-02-27 2019-10-30 キヤノン株式会社 撮像装置および画像処理装置
US10672813B2 (en) * 2015-06-03 2020-06-02 Sony Corporation Solid-state imaging device, imaging apparatus, and manufacturing method of solid-state imaging device with pixels that include light shielding portions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003080A (ja) * 2010-06-17 2012-01-05 Olympus Corp 撮像装置
JP2014228671A (ja) * 2013-05-22 2014-12-08 ソニー株式会社 信号処理装置および信号処理方法、固体撮像装置、並びに、電子機器

Also Published As

Publication number Publication date
US11437419B2 (en) 2022-09-06
US10672813B2 (en) 2020-06-02
JP6812969B2 (ja) 2021-01-13
CN107615484A (zh) 2018-01-19
US20180166487A1 (en) 2018-06-14
KR20180015134A (ko) 2018-02-12
CN107615484B (zh) 2021-12-14
US20200251513A1 (en) 2020-08-06
WO2016194501A1 (ja) 2016-12-08
JPWO2016194501A1 (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
KR102537009B1 (ko) 고체 촬상 소자, 촬상 장치, 및, 고체 촬상 소자의 제조 방법
JP7171652B2 (ja) 固体撮像素子および電子機器
KR102562402B1 (ko) 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
TWI636557B (zh) Solid-state imaging device, manufacturing method thereof, and electronic device
US9786714B2 (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
US8102460B2 (en) Solid-state imaging device
KR20160029727A (ko) 고체 촬상 장치 및 그 제조 방법, 밀 전자 기기
WO2015122300A1 (ja) 撮像素子、製造装置、電子機器
WO2020012860A1 (ja) 撮像素子および撮像素子の製造方法
JP2016096234A (ja) 固体撮像素子および電子機器
JP7536922B2 (ja) 撮像素子および撮像装置
WO2021149349A1 (ja) 撮像素子および撮像装置
WO2012066846A1 (ja) 固体撮像素子及び撮像装置
JP2023067935A (ja) 撮像素子
JP5333493B2 (ja) 裏面照射型撮像素子および撮像装置
KR20140090548A (ko) 촬상 소자 및 그 제조 방법, 및 전자 기기
JP5434121B2 (ja) 裏面照射型撮像素子および撮像装置
JP4743294B2 (ja) 裏面照射型撮像素子および撮像装置
JP2013157622A (ja) 裏面照射型撮像素子および撮像装置
JP5664742B2 (ja) 撮像素子および撮像装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant