KR102516580B1 - 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 - Google Patents

반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 Download PDF

Info

Publication number
KR102516580B1
KR102516580B1 KR1020217004681A KR20217004681A KR102516580B1 KR 102516580 B1 KR102516580 B1 KR 102516580B1 KR 1020217004681 A KR1020217004681 A KR 1020217004681A KR 20217004681 A KR20217004681 A KR 20217004681A KR 102516580 B1 KR102516580 B1 KR 102516580B1
Authority
KR
South Korea
Prior art keywords
substrate
oxide layer
temperature
oxygen
plasma
Prior art date
Application number
KR1020217004681A
Other languages
English (en)
Other versions
KR20210032473A (ko
Inventor
히로토 이가와
마사노리 나카야마
카츠노리 후나키
타츠시 우에다
야스토시 츠보타
에이코 타카미
유이치로 타케시마
유키 야마카도
Original Assignee
가부시키가이샤 코쿠사이 엘렉트릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 코쿠사이 엘렉트릭 filed Critical 가부시키가이샤 코쿠사이 엘렉트릭
Publication of KR20210032473A publication Critical patent/KR20210032473A/ko
Application granted granted Critical
Publication of KR102516580B1 publication Critical patent/KR102516580B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

불순물이 도핑된 막을 포함하고 제1 온도인 기판의 상기 막의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6nm 이상인 제1 산화층을 형성하는 제1 산화 공정; 및 상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 막의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정을 포함하는 반도체 장치의 제조 방법.

Description

반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SUBSTRATE PROCESSING APPARATUS AND NON-TRANSITORY COMPUTER-READABLE RECORDING MEDIUM}
본 개시(開示)는 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체에 관한 것이다.
반도체 디바이스의 제조 공정의 일례로서 기판의 표면을 산화 처리하는 공정이 알려져 있다. 예컨대 특허문헌 1에서는 반도체 기판 상에 게이트 산화막을 형성한 후, 폴리 실리콘 막 및 고(高)융점 금속 실리사이드 막을 순차 퇴적해서 게이트 전극 배선 형상으로 패턴화하고, 산소 플라즈마에 노출하여 게이트 전극 배선의 노출면에 산화막을 형성하는 반도체 장치의 제조 방법이 개시되어 있다. 또한 특허문헌 2에서는 실리콘을 플라즈마 산화 처리하고, 산화 규소막을 형성한 후 열 산화 처리하는 산화 규소막의 형성 방법이 개시되어 있다.
[특허문헌]
1: 일본 특개 평 7-263686호 공보
2: 일본 특개 2010-171128호 공보
예컨대 실리콘 기판의 표면에서의 불순물(도펀트)이 도핑된 Si막(Doped Si막)을 산화 처리해서 SiO2막을 형성하는 경우, 고온으로 Doped Si막을 산화 처리하면 막 중의 도펀트가 탈리되어 표면 특성이 크게 변화된다. 또한 Doped Si막으로부터 탈리된 도펀트가 히터의 표면에 부착되어 기판으로의 열전도를 방해하거나, 램프 창에 부착되어 광(光)의 투과를 방해하는 것에 의해 기판의 온도가 저하되어 결과적으로 막 두께의 저하가 발생하는 경우가 있다. 이와 같이 Si막으로부터 탈리된 도펀트에 의해 처리실 내가 오염되어 안정적인 장치 운용을 하지 못한다는 우려가 있다. 한편, 저온에서의 산화 처리에서는 Doped Si막으로부터의 도펀트 탈리는 억제할 수 있지만, 충분한 막질을 얻지 못해 스루풋이 저하된다.
본 개시는 생산성의 저하를 억제하고 또한 기판의 표면 특성의 의도치 않는 변화를 억제하여 산화층을 형성하는 기술을 제공하는 것을 목적으로 한다.
본 개시의 제1 형태에 따르면, 불순물이 도핑된 막을 포함하고 제1 온도인 기판의 상기 막의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6nm 이상인 제1 산화층을 형성하는 제1 산화 공정; 및 상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 막의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정을 포함하는 반도체 장치의 제조 기술이 제공된다.
본 개시에 따르면, 생산성의 저하를 억제하고 또한 기판의 표면 특성의 의도치 않는 변화를 억제하여 산화층을 형성하는 기술을 제공할 수 있다.
도 1은 표면에 P가 도핑된 막을 포함하는 기판에 대하여, 막을 플라즈마 산화하여 제1 산화층을 형성한 후, 플라즈마 산화하여 제2 산화층을 형성하는 것을 모식적으로 도시한 도면.
도 2는 제1 실시 형태에 따른 기판 처리 장치에서 제1 산화 공정을 수행하는 경우의 일례를 도시하는 개략 구성도.
도 3은 제1 실시 형태에 따른 기판 처리 장치에서 제2 산화 공정을 수행하는 경우의 일례를 도시하는 개략 구성도.
도 4는 본 개시의 실시 형태에 따른 기판 처리 장치의 플라즈마 생성 원리를 설명하는 도면.
도 5는 본 개시의 실시 형태에 따른 제어 장치를 설명하는 도면.
도 6은 본 개시의 실시 형태에 따른 기판 처리 공정을 도시하는 흐름도.
도 7은 제2 실시 형태에 따른 기판 처리 장치의 개략 구성도.
도 8은 베어 Si 웨이퍼의 표면을 열 산화하여 형성한 산화층의 두께와 플라즈마 산화하여 형성한 산화층의 두께에 대해서 웨이퍼 온도와의 관계를 도시하는 도면.
도 9는 실시예에서 처리한 웨이퍼의 처리 매수와 산화층의 두께 및 두께 균일성의 관계를 도시하는 도면.
도 10은 본 개시의 실시 형태에 따른 기판 처리 공정에서의 피처리 기판의 온도의 시간 추이와 각 공정의 관계의 일례를 도시하는 도면.
도 11은 본 개시의 실시 형태에 따른 기판 처리 공정에서의 피처리 기판의 온도의 시간 추이와 각 공정의 관계의 다른 예를 도시하는 도면.
도 12는 본 개시의 실시 형태에 따른 기판 처리 공정에서의 피처리 기판의 온도의 시간 추이와 각 공정의 관계의 다른 예를 도시하는 도면.
이하, 본 개시의 실시 형태에 대해서 도면을 참조하면서 설명한다. 또한 본 명세서 중의 「공정」이라는 용어는 독립된 공정뿐만 아니라 다른 공정과 명확히 구별되지 않는 경우에도 그 공정의 소기(所期)의 목적이 달성된다면 본 용어에 포함된다. 또한 본 명세서 중에서 제1 산화 공정과 제2 산화 공정을 합쳐서 「산화 공정」이라고 기재하는 경우가 있다. 또한 제1 산소 함유 가스 및 제2 산소 함유 가스를 합쳐서 「산소 함유 가스」라고 기재하는 경우가 있다. 또한 제1 산화층 및 제1 산화층을 두껍게 한 제2 산화층을 합쳐서 「산화층」이라고 기재하는 경우가 있다. 또한 본 명세서에서의 「산화층」은 기판 표면 상에 산화물을 퇴적시켜서 형성하는 산화층이 아니라, 기판의 표면을 개질하는 것에 의해 형성된 산화층을 의미한다. 예컨대 기판의 표면에 이미 막이 존재하는 경우에는 막의 표면을 개질하는 것에 의해 형성되는 산화층을 의미한다.
본 실시 형태에 따른 반도체 장치의 제조 방법은, 제1 온도인 기판의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 제1 산화층을 형성하는 제1 산화 공정; 및 상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 기판의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정을 포함한다.
이와 같이 제1 산화 공정으로서 제1 온도에 있는 기판의 표면을 산소 플라즈마에 의해 개질하여 제1 산화층을 형성한 후, 기판의 온도를 제1 온도보다 높은 제2 온도로 한 상태에서 산소 플라즈마에 의해 제1 산화층을 두껍게 하여 제2 산화층을 형성하는 것에 의해 생산성의 저하를 억제하면서 기판의 표면 특성의 의도치 않는 변화를 억제할 수 있다.
본 실시 형태에 따른 반도체 장치의 제조 방법에서 사용하는 기판(피처리 기판)은 제조하는 반도체 장치의 용도에 따라 선택하면 된다. 본 실시 형태에 따른 반도체 장치의 제조 방법은 예컨대 기판의 표면에 불순물이 도핑된 막을 포함하는 기판에 대하여 상기 막의 표면으로부터 산화시켜서 산화층을 형성하는 경우에 바람직하게 적용할 수 있다. 도 1은 표면에 인(P)이 도핑된 Si막(300)을 포함하는 기판에 대하여 본 실시 형태에 따른 반도체 장치의 제조 방법에 의해 제1 산화층(310a)을 형성한 후, 제1 산화층(310a)의 두께를 증대시킨 제2 산화층(310b)을 형성하는 것을 모식적으로 도시한다. 제1 산화 공정에서는 불순물(도펀트)로서 P가 도핑된 Si막(300)을 포함하는 기판을 비교적 저온인 제1 온도로 한 상태에서 적어도 산소(O)를 포함하는 제1 산소 함유 가스를 공급하여 플라즈마 산화를 수행하는 것에 의해 Si막(300)은 표면으로부터 산화되어 주로 SiO2로 구성되는 Si 산화층인 제1 산화층(310a)이 형성된다. 이러한 제1 산화 공정에서는 막 중으로부터의 불순물(도펀트)의 탈리(방출)가 억제되어, 도펀트 탈리에 의한 막의 특성 변화가 억제된다. 또한 처리실 내가 도펀트로 오염되는 것에 의한 산화 레이트의 저하 및 산화층의 면내 균일성의 저하를 방지할 수 있다.
제1 산화 공정 후, 제1 온도보다 고온이 되는 제2 온도로 제2 산화 공정을 수행한다. 제1 산화 공정에 의해 Si막(300)의 표면 부분에 형성된 제1 산화층(310a)은 Si막(300)으로부터 도펀트의 탈리를 억제하는 캡층으로서 기능한다. 그렇기 때문에 제2 산화 공정에서는 제1 온도보다 고온의 제2 온도로 플라즈마 산화를 수행하는 것에 의해 산화 레이트가 향상되는 것과 함께 도펀트의 탈리가 억제된다. 그 결과, 스루풋의 향상을 도모할 수 있는 것과 함께 막질의 저하가 억제되어, 제1 산화층(310a)이 두꺼워진 원하는 특성을 가진 주로 SiO2로 구성되는 Si 산화층인 제2 산화층(310b)을 형성할 수 있다.
본 실시 형태에 따른 반도체 장치의 제조 방법을 실행하기 위한 장치는 상기 제1 산화 공정과 제2 산화 공정을 수행할 수 있으면 특히 한정되지 않는다. 예컨대 제1 산화 공정과 제2 산화 공정은 별도의 처리실에 의해 수행해도 좋지만, 생산성, 작업성의 관점에서 제1 산화 공정과 제2 산화 공정은 동일한 처리실 내에서 실행되는 것이 바람직하다. 제1 산화 공정과 제2 산화 공정을 동일한 처리실 내에서 실행하는 것에 의해 기판의 반입출 공정, 또한 기판의 반입출에 따른 처리실 내의 압력 조정, 온도 조정 등의 공정을 간략화 또는 생략할 수 있고, 생산성 및 작업성을 대폭으로 향상시킬 수 있다.
이하, 본 실시 형태에 따른 반도체 장치의 제조 방법의 실시에 이용할 수 있는 기판 처리 장치의 일례에 대해서 설명한다. 본 실시 형태에 따른 기판 처리 장치는, 기판을 처리하는 처리실; 상기 처리실 내에 산소 함유 가스를 공급하는 가스 공급부; 상기 처리실 내에 배치된 상기 기판을 가열 가능한 가열부; 상기 처리실 내에 공급된 상기 산소 함유 가스를 여기(勵起)하여 플라즈마를 생성시키는 플라즈마 생성부; 및 상기 처리실 내에서 제1 온도인 상기 기판의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 제1 산화층을 형성하는 제1 산화 공정 및 상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 기판의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정을 실행하도록, 상기 가스 공급부, 상기 가열부 및 상기 플라즈마 생성부를 제어하는 제어부를 구비한다.
[제1 실시 형태]
도 2 및 도 3은 본 실시 형태에 따른 기판 처리 장치의 구성의 일례(제1 실시 형태)를 도시한다. 도 2는 제1 산화 공정을 수행하는 경우의 일례를 도시하고, 도 3은 제1 실시 형태에 따른 기판 처리 장치에서 제2 산화 공정을 수행하는 경우의 일례를 도시한다.
(처리실)
기판 처리 장치(100)는 웨이퍼(기판)(200)를 플라즈마 처리하는 처리로(202)를 구비한다. 처리로(202)는 처리실(201)을 구성하는 처리 용기(203)를 구비한다. 처리 용기(203)는 제1 용기인 돔형의 상측 용기(210)와, 제2 용기인 공기형의 하측 용기(211)를 구비한다. 상측 용기(210)가 하측 용기(211) 상에 피복되는 것에 의해 처리실(201)이 형성된다.
하측 용기(211)의 하부 측벽에는 게이트 밸브(244)가 설치된다. 게이트 밸브(244)가 열려 있을 때, 반입출구(245)를 개재하여 처리실(201) 내에 웨이퍼(200)를 반입할 수 있고, 혹은 반입출구(245)를 개재하여 처리실(201) 외로 웨이퍼(200)를 반출할 수 있다. 게이트 밸브(244)는 닫혀 있을 때에는 처리실(201) 내의 기밀성을 보지(保持)하는 게이트 밸브가 된다.
처리실(201)은 후술하는 도 4에 도시되는 바와 같이, 주위에 코일(212)이 설치된 플라즈마 생성 공간(201a)과, 플라즈마 생성 공간(201a)에 연통하고 웨이퍼(200)가 처리되는 기판 처리 공간(201b)을 포함한다. 플라즈마 생성 공간(201a)은 플라즈마가 생성되는 공간이며, 처리실(201) 내, 예컨대 코일(212)의 하단(도 2 및 도 3에서의 일점쇄선)보다 상방(上方)의 공간을 말한다. 한편, 기판 처리 공간(201b)은 기판이 플라즈마로 처리되는 공간이며, 코일(212)의 하단보다 하방(下方)의 공간을 말한다.
(서셉터)
처리실(201)의 저측 중앙에는 웨이퍼(200)를 재치하는 기판 재치부로서의 서셉터(기판 재치대)(217)가 배치된다.
서셉터(217)의 내부에는 가열 기구(가열부)로서의 히터(217b)가 일체적으로 매립된다. 히터(217b)는 히터 전력 조정 기구(276)를 개재하여 전력이 공급되면, 웨이퍼(200)를 예컨대 25℃ 내지 1,000℃ 정도까지 가열할 수 있도록 구성된다.
서셉터(217)는 하측 용기(211)와 전기적으로 절연된다. 서셉터(217) 내부에는 임피던스 조정 전극(217c)이 장비된다. 임피던스 조정 전극(217c)은 임피던스 조정부로서의 임피던스 가변 기구(275)를 개재하여 접지(接地)된다. 임피던스 가변 기구(275)는 코일이나 가변 콘덴서로 구성되고, 코일의 인덕턴스 및 저항 및 가변 콘덴서의 용량값을 제어하는 것에 의해 임피던스를 약 0Ω로부터 처리실(201)의 기생 임피던스값의 범위 내에서 변화시킬 수 있도록 구성된다. 이에 의해 임피던스 조정 전극(217c) 및 서셉터(217)를 개재하여 웨이퍼(200)의 전위(바이어스 전압)를 제어할 수 있다.
서셉터(217)에는 서셉터를 승강시키는 서셉터 승강 기구(268)가 설치된다. 서셉터(217)에는 관통공(217a)이, 한편 하측 용기(211)의 저면(底面)에는 웨이퍼(200)를 지지하는 지지체로서 관통공(217a)과 서로 대향하는 위치에 지지 핀(266)이 적어도 각 3군데씩 설치된다. 서셉터(217)가 하강시켜졌을 때에는 각 지지 핀(266)이 각각 관통공(217a)을 통과해서 기판 재치면(217d)으로부터 돌출하도록 이루어진다.
주로 서셉터(217), 히터(217b) 및 임피던스 조정 전극(217c)에 의해 본 실시 형태에 따른 기판 재치부가 구성된다.
(가스 공급부)
처리실(201)의 상방, 즉 상측 용기(210)의 상부에는 가스 공급 헤드(236)가 설치된다. 가스 공급 헤드(236)는, 캡 형상의 개체(蓋體)(233)와, 가스 도입구(234)와 버퍼실(237)과 개구(開口)(238)와 차폐 플레이트(240)와 가스 분출구(吹出口)(239)를 구비하고, 가스를 처리실(201) 내에 공급할 수 있도록 구성된다. 버퍼실(237)은 가스 도입구(234)로부터 도입되는 가스를 분산하는 분산 공간으로서의 기능을 가진다.
가스 도입구(234)에는 수소 가스(H2)를 공급하는 가스 공급관(232a)의 하류단과, 산소 가스(O2)를 공급하는 가스 공급관(232b)의 하류단과, 질소 가스(N2) 또는 불활성 가스를 공급하는 가스 공급관(232c)이 합류하도록 접속된다. 가스 공급관(232a)에는 상류측부터 순서대로 H2 가스 공급원(250a), 유량 제어 장치로서의 매스 플로우 컨트롤러(MFC)(252a), 개폐 밸브로서의 밸브(253a)가 설치된다. 가스 공급관(232b)에는 상류측부터 순서대로 O2 가스 공급원(250b), MFC(252b), 밸브(253b)가 설치된다. 가스 공급관(232c)에는 상류측부터 순서대로 N2 가스 공급원(250c), MFC(252c), 밸브(253c)가 설치된다. 가스 공급관(232a)과 가스 공급관(232b)과 가스 공급관(232c)이 합류한 하류측에는 밸브(243a)가 설치되고, 가스 도입구(234)의 상류단에 접속된다. 밸브(253a, 253b, 253c, 243a)를 개폐시키는 것에 의해, MFC(252a, 252b, 252c)에 의해 각각의 가스의 유량을 조정하면서 가스 공급관(232a, 232b, 232c)을 개재하여 수소 가스, 산소 가스, 질소 가스 등의 가스를 각각 처리실(201) 내에 공급할 수 있다.
가스 공급 헤드(236)(개체(233), 가스 도입구(234), 버퍼실(237), 개구(238), 차폐 플레이트(240), 가스 취출구(239)), 가스 공급관(232a), MFC(252a), 밸브(253a, 243a)에 의해 수소 가스 공급계가 구성된다.
가스 공급 헤드(236), 가스 공급관(232b), MFC(252b), 밸브(253b, 243a)에 의해 산소 가스 공급계가 구성된다.
가스 공급 헤드(236), 가스 공급관(232c), MFC(252c), 밸브(253c, 243a)에 의해 질소 가스 공급계가 구성된다.
또한 수소 가스 공급계, 산소 가스 공급계, 질소 가스 공급계에 의해 가스 공급부가 구성된다. 또한 본 실시 형태에 따른 본 실시 형태에 따른 기판 처리 장치에서는 가스 공급부로부터 적어도 산소를 포함하는 산소 함유 가스를 공급할 수 있으면 좋고, 수소 가스 공급계 및 질소 가스 공급계를 구비하지 않아도 좋다.
(배기부)
하측 용기(211)의 측벽에는 처리실(201) 내로부터 가스를 배기하는 가스 배기구(235)가 설치된다. 가스 배기구(235)에는 가스 배기관(231)의 상류단이 접속된다. 가스 배기관(231)에는 상류측부터 순서대로 압력 조정기(압력 조정부)로서의 APC(Auto Pressure Controller) 밸브(242), 밸브(243b), 진공 배기 장치로서의 진공 펌프(246)가 설치된다.
주로 가스 배기구(235), 가스 배기관(231), APC 밸브(242), 밸브(243b)에 의해 배기부가 구성된다. 또한 진공 펌프(246)를 배기부에 포함시켜도 좋다.
(플라즈마 생성부)
처리실(201)의 외주부, 즉 상측 용기(210)의 측벽의 외측에는 처리실(201)을 둘러싸도록 나선 형상의 공진 코일(212)이 설치된다. 공진 코일(212)에는 RF(Radio Frequency) 센서(272), 고주파 전원(273) 및 주파수 정합기(274)가 접속된다.
고주파 전원(273)은 공진 코일(212)에 고주파 전력을 공급한다. RF 센서(272)는 고주파 전원(273)의 출력측에 설치된다. RF 센서(272)는 공급되는 고주파의 진행파 및 반사파의 정보를 모니터 한다. 주파수 정합기(주파수 제어부)(274)는 RF 센서(272)로 모니터 된 반사파의 정보에 기초하여 반사파가 최소가 되도록 고주파 전원(273)을 제어하여 주파수의 정합을 수행한다.
공진 코일(212)의 양단은 전기적으로 접지(接地)되지만, 공진 코일(212)의 적어도 일단(一端)은 장치의 최초의 설치 시 또는 처리 조건의 변경 시에 상기 공진 코일(212)의 전기적 길이를 미세조정(微調整)하고, 공진 특성을 고주파 전원(273)과 대략 동일하게 하기 위해서 가동 탭(213)을 개재하여 접지된다. 도 2 및 도 3 중의 부호 214는 타방(他方)의 고정 그라운드를 도시한다. 또한 장치의 최초의 설치 시 또는 처리 조건의 변경 시에 공진 코일(212)의 임피던스를 미세조정하기 위해서 공진 코일(212)의 접지된 양단 사이에는 가동 탭(215)에 의해 급전부(給電部)가 구성된다.
차폐판(223)은 공진 코일(212)의 외측으로의 전자파의 누설을 차폐하는 것과 함께, 공진 회로를 구성하는 데 필요한 용량 성분을 공진 코일(212)과의 사이에 형성한다.
주로 공진 코일(212), RF 센서(272), 주파수 정합기(274)에 의해 플라즈마 생성부가 구성된다. 또한 플라즈마 생성부로서 고주파 전원(273)을 포함시켜도 좋다.
여기서 본 실시 형태에 따른 장치의 플라즈마 생성 원리 및 생성되는 플라즈마의 성질에 대해서 도 4를 이용해서 설명한다. 도 4에 도시하는 바와 같이, 방전하기 위한 전극으로서 공진 코일(212)이 석영 돔의 주변에 나선 형상으로 권회(卷回)된다. 이 고주파 유도 결합 플라즈마(Inductively Coupled Plasma) 전극(ICP 전극)이 소위 λ-ICP인 경우, 전극의 양단은 어스에 접지되고, 그 어스간의 전극 길이는 인가되는 고주파 전력의 파장과 거의 동등한 길이로 조정된다.
공진 코일(212)은 소정의 파장의 정재파를 형성하기 위해서 전파장 모드로 공진하도록 권회 지름, 권회 피치, 권회수가 설정된다. 즉 공진 코일(212)의 전기적 길이는 고주파 전원(273)으로부터 주어지는 전력의 소정 주파수에서의 1파장의 정수배로 설정된다.
구체적으로는 인가하는 전력, 발생시키는 자계(磁界) 강도, 적용하는 장치의 외형 등을 감안하여 공진 코일(212)은 예컨대 주파수는 800kHz 내지 50MHz, 전력은 0.5kW 내지 5kW, 보다 바람직하게는 1.0kW 내지 4.0kW의 고주파 전력에 의해 0.01가우스 내지 10가우스 정도의 자장(磁場)을 발생시킬 수 있도록 50mm2 내지 300mm2의 유효 단면적이자, 또한 200mm 내지 500mm의 코일 지름으로 이루어지고, 플라즈마 생성 공간(201a)을 형성하는 방의 외주측에 2회 내지 60회 정도 권회된다.
고주파 전원(273)은, 발진 주파수 및 출력을 규정하기 위한 고주파 발진 회로 및 프리앰프를 포함하는 전원 제어 수단과, 소정의 출력으로 증폭하기 위한 증폭기를 구비한다. 전원 제어 수단은 조작 패널을 통해서 미리 설정된 주파수 및 전력에 관한 출력 조건에 기초하여 증폭기를 제어하고, 증폭기는 상기 공진 코일(212)에 전송 선로를 개재하여 일정한 고주파 전력을 공급한다.
상기 주파수 정합기(274)는, 플라즈마가 발생했을 때의 상기 공진 코일(212)로의 반사파 전력을 검출하고 반사파 전력이 최소가 되도록 상기 미리 설정된 주파수에 대하여 발진 주파수를 증가 또는 감소시킨다. 구체적으로는 주파수 정합기(274)는 미리 설정된 발진 주파수를 보정하는 주파수 제어 회로를 구비하고, 또한 고주파 전원(273)의 증폭기의 출력측에는 전송 선로에서의 반사파 전력을 검출하고, 그 전압 신호를 주파수 제어 회로에 피드백하는 RF 센서(272)가 개장(介裝)된다.
주파수 제어 회로는, 플라즈마 점등 전은 공진 코일(212)의 무부하 공진 주파수로 발진하고, 플라즈마 점등 후는 반사 전력이 최소가 되도록 상기 미리 설정된 주파수를 증가 또는 감소시킨 주파수를 발진하고, 결과적으로는 전송 선로에서의 반사파가 제로가 되도록 주파수 신호를 고주파 전원(273)에 부여한다.
공진 장치에서는 플라즈마 발생 시 및 플라즈마 생성 조건의 변동 시의 공진 코일(212)의 공진점의 어긋남에 따라, 정확하게 공진하는 주파수의 고주파를 출력하기 위해서 공진 코일(212)로 한층 정확하게 정재파를 형성할 수 있다. 즉 도 4에 도시하는 바와 같이, 공진 코일(212)에서는 플라즈마를 포함하는 상기 공진기의 실제의 공진 주파수의 송전에 의해 위상 전압과 역위상 전압이 상시 상쇄되는 상태의 정재파가 형성되고, 코일의 전기적 중점(전압이 제로인 노드)에 가장 높은 위상 전류가 생기(生起)된다. 따라서 상기 전기적 중점에서 여기된 유도 플라즈마는 처리실 벽 및 기판 재치대와의 용량 결합이 거의 없고, 플라즈마 생성 공간(201a) 중에는 전기적 포텐셜이 지극히 낮은 도넛 형상의 플라즈마를 생성할 수 있다.
(제어부)
도 5에 도시하는 바와 같이, 제어부로서의 컨트롤러(221)는 CPU(Central Processing Unit)(221a), RAM(Random Access Memory)(221b), 기억 장치(221c), I/O 포트(221d)를 구비한 컴퓨터로서 구성된다. RAM(221b), 기억 장치(221c), I/O 포트(221d)는 내부 버스(221e)를 개재하여 CPU(221a)과 데이터 교환가능하도록 구성된다. 컨트롤러(221)에는 입출력 장치(225)로서 예컨대 터치패널, 마우스, 키보드, 조작 단말 등이 접속되어도 좋다. 또한 컨트롤러(221)에는 표시부로서 예컨대 디스플레이 등이 접속되어도 좋다.
기억 장치(221c)는 예컨대 플래시 메모리, HDD(Hard Disk Drive), CD-ROM 등으로 구성된다. 기억 장치(221c) 내에는 기판 처리 장치(100)의 동작을 제어하는 제어 프로그램, 기판 처리의 순서나 조건 등이 기재된 프로세스 레시피 등이 판독 가능하도록 격납된다. 프로세스 레시피는 후술하는 기판 처리 공정에서의 각 순서를 컨트롤러(221)에 실행시켜 소정의 결과를 얻을 수 있도록 조합된 것이며, 프로그램으로서 기능한다.
프로그램으로서는, 예컨대 기판 처리 장치의 처리실 내에 배치된 제1 온도인 기판의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 제1 산화층을 형성하는 제1 산화 순서와, 기판을 제1 온도보다 높은 제2 온도로 가열하고 제1 산화층이 형성된 기판의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 산화하여 제1 산화층의 두께가 늘어난 제2 산화층을 형성하는 제2 산화 순서를 컴퓨터에 의해 상기 기판 처리 장치에 실행시키는 내용을 들 수 있다. RAM(221b)은 CPU(221a)에 의해 판독된 프로그램이나 데이터 등이 일시적으로 보지되는 메모리 영역(work area)으로서 구성된다.
I/O 포트(221d)는 전술한 MFC(252a, 252b, 252c), 밸브(253a, 253b, 253c, 243a, 243b), 게이트 밸브(244), APC 밸브(242), 진공 펌프(246), 히터(217b), RF 센서(272), 고주파 전원(273), 주파수 정합기(274), 서셉터 승강 기구(268), 임피던스 가변 기구(275) 등에 접속된다.
CPU(221a)는 기억 장치(221c)로부터 제어 프로그램을 판독하여 실행하는 것과 함께, 입출력 장치(225)로부터의 조작 커맨드의 입력 등에 따라 기억 장치(221c)로부터 프로세스 레시피를 판독하도록 구성된다. 도 2 및 도 3에 도시하는 바와 같이, CPU(221a)는 판독한 프로세스 레시피의 내용을 따르도록 I/O 포트(221d) 및 신호선A를 통해서 APC 밸브(242)의 개도(開度) 조정 동작, 밸브(243b)의 개폐 동작 및 진공 펌프(246)의 기동 및 정지를, 신호선B를 통해서 서셉터 승강 기구(268)의 승강 동작을, 신호선C를 통해서 히터 전력 조정 기구(276)에 의한 온도 센서에 기초하는 히터(217b)로의 공급 전력량 조정 동작(온도 조정 동작) 및 임피던스 가변 기구(275)에 의한 임피던스값 조정 동작을, 신호선D를 통해서 게이트 밸브(244)의 개폐 동작을, 신호선E를 통해서 RF 센서(272), 주파수 정합기(274) 및 고주파 전원(273)의 동작을, 신호선F를 통해서 MFC(252a, 252b, 252c)에 의한 각종 가스의 유량 조정 동작 및 밸브(253a, 253b, 253c, 243a)의 개폐 동작을 각각 제어하도록 구성된다.
컨트롤러(221)는 외부 기억 장치[예컨대 자기(磁氣) 테이프, 플렉시블 디스크나 하드 디스크 등의 자기 디스크, CD나 DVD 등의 광(光) 디스크, MO 등의 광자기 디스크, USB 메모리나 메모리 카드 등의 반도체 메모리](226)에 격납된 전술한 프로그램을 컴퓨터에 인스톨하는 것에 의해 구성할 수 있다. 기억 장치(221c)나 외부 기억 장치(226)는 컴퓨터 판독 가능한 기록 매체로서 구성된다. 이하, 이들을 총칭하여 단순히 기록 매체라고도 부른다. 본 명세서에서 기록 매체라는 단어를 사용한 경우는 기억 장치(221c) 단체(單體)만을 포함하는 경우, 외부 기억 장치(226) 단체만을 포함하는 경우, 또는 그것들의 양방을 포함하는 경우가 있다. 또한 컴퓨터로의 프로그램의 제공은 외부 기억 장치(226)를 이용하지 않고, 인터넷이나 전용 회선 등의 통신 수단을 이용하여 수행해도 좋다.
[반도체 장치의 제조 방법]
다음으로 본 실시 형태에 따른 반도체 장치의 제조 방법에 의해 기판을 처리하는 공정에 대해서 설명한다. 본 실시 형태에서의 기판 처리 공정은 예컨대 플래시 메모리 등의 반도체 디바이스의 제조 공정의 일 공정으로서 전술한 기판 처리 장치(100)에 의해 실시된다. 또한 이하의 설명에서 기판 처리 장치(100)를 구성하는 각(各) 부(部)의 동작은 컨트롤러(221)에 의해 제어된다. 도 10은 본 실시 형태에서의 기판 처리 공정에서의 피처리 기판(웨이퍼(200))의 온도의 시간 추이와 각 공정의 관계를 도시하는 도면이다.
(기판)
본 실시 형태에 따른 반도체 장치의 제조 방법을 실시할 때, 처리하는 기판은 특히 한정되지 않고, 제조하는 반도체 장치의 용도 등에 따라 선택하면 좋다. 기판으로서 실리콘 기판, 화합물 반도체 기판 등의 반도체 기판 외에 유리 기판 등의 절연 기판 등을 이용해도 좋다. 또한 산화층이 형성되는 측의 표면이 평탄한 기판이어도 좋고, 표면에 막을 포함하는 기판이어도 좋고, 반도체 장치의 제조 공정의 일부를 거쳐서 표면에 요철(凹凸)이 형성된 기판이어도 좋다.
본 실시 형태에 따른 반도체 장치의 제조 방법은 표면에 불순물이 도핑된 막을 포함하는 기판을 처리해서 반도체 장치를 제조하는 공정에 바람직하게 적용할 수 있다. 또한 본 명세서에서의 「불순물이 도핑된 막」이란 기판 자체를 구성하는 하지(下地)(예컨대 Si 기판 자체)에 직접 불순물이 도핑되는 것에 의해 기판 표면에 형성되는 불순물을 포함하는 층이어도 좋다. 기판의 표면에 형성된 막으로서는 예컨대 Si 함유막, 구체적으로는 Poly-Si막을 들 수 있다. 막에 도핑된 불순물(도펀트)은 특히 한정되지 않고, P, As, Sb, B, Al 등을 들 수 있다.
(산소 함유 가스)
제1 산화 공정에서 이용하는 제1 산소 함유 가스와 제2 산화 공정에서 이용하는 제2 산소 함유 가스는 각각 적어도 산소(O)를 포함하는 가스라면 사용할 수 있다. 산소 함유 가스로서는 O2 가스 단독, O2 가스와 H2 가스의 혼합 가스, 또한 H2O 가스(수증기), H2O2 가스, 오존(O3) 가스 단독 등을 들 수 있다. 제1 산소 함유 가스 또는 제2 산소 함유 가스 중 적어도 어느 하나는 산소 외에 수소(H)를 함유하는 가스인 것이 바람직하다. 산소 함유 가스가 산소 이외에 수소를 포함하는 것에 의해 산화 레이트를 향상시킬 수 있다. 산소 및 수소를 함유하는 산소 함유 가스로서는 H2O 가스(수증기)도 사용할 수 있지만, 산화 레이트의 향상, 취급의 용이, 유량비를 바꾸는 것에 의해 산소와 수소의 비율을 조정 가능하도록 하는 등의 관점에서 O2 가스와 H2 가스의 혼합 가스인 것이 바람직하다. 또한 제1 산소 함유 가스 또는 제2 산소 함유 가스 중 적어도 어느 하나가 O2 가스이어도 좋다.
제1 산화 공정과 제2 산화 공정에서 각각 이용하는 산소 함유 가스의 성분은 예컨대 산소의 함유량이 다른 가스 성분으로 해도 좋지만, 제1 산소 함유 가스와 제2 산소 함유 가스의 성분은 같은 성분 조성의 가스인 것이 바람직하다. 제1 산화 공정과 제2 산화 공정에서 같은 성분의 가스를 이용하는 것에 의해 가스의 절체를 불필요로 하는 것에 의해 제조 공정을 간소화해서 스루풋을 향상시키거나, 새로운 가스 공급계를 불필요로 해서 장치 구성을 간소화할 수 있다.
[기판 반입 공정(S110)]
우선 게이트 밸브(244)를 열고 피처리 기판으로서 산화층이 형성되는 측의 표면에 불순물이 도핑된 막을 포함하는 웨이퍼(200)(이하, 단순히 「웨이퍼」또는 「기판」이라고 기재하는 경우가 있다.)를 미도시의 반송 로봇에 의해 처리실(201) 내에 반입한다. 웨이퍼(200)를 처리실(201) 내에 반입할 때, 웨이퍼(200)를 서셉터(217)의 기판 재치면(217d)으로부터 돌출한 지지 핀(266) 상에 재치한다. 구체적으로는 서셉터 승강 기구(268)가 서셉터(217)를 하강시켜서 서셉터(217)의 관통공(217a)으로부터, 지지 핀(266)을 서셉터(217)의 표면(기판 재치면)(217d)보다 소정의 높이만큼만 돌출시킨다. 도 2에 도시하는 바와 같이, 서셉터(217)의 기판 재치면(217d)과 웨이퍼(200)가 이간되도록 기판 재치면(217d)으로부터 돌출한 지지 핀(266) 상에 웨이퍼(200)를 재치하는 것에 의해 웨이퍼(200)는 지지 핀(266) 상에 수평 자세로 지지된다.
[제1 승온 공정(S120)]
계속해서 처리실(201) 내에 반입된 웨이퍼(200)의 승온을 수행한다. 히터(217b)는 미리 가열되고, 처리실(201) 내에 반입된 웨이퍼(200)를 히터(217b)가 매립된 서셉터(217)의 기판 재치면(217d)으로부터 돌출된 지지 핀(266) 상에 보지한 상태에서 웨이퍼(200)와 서셉터(217)의 이간 거리의 조정을 수행하는 것에 의해 서셉터(217)의 내장 히터(217b)의 온도를 변화시키지 않고 웨이퍼(200)의 온도를 용이하게 조정할 수 있다. 예컨대 실온(25℃) 내지 300℃의 범위 내의 제1 온도, 예컨대 250℃로 웨이퍼(200)를 가열한다. 제1 산화 공정을 수행할 때의 웨이퍼(200)의 온도(제1 온도)를 300℃ 이하로 제어하는 것에 의해 제1 산화 공정에서 웨이퍼 표면의 막 중의 도펀트가 처리실(201) 내에 방출되는 것을 억제할 수 있다. 또한 제1 산화 공정에서는 도펀트의 방출을 억제한다는 관점에서 웨이퍼(200)의 온도는 낮을수록 바람직하다. 바람직한 예로서 처리실(201) 내에 반입된 웨이퍼(200)를 가열하지 않고, 플라즈마 산화에 의해 제1 산화층을 형성할 수도 있다. 또한 산화 레이트를 향상시키는 관점에서는 웨이퍼(200)의 온도는 높을수록 바람직하다. 바람직한 예로서 제1 온도로서 웨이퍼를 200℃ 이상으로 가열하는 것이 바람직하다.
웨이퍼(200)의 승온을 수행하는 동안, 진공 펌프(246)에 의해 가스 배기관(231)을 개재하여 처리실(201) 내를 진공 배기하고, 처리실(201) 내의 압력을 0.5Pa 이상 250Pa 이하, 보다 바람직하게는 10Pa 이상 200Pa 이하의 범위 내의 소정값으로 한다. 진공 펌프(246)는 적어도 후술하는 기판 반출 공정(S170)이 종료될 때까지 작동시켜둔다.
[제1 산화 공정(S130)]
제1 산화 공정에서는 전술한 바와 같이 히터(217b)가 내장된 서셉터(217)의 기판 재치면(217d)의 상방에서 웨이퍼(200)를 지지하도록 구성된 지지 핀(266)에 의해 서셉터(217)의 기판 재치면(217d)과 웨이퍼(200)가 이간하도록 웨이퍼(200)를 지지한 상태에서 제1 산화층의 형성을 수행하는 것이 바람직하다. 웨이퍼(200)가 제1 온도까지 가열된 후, 적어도 산소를 포함하는 제1 산소 함유 가스를 처리실(201) 내에 공급하고, 상기 가스를 여기해서 플라즈마를 생성하는 것에 의해 제1 산화 공정을 실시한다. 웨이퍼(200)를 처리실(201) 내에 반입한 후, 웨이퍼(200)를 지지 핀(266) 상에 재치한 상태인채로 제1 산화 공정을 실행하는 것에 의해 내장 히터(217b)의 온도를 변화시키지 않고 웨이퍼(200)의 온도를 용이하게 조정할 수 있으므로 프로세스 레시피를 간소화하거나 스루풋을 향상시킬 수 있다.
본 실시 형태에서는 제1 산소 함유 가스로서 예컨대 O2 가스와 H2 가스의 혼합 가스를 공급한다. 구체적으로는 밸브(243a, 253a, 253b)를 열고 MFC(252a)로 유량 제어하면서 버퍼실(237)을 개재하여 처리실(201) 내에 H2 가스를 공급한다. 또한 동시에 MFC(252b)로 유량 제어하면서 버퍼실(237)을 개재하여 처리실(201) 내에 O2 가스를 공급한다. 처리실(201) 내에 공급되는 혼합 가스 중의 O2 가스의 비율(유량비)은 예컨대 5% 이상, 100% 미만의 소정의 비율로 한다. 산화 레이트를 확보한다는 관점에서는 80% 내지 98%의 소정의 비율이 바람직하고, 보다 바람직하게는 예컨대 95%로 한다.
예컨대 처리실(201) 내에 공급되는 혼합 가스에서의 H2 가스와 O2 가스의 유량비를 제어하는 것에 의해 웨이퍼(200)의 표면에 공급되는 수소 활성종과 산소 활성종의 비율을 제어한다. 즉 MFC(252a, 252b) 각각의 개도를 조정하는 것에 의해 혼합 가스의 유량비(또는 수소 활성종과 산소 활성종의 비율)를 제어한다. 예컨대 처리실(201) 내로의 H2 가스의 도입량은 50sccm, O2 가스의 도입량은 950sccm으로 한다.
또한 처리실(201) 내의 압력이, 예컨대 150Pa의 압력이 되도록 APC 밸브(242)의 개도를 조정해서 처리실(201) 내를 배기한다.
H2 가스와 O2 가스의 혼합 가스의 도입을 시작하고 소정 시간이 경과한 후(예컨대 수 초 경과 후), 공진 코일(212)에 대하여 고주파 전원(273)으로부터 고주파 전력의 인가를 시작한다. 이때 예컨대 27.12MHz의 고주파 전력을 0.1kW 내지 3.5kW의 범위 내의 전력(예컨대2.5kW)으로 인가한다. 이에 의해 플라즈마 생성 공간의 공진 코일(212)의 전기적 중점에 상당하는 높이 위치에 도넛 형상의 유도 플라즈마가 여기된다. 여기된 플라즈마에 의해 H2 가스, O2 가스는 활성화되어 해리(解離)되고, 수소 활성종(H 래디컬)과 산소 활성종(O 래디컬)이 생성된다. 또한 산소를 포함하는 반응종으로서 수산기 래디컬(OH 래디컬)이나 산소 이온 등이 생성되는 경우도 있다. 또한 수소를 포함하는 반응종으로서 수소 이온 등이 생성ㅓ되는 경우도 있다.
이 플라즈마에 의해 생성된 H 래디컬, O 래디컬 등이 웨이퍼(200)의 표면을 처리하는 것에 의해 웨이퍼(200)의 표면에 형성된 불순물이 도핑된 막이 표면으로부터 산화(개질)되어 제1 산화층이 형성된다.
제1 산화 공정은 제1 승온 공정과 동시에 또는 제1 승온 공정부터 계속해서 웨이퍼(200)를 승온시키면서 실행해도 좋다. 도 11은 본 변형예에 따른 기판 처리 공정에서의 웨이퍼(200)의 온도의 시간 추이와 각 공정의 관계를 도시하는 도면이다. 본 변형예에서는 서셉터(217)를 내장 히터(217b)에 의해 가열해두고, 처리실(201) 내에 반입한 웨이퍼(200)를 핀(266) 상에 재치하는 것에 의해 예비 가열하면서 승온해서 제1 산화층을 형성한다. 제1 산화 공정에서는 웨이퍼(200)의 예비 가열을 겸해서 제1 산화층을 형성하면, 제2 산화 공정에서 웨이퍼(200)를 승온했을 때 웨이퍼(200)에 굴절이나 변형이 발생하는 것을 효과적으로 억제할 수 있다. 이 경우에도 웨이퍼(200)의 온도가 제1 온도까지 승온된 상태에서 제1 산화 공정을 실행한다. 도 11에서 도시하는 예에서는 웨이퍼(200)의 온도가 제1 온도인 200℃까지 승온된 시점부터 제1 산화 공정을 시작한다. 즉 이 예에서는 제1 산화 공정이 실행되는 웨이퍼(200)의 온도인 200℃ 내지 250℃가 제1 온도가 된다.
또한 제1 산소 함유 가스로서는 H2 가스와 O2 가스의 혼합 가스에 한정되지 않고, 예컨대 H2O 가스(수증기)를 이용해도 좋고, O2 가스만을 이용해도 좋고, O3(오존) 가스를 이용해도 좋다. 또한 필요에 따라 N2 가스 또는 Ar 등의 희가스를 첨가해도 좋다.
또한 처리실(201) 외에서 혼합 가스를 여기해서 플라즈마를 생성하고, 생성된 활성종 등의 반응종을 처리실(201) 내에 도입해도 좋다. 또한 다른 예로서 H2 가스와 O2 가스를 별도로 여기하고, 각각에서 생성된 활성종을 처리실(201) 내에 도입할 때에 도입하는 활성종의 유량의 비율을 조정해도 좋다.
제1 산화 공정에서 형성하는 제1 산화층의 두께는 특히 한정되지 않지만, 제2 산화 공정에서 도펀트의 탈리를 따라 확실하게 억제하는 관점에서 1.6nm 이상이 바람직하고, 2.0nm 이상인 것이 보다 바람직하다. 제1 산화층의 두께의 상한도 특히 한정되지 않지만, 제1 산화 공정에서는 제2 산화 공정보다 웨이퍼 온도를 낮게 하여 산화층을 형성하기 때문에, 제2 산화 공정보다 산화 레이트가 늦어진다. 즉 제1 산화 공정에서 형성하는 제1 산화층을 두껍게 할수록 산화층을 형성하는 전체 공정 시간이 길어진다. 또한 제1 산화 공정에서는 제2 산화 공정보다 웨이퍼 온도를 낮게 하여 산화층을 형성하기 때문에, 형성되는 산화층의 원하는 특성도 제2 산화 공정에 비해 뒤떨어지는 경우가 있다(예컨대 산화층의 치밀성이 낮아지는 불필요한 불순물의 함유량이 많아지는 경우 등). 즉 제1 산화 공정에서 형성하는 제1 산화층을 두껍게 할수록 제2 산화 공정에서 형성하는 산화층을 포함하는 산화층 전체(즉 후술하는 제2 산화층)의 질이 낮아지는 경우가 있다. 따라서 생산성의 관점 및 산화층의 질의 관점에서 제1 산화층의 두께는 도펀트의 탈리를 억제한다는 목적을 달성 가능한 두께 이상이라면 최대한 얇은 것이 보다 바람직하다. 예컨대 제1 산화층의 두께는 4nm 이하가 바람직하고, 2nm 이하가 보다 바람직하다.
[제2 승온 공정(S140)]
제1 산화 공정을 소정 시간 실행한 후, 공진 코일(212)에 대한 고주파 전력의 인가를 정지해서 플라즈마 산화 처리를 정지한다. 계속해서 후속의 제2 산화 공정을 수행하기 위해서 웨이퍼(200)를 제1 온도보다 높은 제2 온도까지 승온한다. 그동안 진공 펌프(246)에 의한 진공 배기는 계속해서 수행된다.
제2 승온 공정에서는 서셉터(217)에 내장된 히터(217b)의 출력을 올려서 웨이퍼 온도를 상승시켜도 좋지만, 서셉터(217)의 온도는 일정하게 유지한 상태에서 서셉터(217)를 상승시켜서 기판 재치면(217d) 상에 웨이퍼(200)를 재치하여 웨이퍼 온도를 제2 온도까지 상승시키는 것이 바람직하다. 웨이퍼(200)를 서셉터(217)의 기판 재치면(217d) 상에 재치하는 것에 의해 서셉터(217)의 내장 히터의 온도(출력)를 변화시키지 않고 웨이퍼(200)를 승온시킬 수 있다. 구체적으로는 도 3에 도시하는 바와 같이, 서셉터 승강 기구(268)가 공진 코일(212)의 하단과 반입출구(245)의 상단 사이의 소정의 위치가 되도록 서셉터(217)를 상승시킨다. 그 결과, 웨이퍼(200)는 서셉터(217)의 상면(기판 재치면)(217d)에 지지된다. 서셉터(217)의 기판 재치면(217d)과 접한 상태에서 웨이퍼(200)가 가열되는 것에 의해 웨이퍼 온도가 상승하여 웨이퍼(200)를 제1 온도보다 높은 제2 온도로 할 수 있다. 또한 제2 승온 공정에서는 반드시 서셉터(217)의 기판 재치면(217d) 상에 웨이퍼(200)를 재치할 필요는 없고, 서셉터(217)를 상승시켜서 웨이퍼(200)와 서셉터(217)의 거리를 근접시키는 것에 의해 웨이퍼(200)를 제2 온도로 해도 좋다.
제2 승온 공정에서는 처리실(201) 내의 압력을 제1 승온 공정 및 제1 산화 공정에서의 압력보다 높게 하여 웨이퍼(200)를 제2 온도로 해도 좋다. 웨이퍼(200)를 지지 핀(266)에 의해 서셉터(217)로부터 이간한 상태에서 처리실(201) 내의 압력을 올려서 히터(217b)로부터의 열전도율을 크게 하는 것에 의해 웨이퍼(200)를 승온시킬 수 있다. 이 경우, 배기 밸브(243b)에 의해 처리실(201)로부터의 배기량을 조정해서 처리실(201) 내의 압력을 조정하면 된다. 또한 제2 승온 공정에서는 처리실(201) 내의 압력을 제1 산화 공정에서의 압력보다 높게 하는 것과 함께, 서셉터(217)를 상승시켜서 웨이퍼(200)와 서셉터(217)의 거리를 근접시키거나, 혹은 웨이퍼(200)를 서셉터(217) 상에 재치하는 것에 의해 웨이퍼(200)를 보다 신속히 제2 온도로 해도 좋다. 또한 제2 승온 공정에서 기판 재치면(217d) 상에 웨이퍼(200)를 재치하는 경우, 적어도 일시적으로 처리실(201) 내로의 가스 공급을 정지해서 처리실(201) 내를 감압(진공 배기)하는 것이 바람직하다. 이에 의해 기판 재치면(217d)과 웨이퍼(200) 사이에 가스가 체류하는 것을 방지하고, 기판 재치면(217d) 상에 웨이퍼(200)를 재치했을 때 발생하는 웨이퍼의 옆으로 미끄러짐이나 위치 어긋남 등이 발생하는 것을 방지할 수 있다.
제2 온도는 제1 온도보다 높고 제1 산화 공정보다 산화 레이트가 높게 되면 특히 한정되지 않지만, 400℃ 이상 800℃ 미만으로 하는 것이 바람직하고, 500℃ 이상 700℃ 미만(예컨대 600℃ 정도)이 보다 바람직하다. 제2 온도를 상기 온도 범위로 하는 것에 의해 제2 산화 공정에서 제1 산화 공정보다 산화 레이트를 향상시킬 수 있는 것과 함께 산화층의 질을 향상시킬 수 있다. 제2 온도를 800℃ 미만으로 하는 것에 의해 막 중의 불순물이 산화층을 개재하여 처리실(201) 내에 방출되거나, 불순물이 도핑된 막 이외의 부분에 확산되는 것을 억제할 수 있다.
[제2 산화 공정(S150)]
웨이퍼(200)를 제2 온도까지 승온한 후, 제2 산화 공정을 수행한다. 제2 산화 공정에서는 적어도 산소를 포함하는 제2 산소 함유 가스의 플라즈마를 이용하여 제1 산화층이 형성된 웨이퍼(200)의 표면을 산화(개질)하고, 제1 산화층의 두께가 증대한 제2 산화층을 형성한다. 구체적으로는 제2 승온 공정에서 웨이퍼(200)를 제2 온도까지 승온한 후, 다시 제2 산소 함유 가스로서 O2 가스와 H2 가스의 혼합 가스를 처리실(201) 내에 공급하는 것과 함께, 공진 코일(212)에 대한 고주파 전력의 인가를 시작하여 제2 산소 함유 가스를 플라즈마 여기하는 것에 의해 제2 산화 공정을 실행한다.
제2 산화 공정은 웨이퍼(200)의 온도를 제1 온도보다 높은 제2 온도로 하는 것 이외는 제1 산화 공정과 마찬가지로 하여 플라즈마 산화를 실시할 수 있다. 또한 제1 산화 공정 및 제2 산화 공정 모두 웨이퍼 자체의 온도를 반드시 측정할 필요는 없고, 예컨대 서셉터(217)의 온도를 각각 목표로 하는 제1 온도, 제2 온도의 범위 내에 설정하는 것에 의해 웨이퍼 온도를 제어해도 좋다.
제2 산화 공정은 제2 승온 공정과 동시, 또는 제2 승온 공정부터 계속해서 웨이퍼(200)를 승온시키면서 실행해도 좋다. 도 12는 본 변형예에 따른 기판 처리 공정에서의 웨이퍼(200)의 온도의 시간 추이와 각 공정의 관계를 도시하는 도면이다. 본 변형예에서는 웨이퍼(200)를 서셉터(217)의 상면(217d)으로 지지하면서 가열하고, 웨이퍼(200)가 제2 온도가 된 상태에서 승온을 계속하면서 제2 산소 함유 가스를 플라즈마 여기하는 것에 의해 제2 산화 공정을 실행한다. 도 12에 도시하는 예에서는 웨이퍼(200)의 온도가 제2 온도인 500℃까지 승온된 시점부터 제2 산화 공정을 시작한다. 즉 이 예에서는 제2 산화 공정이 실행되는 웨이퍼(200)의 온도인 500℃ 내지 600℃가 제2 온도가 된다. 서셉터(217)의 상면(217d) 상에서 웨이퍼(200)를 승온하면서 제2 산화 공정을 실행하는 것에 의해 웨이퍼(200)의 온도가, 승온 도중의 비교적 낮은 상태에서 제2 산화 공정을 시작할 수 있으므로, 원하는 두께의 제2 산화층을 형성할 때까지의 시간을 단축할 수 있다. 단, 제2 산화층의 질을 높인다는 관점에서는 웨이퍼(200)를 서셉터(217)의 상면(217d)으로 지지하면서 가열하고, 웨이퍼(200)가 원하는 온도(제2 산화층을 원하는 질로 하는 데 충분히 높은 온도)로 안정되고 나서 제2 산소 함유 가스를 플라즈마 여기하는 것에 의해 제2 산화 공정을 실행하는 것이 바람직하다.
제2 산화층(최종 산화층)의 두께는 제조하는 반도체 장치의 용도, 요구되는 기능 등에 의해 임의로 결정하면 된다. 제2 산화층의 두께는 적어도 제1 산화층의 두께보다 크면 좋고, 후술하는 생산성 등의 관점에서는 5nm 이상인 것이 바람직하고, 7nm 이상이 보다 바람직하다. 또한 본 실시 형태에 따른 기판 처리 장치를 이용한 플라즈마 산화 처리에 의해 경제적으로 합리적인 조건 하에서 형성 가능한 산화층의 두께를 고려하면, 제2 산화층의 두께는 예컨대 20nm 이하, 보다 현실적으로는 15nm 이하가 예시된다.
또한 제2 산화 공정에서 제1 산화층의 두께를 증대시킬 때, 제2 산화 공정에서의 산화층의 두께의 증가량, 즉 「제2 산화층의 두께-제1 산화층의 두께」는 특히 한정되지 않는다. 제2 산화 공정에서의 산화층의 두께의 증가량은 제1 산화층의 두께보다 작아도 좋지만, 제1 산화 공정에서의 산화 레이트는 제2 산화 공정의 산화 레이트보다 늦기 때문에 제1 산화층의 두께를 두껍게 할수록 산화 공정 전체의 시간이 길어진다. 그렇기 때문에 생산성의 관점에서 제2 산화층의 두께는 제1 산화층의 두께의 2배 이상인 것이 바람직하다. 즉 제2 산화 공정에서 추가 형성하는 산화층의 두께(두께 증가량)가 제1 산화층의 두께 이상이라면, 제1 산화 공정만으로 제2 산화층과 동등한 두께의 산화층을 형성하는 경우에 비해 산화 레이트의 향상이 현저해지고, 생산성의 향상에 크게 기여한다.
제2 산화 공정 후, 고주파 전원(273)으로부터의 전력의 출력을 정지하고, 처리실(201) 내에서의 플라즈마 방전을 정지한다. 또한 밸브(253a, 253b)를 닫고 H2 가스, O2 가스의 처리실(201) 내로의 공급을 정지한다.
[진공 배기 공정(S160)]
H2 가스, O2 가스의 공급을 정지한 후, 가스 배기관(231)을 이용해서 처리실(201) 내를 진공 배기한다. 이에 의해 처리실(201) 내의 H2 가스, O2 가스나, 기타의 잔류물이 포함되는 배기 가스 등을 처리실(201) 외로 배기한다. 그 후, APC 밸브(242)의 개도를 조정하여 처리실(201) 내의 압력을 처리실(201)에 인접하는 미도시의 진공 반송실과 마찬가지의 압력으로 조정한다.
[기판 반출 공정(S170)]
처리실(201) 내가 소정의 압력이 되면, 서셉터(217)를 웨이퍼(200)의 반송 위치까지 하강시켜 지지 핀(266) 상에 웨이퍼(200)를 재치시킨다. 그리고 게이트 밸브(244)를 열고 미도시의 반송 기구를 이용해서 웨이퍼(200)를 처리실(201) 외로 반출한다. 이상, 본 실시 형태에 따른 기판 처리 공정을 종료한다.
이와 같이 불순물이 도핑된 막을 표면에 포함하는 웨이퍼(200)에 대하여 비교적 저온으로 플라즈마 산화에 의해 막을 개질하여 제1 산화층을 형성한 후, 승온해서 플라즈마 산화를 수행해서 제1 산화층을 두껍게 한 제2 산화층을 형성하는 것에 의해 원하는 두께를 포함하는 산화층을 효율적으로 형성할 수 있는 것과 함께, 도펀트의 방출에 의한 처리실 내의 오염 및 도펀트를 포함하는 막 이외의 부분으로의 도펀트의 확산을 효과적으로 억제할 수 있다. 또한 본 개시에서의 반도체 장치의 제조 방법에서는 전술한 바와 같이 제1 승온 공정, 제1 산화 공정, 제2 승온 공정, 제2 산화 공정을 순차 실행하면, 각 산화 공정에서의 기판 온도는 반드시 측정할 필요는 없다.
[제2 실시 형태]
다음으로 본 개시의 다른 실시 형태에 대해서 설명한다. 또한 제1 실시 형태와 마찬가지의 구성이 되는 부분에 대해서는 동일 부호를 첨부하여 설명을 생략한다.
도 7은 본 개시의 제2 실시 형태에 따른 기판 처리 장치의 구성의 일례를 도시한다. 본 실시 형태에 따른 기판 처리 장치(101)는 웨이퍼(200)를 가열 가능한 수단으로서 서셉터(217)의 상방에 램프를 포함하는 램프 가열 유닛(280)을 구비한다. 구체적으로는 처리실(201)의 상방, 즉 상측 용기(210)의 상면에는 광투과 창(278)이 설치되고, 광투과 창(278) 상의 처리 용기(203) 외측에는 램프 가열 유닛(280)이 설치된다. 램프 가열 유닛(280)은 서셉터(217)와 대향하는 위치에 설치되고, 웨이퍼(200)의 상방으로부터 광을 투과하는 광투과 창(278)과 차폐 플레이트(240)를 개재하여 웨이퍼(200)를 가열하도록 구성된다. 또한 램프 가열 유닛(280)은 제어부로서의 컨트롤러(221)에 의해 신호선(G)을 통해서 제어하도록 구성된다. 램프 가열 유닛(280)을 점등하는 것에 의해 히터(217b)와 비교해서 보다 단시간에 웨이퍼(200)를 가열할 수 있다. 또한 히터(217b)를 병용하는 것에 의해 신속하게 또한 고온으로 가열할 수 있고, 웨이퍼 표면의 온도를 급속하게 예컨대 900℃로 할 수 있다.
본 실시 형태에 따른 기판 처리 장치(101)를 이용해서 기판의 표면을 개질하여 산화층을 형성하는 경우, 기판 반입 공정부터 제1 산화 공정까지는 제1 실시 형태에 따른 기판 처리 장치(100)를 이용하는 경우와 마찬가지로 수행할 수 있다. 즉 서셉터 승강 기구(268)에 의해 서셉터(217)를 하강시켜서 지지 핀(266)이 서셉터(217)의 기판 재치면으로부터 돌출한 상태로 해서 처리실(201) 내에 반송한 웨이퍼(200)를 지지 핀(266) 상에 재치한다. 지지 핀 상에 웨이퍼(200)가 재치되는 것에 의해 미리 가열된 서셉터 내장 히터(217b)에 의해 예컨대 300℃ 이하의 제1 온도로 웨이퍼(200)를 승온시킨다.
웨이퍼(200)의 승온을 수행하는 동안, 진공 펌프(246)에 의해 가스 배기관(231)을 개재하여 처리실(201) 내를 진공 배기하여 처리실(201) 내의 압력을 0.5Pa 이상 250Pa 이하, 보다 바람직하게는 10Pa 이상 200Pa 이하의 범위 내의 소정값으로 하고, 기판 반출 공정이 종료될 때까지 작동시켜둔다.
(제1 산화 공정)
다음으로 적어도 산소를 포함하는 제1 산소 함유 가스를 처리실(201) 내에 공급하고, 제1 산소 함유 가스를 여기해서 플라즈마를 생성시키는 것에 의해 제1 산화 공정을 실시한다. 제1 실시 형태와 마찬가지로 제1 산소 함유 가스로서 O2 가스와 H2 가스와의 혼합 가스를 공급하고, 플라즈마 산화에 의해 제1 온도의 웨이퍼(200)의 표면을 개질하여 제1 산화층을 형성한다.
(제2 승온 공정 및 제2 산화 공정)
제2 승온 공정에서는 도 7에 도시되는 바와 같이 서셉터(217)를 상승시켜서 웨이퍼(200)를 서셉터(217) 상에 재치하고, 램프 가열 유닛(280)도 작동시키는 것에 의해 서셉터(217)에 내장된 히터(217b)와 함께 램프 가열 유닛(280)에 의해 웨이퍼(200)를 가열한다. 램프 가열 유닛(280)도 이용해서 웨이퍼(200)를 가열하는 것에 의해 웨이퍼(200)를 보다 급속하게 승온시켜서 제1 온도보다 높은 제2 온도로 승온할 수 있다. 제2 산화 공정에서는 웨이퍼(200)가 제2 온도로 승온된 상태에서 제1 실시 형태와 마찬가지로 제2 산소 함유 가스로서 O2 가스와 H2 가스의 혼합 가스를 공급하고, 플라즈마 산화에 의해 제2 온도의 웨이퍼(200)의 표면을 개질하여 제1 산화층의 두께가 증대한 제2 산화층을 형성한다.
또한 제1 산화 공정에서도 램프 가열 유닛(280)을 사용해도 좋다. 제1 산화 공정에서는 램프 가열 유닛(280)으로부터 제1 출력으로 광을 조사(照射)하는 것에 의해 웨이퍼(200)를 가열해서 제1 온도로 하고, 제2 산화 공정에서는 램프 가열 유닛(280)으로부터 제1 출력보다 큰 제2 출력으로 광을 조사하는 것에 의해 웨이퍼(200)를 제1 온도보다 높은 제2 온도로 가열해도 좋다.
또한 제1 산화 공정에서는 램프 가열 유닛(280)으로부터의 광의 조사를 수행하지 않고, 제2 산화 공정에서는 램프 가열 유닛(280)으로부터의 광의 조사를 수행하는 것에 의해 웨이퍼(200)를 가열해도 좋다.
[제3 실시 형태]
제1 실시 형태 및 제2 실시 형태에서는 제1 산화 공정 및 제2 산화 공정에서 기판 표면을 개질하여 산화층을 형성하는 경우에 대해서 설명했지만, 본 실시 형태의 반도체 장치의 제조 방법에서는 제1 산화 공정에서 형성한 제1 산화층에 의해 도펀트의 탈리가 억제되기 때문에 산화 공정은 2단계에 한정되지 않고, 3단계, 또는 그 이상으로 단계를 나누어서 수행해도 좋다. 예컨대 제2 산화 공정 후에 또한 기판 온도를 올려서 제3 산화 공정을 수행해도 좋다. 즉 제2 산화 공정 후에 기판을 제2 온도보다 높은 제3 온도까지 승온하는 제3 승온 공정을 실행하고, 제2 산화층이 형성된 기판의 표면을 적어도 산소를 포함하는 제3 산소 함유 가스의 플라즈마에 의해 개질하여 제2 산화층의 두께가 증대한 제3 산화층을 형성하는 제3 산화 공정을 더 수행해도 좋다.
<실시예>
이하에 실시예를 들어서 본 개시를 더욱 구체적으로 설명한다. 이하의 실시예에 제시하는 재료, 처리 내용, 처리 순서 등은 본 개시의 취지를 일탈하지 않는 한, 적절히 변경할 수 있다. 따라서 본 개시의 범위는 이하에 나타내는 실시예에 한정되지 않는다.
<실험예 1: 열 산화와 플라즈마 산화의 비교>
(플라즈마 산화)
피처리 기판으로서 표면에 막이 형성되지 않은 Si 웨이퍼(베어 Si 웨이퍼)를 준비했다. 도 2 및 도 3에 도시하는 개략 구성을 포함하는 기판 처리 장치를 이용하여, 서셉터(217)에 내장된 히터(217b)에 의해 웨이퍼의 온도를 바꿔서 플라즈마 산화에 의해 베어 Si 웨이퍼의 표면을 산화시키는 것에 의해 산화층을 형성했다. 우선 피처리 기판을 반송 로봇에 의해 처리실 내에 반입하여 서셉터 상에 재치한 후, O2 및 H2을 포함한 혼합 가스(H2 가스의 도입량: 100sccm, O2 가스의 도입량: 1,900sccm)를 처리실 내에 도입하고, 배기구 후방에 있는 압력 조정 밸브(배기 밸브)로 처리실 내의 압력을 200Pa로 조정했다. 서셉터의 온도를 제어하는 것에 의해 서셉터 상에 재치된 웨이퍼의 온도를 조정하여 고주파 전극에 27.12MHz의 고주파 전력을 3.5kW 인가해서 처리실 내에 플라즈마를 생성시켜, 베어 Si 웨이퍼의 표면을 플라즈마 산화시켜서 SiO2막(산화층)을 형성시켰다.
(열 산화)
상기와 같은 베어 Si 웨이퍼를 준비하여 웨이퍼의 온도를 바꿔서 열 산화에 의해 베어 Si 웨이퍼의 표면을 열 산화시키는 것에 의해 산화층을 형성했다.
도 8은 베어 Si 웨이퍼의 표면을 열 산화하여 형성한 산화층의 두께와, 플라즈마 산화하여 형성한 산화층의 두께에 대해서 웨이퍼 온도의 관계를 도시한다. 도 8에 도시되는 바와 같이, 웨이퍼 온도가 같아도 열 산화에 의해 산화층을 형성하는 것보다도 플라즈마 산화에 의해 산화층을 형성하는 것이 두께가 큰 산화층을 형성할 수 있다는 것을 알 수 있다. 예컨대 열 산화에서는 20Å(2nm) 정도의 두께의 산화층을 형성하기 위해서는 600℃ 정도까지 웨이퍼를 가열할 필요가 있다. 한편, 플라즈마 산화에 따르면, 웨이퍼 온도가 비교적 저온의 300℃ 이하이어도 30Å(3nm) 이상의 두께의 산화층을 형성할 수 있다. 또한 600℃라면, 60Å(6nm) 이상의 두께의 산화층을 형성할 수 있다. 그렇기 때문에 플라즈마 산화에 따르면, 300℃ 이하의 비교적 저온으로 Si막 중의 도펀트의 방출, 확산을 억제하면서 산화층을 형성할 수 있다. 이와 같이 비교적 저온으로 형성된 산화층은 Si막으로부터의 도펀트의 방출을 억제하는 캡층으로서 기능하기 때문에, 이어서 400℃를 초과하는 비교적 높은 온도로 플라즈마 산화를 수행하는 것에 의해 Si막으로부터의 도펀트의 방출을 억제하면서 높은 산화 레이트로 산화층의 두께를 증대시킬 수 있다.
<실시예 1>
피처리 기판으로서 P를 도핑한, 두께 1,200μm의 P-doped poly Si막(이하, 단순히 「Si막」이라고 기재하는 경우가 있다.)을 표면에 포함하는 Si 웨이퍼를 준비했다. 도 7에 도시하는 개략 구성을 포함하는 기판 처리 장치를 이용하여, 피처리 기판을 반송 로봇에 의해 처리실 내에 반입해서 서셉터의 기판 재치면으로부터 돌출하는 지지 핀 상에 웨이퍼를 재치했다. 그 후, 서셉터의 높이를 제어하여 지지 핀 상에 재치된 웨이퍼와 기판의 거리를 조정하는 것에 의해 기판 온도를 300℃로 조정했다. 기판 온도를 조정한 후, O2 및 H2을 포함한 혼합 가스(H2 가스의 도입량: 100sccm, O2 가스의 도입량: 1,900sccm)를 처리실 내에 도입하고, 배기구 후방에 있는 압력 조정 밸브에서 처리실 내의 압력을 200Pa로 조정했다. 또한 1단계째의 산화 공정으로서 고주파 전극에 27.12MHz의 고주파 전력을 0.5kW 인가해서 처리실 내에 혼합 가스의 플라즈마를 생성시키는 것에 의해 Si막의 표면에 두께가 약2nm의 SiO2막(제1 산화층)을 형성시켰다.
다음으로 서셉터를 상승시켜서 피처리 기판을 서셉터 상에 재치하는 것과 함께, 램프 가열 유닛에 의해 광을 조사하여 기판 온도를 600℃로 승온시켰다. 웨이퍼가 원하는 온도로 가열된 후, 2단계째의 산화 처리로서 제1단계째의 산화 처리와 같은 성분의 혼합 가스를 처리실 내에 도입하고, 배기구 후방에 있는 압력 조정 밸브로 처리실 내의 압력을 150Pa로 조정했다. 그 후, 27.12MHz의 고주파 전력을 3.5kW 인가해서 처리실 내에 플라즈마를 생성시켜서 SiO2막(제1 산화층)의 두께를 증대시키는 것에 의해 두께가 약 7nm의 SiO2막(제2 산화층)을 형성시켰다. 제2 산화층을 형성 후, 웨이퍼를 처리실 내로부터 반출했다.
상기와 같은 처리실 내로의 웨이퍼의 반입, 2단계의 플라즈마 산화 처리에 의한 산화층(SiO2막)의 형성 및 처리실 내로부터의 웨이퍼의 반출로 이루어지는 일련의 작업을 25매의 웨이퍼를 이용해서 반복 수행했다. 산화층을 형성한 웨이퍼에 대하여 5매마다 산화층의 두께의 평균값 및 두께의 면내 균일성을 측정했다. 또한 산화층의 두께의 값은 분광 엘립소미터를 이용해서 웨이퍼 면내의 복수점(49점)을 측정하고, 그 평균값으로 했다. 또한 산화층의 두께의 면내 균일성은 웨이퍼 면내에 형성된 산화층의 두께의 최대값, 최소값 및 평균값에 기초하여 「[(최대값-최소값)/2]/평균값*100」을 균일성의 지표로서 산출했다. 도 9는 실시예에서 처리한 웨이퍼의 처리 매수와, 산화층의 두께의 평균값 및 두께의 면내 균일성의 관계를 도시한다. 좌측 세로축은 산화층의 두께의 평균값을 도시하고, 우측의 세로축은 산화층의 두께의 면내 균일성의 값(불균일성 정도)을 도시한다. 도 9에 도시되는 바와 같이, P-doped poly Si막의 플라즈마 산화 처리를 반복 수행해도 형성된 SiO2막의 두께의 변화는 거의 없고, 안정적으로 장치 운용을 실시할 수 있음을 도시한다.
P-doped poly Si막을 표면에 포함하는 기판에 대하여, 본 실시 형태에 따른 반도체 장치의 제조 방법을 적용하는 것에 의해 P-doped poly Si막 중으로부터의 도펀트에 의한 오염의 영향을 받지 않기 때문에, 신뢰성 및 제품 비율을 향상시키는 것이 기대된다. 또한 Doped Poly Si막의 산화 처리를 예컨대 열 산화 공정과 플라즈마 산화 공정과 같은 두 공정으로 나눌 필요 없이, 동일한 처리실의 동일 레시피 내에서 안정된 산화 레이트를 유지한 상태에서, 또한 공정을 나누는 것에 의한 스루풋의 저하를 회피해서 수행하는 것이 가능해진다.
이상, 본 개시의 실시 형태 및 실시예에 대해서 설명했지만, 본 개시는 상기 실시 형태 및 실시예에 한정되지 않는다. 예컨대 상기 실시 형태 및 실시예에서는 표면에 불순물이 도핑된 막을 포함하는 기판을 이용하여 플라즈마 산화에 의해 막을 산화시키는 경우에 대해서 주로 설명했지만, 피처리 기판은 이러한 기판에 한정되지 않는다. 예컨대 탄소 원소를 포함하는 산질화실리콘(SiOCN)의 막과 같이, 산화 처리에 의해 막 중으로부터 탈리하기 쉬운 탄소 원소와 같은 원소를 포함하는 막이 표면에 형성된 기판을 이용하여, 본 실시 형태에서의 제1 산화 공정과 제2 산화 공정에 의해 표면을 개질하여 산화층을 형성해도 좋다. 이러한 기판에 대하여 상기 실시 형태에 따른 산화 처리를 수행하는 것에 의해 막 중으로부터 탄소 원소와 같은 원하는 원소가 탈리하는 것을 억제하면서 막의 표면에 산화층이 형성 가능해지는 등의 전술한 실시 형태와 마찬가지의 효과를 얻을 수 있다.
또한 도 2, 도 3 및 도 7에 도시하는 기판 처리 장치는 서셉터가 승강하는 것에 의해 지지 핀이 서셉터의 기판 재치면으로부터 돌출 가능한 구성으로 이루어지지만, 지지 핀이 승강하는 것에 의해 서셉터의 기판 재치면으로부터 돌출 가능한 구성으로서도 좋다. 또한 도 7에 도시하는 기판 처리 장치는 가열부로서 서셉터와 램프를 구비하지만, 가열부로서 램프만을 구비한 기판 처리 장치를 이용하여 본 실시 형태에 따른 반도체 장치의 제조 방법을 실시해도 좋다.
100: 기판 처리 장치 200: 웨이퍼(기판)
201: 처리실 217: 서셉터(기판 재치대)
217b: 히터(가열부) 266: 지지 핀(지지체)
280: 램프 가열 유닛(가열부)

Claims (21)

  1. 불순물이 도핑된 막을 포함하고 제1 온도인 기판의 상기 막의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6nm 이상인 제1 산화층을 형성하는 제1 산화 공정; 및
    상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 막의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정
    을 포함하는 반도체 장치의 제조 방법.
  2. 제1항에 있어서,
    상기 제1 산화층의 두께는 2nm 이상인 반도체 장치의 제조 방법.
  3. 제1항에 있어서,
    상기 제2 온도는 800℃ 미만인 반도체 장치의 제조 방법.
  4. 제1항에 있어서,
    상기 제1 산화층 및 상기 제2 산화층은 각각 실리콘을 함유하는 산화층인 반도체 장치의 제조 방법.
  5. 제1항에 있어서,
    상기 제1 산소 함유 가스와 상기 제2 산소 함유 가스는 같은 성분 조성의 가스인 반도체 장치의 제조 방법.
  6. 제1항에 있어서,
    상기 제1 산화 공정과 상기 제2 산화 공정이 동일한 처리실 내에서 실행되는 반도체 장치의 제조 방법.
  7. 제6항에 있어서,
    상기 제1 산화 공정에서는 히터가 내장된 기판 재치대의 기판 재치면의 상방에서 상기 기판을 지지하도록 구성된 지지체에 의해 상기 기판 재치대의 상기 기판 재치면과 상기 기판이 이간되도록 상기 기판을 지지한 상태에서 상기 제1 산화층의 형성을 수행하는 반도체 장치의 제조 방법.
  8. 제7항에 있어서,
    상기 기판을 상기 처리실 내에 반입할 때 상기 기판을 상기 지지체 상에 재치하는 반도체 장치의 제조 방법.
  9. 제7항에 있어서,
    상기 제1 산화 공정은 상기 기판을 승온시키면서 실행되는 반도체 장치의 제조 방법.
  10. 제7항에 있어서,
    상기 제2 산화 공정에서는 상기 기판 재치대의 상기 기판 재치면 상에 상기 기판이 재치된 상태에서 상기 제2 산화층의 형성이 수행되는 반도체 장치의 제조 방법.
  11. 제10항에 있어서,
    상기 제2 산화 공정에서는 상기 기판을 램프에 의해 가열하는 반도체 장치의 제조 방법.
  12. 제1항에 있어서,
    상기 제2 산화 공정 후에, 상기 기판을 상기 제2 온도보다 높은 제3 온도로 하고 상기 제2 산화층이 형성된 상기 기판의 표면을 제3 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제2 산화층의 두께가 증대한 제3 산화층을 형성하는 제3 산화 공정을 더 포함하는 반도체 장치의 제조 방법.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 제1 산화층의 두께는 상기 불순물의 탈리를 억제하는 두께인 반도체 장치의 제조 방법.
  14. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 제2 산화 공정에서는, 상기 제1 산화 공정보다 상기 처리실 내의 압력을 높게 하는 반도체 장치의 제조 방법.
  15. 제10항에 있어서,
    상기 제2 산화 공정에서, 상기 기판 재치대의 상기 기판 재치면 상에 상기 기판을 재치하기 전에 상기 처리실 내를 감압하는 반도체 장치의 제조 방법.
  16. 기판을 처리하는 처리실;
    상기 처리실 내에 산소 함유 가스를 공급하는 가스 공급부;
    상기 처리실 내에 배치된 상기 기판을 가열 가능한 가열부;
    상기 처리실 내에 공급된 상기 산소 함유 가스를 여기(勵起)해서 플라즈마를 생성시키는 플라즈마 생성부; 및
    상기 처리실 내에서, 불순물이 도핑된 막을 포함하고 제1 온도인 기판의 상기 막의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6 nm 이상인 제1 산화층을 형성하는 제1 산화 공정 및 상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 막의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정을 실행하도록, 상기 가스 공급부, 상기 가열부 및 상기 플라즈마 생성부를 제어하는 것이 가능하도록 구성된 제어부
    를 포함하는 기판 처리 장치.
  17. 불순물이 도핑된 막을 포함하고 기판 처리 장치의 처리실 내에 배치된 제1 온도인 기판의 상기 막의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6 nm 이상인 제1 산화층을 형성하는 제1 산화 순서; 및
    상기 기판을 상기 제1 온도보다 높은 제2 온도로 가열하고 상기 제1 산화층이 형성된 상기 막의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 산화하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 순서
    를 컴퓨터에 의해 상기 기판 처리 장치에 실행시키는 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체.
  18. 히터가 내장된 기판 재치대의 기판 재치면의 상방(上方)에서 불순물이 도핑된 막을 포함하는 기판을 지지하도록 구성된 지지체에 의해 상기 기판 재치면과 이간되도록 기판을 지지한 상태에서 상기 기판을 승온하는 제1 승온 공정;
    상기 지지체에 의해 상기 기판을 지지한 상태에서 상기 제1 승온 공정에서 승온된 상기 기판의 표면을 제1 산소 함유 가스의 플라즈마에 의해 개질하여 두께가 1.6nm 이상인 제1 산화층을 형성하는 제1 산화 공정;
    상기 제1 산화층이 형성된 상기 기판을 상기 기판 재치면 상에 재치한 상태에서 상기 제1 산화층이 형성된 상기 기판을 승온하는 제2 승온 공정; 및
    상기 제1 승온 공정에서 승온된 상기 기판을 상기 기판 재치면 상에 재치한 상태에서 상기 제1 승온 공정에서 승온된 상기 기판의 표면을 제2 산소 함유 가스의 플라즈마에 의해 개질하여 상기 제1 산화층의 두께가 증대한 제2 산화층을 형성하는 제2 산화 공정
    을 포함하는 반도체 장치의 제조 방법.
  19. 삭제
  20. 삭제
  21. 삭제
KR1020217004681A 2018-09-13 2018-09-13 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 KR102516580B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034040 WO2020054038A1 (ja) 2018-09-13 2018-09-13 半導体装置の製造方法、基板処理装置、及びプログラム

Publications (2)

Publication Number Publication Date
KR20210032473A KR20210032473A (ko) 2021-03-24
KR102516580B1 true KR102516580B1 (ko) 2023-03-30

Family

ID=69776606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217004681A KR102516580B1 (ko) 2018-09-13 2018-09-13 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체

Country Status (5)

Country Link
US (1) US11908682B2 (ko)
JP (1) JP7165743B2 (ko)
KR (1) KR102516580B1 (ko)
CN (1) CN112740376B (ko)
WO (1) WO2020054038A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033912A (ko) * 2017-09-15 2020-03-30 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치
JP7411699B2 (ja) 2022-01-28 2024-01-11 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332245A (ja) * 1999-05-25 2000-11-30 Sony Corp 半導体装置の製造方法及びp形半導体素子の製造方法
JP2001308084A (ja) * 2000-04-26 2001-11-02 Tokyo Electron Ltd 熱処理装置及び被処理体の熱処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510172A (en) * 1984-05-29 1985-04-09 International Business Machines Corporation Technique for thin insulator growth
JP3305490B2 (ja) 1994-03-18 2002-07-22 株式会社リコー 半導体装置の製造方法
JP2000332009A (ja) * 1999-05-25 2000-11-30 Sony Corp 絶縁膜の形成方法及びp形半導体素子の製造方法
US7122488B2 (en) * 2004-03-15 2006-10-17 Sharp Laboratories Of America, Inc. High density plasma process for the formation of silicon dioxide on silicon carbide substrates
WO2007099922A1 (ja) * 2006-02-28 2007-09-07 Tokyo Electron Limited プラズマ酸化処理方法および半導体装置の製造方法
JP5089121B2 (ja) * 2006-09-29 2012-12-05 東京エレクトロン株式会社 シリコン酸化膜の形成方法およびプラズマ処理装置
JP5166297B2 (ja) 2009-01-21 2013-03-21 東京エレクトロン株式会社 酸化珪素膜の形成方法、半導体メモリ装置の製造方法およびコンピュータ読み取り可能な記憶媒体
JP2015015272A (ja) * 2013-07-03 2015-01-22 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP6456893B2 (ja) * 2016-09-26 2019-01-23 株式会社Kokusai Electric 半導体装置の製造方法、記録媒体および基板処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332245A (ja) * 1999-05-25 2000-11-30 Sony Corp 半導体装置の製造方法及びp形半導体素子の製造方法
JP2001308084A (ja) * 2000-04-26 2001-11-02 Tokyo Electron Ltd 熱処理装置及び被処理体の熱処理方法

Also Published As

Publication number Publication date
JPWO2020054038A1 (ja) 2021-08-30
US20210183645A1 (en) 2021-06-17
CN112740376A (zh) 2021-04-30
JP7165743B2 (ja) 2022-11-04
WO2020054038A1 (ja) 2020-03-19
CN112740376B (zh) 2024-01-30
US11908682B2 (en) 2024-02-20
KR20210032473A (ko) 2021-03-24

Similar Documents

Publication Publication Date Title
CN111096082B (zh) 基板处理装置、半导体装置的制造方法和记录介质
KR102315002B1 (ko) 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
US11908682B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
WO2018179352A1 (ja) 半導体装置の製造方法および記録媒体
KR102085199B1 (ko) 반도체 장치의 제조 방법, 기록 매체 및 기판 처리 장치
US10453676B2 (en) Semiconductor device manufacturing method and recording medium
TWI813714B (zh) 半導體裝置之製造方法、基板處理裝置及記錄媒體
CN110870047B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
JP7117354B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7170890B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
TWI833141B (zh) 半導體裝置之製造方法、基板處理方法、程式及基板處理裝置
JP7203869B2 (ja) 基板処理装置、半導体装置の製造方法、およびプログラム
US20230097621A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant