KR102515369B1 - 3차원 측정 장치 - Google Patents

3차원 측정 장치 Download PDF

Info

Publication number
KR102515369B1
KR102515369B1 KR1020217000301A KR20217000301A KR102515369B1 KR 102515369 B1 KR102515369 B1 KR 102515369B1 KR 1020217000301 A KR1020217000301 A KR 1020217000301A KR 20217000301 A KR20217000301 A KR 20217000301A KR 102515369 B1 KR102515369 B1 KR 102515369B1
Authority
KR
South Korea
Prior art keywords
measurement
unit
information
height information
reliability
Prior art date
Application number
KR1020217000301A
Other languages
English (en)
Other versions
KR20210016612A (ko
Inventor
노부아키 타바타
Original Assignee
야마하하쓰도키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 야마하하쓰도키 가부시키가이샤 filed Critical 야마하하쓰도키 가부시키가이샤
Publication of KR20210016612A publication Critical patent/KR20210016612A/ko
Application granted granted Critical
Publication of KR102515369B1 publication Critical patent/KR102515369B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

이 외관 검사 장치(100)(3차원 측정 장치)는 위상 시프트법에 의해 3차원 정보를 측정하는 제 1 측정부(30)와, 광 절단법에 의해 3차원 정보를 측정하는 제 2 측정부(40)와, 제 1 측정부 및 제 2 측정부의 양방의 측정 결과에 의거하여 측정 대상의 3차원 정보를 취득하는 제어 장치(50)를 구비한다.

Description

3차원 측정 장치
이 발명은 3차원 측정 장치에 관한 것이다.
종래, 3차원 측정 장치가 알려져 있다. 이러한 3차원 측정 장치는 예를 들면, 일본특허공개 2000-193432호 공보에 개시되어 있다.
상기 일본특허공개 2000-193432호 공보에는 라인 형상의 레이저광을 기준면에 대하여 비스듬한 방향으로부터 투영하여 촬상을 행하는 광 절단법에 의해 3차원 형상을 측정하는 측정부를 구비하는 3차원 측정 장치가 개시되어 있다.
일본특허공개 2000-193432호 공보
그러나, 상기 일본특허공개 2000-193432호 공보의 3차원 측정 장치에서는 라인 형상의 레이저광을 기준면에 대하여 비스듬한 방향으로부터 투영하고 있기 때문에 레이저광이 측정 대상의 3차원 형상에 의해 그림자가 되는 영역이 생겨버린다. 이 때문에 그림자의 영향에 의해 측정 대상의 3차원 형상을 정밀도 좋게 측정하는 것이 곤란하다는 문제점이 있다.
이 발명은 상기와 같은 과제를 해결하기 위해서 이루어진 것이며, 이 발명의 하나의 목적은 측정 대상의 3차원 정보를 정밀도 좋게 측정하는 것이 가능한 3차원 측정 장치를 제공하는 것이다.
이 발명의 하나의 국면에 의한 3차원 측정 장치는 위상 시프트법에 의해 3차원 정보를 측정하는 제 1 측정부와, 광 절단법에 의해 3차원 정보를 측정하는 제 2 측정부와, 제 1 측정부 및 제 2 측정부의 양방의 측정 결과에 의거하여 측정 대상의 3차원 정보를 취득하는 제어부를 구비한다. 또한, 위상 시프트법은 정현파 형상의 광 강도 분포를 갖는 등간격의 격자 형상의 명암 패턴(줄무늬 패턴광)을 측정 대상에 투영하고, 이 명암 패턴의 위치(위상)를 시프트시킨 복수의 화상을 촬상하고, 촬상한 복수의 화상에 있어서의 동일 부분의 화소값의 차이에 의거하여 측정 대상의 입체 형상(높이)을 산출하는 방법이다. 또한, 광 절단법은 라인 형상의 광을 측정 대상에 투영하고, 화상을 촬상하여 화상 내의 라인의 변형(시차)에 의거하여 측정 대상의 입체 형상(높이)을 산출하는 방법이다.
이 발명의 하나의 국면에 의한 3차원 측정 장치에서는 상기와 같이 구성함으로써 측정 대상을 광 절단법 및 위상 시프트법의 양방에 의해 측정하므로 광 절단법에 의한 광의 조사가 그림자가 되는 위치이어도 위상 시프트법의 측정에 의해 높이 정보를 보완할 수 있다. 또한, 광 절단법 및 위상 시프트법에 의한 복수의 방법에 의해 3차원 정보를 취득할 수 있으므로 3차원 정보의 취득 정밀도를 높일 수 있다. 이들에 의해 측정 대상의 3차원 정보를 정밀도 좋게 측정할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 제 1 측정부는 제 1 촬상부와, 제 1 촬상부에 의해 촬상하는 제 1 측정 패턴을 투영하는 제 1 투영부를 포함하고, 제 1 촬상부 및 제 1 투영부 중 일방은 기준면에 대하여 수직 방향으로 광축이 배치되고, 제 1 촬상부 및 제 1 투영부 중 타방은 일방의 광축 방향에 대하여 경사진 방향으로 광축이 배치되어 있음과 아울러, 복수 설치되어 있으며, 제 2 측정부는 기준면의 수직 방향과는 경사진 방향으로 광축이 배치되고, 텔레센트릭 광학계를 갖는 제 2 촬상부와, 기준면에 대하여 제 2 촬상부의 광축이 정반사한 방향의 위치에 배치되고, 제 2 촬상부에 의해 촬상하는 라인 형상의 제 2 측정 패턴을 투영하는 제 2 투영부를 포함한다. 이렇게 구성하면, 측정 대상이 경면이나 유리면 등의 반사면이었다고 해도 제 2 투영부로부터 투영된 제 2 측정 패턴을 정반사한 방향의 위치에 배치된 제 2 촬상부에 의해 확실하게 촬상할 수 있다. 또한, 제 2 촬상부는 텔레센트릭 광학계를 갖기 때문에 측정 대상의 반사면에 의해 반사된 제 2 측정 패턴을 광학계에 의해 변형시키는 일 없이 평행하게 촬상할 수 있다. 이것에 의해, 반사면을 갖는 측정 대상이어도 3차원 정보를 정밀도 좋게 측정할 수 있다. 또한, 제 1 측정부에 제 1 투영부 또는 제 1 촬상부를 복수 설치함으로써 제 1 측정 패턴을 투영하는 방향 또는 촬상하는 방향을 복수로 할 수 있다. 이것에 의해, 어떤 위치에 있어서, 일방의 방향으로부터의 투영에서는 그림자가 생길 수 있는 경우이어도 타방의 방향으로부터의 투영에서는 그림자가 생길 수 있는 것을 억제할 수 있다. 이것에 의해, 어떤 위치에 있어서의 3차원 정보를 확실하게 측정할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 제어부는 제 1 측정부의 측정에 의거하여 각 위치에 있어서의 높이를 나타내는 높이 정보, 및 각 위치에 있어서의 높이 정보의 신뢰도를 나타내는 신뢰도 정보를 취득하고, 제 2 측정부의 측정에 의거하여 높이 정보 및 신뢰도 정보를 취득함과 아울러, 제 1 측정부의 측정에 의한 높이 정보 및 신뢰도 정보와, 제 2 측정부의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성되어 있다. 이렇게 구성하면, 제 1 측정부의 측정에 의한 높이 정보와, 제 2 측정부의 측정에 의한 높이 정보가 크게 상이한 경우이어도 각각의 신뢰도 정보에 의거하여 보다 신뢰도가 높은 1개의 높이 정보를 취득할 수 있다.
이 경우, 바람직하게는 제 1 측정부는 복수의 방향으로부터 제 1 측정 패턴을 투영하여 3차원 정보를 측정하도록 구성되어 있고, 제어부는 제 1 측정부의 측정에 의거하여 복수의 높이 정보 및 신뢰도 정보를 취득함과 아울러 제 1 측정부의 측정에 의한 복수의 높이 정보 및 복수의 신뢰도 정보와, 제 2 측정부의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성되어 있다. 이렇게 구성하면, 위상 시프트법을 사용한 제 1 측정부에 의해 복수의 높이 정보를 취득하므로 보다 신뢰도가 높은 1개의 높이 정보를 취득할 수 있다.
상기 제 1 측정부가 복수의 방향으로부터 제 1 측정 패턴을 투영하여 3차원 정보를 측정하는 구성에 있어서, 바람직하게는 제어부는 제 2 측정부에 의해 측정한 신뢰도 정보의 신뢰도가 낮은 높이 정보를, 제 1 측정부에 의해 측정한 높이 정보에 의해 보완하도록 구성되어 있다. 이렇게 구성하면, 광 절단법을 사용한 제 2 측정부에 의한 측정에 있어서 그림자 등의 영향에 의해 신뢰도가 낮아지는 경우이어도 위상 시프트법을 사용한 제 1 측정부에 의한 측정에 의해 높이 정보를 보완할 수 있다.
이 경우, 바람직하게는 제어부는 제 1 측정부의 제 1 측정 패턴을 투영하는 방향이 측정 대상에 의해 그림자가 된다고 추정되는 경우, 그림자가 되는 방향으로부터의 측정 결과를 제외하고 높이 정보를 보완하도록 구성되어 있다. 이렇게 구성하면, 위상 시프트법에 의한 복수의 제 1 측정 패턴의 투영 방향 중 그림자의 영향을 받아서 정밀도가 낮아지는 투영 방향에 의한 측정 결과를 제외할 수 있으므로 위상 시프트법을 사용한 제 1 측정부에 의해 측정한 복수의 높이 정보로부터 광 절단법을 사용한 제 2 측정부에 의한 높이 정보를 보다 정밀도 좋게 보완할 수 있다.
상기 제어부가 제 1 측정부의 측정에 의한 높이 정보 및 신뢰도 정보와, 제 2 측정부의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하는 구성에 있어서, 바람직하게는 제어부는 제 1 측정부의 복수의 측정에 의한 휘도차에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성되어 있다. 이렇게 구성하면, 위상 시프트법을 사용한 제 1 측정부에 의한 복수의 측정에 의한 휘도차에 의거하여 신뢰도 정보를 용이하게 취득할 수 있다.
상기 제어부가 제 1 측정부의 측정에 의한 높이 정보 및 신뢰도 정보와, 제 2 측정부의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하는 구성에 있어서, 바람직하게는 제어부는 제 2 측정부의 측정에 의한 휘도값에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성되어 있다. 이렇게 구성하면, 광 절단법을 사용한 제 2 측정부에 의한 휘도값에 의거하여 신뢰도 정보를 용이하게 취득할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 제어부는 제 1 측정부의 측정 결과에 의한 돌기 형상을, 제 2 측정부의 측정 결과에 의거하여 노이즈인지 구조물인지를 판단하도록 구성되어 있다. 이렇게 구성하면, 제 1 측정부의 위상 시프트법의 촬상에 의해 돌기 형상으로 나타나는 허상을 제 2 측정부의 광 절단법에 의해 노이즈라고 판단할 수 있으므로, 노이즈를 제거함으로써 높이 정보를 보다 정밀도 좋게 취득할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 제어부는 제 1 측정부에 의한 측정 전에, 제 2 측정부에 의해 측정을 행하고, 제 2 측정부의 측정 결과에 의거하여 제 1 측정부의 측정 높이 위치를 조정하는 제어를 행하도록 구성되어 있다. 이렇게 구성하면, 광 절단법을 사용한 제 2 측정부에 의해 측정한 3차원 정보에 의거하여 측정 대상의 3차원 형상을 따르도록 위상 시프트법을 사용한 제 1 측정부에 의한 측정 높이 위치를 조정할 수 있으므로 화상의 핀트를 맞추기 쉽게 할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 제어부는 제 1 측정부에 의한 측정 전에, 제 2 측정부에 의해 측정을 행하고, 제 2 측정부의 측정 결과에 의거하여 측정 대상의 평면 위치 정보를 취득하고, 제 1 측정부에 의한 측정의 평면 위치를 조정하는 제어를 행하도록 구성되어 있다. 이렇게 구성하면, 위상 시프트법을 사용한 제 1 측정부에 의해 평면 위치 정보를 취득하는 동작을 생략할 수 있으므로 제 1 측정부에 있어서 다시 평면 위치 정보를 취득하는 경우에 비해 측정 동작에 요하는 시간이 길어지는 것을 억제할 수 있다.
상기 하나의 국면에 의한 3차원 측정 장치에 있어서, 바람직하게는 측정 대상은 전자 부품이 실장된 기판이다. 이렇게 구성하면, 전자 부품이 실장된 기판의 3차원 정보를 정밀도 좋게 측정할 수 있다.
본 발명에 의하면, 상기와 같이 측정 대상의 3차원 정보를 정밀도 좋게 측정할 수 있다.
도 1은 본 발명의 일실시형태에 의한 외관 검사 장치를 나타낸 블록도이다.
도 2는 본 발명의 일실시형태에 의한 외관 검사 장치의 제 2 측정부를 나타낸 도면이다.
도 3은 본 발명의 일실시형태에 의한 외관 검사 장치의 제 1 측정부를 나타낸 도면이다.
도 4는 본 발명의 일실시형태에 의한 외관 검사 장치의 높이 정보의 취득을 설명하기 위한 도면이다.
도 5는 본 발명의 일실시형태에 의한 외관 검사 장치의 제 2 측정부에 의한 높이 측정을 설명하기 위한 도면이다.
도 6은 본 발명의 일실시형태에 의한 외관 검사 장치의 제 2 측정부에 의한 높이 측정의 신뢰도를 설명하기 위한 도면이다.
도 7은 본 발명의 일실시형태에 의한 외관 검사 장치의 제 2 측정부에 의한 높이 측정의 신뢰도의 판정을 설명하기 위한 도면이다.
도 8은 본 발명의 일실시형태에 의한 외관 검사 장치의 높이 정보의 노이즈의 제거를 설명하기 위한 도면이다.
도 9는 본 발명의 일실시형태에 의한 외관 검사 장치의 측정 시의 그림자 영역을 설명하기 위한 도면이다.
도 10은 본 발명의 일실시형태에 의한 외관 검사 장치의 측정 시의 그림자 영역의 판정을 설명하기 위한 도면이다.
도 11은 본 발명의 일실시형태에 의한 외관 검사 장치의 측정 시의 그림자 영역의 측정 결과의 제외를 설명하기 위한 도면이다.
도 12는 본 발명의 일실시형태에 의한 외관 검사 장치의 측정 결과의 그루핑을 설명하기 위한 도면이다.
도 13은 본 발명의 일실시형태에 의한 외관 검사 장치의 광 절단법에 의한 측정 결과의 신뢰도가 낮은 경우의 측정 결과의 통합을 설명하기 위한 도면이다.
도 14는 본 발명의 일실시형태에 의한 외관 검사 장치의 광 절단법에 의한 측정 결과의 신뢰도가 중간 정도인 경우의 측정 결과의 통합을 설명하기 위한 도면이다.
도 15는 본 발명의 일실시형태에 의한 외관 검사 장치의 측정 결과에 벗어남값이 있는 경우의 측정 결과의 통합을 설명하기 위한 도면이다.
도 16은 본 발명의 일실시형태에 의한 외관 검사 장치의 제어 장치에 의한 3차원 정보 취득 처리를 설명하기 위한 플로우차트이다.
도 17은 본 발명의 일실시형태에 의한 외관 검사 장치의 제어 장치에 의한 시야마다 높이 정보 합성 처리의 제 1 예를 설명하기 위한 플로우차트이다.
도 18은 본 발명의 일실시형태에 의한 외관 검사 장치의 제어 장치에 의한 시야마다 높이 정보 합성 처리의 제 2 예를 설명하기 위한 플로우차트이다.
도 19는 본 발명의 일실시형태에 의한 외관 검사 장치의 제어 장치에 의한 화상의 통합 처리를 설명하기 위한 플로우차트이다.
도 20은 본 발명의 일실시형태의 제 1 변형예에 의한 외관 검사 장치의 제 2 측정부를 나타낸 도면이다.
도 21은 본 발명의 일실시형태의 제 2 변형예에 의한 외관 검사 장치의 제 2 측정부를 나타낸 도면이다.
도 22는 본 발명의 일실시형태의 제 3 변형예에 의한 외관 검사 장치의 제 1 측정부를 나타낸 도면이다.
이하, 본 발명의 실시형태를 도면에 의거하여 설명한다.
도 1~도 15를 참조하여 본 발명의 일실시형태에 의한 외관 검사 장치(100)의 구성에 대해서 설명한다. 또한, 외관 검사 장치(100)는 청구범위의 「3차원 측정 장치」의 일례이다.
도 1에 나타내는 바와 같이, 본 실시형태에 의한 외관 검사 장치(100)는 기판 제조 프로세스에 있어서의 제조 중 또는 제조 후의 프린트 기판(이하, 「기판」이라고 함)(110)을 검사 대상으로 하여 촬상하고, 기판(110) 및 기판(110) 상의 전자 부품(111)(도 2 참조)에 대한 각종 검사를 행하는 장치이다. 외관 검사 장치(100)는 전자 부품(111)을 기판(110)에 실장하여 회로 기판을 제조하기 위한 기판 제조 라인의 일부를 구성하고 있다. 또한, 기판(110)은 청구범위의 「측정 대상」의 일례이다.
기판 제조 프로세스의 개요로서는 우선 배선 패턴이 형성된 기판(110) 상에, 핸더 인쇄 장치(도시하지 않음)에 의해 소정의 패턴으로 핸더(핸더 페이스트)의 인쇄(도포)가 행해진다(핸더 인쇄 공정). 계속해서, 핸더 인쇄 후의 기판(110)에, 표면 실장기(도시하지 않음)에 의해 전자 부품(111)이 탑재(실장)됨(실장 공정)으로써 전자 부품(111)의 단자부가 핸더 상에 배치된다. 그 후, 실장된 기판(110)이 리플로우 로(爐)(도시하지 않음)에 반송되어 핸더의 용융 및 경화(냉각)가 행해짐(리플로우 공정)으로써 전자 부품(111)의 단자부가 기판(110)의 배선에 대하여 땜납 접합된다. 이것에 의해, 전자 부품(111)이 배선에 대하여 전기적으로 접속된 상태로 기판(110) 상에 고정되고, 기판 제조가 완료된다.
외관 검사 장치(100)는 예를 들면, 핸더 인쇄 공정 후의 기판(110) 상의 핸더의 인쇄 상태의 검사나, 실장 공정 후에 있어서의 전자 부품(111)의 실장 상태의 검사, 또는 리플로우 공정 후에 있어서의 전자 부품(111)의 실장 상태의 검사 등에 사용된다. 따라서, 외관 검사 장치(100)는 기판 제조 라인에 있어서 하나 또는 복수 설치된다. 핸더의 인쇄 상태로서는 설계 상의 인쇄 위치에 대한 인쇄 위치 어긋남, 핸더의 형상, 체적 및 높이(도포량), 브리지(단락)의 유무 등의 검사가 행해진다. 전자 부품(111)의 실장 상태로서는 전자 부품(111)의 종류 및 배향(극성)이 적정한지의 여부, 전자 부품(111)의 설계 상의 실장 위치에 대한 위치 어긋남의 양이 허용 범위 내인지, 단자부의 땜납 접합 상태가 정상인지의 여부 등의 검사가 행해진다. 또한, 각 공정 간에서의 공통의 검사 내용으로서 티끌이나 그 외의 부착물 등의 이물의 검출도 행해진다.
도 1에 나타내는 바와 같이, 외관 검사 장치(100)는 기판(110)을 반송하기 위한 기판 반송 컨베이어(10)와, 기판 반송 컨베이어(10)의 상방을 XY방향(수평 방향) 및 Z방향(상하방향)으로 이동가능한 헤드 이동 기구(20)와, 헤드 이동 기구(20)에 의해 유지된 제 1 측정부(30) 및 제 2 측정부(40)와, 외관 검사 장치(100)의 제어를 행하는 제어 장치(50)를 구비하고 있다. 또한, 제어 장치(50)는 청구범위의 「제어부」의 일례이다.
기판 반송 컨베이어(10)는 기판(110)을 수평 방향으로 반송함과 아울러, 소정의 검사 위치에서 기판(110)을 정지시켜서 유지하는 것이 가능하도록 구성되어 있다. 또한, 기판 반송 컨베이어(10)는 검사가 종료된 기판(110)을 소정의 검사 위치로부터 수평 방향으로 반송하고, 외관 검사 장치(100)로부터 기판(110)을 반출하는 것이 가능하도록 구성되어 있다.
헤드 이동 기구(20)는 기판 반송 컨베이어(10)의 상방에 설치되고, 예를 들면 볼 나사축과 서보모터를 사용한 직교 3축(XYZ축) 로봇에 의해 구성되어 있다. 헤드 이동 기구(20)는 이들의 X축, Y축 및 Z축의 구동을 행하기 위한 X축 모터, Y축 모터 및 Z축 모터를 구비하고 있다. 이들의 X축 모터, Y축 모터 및 Z축 모터에 의해 헤드 이동 기구(20)는 제 1 측정부(30) 및 제 2 측정부(40)를 기판 반송 컨베이어(10)(기판(110))의 상방에서 XY방향(수평 방향) 및 Z방향(상하방향)으로 이동시키는 것이 가능하도록 구성되어 있다.
제 1 측정부(30)는 위상 시프트법에 의해 3차원 정보를 측정하도록 구성되어 있다. 제 1 측정부(30)는 제 1 촬상부(31)와 제 1 투영부(32)를 구비하고 있다. 이 제 1 측정부(30)가 헤드 이동 기구(20)에 의해 기판(110)의 상방의 소정 위치로 이동됨과 아울러, 제 1 촬상부(31)나 제 1 투영부(32) 등을 사용함으로써 제 1 측정부(30)가 기판(110) 및 기판(110) 상의 전자 부품(111) 등의 외관 검사를 위한 촬상을 행하도록 구성되어 있다.
제 1 촬상부(31)는 제 1 투영부(32)에 의해 줄무늬 패턴광이 조사된 기판(110)을 촬상하도록 구성되어 있다. 제 1 촬상부(31)는 CCD 이미지 센서나 CMOS 이미지 센서 등의 촬상 소자를 갖고 있다. 제 1 촬상부(31)는 대략 직사각형 형상의 촬상 영역에 있어서 기판(110)을 촬상가능하도록 구성되어 있다. 또한, 제 1 촬상부(31)는 수평 방향의 기준면에 대하여 수직 방향으로 광축(311)이 배치되어 있다. 즉, 제 1 촬상부(31)는 기판(110)의 상면의 2차원 화상을 대략 수직 상방의 위치로부터 촬상하도록 구성되어 있다. 이 제 1 촬상부(31)에 의해, 제 1 투영부(32)에 의한 조명광 하에서는 2차원 화상이 얻어진다.
제 1 투영부(32)는 복수 설치되어 있다. 또한, 복수의 제 1 투영부(32)는 각각 제 1 촬상부(31)의 광축(311) 방향에 대하여 경사진 방향으로부터 제 1 촬상부(31)에 의해 촬상하는 제 1 측정 패턴을 투영하도록 구성되어 있다. 즉, 제 1 측정부(30)는 복수의 방향으로부터 제 1 측정 패턴을 투영하여 3차원 정보를 측정하도록 구성되어 있다. 제 1 투영부(32)는 도 3에 나타내는 바와 같이, 상방으로부터 볼 때 제 1 촬상부(31)의 주위를 둘러싸도록 복수개(4개) 배치되어 있다. 또한, 4개의 제 1 투영부(32)는 촬상 중심(제 1 촬상부(31))으로부터 등거리의 위치에 대략 등각도(약 90도) 간격으로 배열되어 있다. 4개의 제 1 투영부(32)는 A1방향, A2방향, A3방향, A4방향으로부터 각각 제 1 측정 패턴을 투영하도록 구성되어 있다. 또한, 제 1 투영부(32)는 도 1에 나타내는 바와 같이 각각 제 1 촬상부(31)의 광축(311)에 대하여 비스듬한 방향으로부터 제 1 측정 패턴을 투영하도록 구성되어 있다. 또한, 제 1 투영부(32)는 제 1 측정 패턴으로서 정현파 형상의 광 강도 분포를 갖는 등간격의 격자 형상의 명암 패턴(줄무늬 패턴광)을 투영하도록 구성되어 있다. 또한, 제 1 투영부(32)는 이 명암 패턴의 위치(위상)를 시프트시켜서 투영하도록 구성되어 있다.
제 2 측정부(40)는 광 절단법에 의해 3차원 정보를 측정하도록 구성되어 있다. 제 2 측정부(40)는 제 2 촬상부(41)와 제 2 투영부(42)를 구비하고 있다. 이 제 2 측정부(40)가 헤드 이동 기구(20)에 의해 기판(110)의 상방의 소정 위치로 이동됨과 아울러, 제 2 촬상부(41)나 제 2 투영부(42) 등을 사용함으로써 제 2 측정부(40)가 기판(110) 및 기판(110) 상의 전자 부품(111) 등의 외관 검사를 위한 촬상을 행하도록 구성되어 있다.
제 2 촬상부(41)는 제 2 투영부(42)에 의해 라인 형상의 패턴광이 조사된 기판(110)을 촬상하도록 구성되어 있다. 제 2 촬상부(41)는 CCD 이미지 센서나 CMOS 이미지 센서 등의 촬상 소자를 갖고 있다. 또한, 제 2 촬상부(41)는 수평 방향의 기준면의 수직 방향과는 경사진 방향으로 광축이 배치되어 있다. 또한, 제 2 촬상부(41)는 도 2에 나타내는 바와 같이 텔레센트릭 광학계(411)를 갖고 있다. 텔레센트릭 광학계(411)는 광축에 평행한 광을 제 2 촬상부(41)에 입사시키도록 구성되어 있다.
제 2 투영부(42)는 수평 방향의 기준면에 대하여 제 2 촬상부(41)의 광축이 정반사한 방향의 위치에 배치되어 있다. 또한, 제 2 투영부(42)는 제 2 촬상부(41)에 의해 촬상하는 라인 형상의 제 2 측정 패턴을 투영하도록 구성되어 있다. 또한, 제 2 투영부(42)는 레이저광을 조사하도록 구성되어 있다. 또한, 제 2 투영부(42)는 라인 형상의 레이저광을 텔레센트릭(평행)으로 조사하도록 구성되어 있다. 제 2 투영부(42) 및 제 2 촬상부(41)는 라인 형상의 레이저광을 주사(이동)하면서 기판(110)을 촬상하도록 구성되어 있다. 도 2에 나타내는 바와 같이, 제 2 투영부(42)는 수직 방향에 대하여 각도(θ)만큼 비스듬하게 광축이 배치되어 있다. 또한, 제 2 촬상부(41)는 수직 방향에 대하여 제 2 투영부(42)와는 반대측에 각도(θ)만큼 비스듬히 광축이 배치되어 있다. 이것에 의해, 전자 부품(111)이 경면으로 구성되어 제 2 측정 패턴이 대략 전반사되는 경우이어도 제 2 촬상부(41)에 의해 제 2 측정 패턴을 촬상하는 것이 가능하다.
도 1에 나타내는 바와 같이, 제어 장치(50)는 외관 검사 장치(100)의 각 부를 제어하도록 구성되어 있다. 제어 장치(50)는 제어부(51)와, 기억부(52)와, 화상 처리부(53)와, 촬상 제어부(54)와, 투영 제어부(55)와, 모터 제어부(56)를 포함하고 있다.
제어부(51)는 논리 연산을 실행하는 CPU(중앙 처리 장치) 등의 프로세서, CPU를 제어하는 프로그램 등을 기억하는 ROM(Read Only Memory) 및 장치의 동작 중에 각종 데이터를 일시적으로 기억하는 RAM(Random Access Memory) 등으로 구성되어 있다. 제어부(51)는 ROM에 기억되어 있는 프로그램이나, 기억부(52)에 격납된 소프트웨어(프로그램)에 따라 화상 처리부(53), 촬상 제어부(54), 투영 제어부(55)및 모터 제어부(56)를 통해 외관 검사 장치(100)의 각 부를 제어하도록 구성되어 있다. 그리고, 제어부(51)는 제 1 측정부(30) 및 제 2 측정부(40)를 제어하여 기판(110)에 대한 각종 외관 검사를 행한다.
기억부(52)는 각종 데이터의 기억 및 제어부(51)에 의한 판독이 가능한 불휘발성의 기억 장치로 이루어진다. 기억부(52)에는 제 1 촬상부(31) 및 제 2 촬상부(41)에 의해 촬상된 촬상 화상 데이터, 기판(110)에 실장되는 전자 부품(111)의 설계 상의 위치 정보를 정한 기판 데이터, 기판(110)에 실장되는 전자 부품(111)의 형상을 정한 부품 형상 데이터베이스, 제 1 투영부(32) 및 제 2 투영부(42)가 생성하는 투영 패턴(제 1 측정 패턴 및 제 2 측정 패턴)의 정보 등이 기억되어 있다. 제어부(51)는 제 1 측정부(30) 및 제 2 측정부(40)에 의한 3차원 형상 측정에 의한 3차원(입체 형상) 검사에 의거하여 기판(110) 상의 핸더의 검사나, 기판(110)에 실장된 전자 부품(111)의 실장 상태 검사, 및 완성 상태의 기판(110)의 검사 등을 행한다.
화상 처리부(53)는 제 1 촬상부(31) 및 제 2 촬상부(41)에 의해 촬상된 촬상 화상(촬상 신호)을 화상 처리하여 기판(110)의 전자 부품(111)이나 땜납 접합부(핸더)를 인식(화상 인식)하는데 적합한 화상 데이터를 생성하도록 구성되어 있다.
촬상 제어부(54)는 제어부(51)로부터 출력되는 제어 신호에 의거하여 제 1 촬상부(31) 및 제 2 촬상부(41)로부터 소정의 타이밍에서 촬상 신호의 판독을 행함과 아울러, 판독한 촬상 신호를 화상 처리부(53)에 출력하도록 구성되어 있다. 투영 제어부(55)는 제어부(51)로부터 출력되는 제어 신호에 의거하여 제 1 투영부(32) 및 제 2 투영부(42)에 의한 투영의 제어를 행하도록 구성되어 있다.
모터 제어부(56)는 제어부(51)로부터 출력되는 제어 신호에 의거하여 외관 검사 장치(100)의 각 서보모터(헤드 이동 기구(20)의 X축 모터, Y축 모터 및 Z축 모터, 기판 반송 컨베이어(10)를 구동하기 위한 모터(도시 생략) 등)의 구동을 제어하도록 구성되어 있다. 또한, 모터 제어부(56)는 각 서보모터의 엔코더(도시하지 않음)로부터의 신호에 의거하여 제 1 측정부(30), 제 2 측정부(40) 및 기판(110) 등의 위치를 취득하도록 구성되어 있다.
여기서, 본 실시형태에서는 제어 장치(50)는 제 1 측정부(30) 및 제 2 측정부(40)의 양방의 측정 결과에 의거하여 측정 대상의 3차원 정보를 취득하도록 구성되어 있다.
구체적으로는 제어 장치(50)는 도 4에 나타내는 바와 같이 제 1 측정부(30)의 측정에 의거하여 각 위치에 있어서의 높이를 나타내는 높이 정보, 및 각 위치에 있어서의 높이 정보의 신뢰도를 나타내는 신뢰도 정보를 취득한다. 또한, 제어 장치(50)는 제 2 측정부(40)의 측정에 의거하여 높이 정보 및 신뢰도 정보를 취득한다. 그리고, 제어 장치(50)는 제 1 측정부(30)의 측정에 의한 높이 정보 및 신뢰도 정보와, 제 2 측정부(40)의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성되어 있다.
우선, 제어 장치(50)는 제 2 측정부(40)의 광 절단법에 의해 광 절단 높이 정보를 취득한다. 제 2 측정부(40)는 소정의 스캔 폭으로 레이저 스캔을 행하여 기판(110) 전체의 3차원 정보를 측정한다. 높이 정보는 각 위치(화소에 대응)마다 높이에 관한 수치 정보를 포함하고 있다. 또한, 제어 장치(50)는 광 절단 신뢰도 정보를 취득한다. 신뢰도 정보는 각 위치(화소에 대응)마다 그 위치에 있어서의 높이의 신뢰도에 관한 정보를 포함하고 있다. 예를 들면, 신뢰도에 관한 정보는 고, 중, 저로 3단계로 분류되어 있다.
이어서, 제어 장치(50)는 제 1 측정부(30)의 위상 시프트법에 의해 위상 시프트 높이 정보를 취득한다. 제 1 측정부(30)는 기판(110) 상의 필요한 위치를 순차 촬상한다. 이 경우, 제 1 측정부(30)는 4개의 제 1 투영부(32)에 의해 투영을 행하면서 제 1 촬상부(31)에 의해 촬상을 행하기 때문에 1개의 위치에 대해서 4개의 높이 정보 및 신뢰도 정보가 얻어진다. 즉, 제어 장치(50)는 제 1 측정부(30)의 측정에 의거하여 복수의 높이 정보 및 신뢰도 정보를 취득한다.
그리고, 제어 장치(50)는 제 1 측정부(30)의 측정에 의한 복수의 높이 정보 및 복수의 신뢰도 정보와, 제 2 측정부(40)의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성되어 있다.
제 1 측정부(30)에 의한 위상 시프트법에서는 정현파 형상의 광 강도 분포를 갖는 등간격의 격자 형상의 명암 패턴(줄무늬 패턴광)을 측정 대상에 투영하고, 이 명암 패턴의 위치(위상)를 시프트시킨 복수의 화상을 촬상하고, 촬상한 복수의 화상에 있어서의 동일 부분의 화소값의 차이에 의거하여 측정 대상의 입체 형상(높이)을 산출한다.
제 1 측정부(30)에 의한 위상 시프트법에서는 제어 장치(50)는 제 1 측정부(30)의 복수의 측정에 의한 휘도차에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성되어 있다. 즉, 제어 장치(50)는 위상을 시프트 시킨 복수의 측정에 의한 휘도차에 의거하여 신뢰도 정보를 취득하도록 구성되어 있다. 구체적으로는 위상을 π/2씩 시프트시키면서 4회 촬상을 행했을 경우, 각 휘도값을 d0, d1, d2 및 d3으로 한다. 위상 시프트각(α)은 α=atan((d2-d0)/(d3-d1)로 산출된다. 또한, 신뢰도(R)는 R=√((d2-d0)2+(d3-d1)2)로 산출된다.
제 2 측정부(40)에 의한 광 절단법에서는 라인 형상의 광을 측정 대상에 투영하고, 화상을 촬상하여 화상 내의 라인의 변형(시차)에 의거하여 측정 대상의 입체 형상(높이)을 산출한다. 예를 들면, 도 5에 나타내는 바와 같이 전자 부품(111)의 상면의 패턴과, 기판(110)의 상면의 패턴에서는 촬상면에 있어서 시차(P)만큼 어긋난다. 이 시차(P)를 이용해서 전자 부품(111)의 높이(h)는 h=P/2sinθ로 산출된다.
제 2 측정부(40)에 의한 광 절단법에서는 제어 장치(50)는 제 2 측정부(40)의 측정에 의한 휘도값에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성되어 있다. 구체적으로는 도 6에 나타내는 바와 같이 기판(110) 상에 경면을 갖는 전자 부품(111)이 탑재되어 있는 경우, 전자 부품(111) 상을 반사한 레이저광은 경면 반사하여 제 2 촬상부(41)에 도달한다. 이 경우, 도 7에 나타내는 바와 같이, 동일 라인 상에 있어서의 휘도값의 피크는 커진다. 그리고, 휘도값의 피크가 신뢰도 판정 임계값의 「고」보다 큰 경우, 제어 장치(50)는 그 위치에 있어서의 높이 정보의 신뢰도를 「고」로 한다.
또한, 도 6에 나타내는 바와 같이 기판(110)을 반사한 레이저광은 확산하여 제 2 촬상부(41)에 도달한다. 이 경우, 도 7에 나타내는 바와 같이, 동일 라인 상에 있어서의 휘도값의 피크는 중간 정도가 된다. 그리고, 휘도값의 피크가 신뢰도판정 임계값의 「고」보다 작고 「중」 이상인 경우, 제어 장치(50)는 그 위치에 있어서의 높이 정보의 신뢰도를 「중」으로 한다. 또한, 신뢰도가 「중」으로 되는 것은 경면 이외의 부품의 위치 등도 포함된다.
또한, 도 6에 나타내는 바와 같이 전자 부품(111)의 그림자가 되는 부분에서는 레이저광은 제 2 촬상부(41)에 도달하지 않는다. 이 경우, 도 7에 나타내는 바와 같이, 동일 라인 상에 있어서의 휘도값의 피크는 낮아진다. 그리고, 휘도값의 피크가 신뢰도 판정 임계값의 「중」보다 작은 경우, 제어 장치(50)는 그 위치에 있어서의 높이 정보의 신뢰도를 「저」로 한다. 또한, 신뢰도가 「저」로 되는 것은 전자 부품(111)의 그림자나 구멍, 오목부 등이 포함된다. 또한, 제 2 투영부(42)의 레이저광의 광량을 변경하여 보다 크게 함으로써 기판(110) 표면의 반사광의 휘도를 신뢰도가 높아지도록 할 수도 있다. 그러나, 그 경우에는 경면의 반사광의 휘도가 지나치게 커지기 때문에 제 2 촬상부(41)의 수광 상태가 포화해버려 정확한 측정을 할 수 없어질 우려가 있다. 따라서, 레이저광의 광량을 경면에서의 반사광의 휘도가 측정에 충분하며 제 2 촬상부(41)의 수광 상태가 포화되지 않는 신뢰도가 높아지는 적당한 것으로 하는 것이 바람직하다. 이 경우에는 기판(110) 표면이나 경면이 아닌 부품의 상면에서는 반사광의 휘도가 낮아지고, 신뢰도로서는 중의 레벨로 되기 쉽다. 경우에 따라서는 경면의 반사광도 기판(110) 표면 등의 반사광의 양자와도 신뢰도가 높아지는 휘도이며, 카메라의 수광 상태도 포화되지 않도록 할 수도 있다.
제어 장치(50)는 도 8에 나타내는 바와 같이 제 1 측정부(30)의 측정 결과에 의한 돌기 형상을 제 2 측정부(40)의 측정 결과에 의거하여 노이즈인지 구조물인지를 판단하도록 구성되어 있다. 즉, 도 8에 나타내는 바와 같이 위상 시프트법에서는 관측된 돌기 형상이 광 절단법에 의해 관측되지 않는 경우는 제어 장치(50)는 노이즈로 판단하여 제거한다. 또한, 위상 시프트법으로 관측되고 또한 광 절단법으로도 관측되었을 경우, 제어 장치(50)는 돌기 형상이 구조물(전자 부품(111))이라고 판단하여 노이즈 제거의 대상 외로 한다. 예를 들면, 위상 시프트법에 있어서의 노이즈는 땜납 필렛의 곡면에 주변이 비침으로써 발생한다. 구체적으로는 부품 접합부의 땜납 필렛은 반경면(半鏡面)의 곡면이 된다. 그리고, 땜납 필렛의 부분에 주변의 기판(110)면이나 부품이 줄무늬 패턴과 함께 비친다. 이 때문에 땜납 필렛부에 주변 환경의 위상 줄무늬가 관측되어 노이즈 요인이 된다.
또한, 위상 시프트법에 있어서의 노이즈는 다중 반사에 의해서도 발생한다. 예를 들면, 부품 측면에서 반사된 줄무늬가 주위의 기판(110)면이나 부품 상에 투영된다(2차 반사 줄무늬). 이 경우, 상기 영역에서는 1차 줄무늬에 2차 줄무늬가 겹쳐 노이즈의 요인이 된다. 상기와 같은 노이즈의 발생이, 복수의 다른 높이의 측정값이 측정되는 한 원인으로 생각된다.
제어 장치(50)는 도 9~도 11에 나타내는 바와 같이 제 2 측정부(40)에 의해 측정한 신뢰도 정보의 신뢰도가 낮은 높이 정보를 제 1 측정부(30)에 의해 측정한 높이 정보에 의해 보완하도록 구성되어 있다. 구체적으로는 제어 장치(50)는 제 2 투영부(42)에 의한 레이저광이 그림자가 되는 것과 같은 신뢰도가 낮은 위치에 있어서의 높이 정보를 제 1 측정부(30)의 위상 시프트법에 의해 측정한 높이 정보에 의해 보완한다.
또한, 제어 장치(50)는 그림자 영역의 주변의 영역(B1~B4)의 높이를 비교하여 어느 방향에 의한 투영이 그림자가 되는지를 판단한다. 그리고, 제어 장치(50)는 제 1 측정부(30)의 제 1 측정 패턴을 투영하는 방향이 측정 대상에 의해 그림자가 된다고 추정되는 경우, 그림자가 되는 방향으로부터의 측정 결과를 제외하고 높이 정보를 보완하도록 구성되어 있다.
구체적으로는, 도 10에 나타내는 바와 같이 제어 장치(50)는 그림자 영역의 우측의 영역(B2(B4))의 높이가 좌측의 영역(B1(B3))보다 높은 경우는 우측으로부터의 투영이 그림자가 된다고 판단한다. 즉, 제어 장치(50)는 도 11에 나타내는 바와 같이 A1방향의 제 1 투영부(32)로부터의 투영이 그림자가 된다고 판단한다. 이 경우, 이 그림자 영역에 있어서 A1방향의 제 1 투영부(32)로부터의 투영을 촬상한 화상은 화상의 보완(통합)에 사용되지 않는다.
또한, 제어 장치(50)는 그림자 영역의 좌측의 영역(B1(B3))의 높이가 우측의 영역(B2(B4))보다 높은 경우는 좌측으로부터의 투영이 그림자가 된다고 판단한다. 즉, 제어 장치(50)는 A3방향의 제 1 투영부(32)로부터의 투영이 그림자가 된다고 판단한다. 이 경우, 이 그림자 영역에 있어서 A3방향의 제 1 투영부(32)로부터의 투영을 촬상한 화상은 화상의 보완(통합)에 사용되지 않는다.
또한, 제어 장치(50)는 그림자 영역의 좌측의 영역(B1(B3))의 높이와 우측의 영역(B2(B4))이 동일 높이인 경우는 우측으로부터의 투영 및 좌측으로부터의 투영이 그림자가 된다고 판단한다. 즉, 제어 장치(50)는 A1방향 및 A3방향의 제 1 투영부(32)로부터의 투영이 그림자가 된다고 판단한다. 이 경우, 이 그림자 영역에 있어서 A1방향 및 A3방향의 제 1 투영부(32)로부터의 투영을 촬상한 화상은 화상의 보완(통합)에 사용되지 않는다.
또한, 제어 장치(50)는 제 1 측정부(30)에 의한 측정 전에 제 2 측정부(40)에 의해 측정하는 제어를 행하도록 구성되어 있다. 또한, 제어 장치(50)는 제 2 측정부(40)의 측정 결과에 의거하여 제 1 측정부(30)의 측정 높이 위치를 조정하는 제어를 행하도록 구성되어 있다. 즉, 제어 장치(50)는 제 2 측정부(40)에 의해 측정한 기판(110)의 높이 위치에 의거하여 제 1 측정부(30)에 의한 촬상의 핀트가 맞춰지기 쉬운 위치에 제 1 측정부(30)의 높이 위치를 조정한다.
또한, 제어 장치(50)는 제 1 측정부(30)에 의한 측정 전에 제 2 측정부(40)에 의해 측정을 행하고, 제 2 측정부(40)의 측정 결과에 의거하여 측정 대상의 평면 위치 정보를 취득하도록 구성되어 있다. 또한, 제어 장치(50)는 제 1 측정부(30)에 의한 측정의 평면 위치를 조정하는 제어를 행하도록 구성되어 있다. 구체적으로는 제어 장치(50)는 제 2 측정부(40)에 의한 촬상에 의거하여 기판(110)의 피듀셜 마크를 인식한다. 그리고, 제어 장치(50)는 인식한 피듀셜 마크에 의거하여 제 1 측정부(30)에 의한 측정하는 수평 방향의 위치를 조정한다.
또한, 제어 장치(50)는 각 위치(주목 화소)에 있어서 제 1 측정부(30)에 의해 측정한 복수의 측정값(높이 정보)과, 제 2 측정부(40)에 의해 측정한 측정값(높이 정보)을 통합하여 1개의 측정값(높이 정보)을 취득하도록 구성되어 있다. 예를 들면, 도 12에 나타내는 바와 같이 제어 장치(50)는 제 1 측정부(30)에 의해 측정한 측정값(높이 정보)(P1, P2, P3 및 P4)과, 제 2 측정부(40)에 의해 측정한 측정값(높이 정보)(L1)을 그루핑하고 나서 통합한다. 그루핑에서는 각 측정값을 중심으로 데이터 간 범위 임계값 내의 측정값이 동일 그룹이 된다. 측정값(L1)의 그룹은 측정값(L1)만(1 데이터)의 그룹이 된다. 측정값(P1)의 그룹은 측정값(P1 및 P2)(2 데이터)의 그룹이 된다. 측정값(P2)의 그룹은 측정값(P1, P2 및 P3)(3 데이터)의 그룹이 된다. 측정값(P3)의 그룹은 측정값(P2 및 P3)(2 데이터)의 그룹이 된다. 측정값(P4)의 그룹은 측정값(P4)(1데이터)의 그룹이 된다.
측정값(L1, P1~P4)의 그룹 중 데이터 수가 많은 것은 측정값(P2)의 그룹이 된다. 그래서, 제어 장치(50)는 데이터 수가 최대 그룹(측정값(P2)의 그룹)의 측정값의 평균을 높이 정보의 통합한 측정값으로 한다. 즉, 통합한 측정값(H)은 H=(P1+P2+P3)/3으로 산출된다.
또한, 제어 장치(50)는 각 위치(주목 화소)에 있어서 제 2 측정부(40)에 의해 측정한 측정값(높이 정보)의 신뢰도에 의거하여 측정값(높이 정보)의 통합을 행하도록 구성되어 있다. 예를 들면, 도 13에 나타내는 바와 같이 제 2 측정부(40)에 의해 측정한 측정값(L1)의 신뢰도가 낮은 경우, 제어 장치(50)는 신뢰도가 낮은 제 2 측정부(40)에 의한 측정값(L1)을 제외한 후에 신뢰도가 유효 범위 내의 제 1 측정부(30)의 측정값(P1~P4)의 통합을 행한다. 구체적으로는 제어 장치(50)는 측정값(P1~P4) 중 설정된 공차에 의해 추출된 복수의 측정값의 평균을 높이 정보의 통합한 측정값으로 한다. 도 13의 예의 경우, 측정값(P1 및 P2)의 거리가 공차의 범위 내이므로 통합한 측정값(H)은 H=(P1+P2)/2로 산출된다.
또한, 도 14에 나타내는 바와 같이 제 2 측정부(40)에 의해 측정한 측정값(L1)의 신뢰도가 중인 경우, 제어 장치(50)는 측정값(L1)을 중심으로 해서 공차 내의 측정값의 평균을 높이 정보의 통합한 측정값으로 한다. 이것은 광 절단법을 사용한 제 2 측정부(40)에 의한 계측값이 가장 신뢰할 수 있다는 것에 의거하고 있다. 도 14의 예의 경우, 측정값(P3 및 P4)이 측정값(L1)의 공차의 범위 내에 있으므로, 통합한 측정값(H)은 H=(P3+P4+L1)/3으로 산출된다.
또한, 도 15에 나타내는 바와 같이 제 2 측정부(40)에 의해 측정한 측정값(L1)의 신뢰도가 중~고이어도 제 1 측정부(30)에 의해 측정한 측정값(P1~P4)의 집합 상태를 고려하여 제어 장치(50)는 측정값(L1)을 제외한 후에 측정값의 통합을 행한다. 도 15의 예의 경우, 측정값(P1~P4) 중 과반수의 측정값(P1~P3)이 공차의 범위 내에 집합하고 있다. 이것에 의해, 측정값(P1~P3)과의 거리가 공차 이상인 측정값(L1)은 벗어남값이 된다. 또한, 마찬가지로 측정값(P1~P3)과의 거리가 공차 이상인 측정값(P4)은 벗어남값이 된다. 그리고, 통합한 측정값(H)은 H=(P1+P2+P3)/3으로 산출된다.
(3차원 정보 취득 처리의 설명)
이어서, 도 16을 참조하여 제어 장치(50)에 의한 3차원 정보 취득 처리에 대해서 설명한다.
도 16의 스텝 S1에 있어서, 기판(110)이 기판 반송 컨베이어(10)에 의해 반입된다. 스텝 S2에 있어서, 제 2 측정부(40)에 의해 광 절단법의 촬상이 행해진다. 이 경우, 기판(110) 전체의 스캔(촬상)이 행해진다.
스텝 S3에 있어서, 제 1 측정부(30)에 의해 촬상하기 위한 시야를 이동한다. 스텝 S4에 있어서, 제 1 측정부(30)에 의해 이동된 시야에 있어서의 위상 시프트법의 촬상이 행해진다.
스텝 S5에 있어서, 촬상한 시야의 높이 정보가 합성된다. 스텝 S6에 있어서, 제 1 측정부(30)에 의해 전체 시야의 촬상이 완료되었는지의 여부가 판단된다. 전체 시야의 촬상이 완료되어 있지 않으면, 스텝 S3으로 돌아간다. 전체 시야의 촬상이 완료되어 있으면, 스텝 S7로 진행된다.
스텝 S7에 있어서, 기판(110)이 기판 반송 컨베이어(10)에 의해 반출된다. 그 후, 3차원 정보 취득 처리가 종료된다.
(시야마다 높이 정보 합성 처리(제 1 예)의 설명)
도 17을 참조하여 제어 장치(50)에 의한 도 16의 스텝 S5에 있어서의 시야마다 높이 정보 합성 처리(제 1 예)에 대해서 설명한다.
도 17의 스텝 S11에 있어서, 방향별 위상 시프트 화상을 통합한 화상(높이 정보)이 작성된다. 구체적으로는 4개의 방향으로부터 촬상한 위상 시프트 화상이 통합된 높이 정보가 작성된다.
스텝 S12에 있어서, 위상 시프트법의 통합 화상의 주목 화소의 신뢰도가 판단된다. 주목 화소의 신뢰도가 낮으면 스텝 S13으로 진행되고, 주목 화소의 신뢰도가 높으면 스텝 S17로 진행된다.
스텝 S13에 있어서, 광 절단법의 화상의 주목 화소의 신뢰도가 판단된다. 주목 화소의 신뢰도가 낮으면 스텝 S14로 진행되고, 주목 화소의 신뢰도가 높으면 스텝 S15로 진행된다. 스텝 S14에 있어서, 주목 화소의 높이 정보가 결락(값 없음)으로 된다.
스텝 S15에 있어서, 주목 화소의 높이 정보가 광 절단법의 화상의 측정값으로 치환된다. 스텝 S16에 있어서, 시야 내의 전체 화소의 높이 정보의 합성(통합)이 완료되었는지의 여부가 판단된다. 완료되면, 시야마다 높이 정보 합성 처리가 종료된다. 완료되어 있지 않으면, 스텝 S17로 진행된다.
스텝 S17에 있어서, 높이 정보의 합성 처리가 다음 화소로 전환된다. 그 후, 스텝 S12로 돌아간다.
(시야마다 높이 정보 합성 처리(제 2 예)의 설명)
도 18을 참조하여 제어 장치(50)에 의한 도 16의 스텝 S5에 있어서의 시야마다 높이 정보 합성 처리(제 2 예)에 대해서 설명한다.
도 18의 스텝 S21에 있어서, 광 절단법의 화상의 주목 화소의 신뢰도가 판단된다. 주목 화소의 신뢰도가 높으면, 스텝 S22로 진행되고, 주목 화소의 신뢰도가 중이면, 스텝 S23으로 진행되고, 주목 화소의 신뢰도가 낮으면, 스텝 S24로 진행된다. 스텝 S22에 있어서, 주목 화소의 높이 정보가 광 절단법의 화상의 측정값이 된다. 그 후, 스텝 S25로 진행된다.
스텝 S23에 있어서, 방향별 위상 시프트법의 화상의 측정값과 광 절단법의 화상의 측정값을 합성(통합)한 측정값이 산출된다. 그리고, 산출된 측정값이 주목 화소의 높이 정보가 된다. 그 후, 스텝 S25로 진행된다. 스텝 S24에 있어서, 방향별 위상 시프트법의 화상의 측정값을 합성(통합)한 측정값이 산출된다. 그리고, 산출된 측정값이 주목 화소의 높이 정보가 된다. 그 후, 스텝 S25로 진행된다.
스텝 S25에 있어서, 시야 내의 전체 화소의 정보의 합성(통합)이 완료되었는지의 여부가 판단된다. 완료되면, 시야마다 높이 정보 합성 처리가 종료된다. 완료되어 있지 않으면, 스텝 S26으로 진행된다. 스텝 S26에 있어서, 높이 정보의 합성 처리가 다음 화소로 전환된다. 그 후, 스텝 S21로 돌아간다.
(화상의 통합 처리의 설명)
도 19를 참조하여 제어 장치(50)에 의한 화상의 통합 처리에 대해서 설명한다. 이 화상의 통합 처리에서는 측정한 높이 정보(측정값)를 각 위치에 있어서 각각 통합(합성)하는 처리가 행해진다.
도 19의 스텝 S31에 있어서, 신뢰도가 낮은 높이 정보의 데이터가 통합의 대상으로부터 제외된다. 스텝 S32에 있어서, 유효 데이터의 수가 판단된다. 유효 데이터의 수가 2 이상인 경우, 스텝 S33으로 진행되고, 유효 데이터의 수가 1인 경우, 스텝 S39로 진행되고, 유효 데이터의 수가 0인 경우, 스텝 S40으로 진행된다.
스텝 S33에 있어서, 도 12에 나타내는 바와 같이 유효 데이터를 데이터 간 범위 임계값에 의해 그루핑한다. 즉, 어떤 유효 데이터를 중심으로 데이터 간 범위 임계값 내의 유효 데이터를 1개의 그룹으로 한다. 그룹은 최대로 유효 데이터의 수만큼 생성된다. 스텝 S34에 있어서, 복수 있는지의 여부가 판단된다. 데이터의 수가 최대인 그룹이 복수 없으면(1개이면), 스텝 S35로 진행되고, 데이터의 수가 최대인 그룹이 복수 있으면, 스텝 S36으로 진행된다.
스텝 S35에 있어서, 데이터의 수가 최대인 그룹의 측정값의 평균값이 통합한 측정값이 된다. 그 후, 화상의 통합 처리가 종료된다.
스텝 S36에 있어서, 광 절단법에 의한 측정값을 포함하는 그룹이 있는지의 여부가 판단된다. 광 절단법에 의한 측정값을 포함하는 그룹이 없는 경우, 스텝 S37로 진행되고, 광 절단법에 의한 측정값을 포함하는 그룹이 있는 경우, 스텝 S38로 진행된다. 스텝 S37에 있어서, 그룹 내의 복수의 데이터 간의 거리의 합계가 최소인 그룹의 측정값의 평균값이 통합한 측정값이 된다. 그 후, 화상의 통합 처리가 종료된다.
스텝 S38에 있어서, 광 절단법에 의한 측정값을 포함하는 그룹의 측정값의 평균값이 통합한 측정값이 된다. 그 후, 화상의 통합 처리가 종료된다.
스텝 S39에 있어서, 제외되지 않고 남은 1개의 유효 데이터가 통합한 측정값이 된다. 그 후, 화상의 통합 처리가 종료된다.
스텝 S40에 있어서, 주목 화소의 높이 정보가 결락(값 없음)으로 된다. 그 후, 화상의 통합 처리가 종료된다.
(실시형태의 효과)
본 실시형태에서는 이하와 같은 효과를 얻을 수 있다.
본 실시형태에서는 상기와 같이 측정 대상을 광 절단법 및 위상 시프트법의 양방에 의해 측정하므로 광 절단법에 의한 광의 조사가 그림자가 되는 위치에서도 위상 시프트법의 측정에 의해 높이 정보를 보완할 수 있다. 또한, 광 절단법 및 위상 시프트법에 의한 복수의 방법에 의해 3차원 정보를 취득할 수 있으므로 3차원 정보의 취득 정밀도를 높일 수 있다. 이들에 의해 측정 대상의 3차원 정보를 정밀도 좋게 측정할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제 1 측정부(30)는 기준면에 대하여 수직 방향으로 광축이 배치된 제 1 촬상부(31)와, 제 1 촬상부(31)의 광축 방향에 대하여 경사진 방향으로부터 제 1 촬상부(31)에 의해 촬상하는 제 1 측정 패턴을 투영하는 복수의 제 1 투영부(32)를 포함한다. 제 2 측정부(40)는 기준면의 수직 방향과는 경사진 방향으로 광축이 배치되고, 텔레센트릭 광학계(411)를 갖는 제 2 촬상부(41)와, 기준면에 대하여 제 2 촬상부(41)의 광축이 정반사한 방향의 위치에 배치되고, 제 2 촬상부(41)에 의해 촬상하는 라인 형상의 제 2 측정 패턴을 투영하는 제 2 투영부(42)를 포함한다. 이것에 의해, 측정 대상이 경면이나 유리면 등의 반사면이었다고 해도 제 2 투영부(42)로부터 투영된 제 2 측정 패턴을 정반사한 방향의 위치에 배치된 제 2 촬상부(41)에 의해 확실하게 촬상할 수 있다. 또한, 제 2 촬상부(41)는 텔레센트릭 광학계(411)를 갖기 때문에 측정 대상의 반사면에 의해 반사된 제 2 측정 패턴을 광학계에 의해 변형시키는 일 없이 평행하게 촬상할 수 있다. 이것에 의해, 반사면을 갖는 측정 대상이어도 3차원 정보를 정밀도 좋게 측정할 수 있다. 또한, 제 1 측정부(30)에 제 1 투영부(32)를 복수 설치함으로써 제 1 측정 패턴을 투영하는 방향을 복수로 할 수 있다. 이것에 의해, 어떤 위치에 있어서 일방의 방향으로부터의 투영에서는 그림자가 생길 수 있는 경우이어도 타방의 방향으로부터의 투영에서는 그림자가 생길 수 있는 것을 억제할 수 있다. 이것에 의해, 어떤 위치에 있어서의 3차원 정보를 확실하게 측정할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)의 측정에 의한 높이 정보 및 신뢰도 정보와, 제 2 측정부(40)의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성한다. 이것에 의해, 제 1 측정부(30)의 측정에 의한 높이 정보와, 제 2 측정부(40)의 측정에 의한 높이 정보가 크게 다른 경우이어도 각각의 신뢰도 정보에 의거하여 보다 신뢰도가 높은 1개의 높이 정보를 취득할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)의 측정에 의한 복수의 높이 정보 및 복수의 신뢰도 정보와, 제 2 측정부(40)의 측정에 의한 높이 정보 및 신뢰도 정보에 의거하여 1개의 높이 정보를 취득하도록 구성한다. 이것에 의해, 위상 시프트법을 사용한 제 1 측정부(30)에 의해 복수의 높이 정보를 취득하므로 보다 신뢰도가 높은 1개의 높이 정보를 취득할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 2 측정부(40)에 의해 측정한 신뢰도 정보의 신뢰도가 낮은 높이 정보를 제 1 측정부(30)에 의해 측정한 높이 정보에 의해 보완하도록 구성한다. 이것에 의해, 광 절단법을 사용한 제 2 측정부(40)에 의한 측정에 있어서 그림자 등의 영향에 의해 신뢰도가 낮아지는 경우이어도 위상 시프트법을 사용한 제 1 측정부(30)에 의한 측정에 의해 높이 정보를 보완할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)의 제 1 측정 패턴을 투영하는 방향이 측정 대상에 의해 그림자가 된다고 추정되는 경우, 그림자가 되는 방향으로부터의 측정 결과를 제외하고 높이 정보를 보완하도록 구성한다. 이것에 의해, 복수의 제 1 측정 패턴의 투영 방향 중 그림자의 영향을 받아서 정밀도가 낮아지는 투영 방향에 의한 측정 결과를 제외할 수 있으므로 위상 시프트법을 사용한 제 1 측정부(30)에 의해 측정한 복수의 높이 정보로부터 광 절단법을 사용한 제 2 측정부(40)에 의한 높이 정보를 보다 정밀도 좋게 보완할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)의 복수의 측정에 의한 휘도차에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성한다. 이것에 의해, 위상 시프트법을 사용한 제 1 측정부(30)에 의한 복수의 측정에 의한 휘도차에 의거하여 신뢰도 정보를 용이하게 취득할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 2 측정부(40)의 측정에 의한 휘도값에 의거하여 각 위치에 있어서의 신뢰도 정보를 취득하도록 구성한다. 이것에 의해, 광 절단법을 사용한 제 2 측정부(40)에 의한 휘도값에 의거하여 신뢰도 정보를 용이하게 취득할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)의 측정 결과에 의한 돌기 형상을 제 2 측정부(40)의 측정 결과에 의거하여 노이즈인지 구조물인지를 판단하도록 구성한다. 이것에 의해, 제 1 측정부(30)의 위상 시프트법의 촬상에 의해 돌기 형상에으로 나타나는 허상을 제 2 측정부(40)의 광 절단법에 의해 노이즈라고 판단할 수 있으므로, 노이즈를 제거함으로써 높이 정보를 보다 정밀도 좋게 취득할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)에 의한 측정 전에 제 2 측정부(40)에 의해 측정을 행하고, 제 2 측정부(40)의 측정 결과에 의거하여 제 1 측정부(30)의 측정 높이 위치를 조정하는 제어를 행하도록 구성한다. 이것에 의해, 광 절단법을 사용한 제 2 측정부(40)에 의해 측정한 3차원 정보에 의거하여 측정 대상의 3차원 형상을 따르도록 위상 시프트법을 사용한 제 1 측정부(30)에 의한 측정 높이 위치를 조정할 수 있으므로 화상의 핀트를 맞추기 쉽게 할 수 있다.
또한, 본 실시형태에서는 상기와 같이 제어 장치(50)를, 제 1 측정부(30)에 의한 측정 전에 제 2 측정부(40)에 의해 측정을 행하고, 제 2 측정부(40)의 측정 결과에 의거하여 측정 대상의 평면 위치 정보를 취득하고, 제 1 측정부(30)에 의한 측정의 평면 위치를 조정하는 제어를 행하도록 구성한다. 이것에 의해, 위상 시프트법을 사용한 제 1 측정부(30)에 의해 평면 위치 정보를 취득하는 동작을 생략할 수 있으므로 제 1 측정부(30)에 있어서 다시 평면 위치 정보를 취득하는 경우에 비해 측정 동작에 요하는 시간이 길어지는 것을 억제할 수 있다.
(변형예)
또한, 금회 개시된 실시형태는 모든 점에서 예시이며 제한적인 것이 아니라고 생각되어야 한다. 본 발명의 범위는 상기한 실시형태의 설명이 아니라 청구범위에 의해 나타내어지고, 또한 청구범위와 균등의 의미 및 범위 내에서의 모든 변경(변형예)이 포함된다.
예를 들면, 상기 실시형태에서는 제 2 투영부가 기준면에 대하여 제 2 촬상부의 광축이 정반사한 방향의 위치에 배치되어 있는 구성의 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 도 20에 나타내는 실시형태의 제 1 변형예와 같이 제 2 촬상부(41)가 기준면에 대하여 수직 방향으로 광축을 갖도록 배치되어 있고, 제 2 투영부(42)가 제 2 촬상부(41)의 광축에 대하여 소정의 각도 경사지는 방향으로 배치되어 있어도 좋다.
또한, 도 21에 나타내는 실시형태의 제 2 변형예와 같이 제 2 촬상부(41)가 기준면에 대하여 수직 방향으로 광축을 갖도록 배치되어 있고, 복수의 제 2 투영부(42)가 제 2 촬상부(41)의 광축에 대하여 소정의 각도 경사지는 방향으로 배치되어 있어도 좋다.
또한, 상기 실시형태에서는 제 1 측정부에, 기준면에 대하여 수직 방향으로 광축이 배치된 제 1 촬상부와, 제 1 촬상부의 광축 방향에 대하여 경사진 방향으로 광축이 배치된 복수의 제 1 투영부를 설치하는 구성의 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 도 22에 나타내는 실시형태의 제 3 변형예와 같이 제 1 측정부(30)에, 기준면에 대하여 수직 방향으로 광축이 배치된 제 1 투영부(32)와, 제 1 투영부(32)의 광축 방향에 대하여 경사진 방향으로 광축이 배치된 복수의 제 1 촬상부(31)를 설치해도 좋다. 이 경우, 제 1 투영부(32)에 텔레센트릭 광학계(321)를 설치해도 좋다. 이것에 의해, 기준면에 대하여 제 1 측정 패턴이 수직으로 투영된다. 그 결과, 2차 반사를 억제할 수 있으므로 2차 줄무늬가 발생하는 것을 억제하는 것이 가능하다. 또한, 제 1 촬상부(31)는 상방으로부터 볼 때 제 1 투영부(32)의 주위를 둘러싸도록 복수 배치해도 좋다. 또한, 복수의 제 1 촬상부(31)는 투영 중심(제 1 투영부(32))으로부터 등거리의 위치에 대략 등각도 간격으로 배열해도 좋다. 이것에 의해, 복수의 제 1 촬상부(31)에 의해 동시에 촬상 함으로써 별개로 촬상하는 경우에 비해 촬상 시간을 단축하는 것이 가능하다. 즉, 촬상 방향을 늘렸다고 해도 촬상 시간이 증가하는 것을 억제하는 것이 가능하다.
또한, 상기 실시형태에서는 본 발명의 3차원 측정 장치를, 기판을 검사하는 외관 검사 장치에 적용하는 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명은 이물 검사 장치, 땜납 인쇄 검사 장치 및 부품 검사 장치 등의 다른 3차원 측정에도 적용가능하다. 또한, 본 발명은 기판을 검사하는 이외의 장치에도 적용가능하다.
또한, 상기 실시형태에서는 제 1 측정부에 4개의 제 1 투영부가 설치되어 있는 구성의 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 제 1 측정부에 4개 이외의 단수 또는 복수의 제 1 투영부가 설치되어 있어도 좋다.
또한, 상기 실시형태에서는 제 2 촬상부가 텔레센트릭 광학계를 갖고, 제 2 투영부가 광을 텔레센트릭으로 투영하는 구성의 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 제 2 투영부로부터 텔레센트릭이 아닌 퍼지는 광을 투영해도 좋고, 제 2 촬상부가 텔레센트릭 광학계를 갖고 있지 않아도 좋다.
또한, 상기 실시형태에서는 제 2 측정부의 신뢰도 정보를 고, 중, 저의 3단계로 분류하는 구성의 예를 나타냈지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 제 2 측정부의 신뢰도 정보를 2단계 또는 4단계 이상으로 분류해도 좋다. 또한, 제 2 측정부의 신뢰도 정보를 무단계의 수치로 해도 좋다.
또한, 상기 실시형태에서는 설명의 편의상, 제어 장치(제어부)의 제어 처리를 처리 플로우를 따라 순번대로 처리를 행하는 플로우 구동형의 플로우를 사용해서 설명했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 제어부의 처리를, 이벤트 단위로 처리를 실행하는 이벤트 구동형(이벤트 드리븐형)의 처리에 의해 행해도 좋다. 이 경우, 완전한 이벤트 구동형으로 행해도 좋고, 이벤트 구동 및 플로우 구동을 조합해서 행해도 좋다.
30 제 1 측정부 31 제 1 촬상부
32 제 1 투영부 40 제 2 측정부
41 제 2 촬상부 42 제 2 투영부
50 제어 장치(제어부) 100 외관 검사 장치(3차원 측정 장치)
110 기판(측정 대상) 111 전자 부품
411 텔레센트릭 광학계

Claims (12)

  1. 위상 시프트법에 의해 3차원 정보를 측정하는 제 1 측정부와,
    광 절단법에 의해 3차원 정보를 측정하는 제 2 측정부와,
    상기 제 1 측정부 및 상기 제 2 측정부의 양방의 측정 결과에 의거하여 측정 대상의 3차원 정보를 취득하는 제어부를 구비하되,
    상기 제 1 측정부는, 측정 대상의 각 위치에서 복수의 높이 정보를 측정하도록 구성되고,
    상기 제어부는, 상기 제 1 측정부의 측정에 의한 복수의 높이 정보 및 상기 제 2 측정부의 측정에 의한 높이 정보에 기초하여, 하나의 높이 정보를 취득하는 3차원 측정 장치.
  2. 제 1 항에 있어서,
    상기 제 1 측정부는 제 1 촬상부와, 상기 제 1 촬상부에 의해 촬상하는 제 1 측정 패턴을 투영하는 제 1 투영부를 포함하고, 상기 제 1 촬상부 및 상기 제 1 투영부 중 일방은 기준면에 대하여 수직 방향으로 광축이 배치되고, 상기 제 1 촬상부 및 상기 제 1 투영부 중 타방은 일방의 광축 방향에 대하여 경사진 방향으로 광축이 배치되어 있음과 아울러 복수 설치되어 있고,
    상기 제 2 측정부는 상기 기준면의 수직 방향과는 경사진 방향으로 광축이 배치되고, 텔레센트릭 광학계를 갖는 제 2 촬상부와, 상기 기준면에 대하여 상기 제 2 촬상부의 광축이 정반사한 방향의 위치에 배치되고, 상기 제 2 촬상부에 의해 촬상하는 라인 형상의 제 2 측정 패턴을 투영하는 제 2 투영부를 포함하는 3차원 측정 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제어부는 상기 제 1 측정부의 측정에 의거하여 각 위치에 있어서의 높이를 나타내는 높이 정보, 및 각 위치에 있어서의 상기 높이 정보의 신뢰도를 나타내는 신뢰도 정보를 취득하고, 상기 제 2 측정부의 측정에 의거하여 상기 높이 정보 및 상기 신뢰도 정보를 취득함과 아울러, 상기 제 1 측정부의 측정에 의한 상기 높이 정보 및 상기 신뢰도 정보와, 상기 제 2 측정부의 측정에 의한 상기 높이 정보 및 상기 신뢰도 정보에 의거하여 1개의 상기 높이 정보를 취득하도록 구성되어 있는 3차원 측정 장치.
  4. 제 3 항에 있어서,
    상기 제 1 측정부는 복수의 방향으로부터 제 1 측정 패턴을 투영하여 3차원 정보를 측정하도록 구성되어 있고,
    상기 제어부는 상기 제 1 측정부의 측정에 의거하여 복수의 상기 높이 정보 및 상기 신뢰도 정보를 취득함과 아울러, 상기 제 1 측정부의 측정에 의한 복수의 상기 높이 정보 및 복수의 상기 신뢰도 정보와, 상기 제 2 측정부의 측정에 의한 상기 높이 정보 및 상기 신뢰도 정보에 의거하여 1개의 상기 높이 정보를 취득하도록 구성되어 있는 3차원 측정 장치.
  5. 제 4 항에 있어서,
    상기 제어부는 상기 제 2 측정부에 의해 측정한 상기 신뢰도 정보의 신뢰도가 낮은 상기 높이 정보를, 상기 제 1 측정부에 의해 측정한 상기 높이 정보에 의해 보완하도록 구성되어 있는 3차원 측정 장치.
  6. 제 5 항에 있어서,
    상기 제어부는 상기 제 1 측정부의 제 1 측정 패턴을 투영하는 방향이 상기 측정 대상에 의해 그림자가 된다고 추정되는 경우, 그림자가 되는 방향으로부터의 측정 결과를 제외하고 상기 높이 정보를 보완도록 구성되어 있는 3차원 측정 장치.
  7. 제 3 항에 있어서,
    상기 제어부는 상기 제 1 측정부의 복수의 측정에 의한 휘도차에 의거하여 각 위치에 있어서의 상기 신뢰도 정보를 취득하도록 구성되어 있는 3차원 측정 장치.
  8. 제 3 항에 있어서,
    상기 제어부는 상기 제 2 측정부의 측정에 의한 휘도값에 의거하여 각 위치에 있어서의 상기 신뢰도 정보를 취득하도록 구성되어 있는 3차원 측정 장치.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 제어부는 상기 제 1 측정부의 측정 결과에 의한 돌기 형상을, 상기 제 2 측정부의 측정 결과에 의거하여 노이즈인지 구조물인지를 판단하도록 구성되어 있는 3차원 측정 장치.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 제어부는 상기 제 1 측정부에 의한 측정 전에, 상기 제 2 측정부에 의해 측정을 행하고, 상기 제 2 측정부의 측정 결과에 의거하여 상기 제 1 측정부의 측정 높이 위치를 조정하는 제어를 행하도록 구성되어 있는 3차원 측정 장치.
  11. 제 1 항 또는 제 2 항에 있어서,
    상기 제어부는 상기 제 1 측정부에 의한 측정 전에, 상기 제 2 측정부에 의해 측정을 행하고, 상기 제 2 측정부의 측정 결과에 의거하여 상기 측정 대상의 평면 위치 정보를 취득하고, 상기 제 1 측정부에 의한 측정의 평면 위치를 조정하는 제어를 행하도록 구성되어 있는 3차원 측정 장치.
  12. 제 1 항 또는 제 2 항에 있어서,
    상기 측정 대상은 전자 부품이 실장된 기판인 3차원 측정 장치.
KR1020217000301A 2018-09-27 2018-09-27 3차원 측정 장치 KR102515369B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036029 WO2020065850A1 (ja) 2018-09-27 2018-09-27 3次元測定装置

Publications (2)

Publication Number Publication Date
KR20210016612A KR20210016612A (ko) 2021-02-16
KR102515369B1 true KR102515369B1 (ko) 2023-03-29

Family

ID=69952967

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217000301A KR102515369B1 (ko) 2018-09-27 2018-09-27 3차원 측정 장치

Country Status (6)

Country Link
US (1) US11982522B2 (ko)
JP (1) JP7174768B2 (ko)
KR (1) KR102515369B1 (ko)
CN (1) CN112639395B (ko)
DE (1) DE112018008035T5 (ko)
WO (1) WO2020065850A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023032095A1 (ko) * 2021-09-01 2023-03-09
TWI787107B (zh) * 2021-09-24 2022-12-11 盟立自動化股份有限公司 非接觸式曲面量測路徑規劃方法、非接觸式曲面量測方法及非接觸式曲面量測系統
TWI804128B (zh) * 2021-12-23 2023-06-01 國立臺灣師範大學 量測物體三維複合表面輪廓之方法與裝置
KR20240060825A (ko) * 2022-03-09 2024-05-08 야마하하쓰도키 가부시키가이샤 삼차원 계측용 연산 장치, 삼차원 계측용 프로그램, 기록 매체, 삼차원 계측 장치 및 삼차원 계측용 연산 방법
KR20240003079A (ko) 2022-06-30 2024-01-08 이석근 변형 목마형 유모차

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930746B2 (ja) * 1991-01-22 1999-08-03 株式会社豊田中央研究所 部品検査装置
JP2014055811A (ja) * 2012-09-11 2014-03-27 Keyence Corp 形状測定装置、形状測定方法および形状測定プログラム
JP2017146298A (ja) * 2016-02-18 2017-08-24 株式会社ミツトヨ 形状測定システム、形状測定装置及び形状測定方法
JP2018146521A (ja) * 2017-03-08 2018-09-20 株式会社リコー 計測装置、計測方法およびロボット

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173804A (ja) * 1987-12-28 1989-07-10 Sharp Corp 基板のパターン検査装置
JP2000193432A (ja) 1998-12-25 2000-07-14 Tani Denki Kogyo Kk 画像認識による計測方法および装置
JP4238010B2 (ja) * 2002-10-24 2009-03-11 株式会社リコー 表面欠陥検査方法及びそれを用いた表面欠陥検査装置
US7525669B1 (en) 2004-07-09 2009-04-28 Mohsen Abdollahi High-speed, scanning phase-shifting profilometry using 2D CMOS sensor
JP2009097941A (ja) * 2007-10-16 2009-05-07 Nikon Corp 形状測定装置および表面状態測定装置
JP5443303B2 (ja) * 2010-09-03 2014-03-19 株式会社サキコーポレーション 外観検査装置及び外観検査方法
JP5822463B2 (ja) * 2010-12-28 2015-11-24 キヤノン株式会社 三次元計測装置、三次元計測方法、およびプログラム
JP5765651B2 (ja) * 2011-02-01 2015-08-19 Jukiオートメーションシステムズ株式会社 3次元測定装置
JP2013064644A (ja) 2011-09-16 2013-04-11 Nikon Corp 形状測定装置、形状測定方法、構造物製造システム及び構造物の製造方法
JP6161276B2 (ja) * 2012-12-12 2017-07-12 キヤノン株式会社 測定装置、測定方法、及びプログラム
JP6238521B2 (ja) 2012-12-19 2017-11-29 キヤノン株式会社 3次元計測装置およびその制御方法
JP5780659B2 (ja) * 2013-06-13 2015-09-16 ヤマハ発動機株式会社 3次元形状測定装置
JP5633058B1 (ja) 2013-07-19 2014-12-03 株式会社三次元メディア 3次元計測装置及び3次元計測方法
JP2015045587A (ja) 2013-08-28 2015-03-12 株式会社キーエンス 三次元画像処理装置、三次元画像処理装置の状態変化判定方法、三次元画像処理装置の状態変化判定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6184289B2 (ja) 2013-10-17 2017-08-23 株式会社キーエンス 三次元画像処理装置、三次元画像処理方法、三次元画像処理プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6256249B2 (ja) * 2014-08-08 2018-01-10 オムロン株式会社 計測装置、基板検査装置、及びその制御方法
JP2016180645A (ja) * 2015-03-24 2016-10-13 株式会社小坂研究所 非接触式の表面形状測定装置
JP6322335B2 (ja) * 2015-04-14 2018-05-09 ヤマハ発動機株式会社 外観検査装置
JP6189984B2 (ja) * 2016-02-12 2017-08-30 Ckd株式会社 三次元計測装置
JP6681743B2 (ja) * 2016-02-26 2020-04-15 株式会社キーエンス 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6846950B2 (ja) * 2017-03-03 2021-03-24 株式会社キーエンス ロボットシミュレーション装置、ロボットシミュレーション方法、ロボットシミュレーションプログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930746B2 (ja) * 1991-01-22 1999-08-03 株式会社豊田中央研究所 部品検査装置
JP2014055811A (ja) * 2012-09-11 2014-03-27 Keyence Corp 形状測定装置、形状測定方法および形状測定プログラム
JP2017146298A (ja) * 2016-02-18 2017-08-24 株式会社ミツトヨ 形状測定システム、形状測定装置及び形状測定方法
JP2018146521A (ja) * 2017-03-08 2018-09-20 株式会社リコー 計測装置、計測方法およびロボット

Also Published As

Publication number Publication date
US11982522B2 (en) 2024-05-14
KR20210016612A (ko) 2021-02-16
JPWO2020065850A1 (ja) 2021-08-30
DE112018008035T5 (de) 2021-06-24
CN112639395A (zh) 2021-04-09
CN112639395B (zh) 2023-05-23
WO2020065850A1 (ja) 2020-04-02
JP7174768B2 (ja) 2022-11-17
US20210348918A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
KR102515369B1 (ko) 3차원 측정 장치
US8243285B2 (en) Inspection system and method
KR101273094B1 (ko) 광삼각법을 이용한 3차원 형상 측정기를 사용하여 pcb 범프 높이 측정 방법
KR100334862B1 (ko) 3각측량법에기초한3차원화상화를위한방법및시스템
US7034272B1 (en) Method and apparatus for evaluating integrated circuit packages having three dimensional features
US7353954B1 (en) Tray flipper and method for parts inspection
US20030039388A1 (en) Machine vision and semiconductor handling
US20070116352A1 (en) Pick and place machine with component placement inspection
US20140368835A1 (en) Three-dimensional shape measuring apparatus
WO2000026640A1 (en) Electronics assembly apparatus with improved imaging system
JP2012229964A (ja) 画像形成装置および画像形成方法ならびに部品実装装置
WO2006011852A1 (en) An inspection system
US6518997B1 (en) Grid array inspection system and method
KR102224699B1 (ko) 3차원 측정 장치, 3차원 측정 방법 및 기판의 제조 방법
JP2009008578A (ja) 実装基板の検査装置および検査方法
JP3722608B2 (ja) 外観検査装置
US20040099710A1 (en) Optical ball height measurement of ball grid arrays
WO2002029357A2 (en) Method and apparatus for evaluating integrated circuit packages having three dimensional features
Sadaghiani et al. Recovery of oversaturated pixels in a low-cost solder paste inspection setup
JP7122456B2 (ja) 計測装置および表面実装機
WO2022224455A1 (ja) 測定装置および基板検査装置
JP3645340B2 (ja) フラットパッケージのピン曲がりの検出装置
JP3073485B2 (ja) 高さ計測装置及びこれを用いた半導体パッケージの検査装置
Koezuka et al. Visual inspection system using multidirectional 3-D imager
KR20020009207A (ko) 부품 검사 장치 및, 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right