KR102496679B1 - 중첩 전송을 위한 전력 할당 방법 및 장치 - Google Patents

중첩 전송을 위한 전력 할당 방법 및 장치 Download PDF

Info

Publication number
KR102496679B1
KR102496679B1 KR1020160068931A KR20160068931A KR102496679B1 KR 102496679 B1 KR102496679 B1 KR 102496679B1 KR 1020160068931 A KR1020160068931 A KR 1020160068931A KR 20160068931 A KR20160068931 A KR 20160068931A KR 102496679 B1 KR102496679 B1 KR 102496679B1
Authority
KR
South Korea
Prior art keywords
receiver
equation
power allocation
user
bit
Prior art date
Application number
KR1020160068931A
Other languages
English (en)
Other versions
KR20160144915A (ko
Inventor
권혁준
샌딥 크르슈니무르티
린보 리
이정원
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20160144915A publication Critical patent/KR20160144915A/ko
Application granted granted Critical
Publication of KR102496679B1 publication Critical patent/KR102496679B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

불균일 합성 성상들 또는 수퍼 성상들을 사용 가능한 중첩 다중 접속 통신 시스템에서의 전력 할당을 위한 장치, 시스템, 그리고 방법이 제공된다. 일 실시 예에 따른 방법은, 정확히 수신된 비트의 조건부 확률과 정규화 가중치 계수가 계산되고, 이어서 가중 스펙트럴 효율들의 합이 계산된다. 가중 스펙트럴 효율들의 합을 최대값으로 형성하는 최적 전력 할당값이 결정된다.

Description

중첩 전송을 위한 전력 할당 방법 및 장치{METHOD AND APPARATUS FOR POWER ALLOCATION FOR SUPERPOSITION TRANSMISSION}
본 발명은 다중 접속 통신 기술에 있어서 전력 관리 방법 및 장치에 관한 것으로, 보다 상세하게는 중첩 다중 접속 전송을 수행할 때 전력을 할당하는 장치 및 방법에 관한 것이다.
무선 통신에서의 데이터 트래픽의 양은 지수적으로 급격히 증가하고 있다. 예를 들면, 많은 셀룰러폰 유저들은 그들의 셀룰러폰들이 어느 때나 가능한 인터넷 서핑과 때로는 동시에 영화 스트림 서비스를 모두 일상적으로 제공해 줄 것을 기대한다. 따라서, 데이터 쓰루풋을 증가시키기 위한 새로운 방식들이 끊임없이 논의되고 새로운 버전의 표준으로 구현되기도 한다.
복수의 수신기들이 있는 경우, 쓰루풋을 높이기 위한 하나의 방법으로 후술하게 될 중첩 다중 접속(Superposition multiple access)이 있다. 이 다중 접속 방식은 표준기구인 3GPP(3rd Generation Partnership Project)에 의해서 차세대 롱텀 에볼루션(LTE) 출시의 일부가 될 것으로 고려됨에 따라 최근 그 중요도가 급격히 증가하고 있다[Chairman's Notes, 3GPP RAN1 Meeting #80b, Belgrade (2014-04-20)]. 3GPP 안팍에서, 가능한 구현을 위해 중첩 다중 접속 방식의 특정한 구현이 연구되고 있으며, 멀티-유저 중첩 전송(Multi-User Superposition Transmission; MUST)으로 종종 불리고 있다. 하지만, 이것은 비직교 다중 접속(NOMA), 세미-직교 다중 접속(SOMA), 레이트-적응 성상 확장형 다중 접속(EMA), 다운 링크 멀티 유저(DL MU) 등의 다양한 명칭의 다양한 형태를 포함할 수 있다. 본 발명은 앞서 설명된 기술들에 국한되지 않으며, 어떠한 중첩 통신 기술에도 폭넓게 적용될 수 있음은 잘 이해될 것이다. 본 발명에서 사용되는 용어들 중 어느 하나라도 그것들의 문맥상에서 그리고/또는 가장 넓은 스코프에서 이해되어야 할 것이다.
일반적으로, 다중 접속 중첩 방식은 진폭-가중된, 부호화된, 그리고/또는 변조된 메시지들을 선형적으로 결합하는 멀티 유저들간의 통신을 의미한다. 예를 들면, 도 1은 기지국(110, BS)과 근거리 UE(120)와 원거리 UE(130)의 두 개의 유저들(또는 유저 장치들)을 도시하고 있다. 여기서, 근거리나 원거리는 기지국(110)으로부터의 상대적인 거리를 나타낸다. 근거리 UE(120)와 원거리 UE(130) 모두는 근거리 UE(120)를 위한 심볼(xn)과 원거리 UE(130)를 위한 심볼(xf)을 포함하는 아래 수학식 1로 표현되는 동일한 신호(x)를 수신한다.
[수학식 1]
Figure 112016053488559-pat00001
여기서, α는 일반적으로 전송 전력을 나타내는 파라미터이고, 따라서, αN은 근거리 UE(120)에 할당된 전송 전력이고, αF는 원거리 UE(130)에 할당된 전송 전력이다(단, αN + αF = 1). 도 2에서 설명하겠지만, 어떤 경우에는, α는 원거리 UE(130) 전력에 대한 근거리 UE(120) 전력의 비를 나타내기도 한다.
간략히 표현하면, 근거리 UE(120)는 원거리 UE(130)의 심볼(xf)를 디코딩하여 간섭으로 간주하여 제거하는데 사용한다. 따라서, 근거리 UE(120)에 제공된 심볼(xn)이 디코딩된다. 이러한 형태의 간섭 제거의 반복은 "연속 간섭 제거(Successive Interference Cancellation)" 또는 SIC라 불린다. 반면, 원거리 UE(130)는 신호 xf를 단순하게 디코딩한다(하지만, 원거리 UE(130)도 xn을 제거하기 위한 신호 제거 방법을 사용할 수 있을 것이다).
일반적으로 원거리 유저 심볼(x F )은
Figure 112016053488559-pat00002
로 표현되는 K F 비트의 데이터에 대응하고, 근거리 유저 심볼(x N )은
Figure 112016053488559-pat00003
로 표현되는 K N 비트의 데이터에 대응한다.
도 2는 멀티-유저 중첩 전송(MUST)에서 (QPSK, QPSK) 변조 쌍으로 구성되는 "수퍼 성상"의 예를 보여준다. "(QPSK, QPSK)"는 원거리 UE 신호 및 근거리 UE 신호 모두가 QPSK(Quadrature Phase Shift Keying)에 의해서 변조됨을 의미한다. 도 2는 근거리 및 원거리 유저들 모두가 수학식 1을 사용한 QPSK의 직접 심볼 맵핑(즉, 16-QAM 수퍼 성상)을 수행한 결과를 보여준다. 더불어, 도 2에서, 성분(xn)과 성분(xf)의 심볼들은 그레이 코드로 분리되어 부호화된다.
도 2에 도시된 16-QAM 수퍼 성상에 4-비트 심볼들 각각은 원거리 유저에게 할당된 2-비트와 근거리 유저에게 할당된 2-비트를 포함한다. 구체적으로, 각각의 4-비트 심볼들(b0, b1, b2, b3)은 원거리 유저에게 제공될 2-비트
Figure 112016053488559-pat00004
와, 근거리 유저에게 제공될 2-비트
Figure 112016053488559-pat00005
를 포함한다. 따라서, 원거리 유저의 성상은 상대적으로 정밀하지 않다(coarse). 왜냐하면, 각각의 사분면이 하나의 심볼(예를 들면, 상측 우편 사분면은 '00')만을 표현하는 반면, 근거리 유저 성상의 각각 사분면은 4개의 심볼들(00, 01, 10, 11)을 나타내기 때문이다. 하지만, 근거리 유저는 상대적으로 가까이 위치하기 때문에, 근거리 유저의 수신 신호는 상대적으로 강하고, 따라서 근거리 유저가 원거리 유저보다 수신 신호의 레벨을 식별하기가 상대적으로 수월하다.
이론적으로, 원거리 유저 부호어(Codeword)가 복호될 때, 근거리 유저가 부호어에 의해서 연속 간섭 제거(SIC: Successive Interference Cancellation)를 적용하면, 오리지널 부호화된 원거리 유저 부호어는 복호된 부호어를 사용하여 재구성될 수 있다. 그리고, 재구성된 오리지널 신호는 부호화 이전의 전체 신호로 부터제거될 수 있으며, 이러한 특징은 채널 용량 달성 면에서 최적이다.
본 발명은 중첩 다중 접속 통신 시스템에서, 근거리 및 원거리 유저에게 가중 스펙트럴 효율을 사용하여 전송 전력을 분배하는 방법과, 그리고 좀더 세밀하게 그리고 좀더 효과적으로 비트-스왑 룰을 구현하는 방법을 제공하기 위한 것이다.
따라서, 본 발명에 의하여 상술한 문제들 그리고/또는 불리함들 중 적어도 하나를 해결하기 위한 후술하는 특징들이 제공될 것이다.
본 발명의 일 실시예에 따르면, 균일 그리고 불균일 중첩 성상들(수퍼 성상들)을 사용 가능한 중첩 다중 접속 통신 시스템에서의 전력 할당 방법은, 중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이 수퍼 성상 내에서 위치에 근거하여 정확히 수신된 비트의 조건부 확률( P c,i )을 계산하는 단계, 중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이, 정규화 가중치 계수( w i )를 계산하는 단계, 상기 각각의 수신기( i )에 대한 상기 조건부 확률( P c,i ) 및 상기 정규화 가중치 계수( w i )를 사용하여 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )을 계산하는 단계, 그리고 상기 가중 스펙트럴 효율들의 합( S )을 최대값으로 형성하는 수신기( i )의 최적 전력 할당값(
Figure 112016053488559-pat00006
)을 계산하는 단계를 포함한다.
본 발명의 다른 실시 예에 따르면, 유저(User Equipment: UE)의 동작 방법은, 상기 유저(UE)로의 전송에서 중첩 전송이 사용되는지의 여부를 나타내는 지시를 수신하는 단계, 상기 유저(UE)로의 전송에서, 적어도 하나는 GNC(Gray-mapped Non-uniform-capable Constellations) 중첩 성상을 사용하는 중첩 전송들 중에서 어떤 타입의 중첩 전송이 사용되는지를 나타내는 지시를 수신하는 단계, 그리고 상기 유저(UE)의 전력 할당에 관련된 정보를 포함하는 하나 또는 그 이상의 중첩 전송 파라미터를 수신하는 단계를 포함하되, 상기 유저(UE)의 전력 할당은, 상기 중첩 성상 내에서의 위치에 근거하여 상기 유저(UE)에 의해 정확히 수신된 비트의 조건부 확률을 계산하는 단계, 상기 유저(UE)의 정규화 가중치 계수를 계산하는 단계, 모든 유저 장비들의 상기 조건부 확률 및 상기 정규화 가중치 계수를 사용하여 중첩 전송을 수신하는 모든 유저 장비들의 가중 스펙트럴 효율들의 합을 계산하는 단계, 그리고 상기 가중 스펙트럴 효율들의 합을 최대값으로 형성하는 상기 유저 장비의 최적 전력 할당값을 결정하는 단계를 포함한다.
본 발명의 또 다른 실시 예에 따르면, 균일 그리고 불균일 중첩 성상들(수퍼 성상들)을 사용 가능한 중첩 다중 접속 통신 시스템에서의 전력 할당 장치는, 프로세서에 의해서 실행 가능한 명령어를 저장하는 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체, 그리고 상기 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체에 저장된 명령어를 실행하는 적어도 하나의 프로세서를 포함하되, 상기 명령어의 실행은 상기 전력 할당 장치에서, 중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이 수퍼 성상 내에서 위치에 근거하여 정확히 수신된 비트의 조건부 확률( P c,i )을 계산하는 단계, 중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이, 정규화 가중치 계수( w i )를 계산하는 단계, 상기 각각의 수신기( i )에 대한 상기 조건부 확률( P c,i ) 및 상기 정규화 가중치 계수( w i )를 사용하여 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )을 계산하는 단계, 그리고 상기 가중 스펙트럴 효율들의 합( S )을 최대값으로 형성하는 수신기( i )의 최적 전력 할당값(
Figure 112016053488559-pat00007
)을 계산하는 단계를 포함하는 방법의 실행으로 나타난다.
본 발명의 또 다른 실시 예에 따르면, 유저 장비(User Equipment: UE)는, 프로세서에 의해서 실행 가능한 명령어를 저장하는 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체, 그리고 상기 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체에 저장된 명령어를 실행하는 적어도 하나의 프로세서를 포함하되, 상기 명령어의 실행은 상기 유저(UE)에서, 상기 유저(UE)로의 전송에서 중첩 전송이 사용되는지의 여부를 나타내는 지시를 수신하는 단계, 상기 유저(UE)로의 전송에서, 적어도 하나는 GNC(Gray-mapped Non-uniform-capable Constellations) 중첩 성상을 사용하는 중첩 전송들 중에서 어떤 타입의 중첩 전송이 사용되는지를 나타내는 지시를 수신하는 단계, 그리고 상기 유저(UE)의 전력 할당에 관련된 정보를 포함하는 하나 또는 그 이상의 중첩 전송 파라미터를 수신하는 단계를 포함하며, 상기 유저(UE)의 전력 할당은, 상기 중첩 성상 내에서의 위치에 근거하여 상기 유저(UE)에 의해 정확히 수신된 비트의 조건부 확률을 계산하는 단계, 상기 유저(UE)의 정규화 가중치 계수를 계산하는 단계, 모든 유저 장비들의 상기 조건부 확률 및 상기 정규화 가중치 계수를 사용하여 중첩 전송을 수신하는 모든 유저 장비들의 가중 스펙트럴 효율들의 합을 계산하는 단계, 그리고 상기 가중 스펙트럴 효율들의 합을 최대값으로 형성하는 상기 유저 장비의 최적 전력 할당값을 결정하는 단계를 포함한다.
상술한 실시 예에 따르면, 본 발명의 중첩 다중 접속 통신 시스템은 근거리 및 원거리 유저에게 가중 스펙트럴 효율을 사용하여 효율적으로 전송 전력을 분배할 수 있다.
도 1은 기지국(110, BS)과 근거리 UE(120)와 원거리 UE(130)의 두 개의 유저들(또는 유저 장치)을 도시하고 있다.
도 2는 멀티-유저 중첩 전송(MUST)에서 (QPSK, QPSK) 변조 쌍으로 구성되는 직접 심볼 맵핑(DSM)의 예를 보여준다.
도 3a는 본 발명의 실시 예에 따른 (QPSK, QPSK) 변조 쌍에서 격자들 간격이 균일한 GNC 수퍼 성상의 특별한 경우의 맵핑을 보여준다.
도 3b는 본 발명의 실시 예에 따른 (QPSK, QPSK) 변조 쌍에서 불균일 GNC 수퍼 성상의 맵핑을 보여준다.
도 4는 본 발명의 실시 예에 따른 (16-QAM, QPSK) GNC 수퍼 성상의 맵핑을 보여준다.
도 5는 본 발명의 실시 예에 따른 (QPSK, 16-QAM) GNC 수퍼 성상의 맵핑을 보여준다.
도 6은 본 발명의 실시 예에 따른 전력 할당 방법을 보여주는 순서도이다.
도 7은 본 발명의 실시 예에 따른 전력 할당 방법을 좀더 자세히 보여주는 순서도이다.
이하에서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시 예를 첨부된 도면을 참조하여 설명하기로 한다. 동일한 구성들은 비록 다른 도면에서 도시되었다 할지라도, 동일한 참조 부호로 표시될 것이다. 후술하는 상세한 설명에서, 구체적으로 표시된 설정이나 구성은 본 발명의 실시 예에 대한 이해를 높이기 위한 것일 뿐이다. 따라서, 여기에서 설명되는 실시 예는 본 발명의 범위에서 벗어나지 않는 한도 내에서 당업자에게 있어 여러 가지 변형이 가능하다. 게다가, 잘 알려진 기능이나 구성들에 대한 설명은 명확성 및 간결성을 위해 구체적으로 게시하지 않았음을 밝힌다. 이하에서 표현되는 용어들은 본 발명의 기능을 고려하여 정의된 용어이며, 유저에 따라, 유저나 고객의 의도에 따라 다르게 해석될 수 있다. 따라서, 본 발명의 용어들에 대한 정의는 본 발명의 상세한 설명에 기술된 내용에 근거하여 결정되어야 할 것이다.
본 발명은 도시된 도면들을 참조하여 설명되는 여러 실시 예들에 대한 다양한 변형이나 조정된 실시 예들을 포함할 수 있다. 하지만, 본 발명은 설명된 실시 예들에만 국한되지 않으며, 본 발명의 범위에 포함되는 모든 변형된 예들, 균등물, 대체물들을 포함함은 잘 이해될 것이다.
비록 "제 1", "제 2" 등의 용어가 여기서 다양한 요소를 설명하기 위해 사용될 수 있다 하더라도, 이들 요소는 이 용어들에 의해 한정되지 않는다. 이 용어들은 단지 다른 것들로부터 하나의 구성요소를 구별하기 위해 사용될 수 있다. 예를 들면, 본 명세서에서 사용된 제 1 구성은 제 2 구성을 지시할 수도 있다. 유사하게, 제 2 구성은 제 1 구성을 지시할 수도 있다. “그리고/또는”은 리스트된 항목들을 적어도 하나 포함하는 모든 조합을 포괄하는 것으로 이해되어야 한다.
본 명세서에서 설명되는 용어는 단지 특정한 실시 예를 설명하기 위한 목적으로 사용되며, 그것에 한정되지 않는다. 단일 폼들은 문맥에서 명확히 다른 것을 지시하지 않은 이상 복수의 폼들을 포함하는 것으로 이해되어야 한다. 본 발명에서 '포함하는'이라는 용어는 '포함하되 한정되지 않는'으로, '가지는'이라는 용어는 '적어도 하나를 가지는'으로 해석되어야 한다. "포함하는"과 같은 용어는 설명된 특징, 단계, 동작, 성분, 및/또는 구성요소의 존재를 명시하며, 추가적인 하나 또는 그 이상의 특징, 단계, 동작, 성분, 구성요소 및/또는 그들의 그룹의 존재를 배제하지 않는다. 도면의 구성이나 특징은 도시된 수치에 한정되지 않는다.
다르게 정의되지 않는 한, 여기서 사용되는 용어들은 이 분야에서 통상의 지식을 습득한 사람들에 의해서 이해되는 동일한 의미로 해석되어야 한다. 사전에 사용되는 일반적인 정의를 갖는 용어들은 관련된 기술 분야에서 사용되는 의미로 해석되어야 하며, 본 발명에서 구체적으로 정의되지 않았다면 이상적으로 또는 과도한 형식적 의미로 이해되어서는 안된다.
그레이 맵핑된 불균일 -가능 성상
본 발명의 동일한 발명자에 의하여 2016년 1월 15일에 미국 출원번호 14/997,106의 출원이 'Apparatus and Method for Superposition Transmission'라는 제목으로 제출되었으며, 이 출원의 우선권을 제공하는 4개의 가출원(Provisional Patent application)이 제출되었다. 이들 출원들은 본 발명에 참조로 포함된다.
미국 출원번호 14/997,106의 출원과, 이 출원의 우선권을 갖는 미국 가출원들(62/173,241 및 62/203,818, 이하에서 다른 출원들이라 칭함)에서, 새로운 형태의 중첩 수퍼 성상(GNC: Gray-mapped Non-uniform Constellation or Gray-mapped Non-uniform-capable Constellation)이 기술된다. 그레이 코드로 부호화되지만, GNC 수퍼 성상은, 간략화된 결합 로그 우도 비(LLR) 생성과 둘 이상의 유저(근거리 및 원거리 유저)로 쉽게 확장 가능한 규칙적 간격의 격자들의 직접 결합 방식에 따라 구성되며, 따라서, 이웃한 심볼들 간에는 동일하지 않은 간격을 가질 수 있다.
여러 특징들 가운데, 다른 출원들(62/173,241 및 62/203,818)도 GNC 수퍼 성상이 일부 환경에서 사용되고, 이점을 제공하지만, 그레이 맵핑이 어떤 전력 분배 조건들에서는 보장될 수 없음을 언급하고 있다. 더불어, 어떤 조건들에서 GNC 수퍼 성상 기법에 더 좋은 결과를 제공하기 위해 근거리 유저와 원거리 유저의 비트값들이 교환되는 "비트-스왑핑(bit swapping)" 기술도 언급되었다. 구체적인 결과는 아래 표 1에 요약되어 있다.
Figure 112016053488559-pat00008
따라서, 단일 계층 환경에서 (16-QAM, QPSK) 수퍼 성상을 구성할 때, 만일 (αF ≥ 0.6429)인 경우, 비트-스왑이 적용되지 않은 GNC가 사용된다. 만일, 만일 (αF ≤ 0.1667)인 경우, 비트-스왑이 적용되는 GNC가 사용된다. 이것은 GNC/비트-스왑 기법의 조합이 작용하지 않는 0.1667과 0.6429 사이의 "제외 영역"이 존재함을 의미하고, 이 영역에서는 수퍼 성상을 생성하기 위한 다른 기법이 사용될 것이다.
비록, 다른 출원들(62/173,241 및 62/203,818)에서도 제외 영역을 정의하고, 어떤 영역에 대해 비트-스왑을 수행할지의 여부에 대한 가이드를 제공하지만, 이들 영역 내에서의 최적화를 위한 가이드는 더 이상 제공되지 않을 것이다. 다시 말해, 예를 들면, 비트-스왑을 사용하지 않는 단일 계층 환경에서 (16-QAM, QPSK) 수퍼 성상이 (αF ≥ 0.6429) 조건에서 사용되어야 하는데, 하지만 다른 출원들(62/173,241 및 62/203,818)은 (αF ≥ 0.6429) 조건에서 최적의 값을 제공하기 위한 가이드를 제공하지 않는다.
이 출원에서는 최적 전력 할당과 최적 비트-스왑 룰에 관련된 기법들이 제공될 것이다.
I. 비트-스왑을 사용 또는 사용하지 않는 GNC 에서의 최적 전력 할당
여기서 소개하는 전력 할당 방법은 변조 및 코딩 방식(MCS), 심볼 에러율, 디코딩 에러율, 그리고/또는 부호화 이득과 비트 위치를 조정하기 위한 바이어스 항들을 고려한 가중 스펙트럴 효율의 사용에 의해서 GNC 수퍼 성상에서 최적화된다. 이 실시 예에서, 예를 들면, 가중 스펙트럴 효율의 합이 이용되지만, 그러나, 다른 실시 예에서는, 예를 들면, 스펙트럴 효율의 가중 평균과 같은 다른 적절한 스펙트럴 효율 매트릭이 사용될 수 있다.
가장 간단한 예를 들면, 근거리 유저와 원거리 유저만이 존재하고, 근거리 유저에게는 수퍼 성상의 내부 비트들이 중요하고, 원거리 유저에게는 수퍼 성상의 외부 비트들이 중요한 경우를 고려하기로 한다. 따라서, 하나의 수퍼 성상은 원거리 유저 심볼 또는 근거리 유저 심볼의 정정에 대한 두 개의 확률을 제공한다. 이 상황에서, 가중 스펙트럴 효율의 합은 근거리 유저와 원거리 유저에 대해 아래 수학식 2a로 나타낼 수 있다.
[수학식 2a]
Figure 112016053488559-pat00009
또는 보다 일반적으로, S K 유저들에 대해서는
Figure 112016053488559-pat00010
로 나타낼 수 있다. 여기서, 정정될 검출 심볼의 확률 P c ,i 는 아래 수학식 2b로 표현될 수 있다.
[수학식 2b]
Figure 112016053488559-pat00011
여기서,
Figure 112016053488559-pat00012
는 유저( i )에서 검출된 k 번째 심볼을 나타낸다. 따라서, P c ,i 는 비부호화 율을 다룬다. 부호화율과 그것에 관련된 부호화 이득은 가중 계수들에 의해서 확인된다. 유저( i )를 위해 전송 가능한 최대 효율의 비트들은
Figure 112016053488559-pat00013
로 나타낼 수 있다. 따라서, 유저( i )에 대한 가중 계수(
Figure 112016053488559-pat00014
)는 바이어스 항들에 의해서 아래 수학식 2c와 같이 정규화할 수 있다.
[수학식 2c]
Figure 112016053488559-pat00015
여기서, Ci는 유저( i )의 부호화율, Si는 유저( i )의 비트가 스왑되었는지 아닌지를 지시하는 플레그, 그리고
Figure 112016053488559-pat00016
는 내부 비트와 외부 비트들 사이에서 부호화 이득의 효과를 보상하기 위한, Ci와 Si의 함수인 바이어스 항이다.
바이어스 항
Figure 112016053488559-pat00017
이 필요한 이유는,
Figure 112016053488559-pat00018
이 심볼당 전송 가능한 최대 비트들을 표현하고 있지만, 전송되는 효율적인 비트 수는 부호화 이득의 효율이 비선형이라는 점과 비트 위치에 따라 효율적인 부호화 이득이 변한다는 점때문에 가변될 수 있다는 데 있다.
일반적으로, 외부 비트들은 내부 비트들에 비해서 안정적이어서 동일한 부호화율에서 조차 효율적인 부호화 이득은 비트 위치에 의존하여 달라질 수 있으며, 이것은 블록 에러율(BLER)에 영향을 준다. 따라서, 바이어스 항
Figure 112016053488559-pat00019
이 비트 영역에서 미치는 영향을 보상하기 위하여 추가된다. 예를 들면, 동일한 MCS가 근거리 유저 및 원거리 유저에게 사용되는 경우, 성능의 균형을 위해서 근거리 유저의 바이어스 항
Figure 112016053488559-pat00020
에 추가적인 비트가 추가될 수 있다. 다른 실시 예에서, 낮은 복호화 이득을 가진 높은 부호화율은 비트 위치에 의한 효과를 보상하기 위해 높은 바이어스 항
Figure 112016053488559-pat00021
을 필요로 할 수 있다.
바이어스 항
Figure 112016053488559-pat00022
은 오프라인에서 미리 준비되어 룩업 테이블로 저장된다. 두 유저/유저 장비의 가중 스펙트럴 효율의 합을 최대로 하기 위한 최적의 전력 분배 계수( α* F )는 아래 수학식 3에 의해서 계산된다.
[수학식 3]
Figure 112016053488559-pat00023
여기서, α F,th 는 앞서 설명된 표1에 따르며, 변조 조합에 의거하여 결정된다. 예를 들면, 스왑이 없는 단일 스트림이 사용되는 경우, α F,th 는 표 1의 첫번째 칼럼에 표시된 바와 같이 0.5의 (QPSK, QPSK) 조합이 될 수 있다.
C 는 신호대잡음비(SNR)에 따라 변하기 때문에, 전력 분배 계수( α* F )는 앞서 설명된 대응하는 방식, 즉, 비트-스왑이 사용되었는지의 여부에 따라 변한다. 마지막으로, 조건부 확률( P c ,i )은 본 발명 그리고 다른 출원들에서 게시되는 GNC 시스템에 의존한다.
아래에서 더 설명 되어지는 바와 같이, 가중 스펙트럴 효율을 이용하는 아이디어가 부호어 수준 복호화를 이용하는 스킴으로 확장될 수 있다.
A. (QPSK, QPSK) GNC 수퍼 성상에서 최적 계수( α F )
(1) 균일 ( QPSK , QPSK ) GNC (도 3a)
도 3a를 참조하여, (αN = 0.20 그리고 αF = 0.80) 조건 또는 등등하게 ( p = q =1) 조건에서 단일 계층 (QPSK, QPSK) GNC 수퍼 성상이 설명될 것이다. 여기서 앞서 소개된 파라미터들( p, q )은 GNC 수퍼 성상을 생성하기 위해 사용되는 새로운 변수들이며, 다른 출원들에서 보다 구체적으로 설명되어 있다. 일반적으로, 파라미터 ( q )는 유저들간에 요구되는 전력 분배수를 보장하고, 파라미터 ( p )는 단위 성상에서의 전력과 관련된 값이다.
도 3a는 특별한 경우인데, GNC 수퍼 성상이 균일한 16-QAM 격자(도 3b의 불균일 격자 대신에)를 형성하는 경우를 보여준다. 균일 여부에 관계없이, 포인트들을 위한 4개의 구현 가능한 실수값들은 도 3a 및 도 3b에 도시된 포인트들[-p(2+q), -p(2-q), p(2-q), and p(2+q)]이고, 허수축의 값들은 실수축의 값들과 대칭이다.
도 3a에서, 비트들(b0, b1)은 성상을 4개의 그룹들로 분할하며, 각 그룹은 (xI, xQ) 좌표계의 하나의 사분면에 속한다. 비트들(b2, b3)은 주어진 비트쌍(b0, b1)의 값과 각 세트를 형성하여, 그레이 레벨의 성상을 정의한다. 다시 말해서, 비트쌍들 (b0, b1)과 (b2, b3)는 중첩구조를 형성하는데, 수학식 4와 같이 비트들(b0, b1)이 직합(direct sum)의 외부 파트를 구성하고, 비트들(b2, b3)이 직합(direct sum)의 내부 파트를 구성한다.
[수학식 4]
Figure 112016053488559-pat00024
외부 비트들은 원거리 유저에게 할당되고[(b0, b1) = (d0 F d1 F)], 내부 비트들은 근거리 유저에게 할당된다[(b2, b3) = (d2 F d3 F)]. 수신된 전력이 P 라 가정하면, 전력 제한 값 C 는 10/ P 이고, 수학식 5a 및 수학식 5b와 같이 심볼 맵핑의 일부로 불균일 전력 분배가 이루어질 수 있다.
[수학식 5a]
Figure 112016053488559-pat00025
[수학식 5b]
Figure 112016053488559-pat00026
여기서, 수학식 5a는 수학식 5b와 동일하며, 앞서 언급한 바와같이 단일 계층 또는 스칼라 환경(또는, MUST를 평가하기 위해 3GPP RAN1에서 정의된 시나리오1)에서, p와 q는 양의 실수일 수 있고, 수학식 6a 및 수학식 6b의 제약 사항을 따른다.
[수학식 6a]
Figure 112016053488559-pat00027
[수학식 6b]
Figure 112016053488559-pat00028
여기서, 수학식 6a는 전체 전력 요구 또는 단위 성상 전력에 의해서 도출되고, 수학식 6b는 근거리 및 원거리 유저 또는 비트쌍들 (b0, b1)과 (b2, b3) 사이의 전력 분배 요구로부터 도출될 수 있다.
앞서 논의된 바와 같이, 도 3a는 αN = 0.20 그리고 αF = 0.80 조건 또는 ( p = q =1) 조건에서 (QPSK, QPSK) GNC 수퍼 성상, 따라서, 16-QAM 격자를 형성하는 특별한 경우를 나타낸 것이다.
(2) 불균일 ( QPSK , QPSK ) GNC ( FIG . 3B)
도 3b는 성상의 포인트들간 거리가 다른 불균일 (QPSK, QPSK) GNC 수퍼 성상을 보여준다. 특히, 도 3b에 도시된 불균일 GNC 수퍼 성상의 심볼간 거리는 2가지 다른 값들을 갖는다.
[수학식 7a]
Figure 112016053488559-pat00029
[수학식 7b]
Figure 112016053488559-pat00030
요약하면, 가장 인접한 이웃 심볼들이 에러 심볼들을 선택하기 위하여 고려될 수 있다. 심볼간 간격이 멀어질수록, 에러 확률은 지수적으로 감소한다. 게다가, 신호대잡음비(SNR)가 증가할수록 Q 함수의 값은 급격히 감소한다. 따라서, 가장 인접한 이웃 심볼들을 제외한 나머지 심볼들은 전력 할당에 크게 영향을 주지 못한다.
일반적으로, 수학식 8a에서 정의된 방식으로 성상의 포인트들은 조건부 확률을 정의하는 측면에서 여러가지 방법으로 그룹화 될 수 있으며, 이러한 기술은 이 분야의 기술을 습득한 자들에게는 잘 이해될 것이다. 예를 들면, 동일한 거리 내에 포인트들, 동일한 수의 서로 다른 비트들을 가진 포인트들은 그룹으로 지어질 수 있다.
원거리 유저 비트(외부 비트로 칭하기도 함, 모든 원거리 유저 비트와 마찬가지로)에 있어서, 정정될 조건부 확률은 수학식 8a로 주어질 수 있다.
[수학식 8a]
Figure 112016053488559-pat00031
여기서, Q i 는 인수
Figure 112016053488559-pat00032
를 갖는 Q-함수
Figure 112016053488559-pat00033
로 정의될 수 있다. Q-함수는 표준 정규 분포에서 테일(Tail) 확률을 나타낸다. 따라서, 수학식 8a는 수학식 8b로 나타낼 수 있다.
[수학식 8b]
Figure 112016053488559-pat00034
근거리 유저 비트(내부 비트라 칭하기도 함, 모든 근거리 유저 비트와 마찬가지로)에 있어서, 수퍼 성상에서 모든 포인트들의 정정될 조건부 확률은 아래 수학식 9a로 나타낼 수 있다.
[수학식 9a]
Figure 112016053488559-pat00035
각각의 성상 포인트는 균일하게 선택되기 때문에, 조건부 확률은 아래 수학식 9b로 나타낼 수 있다.
[수학식 9b]
Figure 112016053488559-pat00036
따라서, 불균일 (QPSK, QPSK) GNC 수퍼 성상의 가중 스펙트럴 효율의 합은 근거리 및 원거리 유저에 대해서는 수학식 2a의 적용을 통해서 제공될 수 있으며, 아래 수학식 10으로 나타낼 수 있다.
[수학식 10]
Figure 112016053488559-pat00037
여기서, (wF,wN)은 수학식 2c에 따른 정규화 가중 계수들의 집합이다. 두 유저들(UEs)에 대한 가중 스펙트럴 효율의 합을 최대로 만들기 위한 최적 전력 분배 계수( α* F )는 아래 수학식 11a에 의해서 선택될 수 있다.
[수학식 11a]
Figure 112016053488559-pat00038
(QPSK, QPSK) 조합이 비트-스왑의 경우 대칭적이기 때문에, 비트-스왑 GNC 방식에서 최적 전력 분배 계수( α* F )는 α - * F 로 나타낼 수 있으며, 아래 수학식 11b로 표시된다.
[수학식 11b]
Figure 112016053488559-pat00039
B. (16- QAM , QPSK ) GNC 수퍼 성상에서 최적 계수( α F )(도 4)
도 4는, 본 발명의 실시 예에 따른 스펙트럴 효율의 합에 의해 도출되는 최적 전력 할당을 위한 αN = 0.20 그리고 αF = 0.80 조건에서 비트-스왑 없는 단일 계층 (16-QAM, QPSK) GNC 수퍼 성상을 보여주는 도면이다. 심볼 맵핑의 실수 파트들은 도 4의 아랫부분에서 p q 항으로 구분된다.
비트 할당은 [(b0, b1, b2, b3, b4, b5) = (d0 F, d1 F, d0 N, d1 N, d2 N, d3 N), 비트-스왑된 경우는 제외]와 같이 제공된다. 수신된 전력이 P 라 가정하면, 전력 제한 값 C 는 42/ P 이고, 심볼 맵핑 과정은 수학식 12와 같이 나타낼 수 있다.
[수학식 12]
Figure 112016053488559-pat00040
수학식 12에서는 4개의 양의 실수값들[p(4-3q), p(4-q), p(4+q), 그리고 p(4+3q)]이 생성된다. 단일 계층 또는 스칼라 환경(또는, MUST를 평가 하기 위해 3GPP RAN1에서 정의된 시나리오1)에서, p와 q는 수학식 13a 및 수학식 13b 제약 사항을 따른다.
[수학식 13a]
Figure 112016053488559-pat00041
[수학식 13b]
Figure 112016053488559-pat00042
앞서 논의된 바와 같이, 수학식 13a는 전체 전력 요구/단위 성상 전력으로부터 도출되고, 수학식 13b는 근거리 및 원거리 유저들 사이의 전력 분배 요구로부터 도출될 수 있다. 여기서, ( p = q =1)로 설정하거나 또는 동등하게 αF=20/21로 설정하는 것은 균일 64-QAM 성상으로 나타난다.
균일 성상과는 반대로, 도 4에 도시된 불균일 GNC 수퍼 성상은 심볼들간 간격에는 아래 수학식 14a 및 수학식 14b와 같이 2가지 다른 값을 가진다.
[수학식 14a]
Figure 112016053488559-pat00043
[수학식 14b]
Figure 112016053488559-pat00044
원거리 유저에게 있어서, 정정될 조건부 확률은 아래 수학식 15a로 나타낼 수 있으며, 가장 근접한 이웃 심볼만을 고려 대상으로 한다.
[수학식 15a]
Figure 112016053488559-pat00045
각각의 심볼은 1/64의 동등한 확률로 선택될 수 있고, 결국 정정될 확률은 아래 수학식 15b를 통해서 계산될 수 있다.
[수학식 15b]
Figure 112016053488559-pat00046
그리고 원거리 유저에 대한 조건부 확률은 아래의 수학식 15c 및 수학식 15d에 표현된 추가적인 거리를 사용하여 다시 계산될 수 있으며, 결국 수학식 15e로 정리될 수 있다.
[수학식 15c]
Figure 112016053488559-pat00047
[수학식 15d]
Figure 112016053488559-pat00048
[수학식 15e]
Figure 112016053488559-pat00049
수학식 15e를 이용하면, 수학식 15b는 수학식 15f로 업데이트될 수 있다.
[수학식 15f]
Figure 112016053488559-pat00050
근거리 유저에게 있어서, 균일 성상 맵의 모든 포인트들에 대해서 정정될 조건부 확률은 수학식 16a로 나타낼 수 있다.
[수학식 16a]
Figure 112016053488559-pat00051
유사하게, 정정될 확률은 수학식 16b와 같이 계산될 수 있다.
[수학식 16b]
Figure 112016053488559-pat00052
근거리 유저의 조건부 확률은 추가 거리 (dmin,3)를 사용하여 수학식 16c로 재구성될 수 있으며, 수학식 16b는 수학식 16d로 업데이트될 수 있다.
[수학식 16c]
Figure 112016053488559-pat00053
[수학식 16d]
Figure 112016053488559-pat00054
따라서, (16-QAM,QPSK) GNC 수퍼 성상에서 가중 스펙트럴 효율의 합은 수학식 17로 나타낼 수 있다.
[수학식 17]
Figure 112016053488559-pat00055
여기서, (wF,wN)은 수학식 2c에서 처럼 정규화 가중 계수의 집합이다. 대안으로, 가중 스펙트럴 효율의 합은 수학식 15e 또는 수학식 16d를 사용하여 업데이트될 수 있다. 따라서, (16-QAM,QPSK) GNC 수퍼 성상의 최적 전력 분배 계수( α* F )는 아래 수학식 18에 의해서 선택될 수 있다.
[수학식 18]
Figure 112016053488559-pat00056
C.( QPSK ,16- QAM ) GNC 수퍼 성상에서의 최적 α F ( FIG . 5)
도 5는, αF = 0.90 조건에서의 비트-스왑을 사용하지 않는 (QPSK, 16-QAM) GNC 수퍼 성상을 보여준다. 스펙트럴 효율의 합에 의해 도출되는 최적 전력 할당값은 본 발명의 후술하는 내용으로부터 도출될 수 있다.
외부 비트들과 내부 비트들은 각각 원거리 유저 및 근거리 유저를 위해서 배치될 수 있다. 따라서, 심볼당 6개의 비트들은 [(b0, b1, b2, b3, b4, b5) = (d0 F, d1 F, d2 F, d3 F, d0 N, d1 N)]로 연결되고 각각의 심볼은 p q 항 및 수학식 19에 의해 맵핑된다.
[수학식 19]
Figure 112016053488559-pat00057
여기서, 단위 전력 제한값 C =42이다. 수신된 전력이 P 라 가정하면, 전력 제한 값 C 는 42/ P 이다. NS=1에 대해서, p q 항은 아래 수학식 20a, 수학식 20b를 만족한다.
[수학식 20a]
Figure 112016053488559-pat00058
[수학식 20b]
Figure 112016053488559-pat00059
앞서 설명된 바와 같이, αN 그리고 αF 사이의 전력 분배는 q 에 의해서 결정된다. 여기서, ( p = q =1)로 설정하거나 또는 동등하게 αF=16/21로 설정하는 것은 균일 64-QAM 성상으로 나타남에 유의해야 한다. 도 5에서 도시된 바와 같이, 심볼들 간의 서로 다른 두 거리(dmin,1, dmin,2)는 아래 수학식 21a, 수학식 21b로 표시될 수 있으며, 각각의 거리는 원거리 유저 및 근거리 유저(UEs)에 대한 에러율 추출에 사용될 수 있다.
[수학식 21a]
Figure 112016053488559-pat00060
[수학식 21b]
Figure 112016053488559-pat00061
원거리 유저에 있어서, 최인접 심볼들에 대한 정정될 조건부 확률은 아래 수학식 22a로 표현된다.
[수학식 22a]
Figure 112016053488559-pat00062
그리고 정정될 확률은 수학식 22b로 주어진다.
[수학식 22b]
Figure 112016053488559-pat00063
그리고 제 3 및 제 4 거리는 각각 수학식 22c, 수학식 22d로 주어진다.
[수학식 22c]
Figure 112016053488559-pat00064
[수학식 22d]
Figure 112016053488559-pat00065
더불어, 원거리 유저에 대한 조건부 확률은 아래 수학식 22e로 상세히 표현될 수 있으며, 수학식 22b의 조건부 확률을 수학식 22f로 업데이트하는데 사용될 수 있다.
[수학식 22e]
Figure 112016053488559-pat00066
[수학식 22f]
Figure 112016053488559-pat00067
근거리 유저에 있어서, 균일 성상 맵의 모든 포인트들에 대해 정정될 조건부 확률은 아래 수학식 23a로 표현된다.
[수학식 23a]
Figure 112016053488559-pat00068
모든 포인트들은 아래 수학식 23a와 같이 동일한 확률이 할당된다.
[수학식 23b]
Figure 112016053488559-pat00069
원거리 유저에 대한 설명에서와 같이, 근거리 유저에 대한 조건부 확률은 수학식 23c를 만족하는 Q3로 표시될 수 있으며, 수학식 23b를 수학식 23d로 업데이트할 수 있다.
[수학식 23c]
Figure 112016053488559-pat00070
[수학식 23d]
Figure 112016053488559-pat00071
따라서, (QPSK, 16-QAM) GNC 수퍼 성상에서의 가중 스펙트럴 효율들의 합은 아래 수학식 24로 나타낼 수 있다.
[수학식 24]
Figure 112016053488559-pat00072
여기서, (wF,wN)은 수학식 2c에 따른 정규화 가중 계수의 집합이다. 대안으로, 가중 스펙트럴 효율들의 합은 수학식 22f 또는 수학식 23d를 사용하여 업데이트될 수 있다. 따라서, (QPSK, 16-QAM) GNC 수퍼 성상을 위한 최적 전력 분배 계수( α* F )는 아래 수학식 25a와 같이 선택될 수 있다.
[수학식 25a]
Figure 112016053488559-pat00073
만일, 비트-스왑이 존재하는 경우, αN과 αF가 치환되기 때문에 가중 계수들에도 이러한 결과가 나타난다. 결국, 비트-스왑 GNC 방식에서 최적 전력 분배 계수( α - * F )는 아래 수학식 25b로 표시된다.
[수학식 25b]
Figure 112016053488559-pat00074
D. 심볼에서 부호어로의 확장
앞서 설명된 바와 같이, 가중 스펙트럴 효율들을 사용하는 아이디어는 부호어 레벨의 복호 방식에도 확장될 수 있다. 구체적으로, 수학식 26a가 사용될 수 있다.
[수학식 26a]
Figure 112016053488559-pat00075
여기서, P cw,{c,N} 은 유저 i에 의해서 정확하게 디코딩되는 부호어 확률을 나타낸다. 이것은 시스템 레벨에서 경험적으로 측정될 수 있고, 또는 부호화 비트당 평균 상호 정보(MMIB) 맵핑 기법을 사용하여 추정될 수 있다. MUST 스케줄러는 유저(UE) 각각에 대한 복수의 전력 분배 방법(예를 들면, MCS, RB 등)를 고려해야 한다. 정규화 가중 계수는 수학식 26b로 변경될 수 있다.
[수학식 26b]
Figure 112016053488559-pat00076
II . GNC 를 사용할 때의 비트-스왑 룰
이 섹션에서는 중첩 다중 접속 통신을 사용하는 경우 비트-스왑을 위한 테이블 결정룰이 소개될 것이다. (QPSK,QPSK) 수퍼 성상을 제외하고, 그레이 맵핑은 모든 전력 분배 셋들을 보장할 수 없다. 이들의 경우, 그레이 맵핑을 위해서는 비트-스왑이 사용될 것이다. 하지만, 이것은 전송시 비트 스왑의 사용 여부에 대한 결정이 이루어져야 함을 의미한다. 이 섹션에서는, 결정 파라미터의 표가 본 발명의 실시 예에 따라 생성될 것이다. 이하에서, 비트-스왑 조건들이 각각의 수퍼 성상들에 대해서 고려될 것이다. 그리고 종반부에는 테이블이 결론적으로 도출될 것이다.
A. (16- QAM , QPSK ) GNC 수퍼 성상에서의 비트-스왑 조건
도 4와 같은 (16-QAM,QPSK) GNC 수퍼 성상에서, 그레이 맵핑을 확실하게 하기 위해서는 아래의 수학식 27a를 만족시키는 제 1 조건이 충족되어야 하며, 이것은 제 1 임계치(αF,1=0.6429)를 생성한다.
[수학식 27a]
Figure 112016053488559-pat00077
제 2 조건은 아래 수학식 27b와 같으며, 이것은 제 2 임계치(αF,2=0.4444)를 생성한다. 최종 임계치는 비트-스왑을 위한 임계치(αF,3=0.1667)이다.
[수학식 27b]
Figure 112016053488559-pat00078
여기서, 이들 임계치들의 셋은 각 유저의 개별적 성상이 두 유저들(UEs)의 결합/수퍼 성상 맵에서 얼마나 중첩될 수 있는지를 결정한다. 실제로는, 부호화 이득들과 비트-로딩의 비트 위치들에 의해서 성능이 영향을 받는다. 이런 이유로 전력 분배 계수( α F,2 )가 Δ에 의해서 조정될 수 있다(즉, α F,2 +Δ). 이 섹션의 종반부에 있는 표 2에서 α F,2 +Δ가 설명될 것이다. 물론, 이런 특징은 모든 수퍼 성상들에 적용된다.
B. ( QPSK , 16- QAM ) GNC 수퍼 성상에서의 비트-스왑 조건
도 5와 같은 (QPSK, 16-QAM) GNC 수퍼 성상에서, 제 1 그레이 맵핑 조건은 아래의 수학식 28a에 해당하며, 이것은 제 1 임계치(αF,1=0.8333)를 생성한다.
[수학식 28a]
Figure 112016053488559-pat00079
제 2 그레이 맵핑 조건은 아래의 수학식 28b에 해당하며, 이것은 제 2 임계치(αF,2=0.5556)를 생성한다.
[수학식 28b]
Figure 112016053488559-pat00080
그리고 최종 임계치는 비트-스왑을 위한 임계치(αF,3=0.3571)이다. 이들 임계치들의 셋은 결합 성상 맵에서 단일 성상의 중첩 레벨을 지시한다.
C. (16 - QAM , 16- QAM ) GNC 수퍼 성상에서 비트-스왑 조건
(16-QAM, 16-QAM) GNC 수퍼 성상에서, 양수 축에 실현 가능한 x 값들이 [p(12+3q), p(12+q), p(12-q), p(12-3q), p(4+3q), p(4+q), p(4-q), p(4-3q)]와 같이 p 및 q와 함께 사용된다. 따라서, 그레이 맵핑은 아래 수학식 29a 조건이 유효한 경우에 유지되며, 이것은 제 1 임계치(αF,1=0.9)를 생성한다.
[수학식 29a]
Figure 112016053488559-pat00081
여기서, αF가 감소함에 따라 몇몇 성상 포인트들은 상호 중첩될 수 있다. 아래 수학식 29b에서 제시하는 조건이 충족되는 경우, 개별적인 성상에서의 반 이상의 심볼 포인트들이 결합/수퍼 성상 맵에서 공동으로 스케쥴되는 유저들(UEs)을 위해 다른 개별적인 성상의 심볼 포인트들과 중첩될 수 있다.
[수학식 29b]
Figure 112016053488559-pat00082
상술한 수학식은 제 2 임계치(αF,2≥0.6923)를 생성한다. 마지막 임계치는 비트-스왑 임계치(αF,3≥0.1)이다.
D.(64- QAM , QPSK ) GNC 수퍼 성상에서 비트-스왑 조건
(16-QAM, QPSK) GNC 수퍼 성상에서, 양수 축에 실현 가능한 x 값들이 [p(8+7q), p(8+5q), p(8+3q), p(8+q), p(8-q), p(8-3q), p(8-5q), p(8-7q)]와 같이 p 및 q와 함께 사용된다. 따라서, 그레이 맵핑은 아래 수학식 30a 조건이 유효한 경우에 유지되며, 이것은 제 1 임계치(αF,1=0.7)를 생성한다.
[수학식 30a]
Figure 112016053488559-pat00083
여기서, αF가 감소함에 따라 몇몇 성상 포인트들은 상호 중첩될 수 있다. 그러면, 아래 수학식 30b, 수학식 30c에서 제시하는 조건이 충족되는 경우, 개별적인 성상에서의 반 이상의 심볼 포인트들이 결합/수퍼 성상 맵에서 공동으로 스케쥴되는 유저들(UEs)을 위해 다른 개별적인 성상의 심볼 포인트들과 중첩될 수 있다.
[수학식 30b]
Figure 112016053488559-pat00084
[수학식 30c]
Figure 112016053488559-pat00085
상술한 수학식은 제 2 임계치(0.3≤≤αF,2≤0.4324)를 생성한다. αF,2는 이 범위내에서 부호화 이득과 비트 위치에 의존하는 범위 내의 정확한 위치를 가질 수 있을것으로 기대된다. 마지막 임계치는 비트-스왑 임계치(αF,3≥0.0455)이다.
E.( QPSK , 64- QAM ) GNC 수퍼 성상에서 비트-스왑 조건
(QPSK, 64-QAM) GNC 수퍼 성상에서 양수 축에 실현 가능한 x 값들이 [p(14+q), p(14-q), p(10+q), p(10-q), p(6+q), p(6-q), p(2+q), p(2-q)]와 같이 p 및 q와 함께 사용된다. 따라서, 그레이 맵핑은 아래 수학식 31a 조건이 유효한 경우에 유지되며, 이것은 제 1 임계치(αF,1=0.9545)를 생성한다.
[수학식 31a]
Figure 112016053488559-pat00086
여기서, αF가 감소함에 따라 몇몇 성상 포인트들은 상호 중첩될 수 있다. 아래 수학식 31b에서 제시하는 조건이 충족되는 경우, 공동으로 스케줄된 결합/수퍼 성상 맵에서 유저의 개별적인 성상에서 반 이상의 심볼 포인트들이 다른 유저의 개별적인 성상의 심볼 포인트들과 중첩될 수 있다.
[수학식 31b]
Figure 112016053488559-pat00087
상술한 수학식은 제 2 임계치(αF,2=0.7)를 생성한다. 비트-스왑 임계치는 αF,3=0.3)이다.
F. 비트-스왑 조건의 정리
상술한 조건들은 아래 비트-스왑을 수행할지의 여부를 결정하기 위한 표 2로 정리될 수 있다.
Figure 112016053488559-pat00088
왼쪽 열에서는 서로 다른 수퍼 성상 조합들이 나열되어 있다. 즉, (16-QAM, QPSK)는 근거리 유저는 16-QAM을 사용하고, 원거리 유저는 QPSK를 사용하여 결국 64-QAM 수퍼 성상을 구성함을 의미한다. 가운데 열에서는, 각각의 수퍼 성상에 대해 4개의 서로 다른 범위가 제공되고, 오른쪽 열에서는 어느 범위가 비트-스왑에 적절한지와 그레이 부호화가 유지되는지를 나타낸다. 'OFF'는 비트-스왑이 부적절함을, 'ON'은 비트-스왑이 적절함을, 그리고 'Gray'는 그레이 부호화가 유지됨을 의미한다.
상술한 결과에 대한 일련의 시뮬레이션들이 수행되었으며, 이러한 시뮬레이션 결과는 미국 가출원(62/210,326)에 게시되어 있다.
도 6은 본 발명의 실시 예에 따른 전력 할당 방법을 보여주는 순서도이다. 도 6에서, 균일 그리고 불균일 중첩 성상들(수퍼 성상들)을 사용 가능한 중첩 다중 접속 통신 시스템이 전제된다. 610 단계에서, 중첩 다중 접속 전송을 수신하기 위한 수신기( i ) 각각에 대해 수퍼 성상 내에서 위치에 근거하여 비트가 정확히 수신될 조건부 확률( P c,i )을 계산한다. 620 단계에서, 중첩 다중 접속 전송을 수신하기 위한 수신기( i ) 각각에 대해, 정규화 가중치 계수( w i )가 계산된다. 630 단계에서, 각각의 수신기( i )에 대한 상기 조건부 확률( P c,i ) 및 정규화 가중치 계수( w i )를 사용하여 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )이 계산된다. 640 단계에서, 가중 스펙트럴 효율들의 합( S )을 최대값으로 형성하는 수신기( i )의 최적 전력 할당값(
Figure 112016053488559-pat00089
)이 계산된다.
도 7은 본 발명의 실시 예에 따른 전력 할당 방법을 보여주는 순서도이다. 710 단계에서, 중첩 수퍼 성상을 GNC 수퍼 성상으로 생성할지 결정한다(“MUST를 위한 조합된 신호들을 그레이 맵 성상에 의해서 생성할지 지시”). 유저(UE)는 중접 신호들에 대한 정보 관련하여 고-계층 신호를 수신할 것으로 기대된다. 720 단계에서, 유저들을 위한 MCS가 준비된다(“두 유저 모두에 대한 MCS 준비”, 복수의 유저들로 확장 가능). 유저는 정보없이 스스로 변조 순서를 추정하거나, 또는 고-계층 신호를 사용하여 기지국(eNB)으로부터 이 정보를 수신할 수 있다. 만일, 동시 스케줄링된 유저의 부호화율이 정보 없이는 추정 불가한 경우, 보수적 동작을 위해 고부호화율이 고려될 수 있다. 730 단계에서, 유저( i , i = 1, 2, 3, …, k)에 대해 수정될 확률이 도출된다. 740 단계에서, 효율적 MCS를 조정하기 위해 바이어스 항들이 룩업 테이블(LUT)로부터 로드된다. 750 단계에서, 가중 스펙트럴 효율들의 합이 계산된다. 760 단계에서, 신호들을 위한 전력 할당이 각각의 유저들(UEs)에게 배분된다.
본 발명의 실시 예에 따라, 본 발명의 실시 예에 따른 단계들 그리고/또는 동작들이 서로 다른 순서로 또는 병렬적으로, 또는 동시에 발생할 수 있음은 이 분야에 기술을 습득한 자들에게 잘 이해될 것이다. 유사하게, 이 분야에 기술을 습득한 자들에게 있어서, 도 6 및 도 7은 수행될 동작들에 대한 간략한 표현임과, 실장 환경에서의 구현은 다른 순서나 방식들 또는 수단들에 의해서 수행될 수 있음은 잘 이해될 것이다. 유사하게, 도 6 및 도 7은 간략한 표현이기 때문에 이 분야에 기술을 습득한 자들에게 알려진 다른 필요한 단계들과 본 발명의 설명을 위해 적절하지 않거나 도움이 되지 않는 단계들은 도시되지 않았다.
본 발명의 실시 예에 따라, 몇몇 또는 모든 단계들 그리고/또는 동작들은 휴대용 장치에서 부분적으로 구현되거나 수행될 수 있다. 여기서 언급되는 “휴대용 장치”는 무선 신호를 수신하는 기능을 가진 멀티미디어 재생기, 통신 장치, 컴퓨팅 장치, 네비게이션 장치 등의 휴대형, 모바일, 이동 가능한 전자 장치를 의미하며 여기의 게시에 국한되지는 않는다. 따라서, 모바일 장치는 랩톱 컴퓨터, 테블릿 컴퓨터, 휴대형 디지털 보조장치(PDAs), MP3 플레이어, 핸드헬드 PC, 인스턴트 메시징 장치(IMD), 셀룰러 폰, 글로벌 네비게이션 위성 시스템(GNSS) 수신기, 시계, 카메라 또는 그와 같은 것들을 유저가 착용하거나 소지할 수 있는 장치를 의미하며, 여기의 게시에 국한되지는 않는다. “유저 장비” 또는 “UE”는 3GPP LTE/LTE-A 프로토콜에서 사용되는 용어에 해당하며, 하지만, 이들 용어들은 3GPP LTE/LTE-A 프로토콜에만 국한되지는 않는다. 게다가, “유저 장비” 또는 “UE”는 무선 수신 기능을 갖는 휴대형 장치 형태의 기기들을 의미한다.
본 발명의 실시 예에 따라, 몇몇 또는 모든 단계들 그리고/또는 동작들은 명령어(들), 프로그램(들), 상호작용 데이터 구조(들), 클라이언트 그리고/또는 서버 콤포넌트를 실행하는 하나 또는 그 이상의 프로세서들에서 부분적으로 구현되거나 수행될 수 있으며, 이러한 명령어(들), 프로그램(들), 상호작용 데이터 구조(들), 클라이언트 그리고/또는 서버 콤포넌트들은 적어도 하나의 넌-트랜지터리 컴퓨터 읽기 가능 매체에 저장된다. 여기서 언급되는 “적어도 하나의 넌-트랜지터리 컴퓨터 읽기 가능 매체(non-transitory computer-readable media)”는 소프트웨어, 펌웨어, 하드웨어, 그리고/또는 이것들의 조합에 의해서 인스턴스화된다. 게다가, 여기서 논의되는 임의의 “모듈”의 기능은 소프트웨어, 펌웨어, 하드웨어, 그리고/또는 이것들의 조합에 의해서 구현될 수 있다.
본 발명의 실시 예에 따른 적어도 하나의 동작/단계/모듈을 구현/실행하기 위한 적어도 하나의 넌-트랜지터리 컴퓨터 읽기가능 매체 그리고/또는 수단은, ASIC(application-specific integrated circuits), 표준 집적 회로, 명령어를 수행하는 컨트롤러(마이크로 컨트롤러 그리고/또는 임베디드 컨트롤러를 포함), FPGA(field-programmable gate arrays), CPLD(complex programmable logic devices)를 포함할 수 있으며, 여기의 게시에 국한되지 않는다.
본 발명의 몇몇 또는 모든 시스템 콤포넌트들 그리고/또는 데이터 구조들은 넌-트랜지터리 컴퓨터 읽기가능 매체(예를 들면, 하드 디스크; 메모리, 컴퓨터 네트워크나 셀룰러 무선 네트워크 또는 다른 데이터 전송 매체; 또는 DVD와 같은 적절한 장치에 의해서 또는 연결에 의해서 읽혀지는 휴대형 매체)에 콘텐츠(예를 들면, 실행 가능하거나, 다른 넌-트랜지터리 머신 읽기 가능 소프트웨어 명령어나 구조 데이터)로서 저장되어, 컴퓨터 읽기 가능 매체 그리고/또는 관련된 적어도 하나의 컴퓨팅 시스템이나 장치를 활성화 또는 설정하기 위해, 또는 앞서 설명된 기술들 중 적어도 일부를 수행하기 위한 콘텐츠를 제공하기 위하여 사용될 수 있다.
본 발명의 몇몇 또는 모든 시스템 콤포넌트들 그리고 데이터 구조들은 무선 기반 그리고 와이어/케이블 기반의 매체, 그리고 다양한 형태(예를 들면, 단일 또는 다중화된 아날로그 신호, 또는 다중화된 이산 디지털 패킷이나 프레임)를 가질 수 있는 넌-트랜지터리 컴퓨터 읽기가능 전송 매체에 데이터 신호들로 저장될 수 있고, 넌-트랜지터리 컴퓨터 읽기가능 전송 매체로부터 읽혀지고, 전송될 수 있다. 이와 같은 컴퓨터 프로그램 상품은 다른 실시 예에서는 다른 형태를 가질 수 있다. 따라서, 본 발명의 실시 예는 임의의 컴퓨터 시스템의 구정을 통해서 구현될 수 있다.
따라서, 여기서 사용되는 “넌-트랜지터리 컴퓨터 읽기가능 매체”라는 용어는 실제적인 동작 수행(하드웨어 회로와 같이)을 포함하는 미디어를 의미하거나, 동작 수행/실행을 위해 적어도 하나의 프로세서에 제공되는 고레벨 명령어 그리고/또는 프로그램(넌-트랜지터리 메모리에 저장되는 명령어와 같은)을 포함하는 미디어를 의미하거나, 그리고/또는 펌웨어 혹은 불휘발성 메모리에 저장되는 머신-레벨의 명령어를 포함하는 미디어를 칭한다. 넌-트랜지터리 컴퓨터 읽기가능 매체는 불휘발성 그리고 휘발성 매체, 플로피 디스크, 플렉서블 디스크, 하드 디스크, 램, PROM, EPROM, FLASH-EPROM, EEPROM, 메모리 칩이나 카트리지, 자기 테이프, 또는 컴퓨터 명령어를 읽어낼 수 있는 어떤 형태의 자기 매체, CD-ROM, DVD, 또는 컴퓨터 명령어를 읽어낼 수 있는 어떤 형태의 광 매체, 또는 컴퓨터 명령어를 읽어낼 수 있는 임의 형태의 넌-트랜지터리 매체를 포함할 수 있다.
비록 본 발명의 상세한 설명에 의해서 본 발명의 특정한 실시 예가 설명되었으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (20)

  1. 균일 그리고 불균일 중첩 성상들(수퍼 성상들) 방식이 사용되는 중첩 다중 접속 통신 시스템에서의 전력 할당 방법에 있어서:
    중첩 다중 접속 전송 신호를 수신하기 위한 수신기들( i ) 각각이 상기 수퍼 성상들 내에서 위치에 근거하여 정확히 수신된 비트의 조건부 확률( P c ,i )을 계산하는 단계;
    각각의 상기 중첩 다중 접속 전송 신호를 수신하기 위한 수신기들( i )이, 정규화 가중치 계수( w i )를 계산하는 단계;
    각각의 상기 수신기( i )들에 대한 상기 조건부 확률( P c ,i ) 및 상기 정규화 가중치 계수( w i )를 사용하여 상기 수신기들( i )의 가중 스펙트럴 효율들의 합( S )을 계산하는 단계; 그리고
    상기 가중 스펙트럴 효율들의 합( S )을 최대값으로 형성하는 수신기들( i )의 최적 전력 할당값(
    Figure 112016053488559-pat00090
    )을 계산하는 단계를 포함하는 전력 할당 방법.
  2. 제 1 항에 있어서,
    상기 중첩 다중 접속 통신 시스템은 GNC(Gray-mapped Non-uniform-capable Constellations)를 사용하는 전력 할당 방법.
  3. 제 1 항에 있어서,
    상기 중첩 다중 접속 통신 시스템은 롱텀 에볼루션(LTE) 표준의 멀티-유저 중첩 전송(MUST) 시스템인 것을 특징으로 하는 전력 할당 방법.
  4. 제 1 항에 있어서,
    상기 조건부 확률( P c ,i )은 수학식
    Figure 112016053488559-pat00091
    에 따라 계산되는 전력 할당 방법. (여기서,
    Figure 112016053488559-pat00092
    는 수신기( i )에서 검출된 k 번째 심볼을 나타낸다)
  5. 제 1 항에 있어서,
    상기 정규화 가중치 계수( w i )는 부호화 이득, 비트 위치에 의존적인 비트 견고성, 복조 및 부호화 방식(MSC; Modulation and Coding Scheme), 그리고 비례 공정 방식(PF; Proportional Fairness)들 중 적어도 하나에 기초하여 계산되는 전력 할당 방법.
  6. 제 1 항에 있어서,
    상기 정규화 가중치 계수( w i )는, 수학식
    Figure 112016053488559-pat00093
    에 의해서 계산되는 전력 할당 방법. [여기서,
    Figure 112016053488559-pat00094
    는 수신기( i )의 부호율,
    Figure 112016053488559-pat00095
    는 수신기들( i )의 비트들이 스왑되었는지를 나타내는 플레그, 그리고
    Figure 112016053488559-pat00096
    는 내부 또는 외부 비트 사이의 부호화 이득 효과를 보상하기 위한 바이어스 항을 나타내고,
    Figure 112016053488559-pat00097
    Figure 112016053488559-pat00098
    의 함수].
  7. 제 1 항에 있어서,
    상기 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )은 수학식
    Figure 112016053488559-pat00099
    를 사용하여 계산되며, K 는 수신기들의 총수에 해당하고, 정정되는 심볼로부터 검출되는 상기 확률( P c ,i )은 수학식
    Figure 112016053488559-pat00100
    에 따라 계산되는 전력 할당 방법(여기서,
    Figure 112016053488559-pat00101
    는 수신기 i 에서 검출된 k 번째 심볼을 나타낸다).
  8. 제 1 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하는 경우, 상기 가중 스펙트럴 효율들의 합( S )은 수학식
    Figure 112016053488559-pat00102
    를 사용하여 계산되는 전력 할당 방법.(여기서,
    Figure 112016053488559-pat00103
    는 상기 원거리 수신기의 가중 계수이고,
    Figure 112016053488559-pat00104
    은 상기 근거리 수신기의 가중 계수이며, 수집되는 검출 심볼의 확률 P c ,i
    Figure 112016053488559-pat00105
    로 정의되며,
    Figure 112016053488559-pat00106
    는 수신기 i k 번째 검출 심볼을 나타낸다)
  9. 제 1 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하고, 상기 원거리 수신기의 상기 최적 전력 할당값(
    Figure 112016053488559-pat00107
    )의 결정은 수학식
    Figure 112016053488559-pat00108
    을 사용하여 가중 스펙트럴 효율들의 합이 최대가 되도록 계산하는 전력 할당 방법.(여기서,
    Figure 112016053488559-pat00109
    range 는 근거리 수신기 및 원거리 수신기의 변조 차수, 전송 계층의 수, 그리고 아래 테이블에 의해 비트-스왑핑이 존재하는 지의 여부에 따라 정의된다)
    Figure 112016053488559-pat00110
  10. 제 1 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하는 경우,
    상기 근거리 수신기와 원거리 수신기들 사이의 비트-스왑핑을 수행할지의 여부를 결정하는 단계를 더 포함하되, 상기 결정은 아래 테이블을 사용하여
    Figure 112016053488559-pat00111
    의 값에 의존적인 전력 할당 방법.
    Figure 112016053488559-pat00112
  11. 유저(User Equipment: UE)의 동작 방법에 있어서:
    상기 유저(UE)로의 전송에서 중첩 전송이 사용되는지의 여부를 나타내는 지시를 수신하는 단계;
    상기 유저(UE)로의 전송에서, 적어도 하나는 GNC(Gray-mapped Non-uniform-capable Constellations) 중첩 성상을 사용하는 중첩 전송들 중에서 어떤 타입의 중첩 전송이 사용되는지를 나타내는 지시를 수신하는 단계; 그리고
    상기 유저(UE)의 전력 할당에 관련된 정보를 포함하는 하나 또는 그 이상의 중첩 전송 파라미터를 수신하는 단계를 포함하되,
    상기 유저(UE)의 전력 할당은:
    상기 중첩 성상 내에서의 위치에 근거하여 상기 유저(UE)에 의해 정확히 수신된 비트의 조건부 확률을 계산하는 단계;
    상기 유저(UE)의 정규화 가중치 계수를 계산하는 단계;
    모든 유저 장비들의 상기 조건부 확률 및 상기 정규화 가중치 계수를 사용하여 중첩 전송을 수신하는 모든 유저 장비들의 가중 스펙트럴 효율들의 합을 계산하는 단계; 그리고
    상기 가중 스펙트럴 효율들의 합을 최대값으로 형성하는 상기 유저(UE)의 최적 전력 할당값을 결정하는 단계를 포함하는 동작 방법.
  12. 균일 그리고 불균일 중첩 성상들(수퍼 성상들)을 사용 가능한 중첩 다중 접속 통신 시스템에서의 전력 할당 장치에 있어서:
    프로세서에 의해서 실행 가능한 명령어를 저장하는 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체; 그리고
    상기 적어도 하나의 넌-트랜지터리(non-transitory) 컴퓨터-읽기 가능 매체에 저장된 명령어를 실행하는 적어도 하나의 프로세서를 포함하되,
    상기 명령어의 실행은 상기 전력 할당 장치에서:
    중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이 수퍼 성상 내에서 위치에 근거하여 정확히 수신된 비트의 조건부 확률( P c ,i )을 계산하는 단계;
    중첩 다중 접속 전송 신호를 수신하기 위한 수신기( i ) 각각이, 정규화 가중치 계수( w i )를 계산하는 단계;
    상기 각각의 수신기( i )에 대한 상기 조건부 확률( P c ,i ) 및 상기 정규화 가중치 계수( w i )를 사용하여 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )을 계산하는 단계; 그리고
    상기 가중 스펙트럴 효율들의 합( S )을 최대값으로 형성하는 수신기( i )의 최적 전력 할당값(
    Figure 112016053488559-pat00113
    )을 계산하는 단계를 포함하는 방법의 실행으로 나타나는 장치.
  13. 제 12 항에 있어서,
    상기 중첩 다중 접속 통신 시스템은 GNC(Gray-mapped Non-uniform-capable Constellations)을 사용하는 장치.
  14. 제 12 항에 있어서,
    상기 중첩 다중 접속 통신 시스템은 롱텀 에볼루션(LTE) 표준의 멀티-유저 중첩 전송(MUST) 시스템인 것을 특징으로 하는 장치.
  15. 제 12 항에 있어서,
    상기 정규화 가중치 계수( w i )는 부호화 이득, 비트 위치에 의존적인 비트 견고성, 복조 및 부호화 방식(MSC; Modulation and Coding Scheme), 그리고 비례 공정 방식(PF; Proportional Fairness)들 중 적어도 하나에 기초하여 계산되는 장치.
  16. 제 12 항에 있어서,
    상기 정규화 가중치 계수( w i )는, 수학식
    Figure 112016053488559-pat00114
    를 사용하여 계산되는 장치. [여기서,
    Figure 112016053488559-pat00115
    는 수신기( i )의 부호율,
    Figure 112016053488559-pat00116
    는 수신기( i )의 비트들이 스왑되었는지를 나타내는 플레그, 그리고
    Figure 112016053488559-pat00117
    는 내부 또는 외부 비트 사이의 부호화 이득 효과를 보상하기 위한 바이어스 항을 나타내고,
    Figure 112016053488559-pat00118
    Figure 112016053488559-pat00119
    의 함수].
  17. 제 12 항에 있어서,
    상기 모든 수신기들( i )의 가중 스펙트럴 효율들의 합( S )은 수학식
    Figure 112016053488559-pat00120
    를 사용하여 계산되는 장치.(여기서, K 는 수신기들의 총수에 해당하고, 정정되는 심볼로부터 검출되는 상기 확률( P c ,i )은 수학식
    Figure 112016053488559-pat00121
    에 따라 계산되고,
    Figure 112016053488559-pat00122
    는 수신기( i )에서 검출된 k 번째 심볼을 나타낸다).
  18. 제 12 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하는 경우, 상기 가중 스펙트럴 효율들의 합( S )은 수학식
    Figure 112016053488559-pat00123
    를 사용하여 계산되는 장치.(여기서,
    Figure 112016053488559-pat00124
    는 상기 원거리 수신기의 가중 계수이고,
    Figure 112016053488559-pat00125
    은 상기 근거리 수신기의 가중 계수이며, 수집되는 검출 심볼의 확률 P c ,i
    Figure 112016053488559-pat00126
    로 정의되며,
    Figure 112016053488559-pat00127
    는 수신기 i k 번째 검출 심볼을 나타낸다)
  19. 제 12 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하고, 상기 원거리 수신기의 상기 최적 전력 할당값(
    Figure 112022078181643-pat00128
    )의 결정은 수학식
    Figure 112022078181643-pat00129
    을 사용하여 가중 스펙트럴 효율들의 합이 최대가 되도록 계산하는 장치.(여기서,
    Figure 112022078181643-pat00130
    range 는 근거리 수신기 및 원거리 수신기의 변조 차수, 전송 계층의 수, 그리고 아래 테이블에 의해 비트-스왑핑이 존재하는 지의 여부에 따라 정의된다)
    Figure 112022078181643-pat00131
  20. 제 12 항에 있어서,
    근거리 수신기와 원거리 수신기만 존재하는 경우, 상기 장치에 의해서 수행되는 방법은:
    상기 근거리 수신기와 원거리 수신기들 사이의 비트-스왑핑을 수행할지의 여부를 결정하는 단계를 더 포함하되, 상기 결정은 아래 테이블을 사용하여
    Figure 112016053488559-pat00132
    의 값에 의존적인 장치.
    Figure 112016053488559-pat00133
KR1020160068931A 2015-06-09 2016-06-02 중첩 전송을 위한 전력 할당 방법 및 장치 KR102496679B1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201562173241P 2015-06-09 2015-06-09
US62/173,241 2015-06-09
US201562203818P 2015-08-11 2015-08-11
US62/203,818 2015-08-11
US201562204305P 2015-08-12 2015-08-12
US62/204,305 2015-08-12
US201562210326P 2015-08-26 2015-08-26
US62/210,326 2015-08-26
US15/014,800 2016-02-03
US15/014,800 US10193735B2 (en) 2015-06-09 2016-02-03 Power allocation for superposition transmission

Publications (2)

Publication Number Publication Date
KR20160144915A KR20160144915A (ko) 2016-12-19
KR102496679B1 true KR102496679B1 (ko) 2023-02-06

Family

ID=57515963

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020160068931A KR102496679B1 (ko) 2015-06-09 2016-06-02 중첩 전송을 위한 전력 할당 방법 및 장치
KR1020160071234A KR102242531B1 (ko) 2015-06-09 2016-06-08 중첩 전송을 위한 장치 및 방법
KR1020210048204A KR102274595B1 (ko) 2015-06-09 2021-04-14 중첩 전송을 위한 장치 및 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020160071234A KR102242531B1 (ko) 2015-06-09 2016-06-08 중첩 전송을 위한 장치 및 방법
KR1020210048204A KR102274595B1 (ko) 2015-06-09 2021-04-14 중첩 전송을 위한 장치 및 방법

Country Status (4)

Country Link
US (4) US10212020B2 (ko)
KR (3) KR102496679B1 (ko)
CN (2) CN106255195B (ko)
TW (3) TWI708516B (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062333A1 (en) * 2014-10-21 2016-04-28 Universitat Politècnica De València Method for non-coherent multi-user mimo data communication and system for performing such method
JP6670834B2 (ja) * 2015-06-26 2020-03-25 京セラ株式会社 基地局及び無線端末
KR102147027B1 (ko) * 2015-07-02 2020-08-24 노키아 테크놀로지스 오와이 중첩 전송을 위해 기존의 컨스텔레이션을 재사용하는 장치 및 방법
CN106411801A (zh) * 2015-07-30 2017-02-15 中兴通讯股份有限公司 一种多用户信息传输的调制方法、解调方法及装置
CN106452700B (zh) * 2015-08-06 2020-02-18 电信科学技术研究院 一种进行数据传输的方法和设备
US10050683B2 (en) 2015-08-14 2018-08-14 Mediatek Inc. Signal modulation and demodulation for multiuser superposition transmission scheme
CN108352954B (zh) * 2015-08-20 2021-07-16 瑞典爱立信有限公司 在无线通信网络中执行和处理叠加发送的网络节点、无线设备及其中的方法
EP3163829A1 (en) * 2015-10-28 2017-05-03 Sequans Communications S.A. Enhanced spatial multiplexing
US10687348B2 (en) * 2016-02-23 2020-06-16 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid multiband and subband scheduling in multi-user superposition transmission
US9768913B1 (en) * 2016-03-09 2017-09-19 Samsung Electronics Co., Ltd System and method for multiple input multiple output (MIMO) detection with soft slicer
JP2019091964A (ja) * 2016-03-31 2019-06-13 シャープ株式会社 基地局装置、端末装置及びその通信方法
US10033482B2 (en) * 2016-08-03 2018-07-24 Samsung Electronics Co., Ltd System and method for providing interference parameter estimation for multi-input multi-output (MIMO) communication system
WO2018027939A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 数据传输的方法及其网络设备
EP3501150B1 (en) * 2016-08-19 2023-05-31 Sony Group Corporation Wireless communication transceiver and wireless communication method
TWI635730B (zh) * 2016-10-05 2018-09-11 晨星半導體股份有限公司 符元判斷方法、符元判斷電路以及數位接收電路
CN109983807A (zh) * 2016-11-24 2019-07-05 华为技术有限公司 一种信息传输的方法、基站及终端
CN110521164A (zh) * 2017-02-17 2019-11-29 英特尔Ip公司 在多用户叠加传输中相位跟踪参考信号指示
CN108512578A (zh) * 2017-02-24 2018-09-07 深圳市中兴微电子技术有限公司 一种信道状态信息反馈方法、装置和系统
CN108092740B (zh) * 2017-05-05 2022-10-14 中兴通讯股份有限公司 传输参数配置方法及装置、确定方法及装置
CN110663211A (zh) * 2017-05-26 2020-01-07 瑞典爱立信有限公司 用于无线电接入网络的非正交信令
RU2745397C1 (ru) * 2017-09-13 2021-03-24 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ, терминальное устройство и сетевое устройство обработки данных
US20190132165A1 (en) * 2017-11-01 2019-05-02 Industrial Technology Research Institute Method of receiving or transmitting data by ue or base station under noma scheme, ue using the same and base station using the same
US10411941B2 (en) * 2017-12-07 2019-09-10 Huawei Technologies Co., Ltd. Semi-orthogonal multiple access with power-adaptive constellation
US10993244B2 (en) * 2018-10-30 2021-04-27 Sequans Communications S.A. Enhanced NOMA scheme
KR102443456B1 (ko) * 2020-02-06 2022-09-16 삼성전자 주식회사 비 직교 다중 접속 시스템에서의 합 주파수 효율 최대화를 위한 유저 스케줄링 및 코드북 할당 방법
CN113497776B (zh) * 2020-04-08 2023-03-28 华为技术有限公司 一种调制方法及装置
US11463296B2 (en) * 2021-02-19 2022-10-04 Ultralogic 6G, Llc Error correction by merging copies of PAM-modulated 5G/6G messages
US11418279B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Recovery and demodulation of collided 5G/6G message elements
US11637649B2 (en) 2022-09-06 2023-04-25 Ultralogic 6G, Llc Phase-noise mitigation at high frequencies in 5G and 6G

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079585B1 (en) 1999-11-23 2006-07-18 Thomson Licensing Gray encoding for hierarchical QAM transmission systems
US7653164B2 (en) 2001-12-31 2010-01-26 Intel Corporation Adaptive IQ imbalance correction for multicarrier wireless communication systems
US7167513B2 (en) 2001-12-31 2007-01-23 Intel Corporation IQ imbalance correction
US6901103B2 (en) * 2002-01-15 2005-05-31 Qualcomm, Incorporated Determining combiner weights and log likelihood ratios for symbols transmitted on diversity channels
JP4694469B2 (ja) * 2003-02-19 2011-06-08 クゥアルコム・インコーポレイテッド マルチユーザ通信システムにおける拡張された符号化の方法および装置
WO2006048061A1 (en) 2004-11-03 2006-05-11 Matsushita Electric Industrial Co., Ltd. Method and transmitter structure removing phase ambiguity by repetition rearrangement
EP1655878A1 (en) * 2004-11-03 2006-05-10 Matsushita Electric Industrial Co., Ltd. Method and transmitter structure reducing ambiguity by repetition rearrangement in the symbol domain
US20070133711A1 (en) * 2005-12-09 2007-06-14 Weidong Li Transmission interface module for digital and continuous-waveform transmission signals
CN101682429B (zh) * 2007-05-22 2013-05-01 艾利森电话股份有限公司 接收器分集电信系统中的负载估计
TW200908623A (en) 2007-06-08 2009-02-16 Qualcomm Inc Hierarchical modulation for communication channels in single-carrier frequency division multiple access
US8908799B2 (en) * 2008-08-15 2014-12-09 Blackberry Limited Systems and methods for communicating using ASK or QAM with uneven symbol constellation
KR101334371B1 (ko) * 2008-08-28 2013-11-29 한국전자통신연구원 심볼 매핑 방법 및 장치
US8755412B2 (en) 2008-11-21 2014-06-17 Pin-Han Ho System, method, and computer program for superposition coded multicast with a single modulation scheme
CN101989890B (zh) * 2009-07-31 2013-04-24 华为技术有限公司 叠加编码的方法及装置
KR101070240B1 (ko) * 2009-08-27 2011-10-06 고려대학교 산학협력단 다중 사용자 mimo 시스템에서 벡터 섭동 기반의 송신 다이버시티를 이용하는 장치 및 방법
US8385457B2 (en) 2009-09-23 2013-02-26 Intel Corporation Methods and systems to compensate IQ imbalance in wideband zero-if tuners
US8995295B2 (en) * 2009-11-05 2015-03-31 Signext Wireless Ltd. Using maximal sum-rate mutual information to optimize JCMA constellations
GB2489757B (en) * 2011-05-16 2013-12-18 Renesas Mobile Corp Mobile Communications Network
EP2587754B1 (en) 2011-10-25 2016-07-06 Alcatel Lucent Hierarchical And Adaptive Multi-Carrier Digital Modulation And Demodulation
CN103298094A (zh) * 2012-02-28 2013-09-11 株式会社Ntt都科摩 一种功率分配方法及基站
US8750434B2 (en) * 2012-04-26 2014-06-10 Motorola Mobility Llc Method and apparatus for demodulating a signal in a communication system
US10003490B2 (en) 2012-08-23 2018-06-19 Mitsubishi Electric Corporation Communication system, transmission apparatus, reception apparatus, and digital transmission method
US8861443B2 (en) * 2012-09-20 2014-10-14 Intel Corporation Method and apparatus for power control in full-duplex wireless systems with simultaneous transmission reception
KR102136609B1 (ko) 2012-09-21 2020-08-13 삼성전자주식회사 무선 통신 시스템에서 전력 정보의 시그널링 방법 및 장치
US9042476B2 (en) 2013-07-26 2015-05-26 Google Technology Holdings LLC Methods and a device for multi-resolution precoding matrix indicator feedback
US20150139293A1 (en) * 2013-11-18 2015-05-21 Wi-Lan Labs, Inc. Hierarchical modulation for multiple streams
CN105471543B (zh) * 2014-08-01 2020-08-14 株式会社Ntt都科摩 发送装置和发送方法
CN105634654B (zh) * 2014-10-27 2019-12-17 中兴通讯股份有限公司 多用户信息传输的叠加编码、解调方法及装置
CN105634659B (zh) * 2014-10-30 2019-04-05 中兴通讯股份有限公司 双传输块的数据发送、接收方法、装置、发射机及接收机
KR20160126849A (ko) * 2015-04-23 2016-11-02 삼성전자주식회사 통신 디바이스 및 그 제어 방법
US10419172B2 (en) * 2015-06-21 2019-09-17 Lg Electronics Inc. Downlink power allocation method for must transmission in wireless communication system and apparatus therefor
KR102511374B1 (ko) * 2016-05-12 2023-03-20 삼성전자주식회사 무선 통신 시스템에서 인티저 포싱 기법을 이용하는 통신 기법
US10411941B2 (en) * 2017-12-07 2019-09-10 Huawei Technologies Co., Ltd. Semi-orthogonal multiple access with power-adaptive constellation

Also Published As

Publication number Publication date
US10855510B2 (en) 2020-12-01
CN106255195B (zh) 2020-09-15
TWI717300B (zh) 2021-01-21
TW201644300A (zh) 2016-12-16
TWI703843B (zh) 2020-09-01
CN106254295B (zh) 2020-10-09
US20190173724A1 (en) 2019-06-06
CN106255195A (zh) 2016-12-21
TWI708516B (zh) 2020-10-21
KR20210045965A (ko) 2021-04-27
KR102274595B1 (ko) 2021-07-07
TW201644245A (zh) 2016-12-16
US20160366003A1 (en) 2016-12-15
KR20160144915A (ko) 2016-12-19
US20160366691A1 (en) 2016-12-15
US10193735B2 (en) 2019-01-29
US20190173725A1 (en) 2019-06-06
KR20160144925A (ko) 2016-12-19
CN106254295A (zh) 2016-12-21
KR102242531B1 (ko) 2021-04-22
US10749725B2 (en) 2020-08-18
US10212020B2 (en) 2019-02-19
TW202044807A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
KR102496679B1 (ko) 중첩 전송을 위한 전력 할당 방법 및 장치
AU2017311567B2 (en) Methods and apparatus for construction of SCMA codebooks
EP3954072B1 (en) Method and apparatus for data transmission in wireless communication system
US9866423B2 (en) Non-uniform constellations
ES2880040T3 (es) Métodos, aparato y sistemas para determinar un tamaño de bloque de transporte en una comunicación inalámbrica
EP3499758A1 (en) Transmitting method and device and receiving method and device for transport block
TW201902167A (zh) 將通道編碼位元映射到符號以用於重傳
WO2016209135A1 (en) Method and base station for selecting a transport format
WO2019154016A1 (zh) 一种上行信息传输方法及设备
US11057055B2 (en) Encoding and decoding using Golay-based block codes
KR20160034031A (ko) 반복 복호를 사용하는 비트 인터리빙 부호화 변조 방식을 지원하는 통신 시스템에서 신호 송/수신 장치 및 방법
US10568042B2 (en) Data transmission method and network device thereof
JP2010147947A (ja) マルチキャリア無線通信システム及びマルチキャリア無線通信方法
WO2015120891A1 (en) An adaptive modulation system and method for increasing throughput over a transmission channel
US10862646B2 (en) Polar coded broadcast channel
CN111955026B (zh) 无线通信中确定传输块大小的方法、装置和系统
Mishra et al. Review of various adaptive modulation and coding techniques in wireless network
Hong et al. Receiver memory management method for HARQ in LTE‐based satellite communication system
JP2019510402A (ja) 非直交多元接続に適用される情報伝送方法、装置及び通信システム
CN111955026A (zh) 无线通信中确定传输块大小的方法、装置和系统
KR20120071949A (ko) 데이터 전송 및 수신 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant