KR102478430B1 - 신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘 - Google Patents

신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘 Download PDF

Info

Publication number
KR102478430B1
KR102478430B1 KR1020177000709A KR20177000709A KR102478430B1 KR 102478430 B1 KR102478430 B1 KR 102478430B1 KR 1020177000709 A KR1020177000709 A KR 1020177000709A KR 20177000709 A KR20177000709 A KR 20177000709A KR 102478430 B1 KR102478430 B1 KR 102478430B1
Authority
KR
South Korea
Prior art keywords
mmol
pyrrolo
pyridin
aryl
compound
Prior art date
Application number
KR1020177000709A
Other languages
English (en)
Other versions
KR20170016481A (ko
Inventor
아바스 엠. 왈지
에릭 호스테틀러
토마스 그레쇽
징 리
키이스 피. 무어
이드리스 베나세프
제임스 멀허른
해롤드 셀닉
야오더 왕
쿤 양
지안민 푸
Original Assignee
머크 샤프 앤드 돔 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 머크 샤프 앤드 돔 엘엘씨 filed Critical 머크 샤프 앤드 돔 엘엘씨
Publication of KR20170016481A publication Critical patent/KR20170016481A/ko
Application granted granted Critical
Publication of KR102478430B1 publication Critical patent/KR102478430B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pyridine Compounds (AREA)

Abstract

본 발명은 타우 응집체, b-시트 응집체, 베타-아밀로이드 응집체 또는 알파-시뉴클레인 응집체를 영상화하기에 적합할 수 있으며, 따라서 알츠하이머 환자에서 타우 응집체를 결합시키고 영상화하기에 유용한 화학식 I의 피롤로피리딘 화합물 또는 그의 제약상 허용되는 염에 관한 것이다. 보다 구체적으로, 본 발명은 뇌에서의 타우 침착물을 생체내 연구하여 알츠하이머병 및 타우 병리상태를 특징으로 하는 다른 신경변성 질환의 진단을 가능하게 하기 위한 양전자 방출 단층촬영 (PET) 영상화에서의 추적자로서 본 발명의 화합물을 사용하는 방법에 관한 것이다. 본 발명은 추가로 알츠하이머병 및 타우 병리상태를 특징으로 하는 다른 신경변성 질환을 위한 치료제의 임상 효능을 측정하는 방법에 관한 것이다.
<화학식 I>
Figure 112017002878210-pct00122

Description

신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘 {PYRROLO[2,3-C]PYRIDINES AS IMAGING AGENTS FOR NEUROFIBRILARY TANGLES}
본 발명은 신규 피롤로피리딘 화합물, 그의 염, 그를 포함하는 제약 조성물, 및 이러한 화합물의 치료 용도 및 제조 방법에 관한 것이다. 본 발명은 추가로 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 125I, 124I 및 131I 동위원소 표지된 본 발명의 치환된 피롤로피리딘 유도체 화합물에 관한 것이다. 특히, 본 발명은 신규 피롤로피리딘 화합물의 11C, 13C, 14C, 18F, 125I, 15O, 13N, 35S, 2H 및 3H 및 그의 제조 방법에 관한 것이다.
본 발명은 또한 타우 응집체, β-시트 응집체, β-아밀로이드 응집체, α-시뉴클레인 응집체 또는 트랜스-활성 반응 DNA 결합 단백질 43kDa를 영상화하기에 적합할 수 있으며, 따라서 알츠하이머 환자에서 응집체를 결합시키고 영상화하기에 유용한 신규 피롤로피리딘 화합물에 관한 것이다. 보다 구체적으로, 본 발명은 뇌에서의 타우 침착물을 생체내 연구하여 알츠하이머병의 진단을 가능하게 하기 위한 양전자 방출 단층촬영 (PET) 영상화에서의 추적자로서 본 발명의 화합물을 사용하는 방법에 관한 것이다. 본 발명은 추가로 타우 병리상태를 표적화하는 치료제의 임상 효능을 측정하는 방법에 관한 것이다.
알츠하이머병은 노인에게 영향을 미치는 흔한 신경변성 질환이며, 진행성 기억 장애, 언어 및 시공간 능력의 상실, 및 행동 결핍을 유발한다. 이러한 질환의 특징은 뇌 피질, 해마, 기저 전뇌 및 뇌의 다른 영역에서의 콜린성 뉴런의 변성, 신경원섬유 엉킴, 및 아밀로이드 β 펩티드 (Aβ)의 축적을 포함한다.
알츠하이머에서, 2종의 주요 단백질은 20종의 비상동 인간 단백질 중 1종의 응집 동안의 미스폴딩으로 인해 유발되는 것으로 여겨지는 뇌에서의 비정상적 중합체 (응집체)를 형성한다. 세포내 신경원섬유 엉킴-NFT는 미세관-연관 단백질 (타우 단백질)로부터 만들어지고, 세포외 "아밀로이드" 플라크는 중합된 Aβ-펩티드로 주로 이루어진다. 이들 둘 다는 뇌 뉴런에 대해 독성이며, 베타 가닥의 적층에 의해 서브유닛 단백질로부터 형성되는 섬유의 결과이다. 문헌 [B. Bulic, E. Mandelkow et al. Angewandte Chemie International Edition, Vol. 48, Issue 10, pgs. 1740-1752, 2009 및 B. Bulic, et al. J. Med. Chem 2013 June 13; 56(11):4135-55]을 참조한다. US2014275040, CN103450152, US2009203903, US2009233945, WO2012106343, US20150031672, WO2010129816, WO2008103615, 및 US20080027044를 또한 참조한다.
튜불린-연관 유닛 또는 타우는 여러 계열의 증거를 기반으로 하여 알츠하이머병 (AD)의 병인에서 결정적인 역할을 하는 것으로 여겨지는 미세관-연관 단백질이다. 첫째로, 과인산화 타우의 세포내 응집체 (NFT)는 예외 없이 AD 및 여러 다른 신경변성 질환을 갖는 환자의 뇌에서 발견된다. 둘째로, AD 환자의 뇌에서의 NFT 병리상태의 정도는 인지 기능과 밀접한 상관관계가 있다. 마지막으로, 타우에서의 돌연변이는 AD를 초래하는 것으로 제시된 바 없으며, 이러한 돌연변이는 파킨슨증을 동반한 전두측두엽 치매 (FTDP)로 공지된 또 다른 형태의 치매를 초래한다. 따라서, NFT 및/또는 과인산화 타우를 감소시키는 것을 목표로 하는 접근법은 AD에 대한 질환 조절 치료를 나타낸다.
현재, 부검 물질의 조직학적 분석은 타우 응집체를 검출하는 1차 수단이다. 사후 연구는 NFT 부담이 인지 저하와 보다 우수한 상관관계가 있는 것으로 제시한 바 있기 때문에, 타우 PET 추적자는 인간 뇌에서의 신경원섬유 엉킴 (NFT)의 공간적 및 시간적 정량화를 위한 가치있는 비-침습적 도구일 것이다. 타우 PET 추적자는 질환-조절 알츠하이머병 치료제를 위한 NFT 형성의 안정화 또는 감소를 정량화하기 위한 결정적 질환-관련 도구일 것이다. 추가적으로, 타우 PET 추적자는 AD 임상 시험을 위한 환자 선택에 유용할 수 있다. 이러한 방식에서, 타우 PET 추적자는 동반 진단으로서 개발될 수 있다. AD에 추가로, 타우 응집체의 침착을 특징으로 하는 다른 신경변성 질환 (전두측두엽 치매 (FTD), 진행성 핵상 마비 (PSP), 피질기저 변성 (CBD), 만성 외상성 뇌병증 (CTE), 픽병 등)이 존재한다.
따라서, 타우 병리상태의 생체내 영상화를 가능하게 하여 인간 뇌에서의 타우 응집체의 침착에 대한 통찰을 제공하는 신경영상화 방사성추적자가 필요하다. 성공적인 신경영상화 방사성추적자는 혈액-뇌 장벽을 가로질러야 하고, 타우 응집체에 대한 높은 친화도 및 특이성을 보유하며, 따라서 적절한 친지성 (logD 1-3) 및 낮은 분자량 (<450)을 가져야 하고, 혈액으로부터의 빠른 클리어런스 및 낮은 비-특이적 결합을 나타내야 한다. 신경영상화 방사성추적자는 뇌에서 과량의 타우 응집체를 가지며 따라서 AD 발병의 위험을 갖는 환자를 확인함으로써 진단하는 것에서 역할을 할 뿐만 아니라 타우 응집의 정도, 시간 경과에 따른 뇌에 대한 영향, 인지와의 상관관계를 밝히고 타우 억제제의 효능의 분석을 보조할 것이다.
전형적인 PET 연구에서는, 소량의 방사성추적자가 시험될 실험 동물, 정상 인간 또는 환자에게 투여된다. 이어서, 방사성추적자는 대상체의 혈액에서 순환하고, 특정 조직에서 흡수될 수 있다. 방사성추적자는 특이적 효소적 전환 때문에 또는 거대분자 구조 예컨대 단백질에 대한 특이적 결합에 의해 이들 조직의 일부에서 우선적으로 유지될 수 있다. 양전자 방출을 검출하기 위해 정교한 영상화 기기를 사용하여, 이어서 방사성추적자의 양이 신체에서의 다양한 조직에서 비-침습적으로 평가된다. 생성된 데이터는 분석되어 추적자에 대해 설계된 생체내 생물학적 과정의 정량적 공간적 정보를 제공한다. PET는 제약 연구 조사자에게 연장된 기간 동안 약물 후보의 생체내 생화학적 변화 또는 대사 효과를 평가하는 능력을 제공하고, PET는 약물 분포를 측정하기 위해 사용될 수 있으며, 따라서 연구 중인 특정한 약물 후보의 약동학 및 약역학의 평가를 가능하게 한다. 중요하게는, PET 추적자는 조직에서의 결합 부위의 존재를 정량화하기 위해 설계 및 사용될 수 있다. 결과적으로, 약물 개발을 위한 PET 추적자에 대한 관심은 외부 영상화에 의해 방사능을 검출하기 위한 동위원소 표지된 생화학 물질 및 적절한 검출 디바이스의 개발을 기반으로 하여 확대되어 왔다.
동위원소 표지된 본 발명의 화합물의 1차 용도는 생체내 분석 기술인 양전자 방출 단층촬영이며, 특정의 동위원소 표지된 화합물은 PET 분석 이외의 방법에 사용될 수 있다. 특히, 14C 및 3H 표지된 화합물은 공유결합 표지를 포함한 결합, 수용체 점유율 및 대사 연구의 결정을 위한 시험관내 및 생체내 방법에 사용될 수 있다. 특히, 다양한 동위원소 표지된 화합물은 자기 공명 영상화, 자가방사선촬영 및 다른 유사한 분석 도구에서 유용성이 발견되고 있다.
본 발명은 화학식 I의 피롤로피리딘 화합물 부류, 그의 염, 그를 포함하는 제약 조성물, 이러한 화합물의 진단 및 치료 용도 및 제조 방법에 관한 것이다. 특히, 본 발명은 타우 응집체, β-시트 응집체, 베타-아밀로이드 응집체 또는 알파-시뉴클레인 응집체를 결합시키고 영상화하기에 유용할 수 있으며, 따라서 알츠하이머 환자에서 타우 응집체를 결합시키고 영상화하기에 유용한 화학식 I의 피롤로피리딘 화합물 부류에 관한 것이다. 본 발명은 또한 상기 환자가 뇌에서 과량의 타우 응집체를 나타내는지를 결정함으로써 알츠하이머병이 발병할 가능성이 있는 환자의 진단을 개선시키기 위한 영상화 도구로서의 화합물의 용도에 관한 것이다. 본 발명은 추가로 AD를 진단하고 그의 진행을 모니터링하기 위해 사용되는 영상화 도구를 발견하는 것에 관한 것이다. 본 발명은 또한 항-타우 응집체 약물이 이용가능한 경우에 치료를 모니터링 및 측정하기 위한 피롤로피리딘 화합물의 용도에 관한 것이다. 본 발명은 또한 타우 응집체의 침착을 특징으로 하는 다른 신경변성 질환 예컨대 전두측두엽 치매 (FTD), 진행성 핵상 마비 (PSP), 피질기저 변성 (CBD), 만성 외상성 뇌병증 (CTE), 픽병 등을 영상화 및 검출하기에 유용할 수 있다. 본 발명은 추가로 화학식 I의 화합물 및 제약상 허용되는 담체를 함유하는 제약 조성물에 관한 것이다.
동위원소 표지된 본 발명의 화합물이 또한 포함된다. 본 발명의 또 다른 측면은 AD의 진단, 모니터링 및/또는 치료에서의 타우 응집체에 대한 뇌의 생체내 영상화를 위한 신경영상화 방사성추적자로서의 동위원소 표지된 화합물의 용도에 관한 것이다. 본 발명의 또 다른 측면은 AD의 진단, 모니터링 및/또는 치료에서의 생체내 분석 기술인 양전자 방출 단층촬영에서의 동위원소 표지된 화합물의 용도이다. 14C 및 3H 표지된 화합물은 공유결합 표지를 포함한 결합, 수용체 점유율 및 대사 연구의 결정을 위한 시험관내 및 생체내 방법에 사용될 수 있다. 특히, 다양한 동위원소 표지된 화합물은 자기 공명 영상화, 자가방사선촬영 및 다른 유사한 분석 도구에서 유용성이 발견되고 있다. 따라서, 본 발명의 또 다른 측면은 추가로 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I 동위원소 표지된 화학식 I의 치환된 피롤로피리딘 유도체 화합물에 관한 것이다. 특히, 본 발명은 치환된 피롤로피리딘 유도체 화합물의 11C, 13C, 14C, 18F, 123I, 15O, 13N, 35S, 2H 및 3H 동위원소, 조성물 및 그의 제조 방법, 및 AD의 치료에서 화합물의 효과의 진단 및 측정에서의 방사성추적자 또는 PET 추적자로서의 용도에 관한 것이다. 본 발명은 또한 혈액 뇌 장벽을 빠르게 가로지를 수 있고, 낮은 비-특이적 결합 특성을 갖고, 계로부터 빠르게 제거되는 비-독성 타우 단백질 결합 화합물에 관한 것이다. 본 발명의 상기 및 다른 측면은 본 명세서 전문의 검토 시에 실현될 것이다.
도 1: AD 뇌 균질물에서의 [3H]-6의 포화 결합 (실시예 49)을 제시함
도 2: 화합물 6 (비표지)이 0.43 nM의 Ki 값으로 [3H]-6을 자기-치환한 것을 제시함
본 발명은 화학식 I의 퀴놀린 아미드 화합물 또는 그의 제약상 허용되는 염에 관한 것이다.
<화학식 I>
Figure 112017002878210-pct00001
여기서
X는 CH, 또는 N을 나타내고;
R은 수소, 또는 -C1-6알킬을 나타내고, 상기 알킬은 1 내지 3개의 Ra의 기로 임의로 치환되고;
R1은 수소, -C1-6알킬, -CN, -(CH2)nNH(CH2)nN(R)2, -C2-6알케닐, -(CH2)nOR, 또는 -(CH2)n할로겐을 나타내고;
R2는 -C1-6알킬, -OC1-6 알킬, -C2-6알케닐R3, -C2-6알키닐R3, -(CH2)nOR, -(CH2)n할로겐, -O(CH2)n할로겐, -C6-10 아릴, -C5-10 헤테로시클릴, -N(R)2, -O(CH2)nRa, -N(CH3)(CH2)nOR, -NRC(O)R, -NH(CH2)n할로, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -N(CH3)(CH2)n할로겐, -C(O)NC6-10 아릴을 나타내고, 상기 알킬, 아릴, 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환되거나;
또는 인접한 R1은 R2와 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 N, S 및/또는 O가 임의로 개재된 9 내지 10원 비시클릭 고리를 형성할 수 있고, 상기 비시클릭 고리는 1 내지 3개의 Ra의 기로 임의로 치환되고;
R3은 수소, -C1-6알킬, -(CH2)n할로겐, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, -C6-10 아릴, -C5-10 헤테로아릴을 나타내고, 상기 알킬, 아릴, 및 헤테로아릴은 1 내지 3개의 Ra의 기로 임의로 치환되고;
Ra는 -CN, CF3, -C1-6알킬, -C2-6알케닐, -C2-6알키닐, C6-10 아릴, -C5-10 헤테로시클릴, -CN, NO2, (CH2)n할로겐, -O(CH2)n할로겐, (CH2)nOR, -O(CH2)nC6-10 아릴, -(CH2)nN(R)2, -C(O)N(R)2, -N(CH3)(CH2)nOR, -NRCOR, -COR, -NH(CH2)n할로, -NC(O)C C6-10 아릴, -N(CH3)(CH2)n할로겐, C(O)C6-10 아릴, 또는 -CO2R을 나타내고, 상기 알킬, 알케닐, 알키닐, 아릴, 및 헤테로시클릴은 1 내지 3개의 Rb의 기로 임의로 치환되고;
Rb는 수소, -C1-6알킬, -OR, -(CH2)nN(R)2, 또는 할로겐을 나타내고;
n은 0-4를 나타낸다.
본 발명의 한 측면은 Rb가 수소, 메톡시, 아미노, 메틸 아미노, 및 히드록시로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 또 다른 측면은 n이 0인 경우에 실현된다. 본 발명의 또 다른 측면은 n이 1인 경우에 실현된다. 본 발명의 또 다른 측면은 n이 2인 경우에 실현된다. 본 발명의 또 다른 측면은 n이 3인 경우에 실현된다. 본 발명의 또 다른 측면은 n이 0-2인 경우에 실현된다.
화학식 I의 본 발명의 또 다른 실시양태는 Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra가 CH3, CH2CH3, OCH3, OH, -(CH2)nNHCH3, -NH2, 할로겐, -(CH2)nN(CH3)2, NO2, CN, -N(CH3)(CH2)nOH, -N(CH3)(CH2)nF, 및 O(CH2)nF로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 또 다른 측면은 X가 CH이고, 다른 모든 변수가 원래 기재된 바와 같은 경우에 실현된다.
본 발명의 또 다른 측면은 X가 N이고, 다른 모든 변수가 원래 기재된 바와 같은 경우에 실현된다.
본 발명의 또 다른 측면은 R이 수소인 경우에 실현된다.
본 발명의 또 다른 측면은 R이 임의로 치환된 -C1-6알킬인 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 수소인 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 -C1-6알킬이고, 상기 알킬이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 CN인 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 -C2-6알케닐이고, 상기 알케닐이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 (CH2)nOR인 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 -(CH2)nN(CH2)nN(R)2인 경우에 실현된다.
본 발명의 또 다른 측면은 R1이 (CH2)n할로겐인 경우에 실현된다.
X가 N이고 인접한 R1 및 R2가 조합하여 비시클릭 고리를 형성하지 않는 경우에, R1 치환기의 개수는 1 내지 2인 것으로 이해된다.
본 발명의 또 다른 측면은 R2가 -C2-6알케닐R3, -C2-6알키닐R3, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 -C2-6알케닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 -C2-6알키닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 -NC(O) C6-10 아릴이고, 상기 아릴이 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 -NC(O)C5-10 헤테로시클릴이고, 상기 헤테로시클릴이 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 -C6-10 아릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2의 아릴이 임의로 치환된 페닐 또는 나프틸인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 -C5-10 헤테로시클릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2의 헤테로시클릴이 임의로 치환된 피리딜, 티아졸릴, 피리미디닐, 피페리지닐, 피라졸릴, 피라지닐, 이미다졸릴, 및 트리아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 또 다른 측면은 R3이 -C1-6알킬이고, 상기 알킬이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 알킬이 메틸, 에틸, 또는 프로필인 경우에 실현된다.
본 발명의 또 다른 측면은 R3이 -(CH2)n할로겐인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 할로겐이 플루오린 또는 염소인 경우에 실현된다.
본 발명의 또 다른 측면은 R3이 C6-10 아릴이고, 상기 아릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 한 하위실시양태는 아릴이 임의로 치환된 페닐 또는 나프틸인 경우에 실현된다.
본 발명의 또 다른 측면은 R3이 -C5-10 헤테로아릴이고, 상기 헤테로아릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 헤테로아릴이 임의로 치환된 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 또 다른 측면은 R3이 -(CH2)nN(R)2, 또는 -(CH2)nNR(CH2)nN(R)2인 경우에 실현된다.
본 발명의 또 다른 측면은 R2가 인접한 R1 및 R1 및 R2가 부착되어 있는 고리와 조합하여 9 내지 10원 비사이클 고리를 형성하고, 상기 비시클릭 고리에 N, S 및/또는 O가 임의로 개재되고, 상기 비시클릭 고리가 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 비시클릭 고리에 N, S 및/또는 O 중 1개가 임의로 개재된 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 피롤로피리디닐, 푸로피리디닐, 나프티리디닐, 테트라히드로나프티리디닐, 퀴나졸리닐, 퀴놀리닐, 또는 이소퀴놀리닐인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 형성된 비사이클이 임의로 치환된 피롤로피리디닐인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 나프티리디닐 또는 테트라히드로나프티리디닐인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 퀴나졸리닐인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 퀴놀리닐인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 이소퀴놀리닐인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 형성된 비사이클이 임의로 치환된 푸로피리디닐인 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 CH이고, R2가 -C2-6알케닐R3, -C2-6알키닐R3, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 CH이고, R2가 -C2-6알케닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R3이 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 CH이고, R2가 -C2-6알키닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R3이 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 CH이고, R2가 임의로 치환된 -C6-10 아릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 페닐 또는 나프틸인 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 CH이고, R2가 임의로 치환된 -C5-10 헤테로시클릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 O(CH2)n피리딜, NC(O)페닐, C(O)페닐, 나프틸, 나프티리디닐, 피리딜, 트리아졸릴, 피리미디닐, 티아졸릴, 피라지닐, 또는 이미다졸릴인 경우에 실현된다.
본 발명의 또 다른 측면은 X가 CH이고, R2가 인접한 R1과 조합하여 N, S 및/또는 O가 임의로 개재된 9 내지 10원 비사이클 고리를 형성하고, 상기 비사이클이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 형성된 비사이클이 임의로 치환된 피롤로피리디닐, 푸로피리디닐, 나프티리디닐, 테트라히드로나프티리디닐, 퀴놀리닐, 또는 이소퀴놀리닐인 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 N이고, R2가 -C2-6알케닐R3, -C2-6알키닐R3, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 N이고, R2가 -C2-6알케닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R3이 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 N이고, R2가 -C2-6알키닐R3인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R3이 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 N이고, R2가 임의로 치환된 -C6-10 아릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 페닐 또는 나프틸인 경우에 실현된다.
본 발명의 이러한 측면의 또 다른 하위실시양태는 X가 N이고, R2가 임의로 치환된 -C5-10 헤테로시클릴인 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 임의로 치환된 O(CH2)n피리딜, NC(O)페닐, C(O)페닐, 나프틸, 나프티리디닐, 피리딜, 트리아졸릴, 피리미디닐, 티아졸릴, 피라지닐, 또는 이미다졸릴인 경우에 실현된다.
본 발명의 또 다른 측면은 X가 N이고, R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 N, S 및/또는 O가 임의로 개재된 9 내지 10원 비사이클 고리를 형성하고, 상기 비사이클이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 형성된 비사이클이 임의로 치환된 퀴나졸리닐인 경우에 실현된다.
본 발명의 또 다른 측면은 화학식 I의 화합물이 동위원소 표지된 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I로부터 선택된 경우에 실현된다.
본 발명의 또 다른 측면은 구조 화학식 Ia의 화합물 또는 그의 제약상 허용되는 염으로 실현된다.
<화학식 Ia>
Figure 112017002878210-pct00002
여기서 R1, 및 R2는 본원에 기재된 바와 같다. 화학식 Ia의 한 하위실시양태는 R1이 수소, 할로겐, -(CH2)nN(CH2)nN(R)2, 임의로 치환된 C1-6 알킬 또는 임의로 치환된 C2-6 알케닐인 경우에 실현된다. 본 발명의 한 하위실시양태는 화학식 Ia의 화합물이 동위원소 표지된 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I로부터 선택된 경우에 실현된다.
화학식 Ia의 또 다른 하위실시양태는 R2가 -C2-6알케닐R3, -C2-6알키닐R3, (CH2)nOR, -O(CH2)n할로겐, C6-10 아릴, -C5-10 헤테로시클릴, -N(R)2, -O(CH2)nRa, -N(CH3)(CH2)nOR, -NH(CH2)n할로겐, -NC(O) C6-10 아릴, -N(CH3)(CH2)n할로겐, C(O)NC6-10 아릴로 이루어진 군으로부터 선택되고, 상기 아릴, 및 헤테로시클릴이 1 내지 3개의 Ra의 기로 임의로 치환되고, R3이 수소, -(CH2)n할로겐, -(CH2)nN(R)2, (CH2)nNR(CH2)nN(R)2, C6-10 아릴, -C5-10 헤테로아릴로 이루어진 군으로부터 선택되고, 상기 아릴, 및 헤테로아릴이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다.
화학식 Ia의 이러한 측면의 또 다른 하위실시양태는 R2가 C2알케닐R3, C2알키닐R3, O(CH2)nF, N(CH2)nF, N(R)2, 및 임의로 치환된 O(CH2)n피리딜, NC(O)페닐, C(O)페닐, 나프틸, 나프티리디닐, 피리딜, 트리아졸릴, 피리미디닐, 티아졸릴, 피라지닐, 및 이미다졸릴로 이루어진 군으로부터 선택되고, R3이 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택되고, R1이 수소, 플루오린, 또는 염소, -(CH2)nN(CH2)nN(R)2, 또는 임의로 치환된 C1-6 알킬 및 C2-6 알케닐로 이루어진 군으로부터 선택된 경우에 실현된다.
화학식 I의 본 발명의 또 다른 측면은 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 N, S, O가 임의로 개재된 9 내지 10원 비사이클을 형성하고, 상기 비사이클이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 나프티리디닐, 테트라히드로나프티리디닐, 푸로피리디닐, 이소퀴놀리닐, 또는 피롤로피리디닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 나프티리디닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 테트라히드로나프티리디닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 푸로피리디닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 이소퀴놀리닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 R2가 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 임의로 치환된 피롤로피리디닐을 형성하는 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 인접한 R1 및 R2가 조합 시에 구조 화학식 Ib1, Ib2, Ib3, 또는 Ib4에 의해 나타내어지 경우에 실현된다.
Figure 112017002878210-pct00003
여기서 W, W1, W2, 및 W3은 독립적으로 -CH- 또는 -N-으로부터 선택되고, R 및 Ra는 원래 기재된 바와 같다. 본 발명의 이러한 측면의 한 하위실시양태는 W, W1, W2, 및 W3이 모두 -CH-인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 W, W1, W2, 및 W3 중 적어도 1개가 -N-이고, 나머지가 -CH-인 경우에 실현된다.
화학식 I의 본 발명의 또 다른 측면은 구조 화학식 II에 의해 나타내어지거나, 또는 그의 제약상 허용되는 염이다.
<화학식 II>
Figure 112017002878210-pct00004
Figure 112017002878210-pct00005
여기서 Ib= Ib1, Ib2, Ib3, 또는 Ib4이고, W, W1, W2, W3, R, Ra 및 Rb는 상기 기재된 바와 같다. 본 발명의 한 하위실시양태는 화학식 II의 화합물이 동위원소 표지된 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I로부터 선택된 경우에 실현된다. 본 발명의 이러한 실시양태의 한 측면은 화합물이 18F로 동위원소 표지된 경우에 실현된다. 화학식 II의 본 발명의 또 다른 하위실시양태는 Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra가 CH3, CH2CH3, OCH3, OH, -(CH2)nNHCH3, -NH2, 할로겐, -(CH2)nN(CH3)2, NO2, CN, -N(CH3)(CH2)nOH, -N(CH3)(CH2)nF, 및 O(CH2)nF로 이루어진 군으로부터 선택된 경우에 실현된다.
화학식 II의 본 발명의 또 다른 실시양태는 Ib가 Ib1이고, Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택되고, W, W1, W2, 및 W3이 모두 -CH-인 경우에 실현된다.
화학식 II의 본 발명의 또 다른 실시양태는 Ib가 Ib1이고, Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택되고, W, W1, W2, 및 W3 중 적어도 1개가 -N인 경우에 실현된다.
화학식 II의 본 발명의 또 다른 실시양태는 Ib가 Ib2이고, Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다.
화학식 II의 본 발명의 또 다른 실시양태는 Ib가 Ib3이고, Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다.
화학식 II의 본 발명의 또 다른 실시양태는 Ib가 Ib4이고, Ra가 -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다.
화학식 I의 본 발명의 또 다른 측면은 구조 화학식 III에 의해 나타내어진다.
<화학식 III>
Figure 112017002878210-pct00006
여기서 Ra', Ra", Ra"', 및 Raiv는 독립적으로 수소 및 Ra로부터 선택되고, Ra 및 Rb는 원래 기재된 바와 같다. 본 발명의 한 하위실시양태는 화학식 III의 화합물이 동위원소 표지된 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I로부터 선택된 경우에 실현된다. 본 발명의 이러한 실시양태의 한 측면은 화합물이 18F 또는 123I로 동위원소 표지된 경우에 실현된다. 화학식 III의 본 발명의 한 하위실시양태는 Ra', Ra", Ra"', 및 Raiv가 독립적으로 수소, -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택되고, Rb가 수소, C1-6알킬, -OR, -(CH2)nN(R)2, 또는 할로겐으로 이루어진 군으로부터 선택된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 Ra', Ra", Ra"', 및 Raiv가 독립적으로 수소, 아미노, 플루오로, 및 아이오도로 이루어진 군으로부터 선택되고, Rb가 수소, 메톡시, 아미노, 메틸 아미노, 디메틸아미노, 및 히드록시로 이루어진 군으로부터 선택된 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra', Ra", Ra"', 및 Raiv가 독립적으로 수소, 아미노, 플루오로, 및 아이오도로 이루어진 군으로부터 선택되고, Rb가 수소인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra', Ra", Ra"', 및 Raiv 중 1개가 아미노이고, Ra', Ra", Ra"', 및 Raiv 중 1개가 플루오로이고, Ra', Ra", Ra"', 및 Raiv 중 나머지가 수소이고, Rb가 수소인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra', Ra", Ra"', 및 Raiv 중 1개가 아미노이고, Ra', Ra", Ra"', 및 Raiv 중 1개가 아이오도이고, Ra', Ra", Ra"', 및 Raiv 중 나머지가 수소이고, Rb가 수소인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra', Ra", Ra"', 및 Raiv 중 1개가 아이오도이고, Ra', Ra", Ra"', 및 Raiv 중 나머지가 수소이고, Rb가 수소인 경우에 실현된다. 본 발명의 이러한 측면의 또 다른 하위실시양태는 Ra', Ra", Ra"', 및 Raiv 중 1개가 플루오로이고, Ra', Ra", Ra"', 및 Raiv 중 나머지가 수소이고, Rb가 수소인 경우에 실현된다.
화학식 I의 본 발명의 또 다른 측면은 X가 N이고, R2가 인접한 R1과 조합하여 N, S 및/또는 O가 임의로 개재된 9 내지 10원 비사이클 고리를 형성하고, 상기 비사이클이 1 내지 3개의 Ra의 기로 임의로 치환된 경우에 실현된다. 본 발명의 이러한 측면의 한 하위실시양태는 형성된 비사이클이 임의로 치환된 퀴나졸리닐인 경우에 실현된다.
본 발명의 화합물은 비대칭 중심, 키랄 축 및 키랄 평면을 가질 수 있고, 광학 이성질체를 포함한 모든 가능한 이성질체를 갖는 라세미체, 라세미 혼합물 및 개별 부분입체이성질체로서 발생할 수 있으며, 이들은 본 발명에 포함된다. (문헌 [E.L. Eliel and S.H. Wilen Stereochemistry of Carbon Compounds (John Wiley and Sons, New York 1994)], 특히 페이지 1119-1190 참조).
임의의 가변기 (예, 아릴, 헤테로사이클, R1a, R6 등)가 임의의 구성성분에서 1회 초과로 발생하는 경우에, 각 경우에 대한 그의 정의는 모든 다른 경우에서 독립적이다. 또한, 치환기/또는 가변기의 조합은 단지 이러한 조합이 안정한 화합물을 생성하고/거나 화학적으로 실현가능하고/거나 원자가가 허용되는 경우에만 허용된다.
본원에 사용된 "알킬"은 명시된 개수의 탄소 원자를 갖는 분지쇄 및 직쇄 둘 다의 포화 지방족 탄화수소 기를 포함하도록 의도되고; "알콕시"는 산소 가교를 통해 부착된 나타낸 개수의 탄소 원자의 알킬 기를 나타낸다.
본원에 사용된 "할로겐" 또는 "할로"는 플루오로, 클로로, 브로모 및 아이오도를 의미한다.
본원에 사용된 알케닐은 C2-C6 알케닐이다.
본원에 사용된 알키닐은 C2-C6 알키닐이다.
본원에 사용된 "시클로알킬"은 명시된 개수의 탄소 원자를 갖는 시클릭 포화 지방족 탄화수소 기를 포함하도록 의도된다. 바람직하게는, 시클로알킬은 C3-C10 시클로알킬이다. 이러한 시클로알킬 요소의 예는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 및 시클로헵틸을 포함하나, 이에 제한되지는 않는다.
본원에 사용된 "아릴"은 각각의 고리 내의 7개 이하의 구성원의 임의의 안정한 모노시클릭 또는 비시클릭 탄소 고리에서, 적어도 1개의 고리가 방향족인 것을 의미하도록 의도된다. 이러한 아릴 요소의 예는 페닐, 나프틸, 테트라히드로나프틸, 인다닐, 비페닐, 페난트릴, 안트릴 또는 아세나프틸을 포함한다.
본원에 사용된 용어 헤테로시클릴, 헤테로사이클 또는 헤테로시클릭은 포화 또는 불포화이고 탄소 원자 및 N, O 및 S로 이루어진 군으로부터 선택된 1 내지 4개의 헤테로원자로 이루어진 안정한 5- 내지 7-원 모노시클릭 또는 안정한 8- 내지 11-원 비시클릭 헤테로시클릭 고리를 나타내며, 상기 정의된 헤테로시클릭 고리 중 임의의 것이 벤젠 고리에 융합된 임의의 비시클릭 기를 포함한다. 헤테로시클릭 고리는 임의의 헤테로원자 또는 탄소 원자에서 부착되며, 이는 안정한 구조의 생성을 유발할 수 있다. 용어 헤테로시클릴, 헤테로사이클 또는 헤테로시클릭은 헤테로아릴 모이어티를 포함한다. 이러한 헤테로시클릭 요소의 예는 아제피닐, 벤조디옥솔릴, 벤즈이미다졸릴, 벤즈이속사졸릴, 벤조푸라자닐, 벤조피라닐, 벤조티오피라닐, 벤조푸릴, 벤조티아졸릴, 벤조티에닐, 벤조트리아졸릴, 벤족사졸릴, 크로마닐, 신놀리닐, 디히드로벤조푸릴, 디히드로벤조티에닐, 디히드로벤조티오피라닐, 디히드로벤조티오피라닐 술폰, 1,3-디옥솔라닐, 푸릴, 푸로피리디닐, 이미다졸리디닐, 이미다졸리닐, 이미다졸릴, 인돌리닐, 인돌릴, 이소크로마닐, 이소인돌리닐, 이소퀴놀리닐, 이소티아졸리디닐, 이소티아졸릴, 이소티아졸리디닐, 모르폴리닐, 나프티리디닐, 옥사디아졸릴, 2-옥소아제피닐, 옥사졸릴, 2-옥소피페라지닐, 2-옥소피페리디닐, 2-옥소피롤리디닐, 피페리딜, 피페라지닐, 피리딜, 피라지닐, 피라졸리디닐, 피라졸릴, 피라졸로피리디닐, 피리다지닐, 피리미디닐, 피롤리디닐, 피롤릴, 피롤로피리디닐, 퀴나졸리닐, 퀴놀리닐, 퀴녹살리닐, 테트라히드로푸릴, 테트라히드로이소퀴놀리닐, 테트라히드로퀴놀리닐, 티아모르폴리닐, 티아모르폴리닐 술폭시드, 티아졸릴, 티아졸리닐, 티에노푸릴, 티에노티에닐, 티에닐, 및 트리아졸릴을 포함하나, 이에 제한되지는 않는다.
바람직하게는, 헤테로시클릴은 푸로피리디닐, 이미다졸릴, 인돌릴, 이소퀴놀리닐, 이소티아졸릴, 모르폴리닐, 나프티리디닐, 피페리딜, 피페라지닐, 피리딜, 피라지닐, 피라졸리디닐, 피라졸릴, 피라졸로피리디닐, 피리다지닐, 피리미디닐, 피롤리디닐, 피롤릴, 피롤로피리디닐, 퀴나졸리닐, 퀴놀리닐, 퀴녹살리닐, 테트라히드로푸릴, 테트라히드로이소퀴놀리닐, 테트라히드로퀴놀리닐, 티아졸릴, 티아졸리닐, 티에노푸릴, 티에노티에닐, 티에닐, 및 트리아졸릴로부터 선택된다.
"헤테로아릴"은 각각의 고리 내의 7개 이하의 구성원의 임의의 안정한 모노시클릭 또는 비시클릭 탄소 고리에서, 1개 이상의 고리가 방향족이고, 1 내지 4개의 탄소 원자가 N, O 및 S로 이루어진 군으로부터 선택된 헤테로원자에 의해 대체된 것을 의미하도록 의도된다. 이러한 헤테로시클릭 요소의 예는 이미다졸릴, 인돌리닐, 인돌릴, 이소크로마닐, 이소인돌리닐, 이소퀴놀리닐, 이소티아졸릴, 나프티리디닐, 옥사디아졸릴, 피리딜, 피라지닐, 피라졸릴, 피리다지닐, 피리미디닐, 피롤릴, 퀴나졸리닐, 퀴놀리닐, 테트라히드로이소퀴놀리닐, 테트라히드로퀴놀리닐, 티아졸릴, 티에노푸릴, 티에노티에닐, 티에닐, 트리아졸릴 등을 포함하나, 이에 제한되지는 않는다.
"유효량"의 예는 생체내 아밀로이드 침착물(들)의 영상화를 가능하게 하며, 제약 용도에 허용되는 독성 및 생체이용률 수준을 산출하고/거나 피브릴 형성과 연관된 세포 변성 및 독성을 방지하는 양을 포함한다.
의약에 사용하기 위해, 화학식 I의 화합물의 염은 제약상 허용되는 염일 것이다. 그러나, 다른 염이 본 발명에 따른 화합물 또는 그의 제약상 허용되는 염의 제조에 유용할 수 있다. 본 발명의 화합물이 산성인 경우에, 적합한 "제약상 허용되는 염"은 무기 염기 및 유기 염기를 포함한 제약상 허용되는 비-독성 염기로부터 제조된 염을 지칭한다. 무기 염기로부터 유도된 염은 알루미늄, 암모늄, 칼슘, 구리, 제2철, 제1철, 리튬, 마그네슘, 제2망가니즈 염, 제1망가니즈, 칼륨, 나트륨, 아연 등을 포함한다. 암모늄, 칼슘, 마그네슘, 칼륨 및 나트륨 염이 특히 바람직하다. 제약상 허용되는 유기 비-독성 염기로부터 유도된 염은 1급, 2급 및 3급 아민, 자연 발생 치환된 아민을 포함한 치환된 아민, 시클릭 아민 및 염기성 이온 교환 수지, 예컨대 아르기닌, 베타인 카페인, 콜린, N,N1-디벤질에틸렌디아민, 디에틸아민, 2-디에틸아미노에탄올, 2-디메틸아미노에탄올, 에탄올아민, 에틸렌디아민, N-에틸모르폴린, N-에틸피페리딘, 글루카민, 글루코사민, 히스티딘, 히드라바민, 이소프로필아민, 리신, 메틸글루카민, 모르폴린, 피페라진, 피페리딘, 폴리아민 수지, 프로카인, 퓨린, 테오브로민, 트리에틸아민, 트리메틸아민 트리프로필아민, 트로메타민 등의 염을 포함한다.
본 발명의 화합물이 염기성인 경우에, 염은 무기 및 유기 산을 포함한 제약상 허용되는 비-독성 산으로부터 제조될 수 있다. 이러한 산은 아세트산, 벤젠술폰산, 벤조산, 캄포르술폰산, 시트르산, 에탄술폰산, 푸마르산, 글루콘산, 글루탐산, 브로민화수소산, 염산, 이세티온산, 락트산, 말레산, 말산, 만델산, 메탄술폰산, 뮤신산, 질산, 파모산, 판토텐산, 인산, 숙신산, 황산, 타르타르산, p-톨루엔술폰산 등을 포함한다. 시트르산, 브로민화수소산, 염산, 말레산, 인산, 황산 및 타르타르산이 특히 바람직하다.
상기 기재된 제약상 허용되는 염 및 다른 전형적인 제약상 허용되는 염의 제조법은 문헌 [Berg et al., "Pharmaceutical Salts," J. Pharm. Sci., 1977:66:1-19]에 보다 완전히 기재되어 있다.
본원에 나타낸 바와 같이, 본 발명은 동위원소 표지된 본 발명의 화합물을 포함한다. "동위 원소-표지된", "방사성-표지된", "추적자", "방사성추적자", "표지된 추적자" 또는 "방사성리간드" 화합물은 1개 이상의 원자가 자연에서 전형적으로 발견되는 (즉, 자연 발생) 원자 질량 또는 질량수와 상이한 원자 질량 또는 질량수를 갖는 원자에 의해 대체 또는 치환된 화합물이다. 본 발명의 화합물에서 혼입될 수 있는 적합한 방사성핵종 (즉, "검출가능한 동위원소")은 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I 및 131I를 포함하나, 이에 제한되지는 않는다. 동위원소 표지된 본 발명의 화합물은 단지 검출가능한 동위원소를 특정한 적용에 적합한 기술로의 검출을 가능하게 하는 정도로 또는 그 초과로 농축시키는 것만을 필요로 한다. 본 발명의 방사성표지된 화합물에서 혼입되는 방사성핵종은 방사성표지된 화합물의 특정한 적용에 따라 달라질 것이다. 본 발명의 또 다른 실시양태에서, 방사성핵종은 11C, 13C, 14C, 18F, 15O, 13N, 35S, 2H 및 3H, 바람직하게는 11C 및 18F에 의해 나타내어진다.
본 발명은 추가로 유효량의 화학식 I의 적어도 1종의 화합물 및 제약상 허용되는 담체를 포함하는 제약 조성물에 관한 것이다. 조성물은 1종 이상의 완충제, 습윤제, 유화제, 현탁화제, 윤활제, 흡착제, 계면활성제, 보존제 등을 포함할 수 있으나, 이에 제한되지는 않는다. 조성물은 고체, 액체, 겔 또는 현탁액으로서 경구 투여 (예를 들어, 드렌치, 볼루스, 정제, 분말, 캡슐, 구강 스프레이, 에멀젼); 비경구 투여 (예를 들어, 피하, 근육내, 정맥내, 경막외 주사); 국소 적용 (예를 들어, 크림, 연고, 제어-방출 패치, 스프레이); 질내, 직장내, 경피, 안구, 또는 비강 투여를 위해 제제화될 수 있다.
본 발명은 타우 영상화제로서의 방사성표지된 피롤로피리디닐 유도체 및 이들이 제조되는 합성 전구체 화합물을 제공한다. 화학식 I의 화합물은 연령-관련 질환 예컨대 알츠하이머, 뿐만 아니라 다른 타우병증 및 신경변성 질환, 예컨대 진행성 핵상 마비, 만성 외상성 뇌병증, 전두측두엽 치매, 픽병, 피질기저 변성 등에 대해 활성이다. 본 발명의 화합물은 또한 넓은 범위의 인지 결핍 증강제와 조합되어 사용될 수 있다. 따라서, 본 발명의 또 다른 실시양태에서, 화학식 I의 화합물 또는 그의 제약상 허용되는 염, 또는 화학식 I의 화합물을 포함하는 제약 조성물 또는 제제는, 예를 들어 도네페질, 메만틴, 타크린 및 그의 등가물 및 제약 활성 이성질체(들) 및 대사물(들)을 포함한 알츠하이머 요법에 사용되는 또 다른 제약 활성 화합물 또는 화합물들과 공동으로, 동시에, 순차적으로 또는 개별적으로 투여된다.
본 발명은 추가로 치료 유효량의 화학식 I의 화합물을 투여하는 것을 포함하는, 환자에서 타우-관련 병리상태를 치료 또는 예방하는 방법에 관한 것이다. 본 발명은 신경변성 장애 예컨대 치매, 정신분열증에서의 인지 결핍, 경도 인지 장애, 연령 연관 기억 장애, 연령-관련 인지 저하 등을 치료하는 방법을 또한 제공한다.
본 발명의 궁극적 목적은 타우 응집체에 대한 그의 높은 친화도 덕분에 높은 특이적 방사능 및 높은 표적 조직 선택성을 갖는 타우 영상화에 유용한 방사성제약 작용제를 제공하는 것이다. 조직 선택성은 이러한 고도로 선택적인 방사성제약을 표적화제, 예컨대 마이크로입자와 커플링함으로써 추가로 증강될 수 있다.
본 발명의 또 다른 측면에서 청구된 화합물은 타우 무함유 피질 회백질 및 인접한 백질에서 예상외로 낮은 결합 잠재력을 가지며, 이는 백질에서의 결합 잠재력에 대해 개선된 프로파일을 제공한다.
본 발명에 따르면, 동위원소 표지된 신규 피롤로피리딘 유도체를 영상화제로서 사용하는 환자에서 타우 침착물을 영상화하는 가장 바람직한 방법은 하기 단계를 포함한다: 환자를 PET 카메라에서 앙와위로 배치하고, 충분한 양 (< 10 mCi)의 동위원소 표지된 피롤로피리딘 유도체를 환자의 뇌 조직에 투여한다. 뇌 영역의 방출 스캔을 수행한다. 두부의 방출 스캔을 수행하기 위한 기술은 관련 기술분야의 통상의 기술자에게 널리 공지되어 있다. PET 기술은 문헌 [Freeman et al., Freeman and Johnson's Clinical Radionuclide Imaging. 3rd. Ed. Vol. 1 (1984); Grune & Stratton, New York; Ennis et Q. Vascular Radionuclide Imaging: A Clinical Atlas, John Wiley & Sons, New York (1983)]에 기재되어 있다.
용어 "표지된 추적자"는 정의된 생체내 활성을 추적 또는 검출하기 위해 사용될 수 있는 임의의 분자를 지칭하며, 예를 들어 바람직한 추적자는 타우 응집체가 발견될 수 있는 영역에서 축적되는 것이다. 바람직하게는, 표지된 추적자는 살아있는 실험 동물, 건강한 인간 또는 환자 (대상체로서 지칭됨)에서, 예를 들어 양전자 방출 단층촬영 (PET) 스캐닝에 의해 보여질 수 있는 것이다. 적합한 표지는 방사성동위원소, 형광색소, 화학발광 화합물, 염료, 및 효소를 포함한 단백질을 포함하나, 이에 제한되지는 않는다.
본 발명은 효소 또는 다른 분자의 생체내 활성을 결정하는 방법을 또한 제공한다. 보다 구체적으로, 표적화된 활성을 특이적으로 추적하는 추적자가 선택 및 표지된다. 바람직한 실시양태에서, 추적자는 뇌 및 중추 신경계에서 타우 단백질의 결합 활성을 추적한다. 추적자는 신경전달물질 방출의 조절을 포함한 다양한 뉴런 과정, 및 장기 강화를 평가하기 위한 수단을 제공한다. 본 발명은 연구원에게 통증, 불안/우울증, 약물 중독 및 금단, 기저 신경절의 장애, 섭식 장애, 비만, 장기 우울증, 학습 및 기억, 발달적 시냅스 가소성, 저산소성-허혈성 손상 및 뉴런 세포 사멸, 간질성 발작, 시각적 프로세싱, 뿐만 아니라 여러 신경변성 장애의 발병기전의 생화학적 메카니즘을 연구하기 위한 수단을 제공한다.
알츠하이머병 상태, 예후 및 진행의 바이오마커는 모두 일반적인 진단 유용성 뿐만 아니라 알츠하이머병을 위한 치료제에 대한 임상 개발 계획에 유용할 것이다. 본 발명은 환자 선택 및 코호트에의 할당을 보조하기 위해 환자를 새로운 알츠하이머 치료를 위한 임상 시험에 등록하는 것과 같은 바이오마커 정보를 제공할 것이다. 본 발명은 올바른 환자를 적절한 PhIIb 시험 코호트에 넣기 위한 질환 상태의 바이오마커 중 1종으로서 기능할 것이다. 추가로, 본 발명은 위약 치료 부문에서 질환이 진행될 가능성을 증진시키기 위해 엔트리 포함 기준으로서의 질환 예후의 1종의 마커로서 기능할 수 있으며, 이는 최근 AD 임상 시험에서 성가신 문제이다. 마지막으로, 본 발명은 요법에 대한 환자의 임상 경과를 모니터링하기 위한 질환 진행의 1종의 바이오마커로서 기능할 수 있고, 치료 약물에 의한 치료 반응의 독립적인 바이오마커 척도를 제공할 수 있다.
본 발명 내의 화합물은 응집된 타우 단백질의 억제제 및/또는 결합제이다. 화합물 및 그의 동위원소 표지된 변형은 알츠하이머병, 우울증, 정신분열증 또는 파킨슨병의 진단 및/또는 치료에 유용할 수 있다. 표지를 검출하는 수단은 관련 기술분야의 통상의 기술자에게 널리 공지되어 있다. 예를 들어, 동위원소 표지는 영상화 기술, 사진 필름 또는 섬광 계수기를 사용하여 검출될 수 있다. 바람직한 실시양태에서, 표지는 영상화 기술, 예를 들어 양전자 방출 단층촬영 (PET)에 의해 대상체의 뇌에서 생체내 검출된다.
표지된 본 발명의 화합물은 바람직하게는 표지로서 적어도 1개의 방사성핵종을 함유한다. 양전자-방출 방사성핵종은 용법을 위한 모든 후보이다. 본 발명의 문맥에서, 방사성핵종은 바람직하게는 11C, 13C, 14C, 18F, 15O, 13N, 35S, 2H 및 3H, 보다 바람직하게는 11C 및 18F로부터 선택된다.
추적자는 선택된 검출 방법에 따라 선택될 수 있다. 본 발명의 방법을 수행하기 전에, 진단 유효량의 표지 또는 비표지된 본 발명의 화합물을 인간을 포함한 생체에 투여한다.
본 발명을 위해 생체내 방법을 수행하기 전에 투여될 진단 유효량의 표지되거나 표지되지 않은 본 발명의 화합물은 바람직하게는 kg 체중당 0.1 ng 내지 100 mg 범위, kg 체중당 1 ng 내지 10 mg 범위 내이다.
동위원소 표지된 본 발명의 화합물은 동위원소 예컨대 11C, 13C, 14C, 18F, 15O, 13N, 35S, 2H 및 3H를 기질 분자에 혼입함으로써 제조된다. 이는 시약을 방사능의 공급원 예컨대 핵 반응기, 사이클로트론 등에 배치함으로써 그에 함유된 원자 중 1개 이상을 방사성으로 만든 시약을 이용함으로써 달성된다. 추가적으로, 많은 동위원소 표지된 시약, 예컨대 2H2O, 3H3CI, 14C6H5Br, ClCH2 14COCl 등이 상업적으로 입수가능하다. 이어서, 동위원소 표지된 시약은 하기 기재된 바와 같은 동위원소 원자 또는 원자들을 화학식 I의 화합물에 혼입하기 위한 표준 유기 화학 합성 기술에 사용된다. 하기 반응식은 화학식 I의 화합물의 제조 방법을 예시한다.
본 발명의 화합물은 알츠하이머병 및 다른 비-AD 타우병증 예컨대 전두측두엽 치매 (FTD), 진행성 핵상 마비 (PSP), 피질기저 변성 (CBD), 만성 외상성 뇌병증 (CTE), 픽병 등의 진단, 모니터링 및 측정에서 유용성을 갖는다. 본 발명의 화합물에 의해 진단될 수 있는 다른 상태는 파킨슨병, 폐고혈압, 만성 폐쇄성 폐 질환 (COPD), 천식, 요실금, 녹내장, 정신분열증, 21번 삼염색체증 (다운 증후군), 뇌 아밀로이드 혈관병증, 퇴행성 치매, 네덜란드-유형의 아밀로이드증을 동반한 유전성 뇌출혈 (HCHWA-D), 크로이츠펠트-야콥병, 프리온 장애, 근위축성 측삭 경화증, 두부 외상, 졸중, 췌장염, 봉입체 근염, 다른 말초 아밀로이드증, 당뇨병, 자폐증 및 아테롬성동맥경화증을 포함한다.
바람직한 실시양태에서, 본 발명의 화합물은 알츠하이머병, 비-AD 타우병증, 신경변성 질환, 인지 장애, 정신분열증, 통증 장애 및 수면 장애의 진단, 모니터링 및 측정에 유용하다. 예를 들어, 화합물은 알츠하이머 유형의 치매의 예방, 뿐만 아니라 알츠하이머 유형의 초기 단계, 중기 단계 및 말기 단계 치매의 치료에 유용할 수 있다.
본원에 사용된 용어 "조성물"은 미리 결정된 양 또는 비율의 명시된 성분을 포함하는 생성물, 뿐만 아니라 명시된 양의 명시된 성분의 조합으로부터 직접적으로 또는 간접적으로 생성된 임의의 생성물을 포괄하도록 의도된다. 제약 조성물과 관련된 상기 용어는 1종 이상의 활성 성분, 및 불활성 성분을 포함하는 임의적인 담체를 포함하는 생성물, 뿐만 아니라 성분 중 임의의 2종 이상의 조합, 복합체화 또는 응집, 또는 성분 중 1종 이상의 해리, 또는 성분 중 1종 이상의 다른 유형의 반응 또는 상호작용으로부터 직접적으로 또는 간접적으로 생성된 임의의 생성물을 포괄하도록 의도된다.
일반적으로, 제약 조성물은 활성 성분을 액체 담체 또는 미분된 고체 담체 또는 이들 둘 다와 함께 균일하게 및 친밀하게 회합시킨 다음, 필요한 경우에 생성물을 원하는 제제로 형상화함으로써 제조된다. 제약 조성물에서, 화학식 I 내지 VIII의 화합물인 활성 화합물은 질환의 과정 또는 상태에 따라 원하는 효과를 생성하기에 충분한 양으로 포함된다. 따라서, 본 발명의 제약 조성물은 본 발명의 화합물 및 제약상 허용되는 담체를 혼합함으로써 만들어진 임의의 조성물을 포괄한다.
본 발명은 본 발명의 화합물의 제조에서 중간체로서 유용한 화합물의 합성 방법을 또한 제공한다.
본원에 기재된 화합물은 하기 반응식 및 실시예의 절차에 따라 적절한 물질을 사용하여 제조될 수 있으며, 하기 구체적 예에 의해 추가로 예시되어 있다. 그러나, 실시예에 예시된 화합물은 본 발명으로서 간주되는 유일한 종류를 형성하는 것으로 해석되어서는 안 된다. 실시예는 본 발명의 화합물의 제조에 대한 세부사항을 추가로 예시하고 있다. 관련 기술분야의 통상의 기술자는 하기 제조 절차의 조건 및 과정의 공지된 변경을 사용하여 이들 화합물을 제조할 수 있다는 것을 용이하게 이해할 것이다. 모든 온도는 달리 나타내지 않는 한, 섭씨 온도이다. 질량 스펙트럼 (MS)은 전기분무 이온-질량 분광분석법 (ESI)에 의해 측정되었다. 1H NMR 스펙트럼은 400-500 MHz에서 기록되었다. 본원에 기재된 화합물은 실험 절차에서 달리 언급되지 않는 한, 라세미 혼합물로서 합성되었다.
일부 경우에, 최종 생성물은, 예를 들어 치환기의 조작에 의해 추가로 변형될 수 있다. 이들 조작은 관련 기술분야의 통상의 기술자에게 통상적으로 공지된 환원, 산화, 알킬화, 아실화 및 가수분해 반응을 포함할 수 있으나, 이에 제한되지는 않는다. 일부 경우에, 상기 반응식을 실행하는 순서는 반응을 용이하게 하거나 또는 원치 않는 반응 생성물을 회피하기 위해 변경될 수 있다. 하기 실시예는 본 발명을 보다 완전히 이해할 수 있도록 제공된다. 이들 실시예는 단지 예시이며, 어떠한 방식으로도 본 발명을 제한하는 것으로 해석되어서는 안 된다.
약어 목록
Anal. = 분석용
n-BuLi = n-부틸 리튬
br = 넓은
calc. = 계산치
m-CPBA = 3-클로로퍼옥시벤조산
d = 이중선
DEA = 디에틸아민
DIPEA = N,N-디이소프로필에틸아민
DMF = 디메틸포름아미드
ESI = 전기분무 이온화
EtOAc = 에틸 아세테이트
EtOH = 에탄올
HPLC = 고압 액체 크로마토그래피
IPA = 이소-프로필 알콜
IPAc = 이소-프로필 아세테이트
KF = 칼-피셔(Karl-Fischer) 적정 (물 함량을 결정하기 위함)
KOt-Bu = 포타슘 tert-부톡시드
LCMS = 액체 크로마토그래피-질량 분광측정법
LiHMDS = 리튬 헥사메틸 실라잔
m = 다중선
MeCN = 아세토니트릴
MeOH = 메틸 알콜
MPa = 밀리파스칼
MS = 질량 분광분석법
MTBE = 메틸 tert-부틸 에테르
NHS = 정상 인간 혈청
NMR = 핵 자기 공명 분광분석법
Piv = 피발레이트, 2,2-디메틸프로파노일
Pd/C = 탄소 상 팔라듐
rt = 실온
s = 단일선
SFC = 초임계 유체 크로마토그래피
t = 삼중선
TLC = 박층 크로마토그래피
p-TsOH = 파라-톨루엔 술폰산
THF = 테트라히드로푸란
중량% = 중량 백분율
하기 실시예는 본 발명을 예시하기 위해 제공되며, 어떠한 방식으로도 본 발명의 범주를 제한하는 것으로 해석되어서는 안 된다.
<표 1>
Figure 112017002878210-pct00007
Figure 112017002878210-pct00008
Figure 112017002878210-pct00009
Figure 112017002878210-pct00010
Figure 112017002878210-pct00011
Figure 112017002878210-pct00012
Figure 112017002878210-pct00013
Figure 112017002878210-pct00014
Figure 112017002878210-pct00015
Figure 112017002878210-pct00016
Figure 112017002878210-pct00017
Figure 112017002878210-pct00018
Figure 112017002878210-pct00019
Figure 112017002878210-pct00020
Figure 112017002878210-pct00021
Figure 112017002878210-pct00022
Figure 112017002878210-pct00023
Figure 112017002878210-pct00024
<표 2>
Figure 112017002878210-pct00025
Figure 112017002878210-pct00026
Figure 112017002878210-pct00027
Figure 112017002878210-pct00028
Figure 112017002878210-pct00029
실시예 1
1-(5-(2-(2-메틸티아졸-4-일)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1)의 합성:
<반응식 1>
Figure 112017002878210-pct00030
단계 1: 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1-1)의 합성. N,N-디메틸포름아미드 (300 mL) 중 1H-피롤로[2,3-c]피리딘 (20 g, 0.17 mol)의 용액에 2-플루오로-5-아이오도피리딘 (45 g, 0.20 mol) 및 탄산세슘 (110 g, 0.34 mol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (1 L)로 희석하고, 디클로로메탄 (3 x 200 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~3% 메탄올로 용리시키면서 정제하여 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 322.0 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.61 (s, 1H), 8.77 (d, J = 2.0 Hz, 1H), 8.38 (d, J = 5.6 Hz, 1H), 8.12-8.09 (m, 1H), 7.81 (d, J = 3.6 Hz, 1H), 7.56-7.55 (m, 1H), 7.34-7.28 (m, 1H), 6.72 (d, J = 3.6 Hz, 1H).
단계 2: 1-(5-(2-(트리메틸실릴)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1-2)의 합성. 1,4-디옥산 (50 mL) 및 트리에틸아민 (50 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (4.1 g, 12.5 mmol)의 용액에 에티닐트리메틸실란 (3.7 g, 37.4 mmol), 아이오딘화구리(I) (1.4 g, 7.5 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (1.4 g, 1.2 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 유기 층을 분리하였다. 수성 층을 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 1-(5-(2-(트리메틸실릴)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 292.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.93 (s, 1H), 8.97 (d, J = 2.4 Hz, 1H), 8.76 (d, J = 1.5 Hz, 1H), 8.51 (d, J = 6.3 Hz, 1H), 8.25-8.21 (m, 2H), 8.07 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 3.3 Hz, 1H), 0.17 (s, 9H).
단계 3: 1-(5-에티닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1-3)의 합성. 메탄올 (50 mL) 중 1-(5-((트리메틸실릴)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (4.5 g, 15.4 mmol)의 용액을 탄산칼륨 (4.3 g, 30.9 mmol)으로 주위 온도에서 2시간 동안 처리하였다. 생성된 혼합물을 아세트산으로 중화시키고, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 1-(5-에티닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 220.0 [M + 1]+1; 1H NMR (300 MHz, DMSO-d6) δ 9.95 (s, 1H), 9.00 (d, J = 2.4 Hz, 1H), 8.79 (d, J = 1.5 Hz, 1H), 8.53 (d, J = 6.3 Hz, 1H), 8.28-8.23 (m, 2H), 8.10 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 3.3 Hz, 1H), 4.58 (s, 1H).
단계 4: 1-(5-(2-(2-메틸티아졸-4-일)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1)의 합성. 트리에틸아민 (10 mL) 중 1-(5-에티닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (141 mg, 0.64 mmol)의 용액에 4-브로모-2-메틸티아졸 (178 mg, 1 mmol), 아이오딘화구리(I) (48 mg, 0.26 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (49 mg, 0.043 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 1-(5-(2-(2-메틸티아졸-4-일)에티닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 317.0 [M + 1]+; 1H NMR (400 MHz, CD3OD) δ 9.88 (br s, 1H), 8.79 (d, J = 1.6 Hz, 1H), 8.34-8.33 (m, 2H), 8.15-8.12 (m, 1H), 7.85-7.82 (m, 2H), 7.77 (s, 1H), 6.96 (d, J = 3.2 Hz, 1H), 2.76 (s, 3H).
실시예 2
(E)-1-(5-스티릴피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (2)의 합성:
<반응식 2>
Figure 112017002878210-pct00031
단계 1: 1-(5-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (2-1)의 합성. 1,4-디옥산 (40 mL) 및 물 (4 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (2 g, 6.23 mmol)의 용액에 포타슘 트리플루오로(비닐)보레이트 (1.25 g, 9.34 mmol), 탄산칼륨 (1.72 g, 12.46 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (0.72 g, 0.62 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 유기 층을 분리하였다. 수성 층을 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~2% 메탄올로 용리시키면서 정제하여 1-(5-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 222.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.79 (s, 1H), 8.70 (d, J = 2.4 Hz, 1H), 8.35 (d, J = 3.6 Hz, 1H), 8.31 (d, J = 5.2 Hz, 1H), 8.23 (dd, J = 2.0 Hz, 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.68 (dd, J = 0.8 Hz, 4.4 Hz, 1H), 6.90-6.83 (m, 2H), 6.08 (d, J = 17.6 Hz, 1H), 5.46 (d, J = 11.2 Hz, 1H).
단계 2: (E)-1-(5-스티릴피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (2)의 합성. N,N-디메틸포름아미드 (2.5 mL) 중 1-(5-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.4 mmol)의 용액에 비스(아세테이토)팔라듐(II) (10 mg, 0.045 mmol), 1-아이오도벤젠 (138 mg, 0.68 mmol), 트리페닐포스핀 (12 mg, 0.045 mmol) 및 트리에틸아민 (91 mg, 0.9 mmol)을 첨가하였다. 생성된 혼합물을 100℃에서 1시간 동안 마이크로웨이브 (100 W)에 의해 조사하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (20 mL)로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~2% 메탄올로 용리시키면서 정제하여 (E)-1-(5-스티릴피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 298.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.71 (s, 1H), 8.79 (d, J = 2.1 Hz, 1H), 8.56-8.32 (m, 3H), 7.93 (d, J = 8.7 Hz, 1H), 7.67-7.64 (m, 3H), 7.48-7.29 (m, 5H), 6.83 (d, J = 4.2 Hz, 1H).
실시예 3
1-(5-(피리딘-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (3)의 합성:
<반응식 3>
Figure 112017002878210-pct00032
1-(5-(피리딘-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (3)의 합성. 1,4-디옥산 (20 mL) 및 물 (5 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.31 mmol)의 용액에 3-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)피리딘 (96 mg, 0.47 mmol), 탄산칼륨 (129 mg, 0.93 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (18 mg, 0.016 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(피리딘-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 273.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.05-9.01 (m, 2H), 8.66-8.64 (m, 1H), 8.44-8.39 (m, 2H), 8.27-8.23 (m, 2H), 8.04 (d, J = 8.7 Hz, 1H), 7.75-7.73 (m, 1H), 7.68-7.54 (m, 1H), 6.89 (d, J = 3.3 Hz, 1H).
실시예 4
N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-4-메톡시벤즈아미드 (4)의 합성:
<반응식 4>
Figure 112017002878210-pct00033
단계 1: 1-(5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (4-1)의 합성. N,N-디메틸포름아미드 (100 mL) 중 1H-피롤로[2,3-c]피리딘 (2 g, 16.9 mmol)의 용액에 2-플루오로-5-니트로피리딘 (2.9 g, 20.3 mmol) 및 탄산세슘 (11.0 g, 33.9 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (500 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~2% 메탄올로 용리시키면서 정제하여 1-(5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 오렌지색 고체로서 수득하였다: MS (ESI, m/z): 241.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.95 (s, 1H), 9.46 (d, J = 2.4 Hz, 1H), 8.79 (dd, J = 2.8 Hz, 6.4 Hz, 1H), 8.50 (d, J = 3.6 Hz, 1H), 8.39 (d, J = 5.2 Hz, 1H), 8.16 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 5.2 Hz, 1H), 7.00 (d, J = 3.6 Hz, 1H).
단계 2: 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (4-2)의 합성. 메탄올 (50 mL) 중 1-(5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (0.8 g, 3.33 mmol)의 교반 용액에 목탄 상 팔라듐 (1.0 g, 10% w/w)을 첨가하였다. 생성된 혼합물을 수소 분위기 (1 atm.) 하에 주위 온도에서 3시간 동안 유지하였다. 이어서, 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 증발시켜 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민을 황색 고체로서 수득하였다: MS (ESI, m/z): 211.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.39 (s, 1H), 8.25 (d, J = 2.4 Hz, 1H), 8.09 (dd, J = 2.8 Hz, 6.4 Hz, 1H), 7.96 (d, J = 3.6 Hz, 1H), 7.63 (d, J = 5.2 Hz, 1H), 7.48 (d, J = 9.2 Hz, 1H), 7.16 (d, J = 5.2 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 5.49 (br s, 2H).
단계 3: N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-4-메톡시벤즈아미드 (4)의 합성. N,N-디메틸포름아미드 (15 mL) 중 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (100 mg, 0.48 mmol)의 용액에 4-메톡시벤조산 (109 mg, 0.71 mmol), O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트 (HATU) (271 mg, 0.71 mmol) 및 트리에틸아민 (144 mg, 1.43 mmol)을 첨가하였다. 생성된 용액을 질소 분위기 하에 주위 온도에서 16시간 동안 교반하였다. 반응물을 물 (50 mL)로 켄칭하고, 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~2% 메탄올로 용리시키면서 정제하여 N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-4-메톡시벤즈아미드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 345.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.4 (s, 1H), 9.66 (s, 1H), 8.96 (d, J = 2.4 Hz, 1H), 8.42 (dd, J = 2.7 Hz, 3.3 Hz, 1H), 8.27-8.24 (m, 2H), 8.03-8.00 (m, 2H), 7.89 (d, J = 9.0 Hz, 1H), 7.66-7.64 (m, 1H), 7.12-7.09 (m, 2H), 6.82 (d, J = 3.0 Hz, 1H), 3.85 (s, 3H).
실시예 5
1-(5-(피리딘-2-일메톡시)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (5)의 합성:
<반응식 5>
Figure 112017002878210-pct00034
단계 1: 2-((6-브로모피리딘-3-일옥시)메틸)피리딘 (5-1)의 합성. N,N-디메틸포름아미드 (30 mL) 중 6-브로모피리딘-3-올 (0.5 g, 2.87 mmol)의 용액에 2-(브로모메틸)피리딘 히드로브로마이드 (0.73 g, 2.87 mmol) 및 탄산칼륨 (1.19 g, 8.62 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 주위 온도에서 8시간 동안 교반하였다. 반응물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 10~30% 에틸 아세테이트로 용리시키면서 정제하여 2-((6-브로모피리딘-3-일옥시)메틸)피리딘을 적색 고체로서 수득하였다: MS (ESI, m/z): 265.0, 267.0 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 8.62 (d, J = 4.2 Hz, 1H), 8.16 (d, J = 3.0 Hz, 1H), 7.77-7.71 (m, 1H), 7.49 (d, J = 10.4 Hz, 1H), 7.38 (d, J = 11.7 Hz, 1H), 7.29-7.20 (m, 1H), 7.18-7.17 (m, 1H), 5.22 (s, 2H).
단계 2: 1-(5-(피리딘-2-일메톡시)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (5)의 합성. 디메틸 술폭시드 (50 mL) 중 1H-피롤로[2,3-c]피리딘 (0.150 g, 1.27 mmol)의 교반 용액에 2-브로모-5-(피리딘-2-일메톡시)피리딘 (0.67 g, 2.54 mmol), 디메틸글리신 (0.13 g, 1.27 mmol), 아이오딘화구리(I) (0.24 g, 1.27 mmol) 및 탄산세슘 (1.65 g, 5.08 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨으로 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼에 의해 디클로로메탄 중 0.3~2% 메탄올로 용리시키면서 정제하여 1-(5-(피리딘-2-일메톡시)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 회백색 고체로서 수득하였다: MS (ESI, m/z): 303.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.62 (br s, 1H), 8.62-8.60 (m, 1H), 8.43 (d, J = 2.7 Hz, 1H), 8.25 (br s, 1H), 8.17 (d, J = 5.7 Hz, 1H), 7.90-7.74 (m, 3H), 7.63-7.59 (m, 2H), 7.41-7.36 (m, 1H), 6.80 (d, J = 3.3 Hz, 1H), 5.35 (s, 2H).
실시예 6
3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (6)의 합성:
<반응식 6>
Figure 112017002878210-pct00035
3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (6)의 합성. 디메틸 술폭시드 (15 mL) 중 1H-피롤로[2,3-c]피리딘 (0.13 g, 1.08 mmol)의 교반 용액에 아이오딘화구리(I) (0.055 g, 0.29 mmol), 3-브로모이소퀴놀린 (0.150 g, 0.72 mmol), 탄산세슘 (0.94 g, 2.88 mmol) 및 디메틸글리신 (0.029 g, 0.29 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (50 mL)을 첨가하여 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~2% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 회백색 고체로서 수득하였다: MS (ESI, m/z): 246.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, 1H), 9.43 (s, 1H), 8.36 (d, J = 3.3 Hz, 1H), 8.30-8.28 (m, 2 H), 8.21 (d, J = 8.1 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.88-7.82 (m, 1H), 7.71-7.66 (m, 2H), 6.87 (d, J = 3.3 Hz, 1H).
실시예 7
1-(5-(3-플루오로프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (7)의 합성:
<반응식 7>
Figure 112017002878210-pct00036
단계 1: 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로프-2-인-1-올 (7-1)의 합성. 1,4-디옥산 (20 mL) 및 트리에틸아민 (5 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (200 mg, 0.62 mmol)의 용액에 트리메틸(프로프-2-이닐옥시)실란 (96 mg, 0.77 mmol), 아이오딘화구리(I) (71 mg, 0.37 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (140 mg, 0.12 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 60℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 유기 층을 분리하였다. 수성 층을 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로프-2-인-1-올을 무색 고체로서 수득하였다: MS (ESI, m/z): 250.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.79 (br s, 1H), 8.67 (d, J = 1.8 Hz, 1H), 8.34-8.23 (m, 2H), 8.08-8.04 (m, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.67 (d, J = 5.1 Hz, 1H), 6.87 (d, J = 3.3 Hz, 1H), 5.45 (t, J = 6.0 Hz, 1H), 4.37 (d, J = 6.0 Hz, 2H).
단계 2: 1-(5-(3-플루오로프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (7)의 합성. 디클로로메탄 (20 mL) 중 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로프-2-인-1-올 (100 mg, 0.4 mmol)의 용액에 -78℃에서 디에틸아미노황트리플루오라이드 (DAST) (2 mL)를 첨가하였다. 생성된 용액을 주위 온도에서 2시간 동안 교반하고, 중탄산나트륨의 포화 수용액 (10 mL)으로 켄칭하였다. 유기 층을 분리하고, 수성 층을 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 1-(5-(3-플루오로프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 252.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.85 (br s, 1H), 8.76 (d, J = 2.1 Hz, 1H), 8.37 (d, J = 3.3 Hz, 1H), 8.32 (d, J = 5.1 Hz, 1H), 8.17-8.14 (m, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 5.4 Hz, 1H), 6.90 (d, J = 3.3 Hz, 1H), 5.49 (s, 1H), 5.33 (s, 1H).
실시예 8
1-(1H-피롤로[2,3-c]피리딘-5-일)-1H-피롤로[2,3-c]피리딘 (8)의 합성:
<반응식 8>
Figure 112017002878210-pct00037
단계 1: 1-(4-메틸-5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (8-1)의 합성. N,N-디메틸포름아미드 (30 mL) 중 1H-피롤로[2,3-c]피리딘 (1.0 g, 8.7 mmol)의 용액에 주위 온도에서 탄산칼륨 (1.6 g, 11.6 mmol) 및 2-클로로-4-메틸-5-니트로피리딘(1.0 g, 5.8 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 18시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 염수 (150 mL)로 희석하고, 에틸 아세테이트 (2 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 30~50% 에틸 아세테이트로 용리시키면서 정제하여 1-(4-메틸-5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 255.0 [M + 1]+.
단계 2: (E)-N,N-디메틸-2-(5-니트로-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)에텐아민 (8-2)의 합성. N,N-디메틸포름아미드 디메틸 아세탈 (20 mL) 중 1-(4-메틸-5-니트로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (140 mg, 0.55 mmol)의 용액을 85℃에서 24시간 동안 교반하였다. 용매를 감압 하에 제거하고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 50~80% 에틸 아세테이트로 용리시키면서 정제하여 (E)-N,N-디메틸-2-(5-니트로-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)에텐아민을 황색 고체로서 수득하였다: MS (ESI, m/z): 310.0 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.59 (s, 1H), 9.05 (s, 1H), 8.39-8.36 (m, 1H), 8.10 (d, J = 3.6 Hz, 1H), 7.69 (d, J = 7.0 Hz, 1H), 7.54-7.48 (m, 1H), 7.43 (s, 1H), 6.83 (d, J = 3.6 Hz, 1H), 6.18 (d, J = 12.4 Hz, 1H), 3.12 (s, 6H).
단계 3: 1-(1H-피롤로[2,3-c]피리딘-5-일)-1H-피롤로[2,3-c]피리딘 (8)의 합성. 메탄올 (10 mL) 중 (E)-N,N-디메틸-2-(5-니트로-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)에텐아민 (40 mg, 0.13 mmol)의 교반 용액에 목탄 상 팔라듐 (5.0 mg, 10% w/w)을 첨가하였다. 생성된 혼합물을 수소 분위기 (1 atm.) 하에 주위 온도에서 1시간 동안 유지하였다. 이어서, 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축 건조시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 1-(1H-피롤로[2,3-c]피리딘-5-일)-1H-피롤로[2,3-c]피리딘을 회백색 고체로서 수득하였다: MS (ESI, m/z): 235.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 11.80 (br s, 1H), 9.48 (s, 1H), 8.78 (s, 1H), 8.22-8.16 (m, 2H), 7.90 (s, 1H), 7.76-7.75 (m, 1H), 7.64-7.63 (m, 1H), 6.76 (d, J = 3.2 Hz, 1H), 6.62 (s, 1H).
실시예 9
6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (9)의 합성:
<반응식 9>
Figure 112017002878210-pct00038
단계 1: (E)-5-플루오로-2-(히드록시이미노)-2,3-디히드로인덴-1-온 (9-1)의 합성. 디에틸 에테르 (50 mL) 중 5-플루오로-2,3-디히드로인덴-1-온 (3 g, 20 mmol)의 교반 용액에 건조 히드로클로라이드 기체를 0℃에서 3시간 동안 버블링한 다음, 이소펜틸 니트라이트 (4.7 g, 40 mmol)를 5분에 걸쳐 첨가하였다. 주위 온도에서 3시간 동안 교반한 후, 고체를 여과에 의해 수집하고, 디에틸 에테르 (3 x 30 mL)로 세척하여 (E)-5-플루오로-2-(히드록시이미노)-2,3-디히드로인덴-1-온을 회백색 고체로서 수득하였다: MS (ESI, m/z): 180.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 12.67 (s, 1H), 7.85-7.81 (m, 1H), 7.46-7.43 (m, 1H), 7.31-7.28 (m, 1H), 3.79 (s, 2H).
단계 2: 1,3-디클로로-6-플루오로이소퀴놀린 (9-2)의 합성. 옥시삼염화인 (50 mL) 중 (E)-5-플루오로-2-(히드록시이미노)-2,3-디히드로인덴-1-온 (3 g, 13.4 mmol)의 교반 용액에 0℃에서 펜타클로로포스포란 (3.2 g, 15.1 mmol)을 첨가하였다. 생성된 용액에 히드로클로라이드 기체를 0℃에서 3시간 동안 버블링하였다. 생성된 혼합물을 60℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 고체를 물 (3 x 50 mL)로 세척하고, 진공 오븐 중에서 건조시켜 1,3-디클로로-6-플루오로이소퀴놀린을 암회색 고체로서 수득하였다: MS (ESI, m/z): 216.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.41-8.36 (m, 1H), 8.10 (s, 1H), 7.87-7.83 (m, 1H), 7.78-7.69 (m, 1H).
단계 3: 3-클로로-6-플루오로이소퀴놀린 (9-3)의 합성. 아세트산 (40 mL) 및 아이오딘화수소산 (20 mL, 45% 수용액) 중 1,3-디클로로-6-플루오로이소퀴놀린 (2.5 g, 11.6 mmol)의 교반 용액에 적린 (0.9 g, 28.9 mmol)을 주위 온도에서 첨가하였다. 생성된 혼합물을 100℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시켰다. 잔류물을 디클로로메탄 (100 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (2 x 100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시켜 3-클로로-6-플루오로이소퀴놀린을 암회색 고체로서 수득하였다: MS (ESI, m/z): 182.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.32-8.29 (m, 1H), 8.04 (s, 1H), 7.82-7.76 (m, 1H), 7.66-7.61 (m, 1H).
단계 4: 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (9)의 합성. 테트라히드로푸란 (20 mL) 중 1H-피롤로[2,3-c]피리딘 (100 mg, 0.85 mmol) 및 3-클로로-6-플루오로이소퀴놀린 (231 mg, 1.27 mmol)의 교반 용액에 주위 온도에서 소듐 2-메틸프로판-2-올레이트 (163 mg, 1.69 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (33.6 mg, 0.042 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 264.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.69 (s, 1H), 9.43 (s, 1H), 8.40-8.25 (m, 4H), 8.01-7.95 (m, 1H), 7.71-7.68 (m, 1H), 7.58-7.51 (m, 1H), 6.89 (s, 1H).
실시예 10
N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (10)의 합성:
<반응식 10>
Figure 112017002878210-pct00039
단계 1: 6-브로모-N,N-디메틸피리딘-3-아민 (10-1)의 합성. 테트라히드로푸란 (30 ml) 중 6-브로모피리딘-3-아민 (300 mg, 1.73 mmol)의 용액에 질소 분위기 하에 -78℃에서 테트라히드로푸란 중 리튬 비스(트리메틸실릴)아미드의 1 M 용액 (3.46 mL, 3.46 mmol)을 5분에 걸쳐 첨가하였다. -78℃에서 30분 동안 교반한 후, 아이오도메탄 (566 mg, 3.99 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 1시간 동안 교반한 다음, 염화암모늄의 포화 수용액 (50 mL)을 첨가하여 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~10% 에틸 아세테이트로 용리시키면서 정제하여 6-브로모-N,N-디메틸피리딘-3-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 201.0, 203.0 [M + 1]+.
단계 2: N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (10)의 합성. 디메틸 술폭시드 (30 mL) 중 1H-피롤로[2,3-c]피리딘 (100 mg, 0.84 mmol)의 교반 용액에 주위 온도에서 6-브로모-N,N-디메틸피리딘-3-아민 (204 mg, 1.01 mmol), 디메틸글리신 (52 mg, 0.51 mmol), 아이오딘화구리(I) (97 mg, 0.51 mmol) 및 탄산세슘 (1.1 g, 3.39 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응 혼합물을 물 (80 mL)로 켄칭하고, 에틸 아세테이트 (3 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (4 x 80 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 239.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.47 (s, 1H), 8.22 (d, J = 5.1 Hz, 1H), 8.11-8.09 (m, 2H), 7.66 (s, 1H), 7.62-7.61 (m, 1H), 7.40-7.35 (m, 1H), 6.75 (d, J = 3.3 Hz, 1H), 3.02 (s, 6H).
실시예 11
5-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (11)의 합성:
<반응식 11>
Figure 112017002878210-pct00040
단계 1: 3-클로로-5-니트로이소퀴놀린 (11-1)의 합성. 진한 황산 (48 mL) 중 3-클로로이소퀴놀린 (2.0 g, 12.2 mmol)의 용액에 질산칼륨 (1.48 g, 14.6 mmol)을 0℃에서 조금씩 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반한 다음, 빙수 (300 g)에 부었다. 침전물을 여과에 의해 수집하고, 건조시켜 3-클로로-5-니트로이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 209.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.75-8.72 (m, 1H), 8.66-8.63 (m, 1H), 8.45(s, 1H), 7.94-7.89 (m, 1H).
단계 2: 3-클로로이소퀴놀린-5-아민 (11-2)의 합성. 아세트산 (100 mL) 중 3-클로로-5-니트로이소퀴놀린 (2.3 g, 11.0 mmol)의 용액에 아연 분진 (3.5 g, 55.1 mmol)을 조금씩 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하였다. 이어서, 생성된 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1% 메탄올로 용리시키면서 정제하여 3-클로로이소퀴놀린-5-아민을 회백색 고체로서 수득하였다: MS (ESI, m/z): 179.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.98 (s, 1H), 8.13 (s, 1H), 7.40-7.35 (m, 1H), 7.28-7.25 (m, 1H), 6.90-6.87 (m, 1H), 6.06 (br s, 2H).
단계 3: tert-부틸 3-클로로이소퀴놀린-5-일카르바메이트 (11-3)의 합성. 디클로로메탄 (50 mL) 중 3-클로로이소퀴놀린-5-아민 (1.6 g, 8.96 mmol)의 용액에 트리에틸아민 (1.81 g, 17.92 mmol) 및 디-tert-부틸 디카르보네이트 (2.34 g, 10.75 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 3시간 동안 교반한 다음, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 2~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 (3-클로로이소퀴놀린-5-일)카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 279.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.33 (s, 1H), 8.24-8.21 (m, 1H), 7.83-7.77 (m, 2H), 7.57 (s, 1H), 1.32 (s, 9H).
단계 4: tert-부틸 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일카르바메이트 (11-4)의 합성. 테트라히드로푸란 (25 mL) 중 1H-피롤로[2,3-c]피리딘 (254 mg, 2.15 mmol)의 용액에 질소 분위기 하에 tert-부틸 (3-클로로이소퀴놀린-5-일)카르바메이트 (400 mg, 1.43 mmol), 소듐 2-메틸프로판-2-올레이트 (276 mg, 2.87 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (114 mg, 0.14 mmol)를 첨가하였다. 생성된 용액을 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 tert-부틸 (3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일)카르바메이트를 무색 고체로서 수득하였다: MS (ESI, m/z): 361.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.72 (s, 1H), 9.63 (s, 1H), 9.41 (s, 1H), 8.37-8.31 (m, 1H), 8.29 (s, 2H), 8.07 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 4.4 Hz, 1H), 7.68-7.62 (m, 1H), 6.90 (d, J = 4.8 Hz, 1H), 1.55 (s, 9 H).
단계 5: 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민 (11-5)의 합성. 디클로로메탄 (20 mL) 중 tert-부틸 (3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일)카르바메이트 (250 mg, 0.69 mmol)의 용액에 2,2,2-트리플루오로아세트산 (791 mg, 6.94 mmol)을 첨가하였다. 주위 온도에서 1시간 동안 교반한 후, 생성된 용액을 중탄산나트륨의 포화 수용액 (2 x 50 mL)으로 세척하고, 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민을 회백색 고체로서 수득하였다: MS (ESI, m/z): 261.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.67 (s, 1H), 9.22 (s, 1H), 8.32-8.26 (m, 3H), 7.68-7.66 (m, 1H), 7.41-7.33 (m, 2H), 6.93-6.84 (m, 2H), 6.12 (br s, 2H).
단계 6: 5-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (11)의 합성. 희석 황산 (10% 수용액) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민 (100 mg, 0.38 mmol)의 용액에 0℃에서 아질산나트륨 (53.0 mg, 0.76 mmol)을 첨가하였다. 0℃에서 20분 동안 교반한 후, 아이오딘화칼륨 (128 mg, 0.76 mmol)을 1 부분으로 첨가하였다. 추가로 10분 후, 생성된 혼합물을 포화 아황산나트륨 (10 mL)에 의해 켄칭하고, 디클로로메탄 (3 x 25 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1.5% 메탄올로 용리시키면서 정제하여 5-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 무색 고체로서 수득하였다: MS (ESI, m/z): 372.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.61 (s, 1H), 9.39 (s, 1H), 8.46-8.27 (m, 4H), 7.99 (s, 1H), 7.72-7.70 (m, 1H), 7.49-7.45 (m, 1H), 6.91 (d, J = 3.3 Hz, 1H).
실시예 12
3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민 (12)의 합성:
<반응식 12>
Figure 112017002878210-pct00041
단계 1: (E)-2-(히드록시이미노)-6-아이오도-2,3-디히드로인덴-1-온 (12-1)의 합성. 디클로로메탄 (300 mL) 및 메탄올 (15 mL, 0℃에서 히드로클로라이드로 포화됨) 중 6-아이오도-2,3-디히드로-1H-인덴-1-온 (5 g, 19.4 mmol)의 용액에 디클로로메탄 (10 mL) 중 이소펜틸 니트라이트 (4.5 g, 38.8 mmol)의 용액을 0℃에서 30분에 걸쳐 첨가하였다. 생성된 용액을 주위 온도에서 3시간 동안 교반하였다. 용매를 약 50 mL까지 부분적으로 제거하고, 이어서 에테르 (100 mL)로 희석하였다. 고체를 여과에 의해 수집하여 (E)-2-(히드록시이미노)-6-아이오도-2,3-디히드로인덴-1-온을 담황색 고체로서 수득하였다: MS (ESI, m/z): 288.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 12.75 (s, 1H), 8.06-8.01 (m, 2H), 7.46 (d, J = 8.0 Hz, 1H), 3.72 (s, 2H).
단계 2: 1,3-디클로로-7-아이오도이소퀴놀린 (12-2)의 합성. 포스포릴 트리클로라이드 (80 mL) 중 (E)-2-(히드록시이미노)-6-아이오도-2,3-디히드로인덴-1-온 (5.4 g, 18.81 mmol)의 용액에 펜타클로로포스포란 (5.9 g, 28.2 mmol)을 첨가하였다. 이어서, 상기 용액에 히드로클로라이드 기체를 0℃에서 3시간 동안 버블링하였다. 생성된 용액을 60℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL) 및 중탄산나트륨의 포화 수용액 (100 mL)으로 녹였다. 유기 층을 분리하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 1,3-디클로로-7-아이오도이소퀴놀린을 갈색 고체로서 수득하였다: MS (ESI, m/z): 324.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 8.59 (s, 1H), 8.21 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 8.17 (s, 1H), 7.85 (d, J = 8.8 Hz, 1H).
단계 3: 3-클로로-7-아이오도이소퀴놀린 (12-3)의 합성. 아세트산 (40 mL) 중 1,3-디클로로-7-아이오도이소퀴놀린 (6 g, 18.52 mmol)의 용액에 아이오딘화수소산 (20 mL, 55% w/w) 및 적린 (1.43 g, 46.3 mmol)을 첨가하였다. 생성된 용액을 16시간 동안 환류한 다음, 감압 하에 농축시켰다. 잔류물을 디클로로메탄 (100 mL) 및 중탄산나트륨의 포화 수용액 (100 mL)으로 녹였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 2~10% 에틸 아세테이트로 용리시키면서 정제하여 3-클로로-7-아이오도이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 290.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.20 (s, 1H), 8.66 (s, 1H), 8.10 (dd, J = 1.2 Hz, 4.8 Hz, 1H), 8.06 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H).
단계 4: 7-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (12-4)의 합성. N,N-디메틸포름아미드 (30 mL) 중 3-클로로-7-아이오도이소퀴놀린 (0.8 g, 2.76 mmol)의 용액에 1H-피롤로[2,3-c]피리딘 (0.49 g, 4.15 mmol) 및 탄산세슘 (1.80 g, 5.53 mmol)을 첨가하였다. 생성된 혼합물을 120℃에서 24시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 7-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 372.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.70 (s, 1H), 9.39 (s, 1H), 8.70 (s, 1H), 8.36 (d, J = 7.2 Hz, 1H), 8.30-8.29 (m, 2H), 8.10 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.69 (dd, J = 0.8 Hz, 5.2 Hz, 1H), 6.89 (d, J = 3.2 Hz, 1H).
단계 5: 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민 (12)의 합성. 톨루엔 (30 mL) 중 7-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (300 mg, 0.81 mmol)의 용액에 디페닐메탄이민 (220 mg, 1.21 mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) (41.8 mg, 0.04 mmol), 9,9-디메틸-4,5-비스(디페닐포스피노)크산텐 (46.7 mg, 0.081 mmol) 및 탄산세슘 (527 mg, 1.62 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 16시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 메탄올 (30 mL)로 희석하였다. 생성된 용액에 염산 (6 mL, 2 N)을 첨가하고, 생성된 용액을 주위 온도에서 3시간 동안 교반하였다. 생성된 용액을 중탄산나트륨 (60 mL)으로 희석하고, 에틸 아세테이트 (3 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 261.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.52 (s, 1H), 9.00 (s, 1H), 8.23-8.21 (m, 2H), 7.97 (s, 1H), 7.82 (d, J = 10.8 Hz, 1H), 7.66 (d, J = 5.1 Hz, 1H), 7.26 (d, J = 6.9 Hz, 1H), 7.03 (s, 1H), 6.78 (d, J = 3.0 Hz, 1H), 5.79 (br s, 2H).
실시예 13
7-메톡시-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (13)의 합성:
<반응식 13>
Figure 112017002878210-pct00042
단계 1: (E)-2-(히드록시이미노)-6-메톡시-2,3-디히드로인덴-1-온 (13-1)의 합성. 디에틸 에테르 (300 mL) 중 6-메톡시-2,3-디히드로인덴-1-온 (20 g, 123 mmol)의 교반 용액에 건조 히드로클로라이드 기체를 0℃에서 3시간 동안 버블링한 다음, 이소펜틸 니트라이트 (22 g, 185 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 3시간 동안 교반하였다. 고체를 여과에 의해 수집하고, 디에틸 에테르 (3 x 100 mL)로 세척하여 (E)-2-(히드록시이미노)-6-메톡시-2,3-디히드로인덴-1-온을 회백색 고체로서 수득하였다: MS (ESI, m/z): 192.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.21 (s, 1H), 3.80 (s, 3H), 3.69 (s, 2H).
단계 2: 1,3-디클로로-7-메톡시이소퀴놀린 (13-2)의 합성. 옥시삼염화인 (80 mL) 중 (E)-2-(히드록시이미노)-6-메톡시-2,3-디히드로인덴-1-온 (5.0 g, 26.2 mmol)의 교반 용액에 0℃에서 펜타클로로포스포란 (6.0 g, 28.8 mmol)을 첨가하였다. 생성된 용액에 히드로클로라이드 기체를 3시간 동안 버블링하였다. 생성된 혼합물을 60℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 고체를 물 (3 x 50 mL)로 세척하고, 진공 오븐 중에서 건조시켜 1,3-디클로로-7-메톡시이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 228.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.06 (s, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.60 (dd, J = 2.4 Hz, 6.6 Hz, 1H), 7.46 (d, J = 2.4 Hz, 1H), 3.97 (s, 3H).
단계 3: 3-클로로-7-메톡시이소퀴놀린 (13-3)의 합성. 아세트산 (60 mL) 및 아이오딘화수소산 (30 mL, 45% 수용액) 중 1,3-디클로로-7-메톡시이소퀴놀린 (4.0 g, 17.5 mmol)의 교반 용액에 주위 온도에서 적린 (1.3 g, 43.8 mmol)을 첨가하였다. 생성된 혼합물을 100℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시켰다. 잔류물을 디클로로메탄 (100 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (2 x 100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 중 5~10% 에틸 아세테이트로 용리시키면서 정제하여 3-클로로-7-메톡시이소퀴놀린을 회백색 고체로서 수득하였다: MS (ESI, m/z): 194.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.00 (s, 1H), 8.00 (s, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.54 (dd, J = 2.4 Hz, 6.6 Hz, 1H), 7.46 (d, J = 2.4 Hz, 1H), 3.87 (s, 3H).
단계 4: 7-메톡시-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (13)의 합성: 테트라히드로푸란 (20 mL) 중 1H-피롤로[2,3-c]피리딘 (79 mg, 0.52 mmol) 및 3-클로로-7-메톡시이소퀴놀린 (100 mg, 1.27 mmol)의 교반 용액에 주위 온도에서 소듐 2-메틸프로판-2-올레이트 (163 mg, 1.69 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (33.6 mg, 0.042 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 7-메톡시-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 276.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.64 (s, 1H), 9.30 (s, 1H), 8.31-8.27 (m, 2H), 8.22 (s, 1H), 8.00 (d, J = 6.0 Hz, 1H), 7.68 (d, J = 5.4 Hz, 1H), 7.61 (d, J = 2.4 Hz, 1H), 7.52-7.48 (m, 1H), 6.85 (d, J = 3.3 Hz, 1H), 3.95 (s, 3H).
실시예 14
N-(2-플루오로에틸)-N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (14)의 합성:
<반응식 14>
Figure 112017002878210-pct00043
단계 1: N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (14-1)의 합성. 밀봉된 튜브에 에탄올 중 메탄아민의 용액 (30 mL, 30% w/w) 및 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (150 mg, 0.57 mmol, 9)을 첨가하였다. 생성된 혼합물을 100℃에서 48시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 275.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.63 (s, 1H), 8.94 (s, 1H), 8.27-8.24 (m, 2H), 7.83 (s, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.64 (dd, J = 0.9 Hz, 4.5 Hz, 1H), 7.04 (dd, J = 5.1 Hz, 6.6 Hz, 1H), 6.82 (d, J = 3.0 Hz, 1H), 6.76-6.74 (m, 1H), 6.70 (d, J = 1.8 Hz, 1H), 2.83 (d, J = 4.8 Hz, 3H).
단계 2: N-(2-플루오로에틸)-N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (14)의 합성. N,N-디메틸포름아미드 (10 mL) 중 N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (50 mg, 0.18 mmol)의 교반 용액에 질소 분위기 하에 0℃에서 수소화나트륨 (14 mg, 0.36 mmol, 미네랄 오일에 의해 분산된 60%)을 첨가하였다. 생성된 혼합물을 0℃에서 30분 동안 교반하고, 이어서 1-브로모-2-플루오로에탄 (46 mg, 0.36 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 4시간 동안 교반하고, 염화암모늄의 포화 수용액 (100 mL)으로 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 N-(2-플루오로에틸)-N-메틸-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 321.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.68 (s, 1H), 9.04 (s, 1H), 8.38 (d, J = 3.3 Hz, 1H), 8.29 (d, J = 5.4 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.92 (s, 1H), 7.75 (d, J = 5.4 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 6.90 (d, J = 3.0 Hz, 1H), 4.75 (t, J = 4.8 Hz, 1H), 4.59 (t, J = 4.8 Hz, 1H), 3.93 (t, J = 5.1 Hz, 1H), 3.84 (t, J = 5.1 Hz, 1H), 3.14 (s, 3H).
실시예 15
3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올 (15)의 합성:
<반응식 15>
Figure 112017002878210-pct00044
3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올 (15)의 합성. 디클로로메탄 (15 mL) 중 7-메톡시-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (70 mg, 0.25 mmol, 13)의 교반 용액에 -78℃에서 트리브로모보란 (64 mg, 0.25 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 16시간 동안 교반한 다음, 물 (10 mL)을 첨가하여 켄칭하였다. 혼합물을 탄산칼륨을 첨가하여 중화시키고, 디클로로메탄 (5 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 262.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.26 (s, 1H), 9.58 (s, 1H), 9.21 (s, 1H), 8.28-8.25 (m, 2H), 8.15 (s, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 5.1 Hz, 1H), 7.44-7.39 (m, 2H), 6.84 (d, J = 3.3 Hz, 1H).
실시예 16
7-(2-플루오로에톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (16)의 합성:
<반응식 16>
Figure 112017002878210-pct00045
7-(2-플루오로에톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (16)의 합성. N,N-디메틸포름아미드 (5 mL) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올 (40 mg, 0.15 mmol, 15)의 교반 용액에 탄산칼륨 (42 mg, 0.31 mmol) 및 1-브로모-2-플루오로에탄 (29 mg, 0.23 mmol)을 첨가하였다. 생성된 혼합물을 30℃에서 16시간 동안 교반한 다음, 물 (30 mL)로 켄칭하고, 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 7-(2-플루오로에톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 308.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.90 (s, 1H), 9.38 (s, 1H), 8.94 (d, J = 3.3 Hz, 1H), 8.47 (d, J = 6.3 Hz, 1H), 8.41 (s, 1H), 8.25 (d, J = 6.6 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.64-7.60 (m, 1H), 7.26 (d, J = 3.3 Hz, 1H), 4.95 (t, J = 3.6 Hz, 1H), 4.79 (t, J = 3.6 Hz, 1H), 4.51 (t, J = 3.6 Hz, 1H), 4.41 (t, J = 3.6 Hz, 1H).
실시예 17
7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (17)의 합성:
<반응식 17>
Figure 112017002878210-pct00046
7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (17)의 합성. N,N-디메틸포름아미드 (10 mL) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올 (50 mg, 0.19 mmol, 15)의 용액을 수소화나트륨 (33 mg, 0.83 mmol, 미네랄 오일 중에 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 브로모플루오로메탄 (108 mg, 0.96 mmol)을 첨가하였다. 추가로 3시간 후, 반응물을 염화암모늄의 포화 수용액 (30 mL)으로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 294.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.66 (s, 1H), 9.45 (s, 1H), 8.34 (d, J = 3.0 Hz, 1H), 8.30-8.27 (m, 2H), 8.12 (d, J = 9.0 Hz, 1H), 7.89 (s, 1H), 7.70-7.64 (m, 2H), 6.87 (d, J = 2.7 Hz, 1H), 6.15 (s, 1H), 5.97 (s, 1H).
실시예 18
6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민 (18)의 합성:
<반응식 18>
Figure 112017002878210-pct00047
단계 1: 3-클로로-6-플루오로-5-니트로이소퀴놀린 (18-1)의 합성. 진한 황산 (30 mL) 중 3-클로로-6-플루오로이소퀴놀린 (2 g, 11.01 mmol, 9-3)의 용액에 0℃에서 질산칼륨 (1.17 g, 11.56 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 3시간 동안 교반한 다음, 얼음/물 (200 g)에 부었다. 생성된 혼합물을 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 10~20% 에틸 아세테이트로 용리시키면서 정제하여 3-클로로-6-플루오로-5-니트로이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 226.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.43 (s, 1H), 8.70-8.65 (m, 1H), 8.07 (s, 1H), 7.70-7.63 (m, 1H).
단계 2: 3-클로로-6-플루오로이소퀴놀린-5-아민 (18-2)의 합성. 아세트산 (100 mL) 중 3-클로로-6-플루오로-5-니트로이소퀴놀린 (1 g, 4.41 mmol)의 용액에 철 분말 (1.27 g, 22.07 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반한 다음, 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 2~10% 에틸 아세테이트로 용리시키면서 정제하여 3-클로로-6-플루오로이소퀴놀린-5-아민을 황색 고체로서 수득하였다: MS (ESI, m/z): 197.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.06 (s, 1H), 8.26 (s, 1H), 7.51-7.44 (m, 1H), 7.40-7.35 (m, 1H), 6.01 (br s, 2H).
단계 3: tert-부틸 3-클로로-6-플루오로이소퀴놀린-5-일카르바메이트 (18-3)의 합성. 디클로로메탄 (30 mL) 중 3-클로로-6-플루오로이소퀴놀린-5-아민 (150 mg, 0.76 mmol)의 용액에 디-tert-부틸 디카르보네이트 (216 mg, 0.99 mmol) 및 트리에틸아민 (116 mg, 1.14 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 16시간 동안 교반하였다. 그 후, 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 2~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 3-클로로-6-플루오로이소퀴놀린-5-일카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 297.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.03 (s, 1H), 7.93-7.88 (m, 1H), 7.83 (s, 1H), 7.41 (t, J = 9.3 Hz, 1H), 6.23 (br s, 1H), 1.52 (s, 9H).
단계 4: tert-부틸 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일카르바메이트 (18-4)의 합성. 테트라히드로푸란 (15 mL) 중 1H-피롤로[2,3-c]피리딘 (90 mg, 0.76 mmol)의 용액에 주위 온도에서 tert-부틸 (3-클로로-6-플루오로이소퀴놀린-5-일)카르바메이트 (150 mg, 0.51 mmol), 소듐 2-메틸프로판-2-올레이트 (97 mg, 1.01 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (40.2 mg, 0.051 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (50 mL)로 희석하고, 에틸 아세테이트 (3 x 30 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 tert-부틸 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일카르바메이트를 황색 고체로서 수득하였다: MS (ESI, m/z): 379.2 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.62 (s, 1H), 9.34 (s, 1H), 8.25-8.22 (m, 2H), 8.21-8.16 (m, 1H), 8.03 (s, 1H), 7.72 (d, J = 5.4 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 3.6 Hz, 1H), 1.55 (s, 9H).
단계 5: 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민 (18)의 합성. 디클로로메탄 (15 mL) 중 tert-부틸 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일카르바메이트 (65 mg, 0.17 mmol)의 용액을 트리플루오로아세트산 (3 mL)으로 주위 온도에서 3시간 동안 처리하였다. 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (50 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (50 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민을 황색 고체로서 수득하였다: MS (ESI, m/z): 279.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.70 (s, 1H), 9.27 (s, 1H), 8.40 (s, 1H), 8.35-8.27 (m, 2H), 7.68-7.66 (m, 1H), 7.45-7.43 (m, 2H), 6.88 (d, J = 3.3 Hz, 1H), 6.03 (br s, 2H).
실시예 19
1'-메틸-1,5'-비(1H-피롤로[2,3-c]피리딘) (19)의 합성:
<반응식 19>
Figure 112017002878210-pct00048
단계 1: tert-부틸 6-브로모-4-메틸피리딘-3-일카르바메이트 (19-1)의 합성. 디클로로메탄 (30 mL) 중 6-브로모-4-메틸피리딘-3-아민 (2 g, 10.69 mmol)의 용액에 트리에틸아민 (2.16 g, 21.39 mmol) 및 디-tert-부틸 디카르보네이트 (3.03 g, 13.90 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반한 다음, 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 5~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 6-브로모-4-메틸피리딘-3-일카르바메이트를 무색 고체로서 수득하였다: MS (ESI, m/z): 287.1, 289.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 7.30 (s, 1H), 6.18 (br s, 1H), 2.26 (s, 3H), 1.55 (s, 9H).
단계 2: tert-부틸 6-브로모-4-메틸피리딘-3-일(메틸)카르바메이트 (19-2)의 합성. N,N-디메틸포름아미드 (30 mL) 중 tert-부틸 6-브로모-4-메틸피리딘-3-일카르바메이트 (3.1 g, 10.8 mmol)의 용액을 수소화나트륨 (0.86 g, 21.6 mmol, 미네랄 오일 중에 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 아이오도메탄 (3.1 g, 21.6 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 1시간 동안 교반하고, 물 (100 mL)을 첨가하여 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (4 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 10~20% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 6-브로모-4-메틸피리딘-3-일(메틸)카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 301.2, 303.2 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 8.11 (s, 1H), 7.48 (s, 1H), 3.14 (s, 3H), 2.21 (s, 3H), 1.31 (s, 9H).
단계 3: 6-브로모-N,4-디메틸피리딘-3-아민 (19-3)의 합성. 디클로로메탄 (30 mL) 중 tert-부틸 6-브로모-4-메틸피리딘-3-일(메틸)카르바메이트 (3.1 g, 10.3 mmol)의 용액을 트리플루오로아세트산 (3 mL)으로 주위 온도에서 1시간 동안 처리하였다. 이어서, 생성된 용액을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시켜 6-브로모-N,4-디메틸피리딘-3-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 201.1, 203.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 7.66 (s, 1H), 7.11 (s, 1H), 3.48 (br s, 1H), 2.91 (s, 3H), 2.10 (s, 3H).
단계 4: 5-브로모-1-메틸-1H-피롤로[2,3-c]피리딘 (19-4)의 합성. 테트라히드로푸란 (30 mL) 중 6-브로모-N,4-디메틸피리딘-3-아민 (1 g, 4.97 mmol)의 용액을 헥산 중 2.5 M n-부틸리튬 (4.97 mL, 12.43 mmol)으로 질소 분위기 하에 -78℃에서 15분 동안 처리하고, 이어서 N,N-디메틸포름아미드 (0.51 g, 6.96 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 추가로 1시간 동안 교반하고, 중탄산나트륨의 포화 수용액 (60 mL)을 첨가하여 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 10~20% 에틸 아세테이트로 용리시키면서 정제하여 5-브로모-1-메틸-1H-피롤로[2,3-c]피리딘을 황색 오일로서 수득하였다: MS (ESI, m/z): 211.1, 213.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.90 (s, 1H), 7.68 (s, 1H), 7.22 (d, J = 2.8 Hz, 1H), 6.44 (d, J = 2.4 Hz, 1H), 3.11 (s, 3H).
단계 5: 1'-메틸-1,5'-비(1H-피롤로[2,3-c]피리딘) (19)의 합성. 테트라히드로푸란 (20 mL) 중 5-브로모-1-메틸-1H-피롤로[2,3-c]피리딘 (70 mg, 0.33 mmol)의 용액에 1H-피롤로[2,3-c]피리딘 (59 mg, 0.49 mmol), 소듐 2-메틸프로판-2-올레이트 (64 mg, 0.66 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (26 mg, 0.033 mmol)를 첨가하였다. 생성된 용액을 질소 분위기 하에 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1'-메틸-1,5'-비(1H-피롤로[2,3-c]피리딘)을 담황색 고체로서 수득하였다: MS (ESI, m/z): 249.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.49 (s, 1H), 8.88 (s, 1H), 8.23-8.20 (m, 2H), 7.91 (s, 1H), 7.71 (d, J = 3.2 Hz, 1H), 7.66 (d, J = 5.6 Hz, 1H), 6.78 (d, J = 3.2 Hz, 1H), 6.60 (d, J = 2.8 Hz, 1H), 3.97 (s, 3H).
실시예 20
6-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (20)의 합성:
<반응식 20>
Figure 112017002878210-pct00049
단계 1: 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (20-1)의 합성. 밀봉된 튜브에 메탄올 중 암모니아의 포화 용액 (300 mL) 및 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (2.5 g, 9.5 mmol, 9)을 첨가하였다. 생성된 혼합물을 120℃에서 5일 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~10% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 261.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.41 (s, 1H), 8.93 (s, 1H), 8.29-8.23 (m, 2H), 7.82 (d, J = 9.0 Hz, 1H), 7.80 (s, 1H), 7.64 (dd, J = 0.9 Hz, 4.5 Hz, 1H), 7.04 (dd, J = 5.1 Hz, 6.6 Hz, 1H), 6.83-6.78 (m, 2H), 6.19 (s, 2H).
단계 2: 6-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (20)의 합성. 물 (20 mL) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (0.15 g, 0.58 mmol)의 현탁액에 주위 온도에서 진한 황산 (2 mL)을 첨가하였다. 생성된 혼합물을 투명한 용액이 수득될 때까지 70-80℃로 가열하였다. 생성된 용액을 0℃로 냉각시키고, 아질산나트륨 (80 mg, 1.15 mmol)을 한 번에 첨가하였다. 0℃에서 15분 동안 교반한 후, 아이오딘화칼륨 (0.19 g, 1.15 mmol)을 첨가하였다. 생성된 혼합물을 추가로 5분 동안 교반하고, 아황산나트륨의 포화 수용액 (5 mL)으로 켄칭하였다. 생성된 혼합물을 디클로로메탄 (4 x 50 mL)으로 추출하고, 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 6-아이오도-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 회백색 고체로서 수득하였다: MS (ESI, m/z): 372.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.82 (s, 1H), 9.44 (s, 1H), 8.65 (d, J = 3.2 Hz, 1H), 8.56 (s, 1H), 8.41 (d, J = 5.6 Hz, 1H), 8.29 (s, 1H), 8.05-7.98 (m, 3H), 7.12 (d, J = 3.2 Hz, 1H).
실시예 21
1-(4-(플루오로메틸)-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (21)의 합성:
<반응식 21>
Figure 112017002878210-pct00050
단계 1: 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴산 (21-1)의 합성. N,N-디메틸포름아미드 (80 mL) 중 1H-피롤로[2,3-c]피리딘 (1.8 g, 15.2 mmol)의 교반 용액에 탄산세슘 (14.9 g, 45.7 mmol) 및 메틸 5-브로모-2-클로로이소니코티네이트 (5.0 g, 16.9 mmol)를 첨가하였다. 생성된 혼합물을 100℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 셀라이트를 통해 여과하였다. 여과물을 물 (200 mL)로 희석하고, 진한 수성 염산 (pH = 5~6)로 산성화시켰다. 생성된 혼합물을 에틸 아세테이트 (3 x 200 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 200 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 에틸 아세테이트 중 1~10% 메탄올로 용리시키면서 정제하여 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴산을 담황색 고체로서 수득하였다: MS (ESI, m/z): 318.0, 320.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 14.3 (br s, 1H), 9.85 (s, 1H), 8.91 (s, 1H), 8.79 (s, 1H), 8.48-8.43 (m, 1H), 8.25 (s, 1H), 8.04 (d, J = 6.0 Hz, 1H), 7.13-7.11 (m, 1H).
단계 2: (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올 (21-3)의 합성. N,N-디메틸포름아미드 (40 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴산 (2.0 g, 6.29 mmol)의 교반 용액에 0℃에서 탄산나트륨 (2.0 g, 18.86 mmol) 및 이소프로필 카르보노클로리데이트 (1.54 g, 12.57 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 16시간 동안 교반한 다음, 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 조 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴산 이소부티르산 무수물 (21-2, 2 g)을 황색 오일로서 수득하였다. 생성된 조 황색 오일을 0℃에서 이소프로판올 (50 mL) 중에 용해시키고, 수소화붕소나트륨 (0.34 g, 9.02 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 16시간 동안 교반하고, 염화암모늄의 포화 수용액 (100 mL)으로 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~10% 메탄올로 용리시키면서 정제하여 (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 304.1, 306.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.65 (s, 1H), 8.68 (s, 1H), 8.29 (d, J = 5.4 Hz, 1H), 8.27 (d, J = 3.6 Hz, 1H), 7.88 (s, 1H), 7.67 (dd, J = 0.9 Hz, 4.5 Hz, 1H), 6.85 (d, J = 3.6 Hz, 1H), 5.85 (t, J = 5.7 Hz, 1H), 4.61 (d, J = 5.4 Hz, 2H).
단계 3: (5-(프로프-1-이닐)-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올 (21-4)의 합성. 1,4-디옥산 (40 mL) 중 (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올 (0.72 g, 2.37 mmol) 및 트리부틸(프로프-1-인-1-일)스탄난 (1.17 g, 3.55 mmol)의 교반 용액에 주위 온도에서 비스(트리페닐포스핀)팔라듐(II) 클로라이드 (0.17 g, 0.24 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (2 x100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~10% 메탄올로 용리시키면서 정제하여 (5-(프로프-1-인-1-일)-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 264.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6 + D2O) δ 9.94 (s, 1H), 8.93 (d, J = 3.3 Hz, 1H), 8.59 (s, 1H), 8.46 (d, J = 6.3 Hz, 1H), 8.26 (d, J = 6.3 Hz, 1H), 7.96 (s, 1H), 7.26 (d, J = 3.3 Hz, 1H), 4.73 (s, 2H), 2.16 (s, 3H).
단계 4: 1-(4-(플루오로메틸)-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (21의 합성. 건조 디클로로메탄 (20 mL) 중 (5-(프로프-1-인-1-일)-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)메탄올 (50 mg, 0.19 mmol)의 교반 용액에 질소 분위기 하에 -78℃에서 디에틸아미노황트리플루오라이드 (DAST, 92 mg, 0.57 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반하고, 중탄산나트륨의 포화 수용액 (50 mL)으로 켄칭하였다. 생성된 혼합물을 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~10% 메탄올로 용리시키면서 정제하여 1-(4-(플루오로메틸)-5-(프로프-1-인-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 266.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.95 (s, 1H), 8.95 (d, J = 3.6 Hz, 1H), 8.69 (s, 1H), 8.48 (d, J = 6.0 Hz, 1H), 8.21 (d, J = 6.0 Hz, 1H), 8.05 (s, 1H), 7.24 (d, J = 3.3 Hz, 1H), 5.78 (s, 1H), 5.62 (s, 1H), 2.17 (s, 3H).
실시예 22 & 23
1-(4-플루오로-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (22) 및 2-메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)푸로[3,2-c]피리딘 (23)의 합성:
<반응식 22>
Figure 112017002878210-pct00051
<반응식 23>
Figure 112017002878210-pct00052
단계 1: tert-부틸 (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일카르바메이트 (22-1)의 합성. tert-부틸 알콜 (200 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴산 (7.80 g, 8.09 mmol, 21-1) 및 트리에틸아민 (2.46 g, 24.27 mmol)의 교반 용액에 주위 온도에서 디페닐 포스포르아지데이트 (3.34 g, 12.14 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (200 mL) 중에 용해시키고, 물 (200 mL)로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 tert-부틸 (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)카르바메이트를 황색 고체로서 수득하였다: MS (ESI, m/z): 289.2, 291.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.72 (br s, 1H), 8.93 (s, 1H), 8.69 (s, 1H), 8.29 (d, J = 5.1 Hz, 1H), 8.20 (s, 1H), 8.17 (d, J = 3.3 Hz, 1H), 7.68 (d, J = 0.9 Hz, 1H), 6.86 (d, J = 3.0 Hz, 1H), 1.48 (s, 9H).
단계 2: 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-아민 (22-2)의 합성. 디클로로메탄 (50 mL) 중 tert-부틸 (5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-일)카르바메이트 (1.71 g, 4.39 mmol)의 용액을 트리플루오로아세트산 (5 mL)으로 주위 온도에서 6시간 동안 처리하였다. 생성된 용액을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 289.2, 291.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.53 (br s, 1H), 8.33 (s, 1H), 8.29-8.27 (m, 1H), 8.07 (d, J = 3.3 Hz, 1H), 7.66 (d, J = 5.1 Hz, 1H), 7.05 (s, 1H), 6.84 (d, J = 3.0 Hz, 1H), 6.61 (br s, 2H).
단계 3: 1-(5-브로모-4-플루오로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (22-4) 및 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-올 (23-1)의 합성. 플루오린화수소-피리딘 (25 mL, 65-70% w/w) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-아민 (0.5 g, 1.73 mmol)의 교반 용액에 0℃에서 아질산나트륨 (0.72 g, 10.38 mmol)을 첨가하였다. 생성된 혼합물을 60℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 켄칭하고, 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-브로모-4-플루오로피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하고: MS (ESI, m/z): 292.2, 294.2 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 10.08 (br s, 1H), 8.85-8.79 (m, 2H), 8.41 (d, J = 3.3 Hz, 1H), 8.23 (d, J = 6.3 Hz, 1H), 7.95 (d, J = 9.6 Hz, 1H), 7.21 (d, J = 3.6 Hz, 1H); 및 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-올을 담황색 고체로서 수득하였다 (210 mg, 42%): MS (ESI, m/z): 290.1, 292.1 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.95 (br s, 1H), 8.62 (d, J = 2.7 Hz, 1H), 8.55 (s, 1H), 8.35 (d, J = 6.9 Hz, 1H), 8.20 (d, J = 6.0 Hz, 1H), 7.23 (s, 1H), 7.18 (s, 1H).
단계 4: 1-(4-플루오로-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (22)의 합성. 1,4-디옥산 (15 mL) 중 1-(5-브로모-4-플루오로피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (30 mg, 0.11 mmol)의 교반 용액에 프로핀을 주위 온도에서 10분 동안 버블링한 다음, 트리에틸아민 (5 mL), 아이오딘화구리(I) (2 mg, 10 μmol) 및 비스(트리페닐포스핀)팔라듐(II) 디클로라이드 (3.6 mg, 5.14 μmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(4-플루오로-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 252.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.81 (br s, 1H), 8.68 (d, J = 10.0 Hz, 1H), 8.40 (s, 1H), 8.32 (d, J = 5.2 Hz, 1H), 7.92 (d, J = 12.0 Hz, 1H), 7.84 (d, J = 5.6 Hz, 1H), 6.98 (s, 1H), 2.13 (s, 3H).
단계 5: 2-메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)푸로[3,2-c]피리딘 (23)의 합성. 1,4-디옥산 (15 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-올 (30 mg, 0.11 mmol)의 교반 용액에 프로핀을 주위 온도에서 10분 동안 버블링한 다음, 트리에틸아민 (5 mL), 아이오딘화구리(I) (2 mg, 10 μmol) 및 비스(트리페닐포스핀)팔라듐(II) 디클로라이드 (3.6 mg, 5.14 μmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 50℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)푸로[3,2-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 250.1 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.62 (br s, 1H), 8.77 (s, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.17 (d, J = 3.3 Hz, 1H), 7.83 (s, 1H), 7.73 (d, J = 5.4 Hz, 1H), 6.86 (d, J = 3.3 Hz, 1H), 6.69 (s, 1H), 2.53 (s, 3H).
실시예 24
6-(플루오로메톡시)-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린 (24)의 합성:
<반응식 24>
Figure 112017002878210-pct00053
단계 1: 6-메톡시퀴나졸린-2,4(1H,3H)-디온 (24-1)의 합성. 물 (35 mL) 및 아세트산 (0.7 mL, 29.7 mmol) 중 2-아미노-4-메톡시벤조산 (5 g, 29.9 mmol)의 현탁액을 35℃로 가온하고, 이어서 물 (10 mL) 중 시안산칼륨 (6.1 g, 74.8 mmol)의 용액을 5분에 걸쳐 첨가하였다. 추가로 1시간 후, 수산화나트륨 (12 g, 0.3 mol)을 조심스럽게 첨가하고, 반응 시스템은 투명한 용액이 되었다. 생성된 용액을 진한 염산 (27 mL)의 첨가에 의해 산성화시키고, 고체가 침전되었다. 여과를 수행하고, 필터 케이크를 냉수 (2 x 30 mL)로 세척하고, 진공 오븐 중에서 건조시켜 6-메톡시퀴나졸린-2,4(1H,3H)-디온을 갈색 고체로서 수득하였다: MS (ESI, m/z): 193.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 11.27 (s, 1H), 11.10 (s, 1H), 7.31 (s, 1H), 7.28 (d, J = 6.0 Hz, 1H), 7.13 (d, J = 5.4 Hz, 1H), 3.76 (s, 3H).
단계 2: 2,4-디클로로-6-메톡시퀴나졸린 (24-2)의 합성. 트리클로로 인 옥시드 (30 mL) 중 6-메톡시퀴나졸린-2,4(1H,3H)-디온 (5 g, 26.0 mmol)의 용액을 16시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2,4-디클로로-6-메톡시퀴나졸린을 황색 고체로서 수득하였다: MS (ESI, m/z): 229.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 7.90 (d, J = 9.3 Hz, 1H), 7.61 (dd, J = 2.7 Hz, 6.6 Hz, 1H), 7.41 (d, J = 2.7 Hz, 1H), 4.00 (s, 3H).
단계 3: 2-클로로-6-메톡시퀴나졸린 (24-3)의 합성. 디클로로메탄 (50 mL) 중 2,4-디클로로-6-메톡시퀴나졸린 (3 g, 13.1 mmol)의 용액에 아연 분진 (2.57 g, 39.3 mmol), 암모니아의 수용액 (50 mL, 34% w/w) 및 염수 (10 mL)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 40℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 셀라이트를 통해 여과하였다. 유기 층을 수집하고, 수성 층을 디클로로메탄 (2 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-클로로-6-메톡시퀴나졸린을 황색 고체로서 수득하였다: MS (ESI, m/z): 195.2 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 9.19 (s, 1H), 7.91 (d, J = 9.3 Hz, 1H), 7.61 (dd, J = 2.7 Hz, 6.6 Hz, 1H), 7.16 (d, J = 2.7 Hz, 1H), 3.96 (s, 3H).
단계 4: 6-메톡시-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린 (24-4)의 합성. N,N-디메틸포름아미드 (20 mL) 중 2-클로로-6-메톡시퀴나졸린 (198 mg, 1.02 mmol)의 용액에 1H-피롤로[2,3-c]피리딘 (176 mg, 1.5 mmol) 및 탄산세슘 (552 mg, 1.69 mmol)을 첨가하였다. 생성된 혼합물을 80℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (60 mL)로 희석하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-메톡시-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린을 황색 고체로서 수득하였다: MS (ESI, m/z): 277.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.16 (s, 1H), 9.63 (s, 1H), 8.59 (d, J = 3.6 Hz, 1H), 8.35 (d, J = 5.1 Hz, 1H), 8.05 (d, J = 9.3 Hz, 1H), 7.74-7.69 (m, 2H), 7.62 (d, J = 2.7 Hz, 1H), 6.88 (d, J = 3.6 Hz, 1H), 3.95 (s, 3H).
단계 5: 2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린-6-올 (24-5)의 합성. 디클로로메탄 (50 mL) 중 6-메톡시-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린 (1 g, 3.62 mmol)의 용액에 -78℃에서 트리브로모보란 (4.53 g, 18.10 mmol)을 첨가하였다. 주위 온도에서 추가로 2시간 후, 반응물을 물 (50 mL)로 켄칭하고, 수산화나트륨 (1.45 g, 36.25 mmol)으로 중화시켰다. 유기 층을 수집하고, 수성 층을 디클로로메탄 (2 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린-6-올을 황색 고체로서 수득하였다: MS (ESI, m/z): 263.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.46 (s, 1H), 10.41 (s, 1H), 9.56 (s, 1H), 8.58 (s, 1H), 8.34 (d, J = 5.1 Hz, 1H), 8.00 (d, J = 9.3 Hz, 1H), 7.73-7.57 (m, 2H), 7.38 (s, 1H), 6.86 (s, 1H).
단계 6: 6-(플루오로메톡시)-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린 (24)의 합성. N,N-디메틸포름아미드 (15 mL) 중 2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린-6-올 (100 mg, 0.38 mmol)의 용액을 수소화나트륨 (76 mg, 1.91 mmol, 미네랄 오일에 의해 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 브로모플루오로메탄 (65 mg, 0.57 mmol)을 첨가하였다. 추가로 2시간 후, 생성된 혼합물을 물 (50 mL)에 의해 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-(플루오로메톡시)-2-(1H-피롤로[2,3-c]피리딘-1-일)퀴나졸린을 무색 고체로서 수득하였다: MS (ESI, m/z): 295.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.23 (s, 1H), 9.72 (s, 1H), 8.61 (d, J = 3.6 Hz, 1H), 8.37 (d, J = 5.1 Hz, 1H), 8.16 (d, J = 8.7 Hz, 1H), 7.89-7.84 (m, 2H), 7.71 (d, J = 5.1 Hz, 1H), 6.90 (d, J = 3.6 Hz, 1H), 6.15 (s, 1H), 5.97 (s, 1H).
실시예 25
1-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (25)의 합성:
<반응식 25>
Figure 112017002878210-pct00054
단계 1: 5-브로모-2-클로로이소니코틴알데히드 (25-1)의 합성. 테트라히드로푸란 (600 mL) 중 디이소프로필아민 (31.3 g, 0.31 mol)의 용액을 헥산 중 2.5 M n-부틸리튬 (109 mL, 0.27 mol)으로 -78℃에서 30분 동안 처리하고, 이어서 테트라히드로푸란 (200 mL) 중 5-브로모-2-클로로피리딘 (35 g, 0.18 mol)의 용액을 첨가하였다. 생성된 용액을 -78℃에서 30분 동안 교반한 다음, N,N-디메틸포름아미드 (40.4 g, 0.55 mol)를 첨가하였다. -60℃에서 추가로 30분 후, 반응 혼합물을 염화암모늄의 포화 수용액 (1 L)에 의해 켄칭하고, 에틸 아세테이트 (3 x 500 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 500 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~10% 에틸 아세테이트로 용리시키면서 정제하여 5-브로모-2-클로로이소니코틴알데히드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 220.2, 222.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 10.31 (s, 1H), 8.70 (s, 1H), 7.74 (s, 1H).
단계 2: 5-브로모-2-클로로-4-(1,3-디옥솔란-2-일)피리딘 (25-2)의 합성. 톨루엔 (500 mL) 중 5-브로모-2-클로로이소니코틴알데히드 (15 g, 61.2 mmol)의 용액에 4-메틸벤젠술폰산 (11.6 g, 67.4 mmol) 및 에탄-1,2-디올 (7.6 g, 122 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 16시간 동안 환류하였다. 물을 딘-스타크(Dean-Stark) 트랩에 의해 제거하였다. 주위 온도로 냉각시킨 후, 반응 혼합물을 물 (300 mL)로 켄칭하고, 수산화나트륨 (2.9 g, 74.1 mmol)을 첨가하여 중화시켰다. 유기 층을 분리하고, 수성 층을 에틸 아세테이트 (3 x 300 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 300 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 5-브로모-2-클로로-4-(1,3-디옥솔란-2-일)피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 264.2, 266.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.69 (s, 1H), 7.59 (s, 1H), 5.93 (s, 1H), 4.13-3.98 (m, 4H).
단계 3: 1-(5-브로모-4-(1,3-디옥솔란-2-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (25-3)의 합성. N,N-디메틸포름아미드 (300 mL) 중 5-브로모-2-클로로-4-(1,3-디옥솔란-2-일)피리딘 (16 g, 54.4 mmol)의 용액에 1H-피롤로[2,3-c]피리딘 (6.43 g, 54.4 mmol) 및 탄산세슘 (53.2 g, 163 mmol)을 첨가하였다. 생성된 혼합물을 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-브로모-4-(1,3-디옥솔란-2-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 346.2, 348.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.61 (s, 1H), 8.79 (s, 1H), 8.39 (d, J = 3.6 Hz, 1H), 8.30 (d, J = 5.4 Hz, 1H), 7.86 (s, 1H), 7.66 (d, J = 5.1 Hz, 1H), 6.87 (d, J = 3.3 Hz, 1H), 6.04 (s, 1H), 4.21-4.00 (m, 4H).
단계 4: 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (25-4)의 합성. 물 (200 mL) 중 1-(5-브로모-4-(1,3-디옥솔란-2-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (5 g, 13.72 mmol)의 현탁액에 염산 (20 mL, 37% w/w)을 첨가하였다. 생성된 용액을 40℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 탄산칼륨 (14 g, 101 mmol)의 첨가에 의해 중화시켰다. 고체를 여과에 의해 수집하고, 물 (3 x 50 mL)로 세척하고, 진공 오븐 중에서 건조시켜 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 302.1, 304.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.27 (s, 1H), 9.75 (s, 1H), 8.98 (s, 1H), 8.45 (d, J = 3.6 Hz, 1H), 8.38 (d, J = 3.3 Hz, 1H), 8.17 (s, 1H), 7.68 (d, J = 4.5 Hz, 1H), 6.90 (d, J = 3.6 Hz, 1H).
단계 5: 2-(1H-피롤로[2,3-c]피리딘-1-일)-5-((트리메틸실릴)에티닐)이소니코틴알데히드 (25-5)의 합성. 테트라히드로푸란 (120 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (4 g, 11.92 mmol) 및 트리에틸아민 (2.41 g, 23.83 mmol)의 교반 용액에 질소 분위기 하에 주위 온도에서 아이오딘화구리(I) (0.23 g, 1.19 mmol), 에티닐트리메틸실란 (1.76 g, 17.87 mmol) 및 비스(트리페닐포스핀)팔라듐(II) 디클로라이드 (0.84 g, 1.19 mmol)를 첨가하였다. 추가로 1시간 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-(1H-피롤로[2,3-c]피리딘-1-일)-5-((트리메틸실릴)에티닐)이소니코틴알데히드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 320.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 10.55 (s, 1H), 8.85 (s, 1H), 7.93 (d, J = 3.6 Hz, 1H), 7.83 (d, J = 3.3 Hz, 1H), 7.68-7.64 (m, 1H), 7.55-7.45 (m, 2H), 6.77 (d, J = 3.0 Hz, 1H), 0.32 (s, 9H).
단계 6: 7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 2-옥시드 (25-6)의 합성. 에탄올 (120 mL) 중 2-(1H-피롤로[2,3-c]피리딘-1-일)-5-((트리메틸실릴)에티닐)이소니코틴알데히드 (3 g, 7.98 mmol)의 교반 용액에 주위 온도에서 아세트산나트륨 (1.31 g, 15.97 mmol) 및 히드록실아민 히드로클로라이드 (0.83 g, 11.97 mmol)를 첨가하였다. 추가로 2시간 후, 생성된 용액에 탄산칼륨 (2.64 g, 19.16 mmol)을 첨가하고, 생성된 혼합물을 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL)에 녹이고, 물 (2 x 50 mL)로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 2-옥시드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 263.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.67 (s, 1H), 9.38 (s, 1H), 8.97 (s, 1H), 8.32-8.30 (m, 2H), 8.24 (t, J = 7.2 Hz, 1H), 8.19-8.18 (m, 2H), 7.69 (d, J = 5.4 Hz, 1H), 6.91 (d, J = 3.3 Hz, 1H).
단계 7: 1-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (25-7)의 합성. 옥시염화인 (30 mL) 중 7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 2-옥시드 (0.85 g, 3.21 mmol)의 용액을 3시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (50 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (20 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 281.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.79 (s, 1H), 9.65 (s, 1H), 8.54 (d, J = 3.3 Hz, 1H), 8.49 (d, J = 2.7 Hz, 1H), 8.34-8.31 (m, 2H), 8.18 (d, J = 5.4 Hz, 1H), 7.70 (d, J = 5.1 Hz, 1H), 6.93 (d, J = 3.3 Hz, 1H).
단계 8: 1-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (25)의 합성. 디메틸 술폭시드 (5 mL) 중 1-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (30 mg, 0.11 mmol) 및 플루오린화칼륨 (60.8 mg, 1.05 mmol)의 혼합물을 120℃에서 30분 동안 마이크로웨이브 (100 W)에 의해 조사하였다. 주위 온도로 냉각시킨 후, 반응 혼합물을 물 (30 mL)로 켄칭하고, 에틸 아세테이트 (3 x 30 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 265.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.81 (s, 1H), 9.65 (s, 1H), 8.55 (d, J = 3.3 Hz, 1H), 8.39 (s, 1H), 8.32 (d, J = 5.4 Hz, 1H), 8.25 (d, J = 5.1 Hz, 1H), 8.08 (d, J = 5.4 Hz, 1H), 7.69 (d, J = 5.7 Hz, 1H), 6.93 (d, J = 3.3 Hz, 1H).
실시예 26
3-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (26)의 합성:
<반응식 26>
Figure 112017002878210-pct00055
3-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (26)의 합성. N,N-디메틸포름아미드 (10 mL) 중 7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘-2-옥시드 (100 mg, 0.38 mmol, 25-6)의 용액을 트리클로로포스핀 (157 mg, 1.14 mmol)으로 0℃에서 30분 동안 처리하였다. 반응물을 중탄산나트륨의 포화 수용액 (2 mL)으로 켄칭하고, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 247.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.73 (s, 1H), 9.57 (s, 1H), 9.54 (s, 1H), 8.70 (d, J = 5.6 Hz, 1H), 8.49 (s, 1H), 8.40 (d, J = 3.2 Hz, 1H), 8.32 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 5.6 Hz, 1H), 7.70 (d, J = 1.2 Hz, 1H), 6.92 (d, J = 3.2 Hz, 1H).
실시예 27 & 28
7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘-1-아민 (27) & 1-메톡시-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (28)의 합성:
<반응식 27>
Figure 112017002878210-pct00056
7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘-1-아민 (27) & 1-메톡시-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (28)의 합성. 메탄올 (5 mL) 중 1-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘 (20 mg, 0.07 mmol, 25-7)의 용액에 암모니아 기체를 주위 온도에서 1시간 동안 버블링하였다. 생성된 용액을 밀봉된 튜브 중에서 80℃에서 16시간 동안 유지하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-메톡시-7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘을 담황색 고체로서 수득하고: MS (ESI, m/z): 277.2 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.65 (s, 1H), 9.28 (s, 1H), 8.25-8.20 (m, 3H), 8.09 (d, J = 6.9 Hz, 1H), 7.67 (d, J = 4.8 Hz, 1H), 7.50 (d, J = 5.7 Hz, 1H), 6.85 (d, J = 3.3 Hz, 1H), 4.16 (s, 3H); 7-(1H-피롤로[2,3-c]피리딘-1-일)-2,6-나프티리딘-1-아민을 담황색 고체로서 수득하였다 (6 mg, 32%): MS (ESI, m/z): 262.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.69 (s, 1H), 9.22 (s, 1H), 8.44 (s, 1H), 8.30-8.27 (m, 2H), 7.95 (d, J = 5.7 Hz, 1H), 7.68 (d, J = 5.1 Hz, 1H), 7.24 (br s, 2H), 7.13 (d, J = 6.0 Hz, 1H), 6.90 (d, J = 3.3 Hz, 1H).
실시예 29
1-(5-(1-(2-플루오로에틸)-1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (29)의 합성:
<반응식 28>
Figure 112017002878210-pct00057
단계 1: 1-(5-브로모피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (29-1)의 합성. N,N-디메틸포름아미드 (50 mL) 중 1H-피롤로[2,3-c]피리딘 (0.73 g, 6.22 mmol) 및 5-브로모-2-플루오로피리미딘 (1 g, 5.65 mmol)의 교반 용액에 탄산칼륨 (1.56 g, 11.30 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (4 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-브로모피리미딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 275.1, 277.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 8.42 (d, J = 4.8 Hz, 1H), 8.28 (d, J = 5.2 Hz, 1H), 8.01 (s, 2H), 7.52 (t, J = 4.4 Hz, 1H), 6.69 (d, J = 4.8 Hz, 1H).
단계 2: 1-(5-(1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (29-2)의 합성. 1,4-디옥산 (20 mL) 및 물 (2 mL) 중 1-(5-브로모피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (300 mg, 1.09 mmol), 탄산칼륨 (301 mg, 2.18 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (126 mg, 0.11 mmol)의 혼합물을 질소 분위기 하에 80℃로 가열하고, 이어서 (1H-피라졸-3-일)보론산 (244 mg, 2.18 mmol)을 여러 부분으로 첨가하였다. 추가로 16시간 후, 생성된 혼합물을 주위 온도로 냉각시키고, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 263.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.08 (s, 1H), 9.40 (s, 2H), 9.08 (s, 1H), 8.59 (d, J = 6.3 Hz, 1H), 8.33 (d, J = 6.3 Hz, 1H), 7.94 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 3.3 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H).
단계 3: 1-(5-(1-(2-플루오로에틸)-1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (29)의 합성. N,N-디메틸포름아미드 (10 mL) 중 1-(5-(1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.38 mmol)의 용액을 수소화나트륨 (76 mg, 1.91 mmol, 미네랄 오일 중에 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 1-브로모-2-플루오로에탄 (242 mg, 1.91 mmol)을 첨가하였다. 주위 온도에서 16시간 동안 교반한 후, 반응물을 물 (50 mL)에 의해 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(1-(2-플루오로에틸)-1H-피라졸-3-일)피리미딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 308.9 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.97 (s, 1H), 9.29 (s, 2H), 8.48 (d, J = 3.6 Hz, 1H), 8.35 (d, J = 5.1 Hz, 1H), 7.95 (s, 1H), 7.70 (d, J = 5.1 Hz, 1H), 6.99 (s, 1H), 6.90 (d, J = 3.0 Hz, 1H), 4.92 (t, J = 4.2 Hz, 1H), 4.75 (t, J = 4.2 Hz, 1H), 4.59 (t, J = 4.2 Hz, 1H), 4.48 (t, J = 4.2 Hz, 1H).
실시예 30
1-(5-(3-플루오로프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (30)의 합성:
<반응식 29>
Figure 112017002878210-pct00058
단계 1: 5-(3-히드록시프로프-1-이닐)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (30-1)의 합성. 테트라히드로푸란 (100 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (3 g, 9.43 mmol, 25-4)의 교반 용액에 트리메틸(프로프-2-인-1-일옥시)실란 (1.45 g, 11.32 mmol), 아이오딘화구리(I) (0.18 g, 0.94 mmol), N-에틸-N-이소프로필프로판-2-아민 (24.3 g, 189 mmol) 및 비스(트리페닐포스핀)팔라듐(II) 디클로라이드 (0.33 g, 0.47 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 주위 온도에서 2시간 동안 교반하였다. 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 5-(3-히드록시프로프-1-인-1-일)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드를 황색 고체로서 수득하였다: MS (ESI, m/z): 278.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.72 (s, 1H), 8.64 (s, 1H), 8.31-8.30 (m, 2H), 7.88 (s, 1H), 7.86-7.65 (m, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 3.3 Hz, 1H), 5.45 (t, J = 6.0 Hz, 1H), 4.38 (d, J = 6.0 Hz, 2H).
단계 2: 5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (30-2)의 합성. N,N-디메틸포름아미드 (50 mL) 중 5-(3-히드록시프로프-1-인-1-일)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (1.8 g, 6.17 mmol)의 교반 용액에 트리에틸아민 (1.25 g, 12.33 mmol) 및 tert-부틸클로로디메틸실란 (1.39 g, 9.25 mmol)을 첨가하였다. 생성된 용액을 주위 온도에서 2시간 동안 교반하고, 물 (150 mL)로 켄칭하였다. 생성된 혼합물을 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 392.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.37 (s, 1H), 9.82 (s, 1H), 8.90 (s, 1H), 8.52 (d, J = 3.6 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 8.18 (s, 1H), 7.70 (d, J = 5.4 Hz, 1H), 6.92 (d, J = 3.3 Hz, 1H), 4.69 (s, 2H), 0.92 (s, 9H), 0.17 (s, 6H).
단계 3: 1-(5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (30-3)의 합성. 테트라히드로푸란 (20 mL) 중 5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-2-(1H-피롤로[2,3-c]피리딘-1-일)이소니코틴알데히드 (0.4 g, 0.92 mmol) 및 메틸트리페닐포스포늄 브로마이드 (0.49 g, 1.38 mmol)의 혼합물에 질소 분위기 하에 -20℃에서 테트라히드로푸란 중 리튬 헥사메틸디실라지드의 1 M 용액 (1 mL, 1 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하고, 염화암모늄의 포화 수용액 (50 mL)으로 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 390.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.79 (s, 1H), 8.67 (s, 1H), 8.50 (d, J = 3.6 Hz, 1H), 8.29 (d, J = 5.4 Hz, 1H), 8.11 (s, 1H), 7.66 (d, J = 5.1 Hz, 1H), 7.17-7.07 (m, 1H), 6.88 (d, J = 3.6 Hz, 1H), 6.53 (d, J = 8.7 Hz, 1H), 5.79 (d, J = 11.1 Hz, 1H), 4.43 (s, 2H), 0.92 (s, 9H), 0.17 (s, 6H).
단계 4: 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)-4-비닐피리딘-3-일)프로프-2-인-1-올 (30-4)의 합성. 디클로로메탄 (20 mL) 중 1-(5-(3-(tert-부틸디메틸실릴옥시)프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (0.2 g, 0.51 mmol)의 용액을 트리에틸아민 트리히드로플루오라이드 (66 mg, 0.41 mmol)로 주위 온도에서 2시간 동안 처리하였다. 반응물을 중탄산나트륨의 포화 수용액 (10 mL)으로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (20 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)-4-비닐피리딘-3-일)프로프-2-인-1-올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 276.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.78 (s, 1H), 8.65 (s, 1H), 8.48 (d, J = 3.6 Hz, 1H), 8.29 (d, J = 5.4 Hz, 1H), 8.10 (s, 1H), 7.66 (d, J = 5.1 Hz, 1H), 7.17-7.07 (m, 1H), 6.88 (d, J = 3.6 Hz, 1H), 6.53 (d, J = 8.7 Hz, 1H), 5.79 (d, J = 11.1 Hz, 1H), 5.46 (t, J = 6.0 Hz, 1H), 4.41 (d, J = 6.0 Hz, 2H).
단계 5: 1-(5-(3-플루오로프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (30)의 합성. 디클로로메탄 (20 mL) 중 3-(6-(1H-피롤로[2,3-c]피리딘-1-일)-4-비닐피리딘-3-일)프로프-2-인-1-올 (140 mg, 0.31 mmol)의 교반 용액에 -78℃에서 디에틸아미노황트리플루오라이드 (492 mg, 3.05 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하고, 중탄산나트륨의 포화 수용액 (50 mL)으로 켄칭하였다. 생성된 혼합물을 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(3-플루오로프로프-1-이닐)-4-비닐피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 278.1 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.74 (s, 1H), 8.65 (s, 1H), 8.27 (d, J = 3.6 Hz, 1H), 8.21 (d, J = 5.4 Hz, 1H), 7.92 (s, 1H), 7.67 (d, J = 6.3 Hz, 1H), 7.20-7.11 (m, 1H), 6.84 (d, J = 3.9 Hz, 1H), 6.36 (d, J = 17.7 Hz, 1H), 5.73 (d, J = 11.1 Hz, 1H), 5.39 (s, 1H), 5.36 (s, 1H).
실시예 31
1-(5-(4-(2-클로로에틸)피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (31)의 합성:
<반응식 30>
Figure 112017002878210-pct00059
단계 1: 2-(1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-일)에탄올 (31-1)의 합성. 디메틸 술폭시드 (30 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (0.8 g, 2.49 mmol, 1-1)의 용액에 2-(피페리딘-4-일)에탄올 (0.64 g, 4.98 mmol), 아이오딘화구리(I) (0.28 g, 1.49 mmol), 탄산세슘 (3.24 g, 9.97 mmol) 및 2-(디메틸아미노)아세트산 (0.1 g, 0.99 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-(1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-일)에탄올을 무색 고체로서 수득하였다: MS (ESI, m/z): 323.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.90 (s, 1H), 8.30-8.27 (m, 2H), 8.06 (d, J = 6.0 Hz, 1H), 7.99 (d, J = 3.6 Hz, 1H), 7.78 (s, 2H), 6.84 (d, J = 3.6 Hz, 1H), 4.35 (t, J = 5.7 Hz, 1H), 3.84-3.78 (m, 2H), 3.48-3.43 (m, 2H), 2.78-2.71 (m, 2H), 1.79-1.73 (m, 2H), 1.68-1.54 (m, 1H), 1.42-1.37 (m, 2H), 1.29-1.21 (m, 2H).
단계 2: 1-(5-(4-(2-클로로에틸)피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (31)의 합성. 디클로로메탄 (10 mL) 중 2-(1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-일)에탄올 (100 mg, 0.31 mmol)의 용액에 -78℃에서 디에틸아미노황트리플루오라이드 (DAST, 548 mg, 3.40 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 10시간 동안 교반하고, 염수 (30 mL)로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(4-(2-클로로에틸)피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 341.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.53 (s, 1H), 8.34-8.31 (m, 1H), 8.27 (d, J = 2.4 Hz, 1H), 7.88 (d, J = 3.2 Hz, 1H), 7.66 (t, J = 4.8 Hz, 1H), 7.45-7.43 (m, 2H), 6.76 (d, J = 7.2 Hz, 1H), 3.79-3.76 (m, 2H), 3.65 (t, J = 7.6 Hz, 2H), 2.89-2.83 (m, 2H), 1.91-1.89 (m, 2H), 1.81-1.77 (m, 3H), 1.49-1.41 (m, 2H).
실시예 32
1-(5-(2-플루오로에톡시)-4-메틸피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (32)의 합성:
<반응식 31>
Figure 112017002878210-pct00060
단계 1: 6-브로모-4-메틸피리딘-3-올 (32-1)의 합성. 수성 40% 황산 (20 mL) 중 6-브로모-4-메틸피리딘-3-아민 (2.0 g, 10.7 mmol)의 교반 용액에 0℃에서 아질산나트륨 (1.1 g, 16.1 mmol)을 첨가하였다. 생성된 혼합물을 0℃에서 30분 동안 교반하고, 주위 온도에서 24시간 동안 교반하였다. 생성된 혼합물을 물 (200 mL)로 희석하고, 탄산칼륨으로 중화시켰다. 생성된 혼합물을 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1.5% 메탄올로 용리시키면서 정제하여 6-브로모-4-메틸피리딘-3-올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 188.0, 190.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 7.89 (s, 1H), 7.83 (s, 1H), 7.35 (s, 1H), 2.13 (s, 3H).
단계 2: 2-브로모-5-(2-플루오로에톡시)-4-메틸피리딘 (32-2)의 합성. N,N-디메틸포름아미드 (20 mL) 중 6-브로모-4-메틸피리딘-3-올 (0.50 g, 1.31 mmol)의 교반 용액에 탄산칼륨 (0.55 g, 3.95 mmol) 및 1-브로모-2-플루오로에탄 (0.25 mg, 1.99 mmol)을 첨가하였다. 생성된 혼합물을 30℃에서 16시간 동안 교반하고, 물 (150 mL)로 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 2-브로모-5-(2-플루오로에톡시)-4-메틸피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 234.1, 236.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.07 (s, 1H), 7.48 (s, 1H), 4.85-4.82 (m, 1H), 4.69-4.66 (m, 1H), 4.41-4.38 (m, 1H), 4.31-4.27 (m, 1H), 2.18 (s, 3H).
단계 3: 1-(5-(2-플루오로에톡시)-4-메틸피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (32)의 합성. 디메틸 술폭시드 (20 ml) 중 1H-피롤로[2,3-c]피리딘 (70 mg, 0.59 mmol) 및 탄산세슘 (770 mg, 2.37 mmol)의 교반 혼합물에 2-브로모-5-(2-플루오로에톡시)-4-메틸피리딘 (173 mg, 0.59 mmol), 디메틸글리신 (36.7 mg, 0.36 mmol) 및 아이오딘화구리(I) (67.7 mg, 0.36 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응 혼합물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 1-(5-(2-플루오로에톡시)-4-메틸피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 272.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.61 (s, 1H), 8.28 (s, 1H), 8.24 (d, J = 5.1 Hz, 1H), 8.19 (d, J = 3.3 Hz, 1H), 7.75 (s, 1H), 7.64-7.62 (m, 1H), 6.78 (d, J = 3.0 Hz, 1H), 4.89 (t, J = 3.6 Hz, 1H), 4.73 (t, J = 3.6 Hz, 1H), 4.49 (t, J = 3.6 Hz, 1H), 4.39 (t, J = 3.6 Hz, 1H), 2.33 (s, 3H).
실시예 33
1-(4-메톡시-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (33)의 합성:
<반응식 32>
Figure 112017002878210-pct00061
단계 1: 1-(5-브로모-4-메톡시피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (33-1)의 합성. N,N-디메틸포름아미드 (10 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-올 (100 mg, 0.35 mmol, 23-1)의 용액을 수소화나트륨 (15 mg, 0.38 mmol, 미네랄 오일에 의해 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 아이오도메탄 (54 mg, 0.38 mmol)을 첨가하였다. 생성된 용액을 주위 온도에서 2시간 동안 교반한 다음, 물 (50 mL)로 켄칭하고, 디클로로메탄 (3 x 30 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 20 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-브로모-4-메톡시피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 304.1, 306.1 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.72 (s, 1H), 8.54 (s, 1H), 8.28-8.23 (m, 2H), 7.72 (d, J = 5.4 Hz, 1H), 7.37 (s, 1H), 6.87 (d, J = 3.3 Hz, 1H), 4.11 (s, 3H).
단계 2: 1-(4-메톡시-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (33)의 합성. 1,4-디옥산 (20 mL) 중 1-(5-브로모-4-메톡시피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (60 mg, 0.18 mmol)의 교반 용액에 디부틸(프로프-1-인-1-일)(프로필)스탄난 (84 mg, 0.27 mmol) 및 비스(트리페닐포스핀)팔라듐(II) 클로라이드 (6 mg, 0.09 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(4-메톡시-5-(프로프-1-이닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 담황색 고체로서 수득하였다: MS (ESI, m/z): 264.1 [M + 1]+; 1H NMR (300 MHz, CD3OD) δ 9.70 (s, 1H), 8.38 (s, 1H), 8.23-8.21 (m, 2H), 7.68 (d, J = 8.1 Hz, 1H), 7.27 (s, 1H), 6.84 (d, J = 3.3 Hz, 1H), 4.06 (s, 3H), 2.11 (s, 3H).
실시예 34
N-(4-메톡시페닐)-6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴아미드 (34)의 합성:
<반응식 33>
Figure 112017002878210-pct00062
단계 1: 6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴산 (34-1)의 합성. N,N-디메틸포름아미드 (30 mL) 중 1H-피롤로[2,3-c]피리딘 (1.0 g, 8.5 mmol)의 용액에 주위 온도에서 메틸 6-클로로니코티네이트 (1.7 g, 10.2 mmol) 및 탄산세슘 (8.3 g, 25.4 mmol)을 첨가하였다. 생성된 혼합물을 100℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올 (1% 아세트산, v/v)로 용리시키면서 정제하여 6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴산을 무색 고체로서 수득하였다: MS (ESI, m/z): 240.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 13.80 (br s, 1H), 10.08 (s, 1H), 9.18 (s, 1H), 9.00 (d, J = 3.3 Hz, 1H), 8.55-8.51 (m, 2H), 8.24 (d, J = 6.0 Hz, 1H), 8.16 (d, J = 8.7 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H).
단계 2: N-(4-메톡시페닐)-6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴아미드 (34)의 합성. N,N-디메틸포름아미드 (30 mL) 중 6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴산 (239 mg, 1 mmol)의 용액에 4-메톡시벤젠아민 (246 mg, 2 mmol), 트리에틸아민 (202 mg, 2 mmol) 및 O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트 (HATU, 760 mg, 2 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 16시간 동안 교반한 다음, 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~2% 메탄올로 용리시키면서 정제하여 N-(4-메톡시페닐)-6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴아미드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 345.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 10.34 (s, 1H), 9.88 (s, 1H), 9.15 (s, 1H), 8.61-8.52 (m, 1H), 8.43 (d, J = 3.3 Hz, 1H), 8.33 (d, J = 5.1 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.72-7.68 (m, 3H), 6.98-6.92 (m, 3H), 3.76 (s, 3H).
실시예 35
N-(3-플루오로프로필)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (35)의 합성:
<반응식 34>
Figure 112017002878210-pct00063
단계 1: tert-부틸 6-브로모피리딘-3-일카르바메이트 (35-1)의 합성. 디클로로메탄 (200 mL) 중 6-브로모피리딘-3-아민 (5.4 g, 28.9 mmol)의 용액에 트리에틸아민 (4.4 g, 43.3 mmol) 및 디-tert-부틸 디카르보네이트 (7.6 g, 34.7 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반하고, 물 (300 mL)로 켄칭하였다. 유기 층을 분리하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 2~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 (6-브로모피리딘-3-일)카르바메이트를 무색 고체로서 수득하였다: MS (ESI, m/z): 273.1, 275.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.72 (s, 1H), 8.45 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 5.4 Hz, 1H), 7.53 (d, J = 5.7 Hz, 1H), 1.48 (s, 9H).
단계 2: tert-부틸 6-브로모피리딘-3-일(3-플루오로프로필)카르바메이트 (35-2)의 합성. 디메틸포름아미드 (50 mL) 중 tert-부틸 (6-브로모피리딘-3-일)카르바메이트 (2.0 g, 7.3 mmol)의 용액에 0℃에서 수소화나트륨 (0.6 g, 14.7 mmol, 미네랄 오일 중에 분산된 60%)을 첨가하였다. 10분 동안 교반한 후, 1-플루오로-3-아이오도프로판 (2.7 g, 14.7 mmol)을 생성된 용액에 첨가하였다. 생성된 용액을 주위 온도에서 2시간 동안 교반한 다음, 물 (200 mL)로 켄칭하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 5~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 6-브로모피리딘-3-일(3-플루오로프로필)카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 333.2, 335.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 8.28 (s, 1H), 7.49-7.47 (m, 2H), 4.57 (t, J = 5.6 Hz, 1H), 4.45 (t, J = 5.6 Hz, 1H), 3.81 (t, J = 7.2 Hz, 2H), 2.05-2.00 (m, 1H), 1.99-1.92 (m, 1H), 1.49 (s, 9H).
단계 3: tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일(3-플루오로프로필)카르바메이트 (35-3)의 합성. 디메틸 술폭시드 (15 mL) 중 1H-피롤로[2,3-c]피리딘(125 mg, 1.1 mmol)의 용액에 질소 분위기 하에 주위 온도에서 탄산세슘 (919 mg, 2.8 mmol), tert-부틸 (6-브로모피리딘-3-일)(3-플루오로프로필)카르바메이트 (235 mg, 0.7 mmol), 디메틸글리신 (29.1 mg, 0.3 mmol) 및 아이오딘화구리(I) (81 mg, 0.4 mmol)를 첨가하였다. 130℃에서 16시간 동안 교반한 후, 생성된 혼합물을 주위 온도로 냉각시키고, 물 (100 mL)로 희석하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1.5% 메탄올로 용리시키면서 정제하여 tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일(3-플루오로프로필)카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 371.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.67 (br s, 1H), 8.53 (d, J = 2.0 Hz, 1H), 8.40 (br s, 1H), 7.88 (d, J = 3.2 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 4.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 6.76 (d, J = 3.2 Hz, 1H), 4.75 (t, J = 4.8 Hz, 1H), 4.64 (t, J = 4.8 Hz, 1H), 4.01 (t, J = 4.8 Hz, 1H), 3.95 (t, J = 4.8 Hz, 1H), 1.49 (s, 9H), 1.33-1.24 (m, 2H).
단계 4: N-(3-플루오로프로필)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (35)의 합성. 디클로로메탄 (10 mL) 중 tert-부틸 (6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)(3-플루오로프로필)카르바메이트 (150 mg, 0.4 mmol)의 용액을 트리플루오로아세트산 (3 mL)으로 주위 온도에서 2시간 동안 처리하였다. 반응물을 물 (30 mL)로 희석하고, 탄산칼륨으로 중화시켰다. 생성된 혼합물을 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼에 의해 디클로로메탄 중 0.5~1.5% 메탄올로 용리시키면서 정제하여 N-(3-플루오로프로필)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민을 회백색 고체로서 수득하였다: MS (ESI, m/z): 271.1 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.38 (s, 1H), 8.33 (d, J = 5.2 Hz, 1H), 8.02 (s, 1H), 7.80 (s, 1H), 7.60 (d, J = 4.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.17-7.11 (m, 1H), 6.71 (d, J = 3.2 Hz, 1H), 4.75 (t, J = 4.8 Hz, 1H), 4.64 (t, J = 4.8 Hz, 1H), 4.05 (br s, 1H), 3.45 (t, J = 4.8 Hz, 2H), 2.16-2.12 (m, 1H), 2.10-2.03 (m, 1H).
실시예 36
N-(2-플루오로에틸)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (36)의 합성:
<반응식 35>
Figure 112017002878210-pct00064
단계 1: tert-부틸 6-브로모피리딘-3-일(2-플루오로에틸)카르바메이트 (36-1)의 합성. N,N-디메틸포름아미드 (20 mL) 중 tert-부틸 (6-브로모피리딘-3-일)카르바메이트 (200 mg, 0.73 mmol, 35-1)의 용액을 수소화나트륨 (117 mg, 2.93 mmol, 미네랄 오일에 의해 분산된 60% w/w)으로 0℃에서 40분 동안 처리하고, 이어서 1-브로모-2-플루오로에탄 (186 mg, 1.46 mmol)을 첨가하였다. 주위 온도에서 추가로 2시간 후, 반응물을 물 (50 mL)로 희석하고, 에틸 아세테이트 (2 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 tert-부틸 6-브로모피리딘-3-일(2-플루오로에틸)카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 319.0, 321.0 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 8.32 (s, 1H), 7.51-7.45 (m, 2H), 4.70 (t, J = 4.8 Hz, 1H), 4.58 (t, J = 4.8 Hz, 1H), 3.92 (t, J = 4.8 Hz, 1H), 3.86 (t, J = 4.8 Hz, 1H), 1.46 (s, 9H).
단계 2: tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일(2-플루오로에틸)카르바메이트 (36-2)의 합성. 디메틸 술폭시드 (15 mL) 중 1H-피롤로[2,3-c]피리딘 (129 mg, 1.09 mmol)의 용액에 질소의 분위기 하에 주위 온도에서 탄산세슘 (951 mg, 2.92 mmol), tert-부틸 (6-브로모피리딘-3-일)(2-플루오로에틸)카르바메이트 (233 mg, 0.73 mmol), 2-(디메틸아미노)아세트산 (30 mg, 0.29 mmol) 및 아이오딘화구리(I) (83 mg, 0.44 mmol)를 첨가하였다. 120℃에서 16시간 동안 교반한 후, 반응물을 주위 온도로 냉각시키고, 물 (80 mL)로 희석하였다. 생성된 혼합물을 에틸 아세테이트 (2 x 60 mL)로 추출하고, 합한 유기 층을 염수 (2 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일(2-플루오로에틸)카르바메이트를 무색 고체로서 수득하였다: MS (ESI, m/z): 357.2 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.67 (br s, 1H), 8.53 (d, J = 2.0 Hz, 1H), 8.40 (br s, 1H), 7.88 (d, J = 2.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 4.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 6.76 (d, J = 3.2 Hz, 1H), 4.76 (t, J = 4.8 Hz, 1H), 4.64 (t, J = 4.8 Hz, 1H), 4.01 (t, J = 4.8 Hz, 1H), 3.94 (t, J = 4.8 Hz, 1H), 1.49 (s, 9H).
단계 3: N-(2-플루오로에틸)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (36)의 합성. 디클로로메탄 (10 mL) 중 tert-부틸 (6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)(2-플루오로에틸)카르바메이트 (150 mg, 0.41 mmol)의 용액을 트리플루오로아세트산 (3 mL)으로 주위 온도에서 2시간 동안 처리하였다. 생성된 용액을 감압 하에 농축시키고, 잔류물을 다시 디클로로메탄 (50 mL) 중에 용해시켰다. 생성된 용액을 중탄산나트륨의 포화 수용액 (2 x 50 mL)으로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 N-(2-플루오로에틸)-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민을 무색 고체로서 수득하였다: MS (ESI, m/z): 257.2 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 8.34 (d, J = 5.2 Hz, 1H), 8.06 (d, J = 2.8 Hz, 1H), 7.77 (d, J = 3.2 Hz, 1H), 7.59 (d, J = 5.2 Hz, 1H), 7.39 (t, J = 9.6 Hz, 1H), 7.18-7.15 (m, 1H), 6.70 (d, J = 3.2 Hz, 1H), 4.77 (t, J = 4.8 Hz, 1H), 4.66 (t, J = 4.8 Hz, 1H), 4.21 (br s, 1H), 3.56 (t, J = 4.8 Hz, 1H), 3.53 (t, J = 4.8 Hz, 1H).
실시예 37
1-(2-플루오로-3,3'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (37)의 합성:
<반응식 36>
Figure 112017002878210-pct00065
단계 1: 6-클로로-3,3'-비피리딘-2-아민 (37-1)의 합성. 1,4-디옥산 (40 mL) 및 물 (4 mL) 중 3-브로모-6-클로로피리딘-2-아민 (1 g, 4.82 mmol)의 용액에 피리딘-3-일보론산 (0.65 g, 5.30 mmol), 탄산칼륨 (1.33 g, 9.64 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (0.56 g, 0.48 mmol)을 첨가하였다. 생성된 용액을 질소 분위기 하에 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-클로로-3,3'-비피리딘-2-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 206.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 8.66 (s, 1H), 8.57 (dd, J = 2.0 Hz, 4.4 Hz, 1H), 7.84-7.82 (m, 1H), 7.48-7.45 (m, 1H), 7.38 (d, J = 7.6 Hz, 1H), 6.69 (d, J = 11.6 Hz, 1H), 6.28 (br s, 2H).
단계 2: N,N-디-Boc 보호된 6-클로로-3,3'-비피리딘-2-아민 (37-2)의 합성. 디클로로메탄 (30 mL) 중 6-클로로-3,3'-비피리딘-2-아민 (0.68 g, 3.31 mmol)의 용액에 디-tert-부틸 디카르보네이트 (1.51 g, 6.95 mmol), 트리에틸아민 (0.67 g, 6.61 mmol) 및 N,N-디메틸피리딘-4-아민 (40 mg, 0.33 mmol)을 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반한 다음, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 N,N-디-Boc 보호된 6-클로로-3,3'-비피리딘-2-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 406.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.64 (dd, J = 1.2 Hz, 4.8 Hz, 1H), 8.59 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 8.1 Hz, 1H), 7.81-7.75 (m, 2H), 7.58-7.54 (m, 1H), 1.23 (s, 9 H), 1.20 (s, 9H).
단계 3: tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-일카르바메이트 (3)의 합성. 테트라히드로푸란 (40 mL) 중 tert-부틸 N-tert-부틸옥시카르보닐-6-클로로-3,3'-비피리딘-2-일카르바메이트 (0.9 g, 2.22 mmol)의 용액에 질소 분위기 하에 1H-피롤로[2,3-c]피리딘 (0.39 g, 3.33 mmol), 소듐 2-메틸프로판-2-올레이트 (0.43 g, 4.43 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (0.18 g, 0.22 mmol)를 첨가하였다. 생성된 용액을 50℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-일카르바메이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 388.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 10.06 (s, 1H), 9.75 (s, 1H), 8.70 (s, 1H), 8.55 (d, J = 4.0 Hz, 1H), 8.40 (d, J = 3.2 Hz, 1H), 8.30 (d, J = 5.2 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 4.4 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 5.2 Hz, 1H), 7.48 (dd, J = 4.8 Hz, 11.6 Hz, 1H), 6.87 (d, J = 3.2 Hz, 1H), 1.24 (s, 9H).
단계 4: 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-아민 (37-4)의 합성. 디클로로메탄 (30 mL) 중 tert-부틸 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-일카르바메이트 (0.5 g, 1.29 mmol)의 용액을 트리플루오로아세트산 (3 mL)으로 주위 온도에서 2시간 동안 처리하였다. 생성된 용액을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-아민을 담황색 고체로서 수득하였다: MS (ESI, m/z): 288.2 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 10.00 (s, 1H), 8.68 (d, J = 5.6 Hz, 1H), 8.58 (t, J = 3.6 Hz, 1H), 8.27-8.26 (m, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 5.2 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.49 (dd, J = 4.8 Hz, 7.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 3.2 Hz, 1H), 6.33 (br s, 2H).
단계 5: 1-(2-플루오로-3,3'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (37)의 합성. 플루오린화수소-피리딘 (3 mL, 64~70% w/w) 중 6-(1H-피롤로[2,3-c]피리딘-1-일)-3,3'-비피리딘-2-아민 (100 mg, 0.35 mmol)의 용액에 -20℃에서 아질산나트륨 (144 mg, 2.09 mmol)을 첨가하였다. 생성된 용액을 주위 온도에서 2시간 동안 교반하고, 물 (50 mL)로 희석하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(2-플루오로-3,3'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘을 회백색 고체로서 수득하였다: MS (ESI, m/z): 291.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.80 (s, 1H), 8.91 (s, 1H), 8.66 (dd, J = 1.6 Hz, 4.8 Hz, 1H), 8.48-8.43 (m, 2H), 8.34 (d, J = 5.2 Hz, 1H), 8.13 (dd, J = 1.2 Hz, 8.0 Hz, 1H), 8.02 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 7.70 (d, J = 0.8 Hz, 1H), 7.58 (dd, J = 4.8 Hz, 8.0 Hz, 1H), 6.93 (d, J = 3.2 Hz, 1H).
실시예 38
3-(5-플루오로-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (38)의 합성:
<반응식 37>
Figure 112017002878210-pct00066
단계 1: tert-부틸 6-플루오로-4-메틸피리딘-3-일카르바메이트 (38-1)의 합성. 디클로로메탄 (100 mL) 중 6-플루오로-4-메틸피리딘-3-아민 (5.0 g, 39.6 mmol)의 용액에 트리에틸아민 (6.1 g, 59.5 mmol) 및 디-tert-부틸 디카르보네이트 (10.4 g, 47.6 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 4시간 동안 교반한 다음, 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 5~10% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 6-플루오로-4-메틸피리딘-3-일카르바메이트를 무색 고체로서 수득하였다: MS (ESI, m/z): 227.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 8.38 (s, 1H), 6.76 (s, 1H), 6.16 (br s, 1H), 2.30 (s, 3H), 1.51 (s, 9H).
단계 2: tert-부틸 5-플루오로-1H-피롤로[2,3-c]피리딘-1-카르복실레이트 (38-3)의 합성. 건조 테트라히드로푸란 (50 mL) 중 tert-부틸 (6-플루오로-4-메틸피리딘-3-일)카르바메이트 (3.7 g, 16.3 mmol)의 용액을 헥산 중 n-부틸리튬의 2.5 M 용액 (16.3 mL, 40.9 mmol)으로 -78℃에서 30분 동안 처리하고, 이어서 N,N-디메틸포름아미드 (1.4 g, 19.6 mmol)를 첨가하였다. 주위 온도에서 추가로 3시간 후, 반응물을 염화암모늄의 포화 수용액 (50 mL)에 의해 켄칭하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (25 mL) 중에 용해시키고, 이어서 트리에틸아민 (1.6 g, 16.3 mmol) 및 메탄술포닐 클로라이드 (1.8 g, 16.3 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하고, 감압 하에 농축시켰다. 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 10~20% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 5-플루오로-1H-피롤로[2,3-c]피리딘-1-카르복실레이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 237.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 9.01 (s, 1H), 7.87 (d, J = 3.3 Hz, 1H), 7.14 (s, 1H), 6.64 (d, J = 3.6 Hz, 1H), 1.69 (s, 9H).
단계 3: 5-플루오로-1H-피롤로[2,3-c]피리딘 (38-4)의 합성. 디클로로메탄 (20 mL) 중 tert-부틸 5-플루오로-1H-피롤로[2,3-c]피리딘-1-카르복실레이트 (1.3 g, 5.5 mmol)의 용액을 트리플루오로아세트산 (2 mL)으로 주위 온도에서 2시간 동안 처리하였다. 생성된 용액을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (50 mL) 중에 용해시키고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시켜 5-플루오로-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 137.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 11.66 (br s, 1H), 8.34 (s, 1H), 7.71 (t, J = 2.7 Hz, 1H), 7.17 (s, 1H), 6.51 (t, J = 2.1 Hz, 1H).
단계 4: 3-(5-플루오로-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (38)의 합성. 테트라히드로푸란 (10 mL) 중 5-플루오로-1H-피롤로[2,3-c]피리딘 (50 mg, 0.37 mmol)의 용액에 질소 분위기 하에 3-브로모이소퀴놀린 (115 mg, 0.55 mmol), 소듐 2-메틸프로판-2-올레이트 (70.6 mg, 0.74 mmol) 및 2-디-tert-부틸포스피노-2',4',6'-트리-이소-프로필-1,1'-비페닐)(2"'-아미노-1",1"'-비페닐-2"-일)팔라듐(II) 메실레이트 (29.2 mg, 0.037 mmol)를 첨가하였다. 생성된 혼합물을 50℃에서 4시간 동안 유지하였다. 주위 온도로 냉각시킨 후, 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 3-(5-플루오로-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 무색 고체로서 수득하였다: MS (ESI, m/z): 264.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.42 (s, 1H), 9.33 (s, 1H), 8.49 (d, J = 3.3 Hz, 1H), 8.29 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.85 (t, J = 8.1 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 1.2 Hz, 1H), 6.90 (d, J = 3.3 Hz, 1H).
실시예 39
7-(1H-피롤로[2,3-c]피리딘-1-일)-1,2,3,4-테트라히드로-1,6-나프티리딘 (39)의 합성:
<반응식 38>
Figure 112017002878210-pct00067
단계 1: (E)-에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)아크릴레이트 (39-1)의 합성. N,N-디메틸포름아미드 (50 mL) 중 5-브로모-2-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-4-아민 (1 g, 3.46 mmol, 22-2)의 용액에 질소 분위기 하에 주위 온도에서 에틸 아크릴레이트 (1.38 g, 13.83 mmol), 트리에틸아민 (1.40 g, 13.83 mmol), 아세트산팔라듐(II) (0.078 g, 0.35 mmol) 및 트리-o-톨릴포스핀 (0.21 g, 0.69 mmol)을 첨가하였다. 생성된 용액을 120℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 (E)-에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)아크릴레이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 309.2 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.65 (s, 1H), 8.56 (s, 1H), 8.36-8.32 (m, 2H), 7.94-7.83 (m, 2H), 6.97 (t, J = 4.2 Hz, 2H), 6.90 (br s, 2H), 6.60 (d, J = 15.9 Hz, 1H), 4.21 (q, J = 7.8 Hz, 2H), 1.21 (t, J = 7.8 Hz, 3H).
단계 2: 에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로파노에이트 (39-2)의 합성. 메탄올 (120 mL) 중 (E)-에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)아크릴레이트 (0.5 g, 1.62 mmol)의 교반 용액에 목탄 상 팔라듐 (50 mg, 10% w/w)을 첨가하였다. 생성된 혼합물을 수소 분위기 (1 atm.) 하에 주위 온도에서 2시간 동안 유지하였다. 이어서, 혼합물을 셀라이트를 통해 여과하고, 여과물을 감압 하에 농축 건조시켜 에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로파노에이트를 담황색 고체로서 수득하였다: MS (ESI, m/z): 311.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.34 (s, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.02 (d, J = 3.3 Hz, 1H), 7.97 (s, 1H), 7.62 (d, J = 4.5 Hz, 1H), 6.87 (s, 1H), 6.74 (d, J = 7.2 Hz, 1H), 6.26 (br s, 2H), 4.08 (q, J = 7.8 Hz, 2H), 2.75-2.71 (m, 2H), 2.54-2.51 (m, 2H), 1.15 (t, J = 7.8 Hz, 3H).
단계 3: 7-(1H-피롤로[2,3-c]피리딘-1-일)-3,4-디히드로-1,6-나프티리딘-2(1H)-온 (39-3)의 합성. 에탄올 (5 mL) 중 에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)프로파노에이트 (50 mg, 0.16 mmol) 및 소듐 에탄올레이트 (54.8 mg, 0.81 mmol)의 용액을 2시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 아세트산 (0.2 mL)을 첨가하여 중화시키고, 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 7-(1H-피롤로[2,3-c]피리딘-1-일)-3,4-디히드로-1,6-나프티리딘-2(1H)-온을 무색 고체로서 수득하였다: MS (ESI, m/z): 265.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.56 (br s, 1H), 9.49 (s, 1H), 8.32 (s, 1H), 8.26 (d, J = 5.4 Hz, 1H), 8.07 (d, J = 3.3 Hz, 1H), 7.66 (d, J = 5.4 Hz, 1H), 7.16 (s, 1H), 6.82 (d, J = 2.7 Hz, 1H), 2.96 (t, J = 4.8 Hz, 2H), 2.57 (t, J = 4.8 Hz, 2H).
단계 4: 7-(1H-피롤로[2,3-c]피리딘-1-일)-1,2,3,4-테트라히드로-1,6-나프티리딘 (39)의 합성. 테트라히드로푸란 (10 mL) 중 7-(1H-피롤로[2,3-c]피리딘-1-일)-3,4-디히드로-1,6-나프티리딘-2(1H)-온 (28 mg, 0.11 mmol)의 용액을 수소화알루미늄리튬 (6 mg, 0.16 mmol)으로 주위 온도에서 2시간 동안 처리하였다. 반응물을 황산나트륨 10수화물 (322 mg, 0.1 mmol)을 첨가하여 켄칭하고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 7-(1H-피롤로[2,3-c]피리딘-1-일)-1,2,3,4-테트라히드로-1,6-나프티리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 251.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.43 (s, 1H), 8.21 (d, J = 5.4 Hz, 1H), 8.00 (d, J = 3.3 Hz, 1H), 7.85 (s, 1H), 7.61 (d, J = 5.4 Hz, 1H), 6.91 (s, 1H), 6.79 (d, J = 6.3 Hz, 1H), 6.68 (s, 1H), 3.27 (t, J = 4.8 Hz, 2H), 2.68 (t, J = 6.0 Hz, 2H), 1.83-1.79 (m, 2H).
실시예 40
2-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (40)의 합성:
<반응식 39>
Figure 112017002878210-pct00068
단계 1: 7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘-2(1H)-온 (40-1)의 합성. 에탄올 (5 mL) 중 (E)-에틸 3-(4-아미노-6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)아크릴레이트 (150 mg, 0.49 mmol, 39-1)의 용액을 소듐 에탄올레이트 (166 mg, 2.43 mmol)로 78℃에서 1시간 동안 처리하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (2 mL)에 의해 켄칭하고, 아세트산 (0.2 mL)으로 중화시켰다. 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘-2(1H)-온을 회백색 고체로서 수득하였다: MS (ESI, m/z): 263.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 12.11 (br s, 1H), 9.59 (s, 1H), 8.89 (s, 1H), 8.31 (d, J = 5.4 Hz, 1H), 8.18 (d, J = 3.6 Hz, 1H), 8.05 (d, J = 3.6 Hz, 1H), 7.66-7.64 (m, 1H), 7.49 (s, 1H), 6.88 (d, J = 3.3 Hz, 1H), 6.55 (d, J = 9.0 Hz, 1H).
단계 2: 2-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (40-2)의 합성. 트리클로로 인 옥시드 (5 mL) 중 7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘-2(1H)-온 (100 mg, 0.38 mmol)의 용액을 80℃에서 1시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (50 mL)으로 녹이고, 중탄산나트륨의 포화 수용액 (2 x 20 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘을 회백색 고체로서 수득하였다: MS (ESI, m/z): 381.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.55 (s, 1H), 8.71 (d, J = 8.4 Hz, 1H), 8.50 (d, J = 3.3 Hz, 1H), 8.32-8.28 (m, 2H), 7.72-7.61 (m, 2H), 6.93 (d, J = 3.3 Hz, 1H).
단계 3: 2-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (40)의 합성. 디메틸술폭시드 (3 mL) 중 2-클로로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (100 mg, 0.37 mmol) 및 플루오린화칼륨 (62 mg, 1.07 mmol)의 혼합물을 120℃에서 1시간 동안 마이크로웨이브 (100 W)로 조사하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (20 mL)로 희석하고, 디클로로메탄 (3 x 30 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-플루오로-7-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘을 회백색 고체로서 수득하였다: MS (ESI, m/z): 265.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.08 (s, 1H), 9.59 (s, 1H), 9.16 (d, J = 3.3 Hz, 1H), 8.96 (t, J = 8.7 Hz, 1H), 8.56-8.51 (m, 2H), 8.13 (t, J = 9.0 Hz, 1H), 7.61-7.58 (m, 1H), 7.35-7.58 (d, J = 6.6 Hz, 1H).
실시예 41
1-(5-(1H-1,2,4-트리아졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (41)의 합성:
<반응식 40>
Figure 112017002878210-pct00069
단계 1: 6-(1H-피롤로[2,3-c]피리딘-1-일)니코티노니트릴 (41-1)의 합성. N,N-디메틸포름아미드 (50 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1 g, 3.11 mmol, 1-1)의 용액에 디시아노아연 (0.73 g, 6.23 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (0.36 g, 0.31 mmol) 및 아이오딘화칼륨 (0.052 g, 0.311 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 100℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (150 mL)로 희석하고, 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 염수 (5 x 80 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 20~30% 에틸 아세테이트로 용리시키면서 정제하여 6-(1H-피롤로[2,3-c]피리딘-1-일)니코티노니트릴을 회백색 고체로서 수득하였다: MS (ESI, m/z): 221.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.07 (d, J = 1.2 Hz, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.42 (d, J = 3.6 Hz, 1H), 8.34 (d, J = 5.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 5.2 Hz, 1H), 6.94 (d, J = 3.2 Hz, 1H).
단계 2: 6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴이미도히드라지드 (41-2)의 합성. 메탄올 (20 mL) 중 6-(1H-피롤로[2,3-c]피리딘-1-일)니코티노니트릴 (600 mg, 2.72 mmol)의 용액을 소듐 메탄올레이트 (736 mg, 13.63 mmol)로 주위 온도에서 4시간 동안 처리하고, 이어서 히드라진 (190, 5.95 mmol)을 첨가하였다. 주위 온도에서 추가로 4시간 후, 혼합물을 감압 하에 농축시키고, 잔류물을 후속 단계에 추가 정제 없이 사용하였다: (ESI, m/z): 253.2 [M + 1]+.
단계 3: 1-(5-(1H-1,2,4-트리아졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (41)의 합성. 포름산 중 상기 조 6-(1H-피롤로[2,3-c]피리딘-1-일)니코틴이미도히드라지드의 용액 (15 mL)을 16시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(1H-1,2,4-트리아졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 263.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H), 9.26 (d, J = 2.0 Hz, 1H), 9.04 (d, J = 3.6 Hz, 1H), 8.68 (br s, 1H), 8.65-8.62 (m, 1H), 8.54 (d, J = 6.4 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.31 (t, J = 3.2 Hz, 1H).
실시예 42 & 43
1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-올 (42) 및 1-(5-(4-플루오로피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (43)의 합성:
<반응식 41>
Figure 112017002878210-pct00070
단계 1: 1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-올 (42)의 합성. 디메틸 술폭시드 (20 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (0.5 g, 1.56 mmol, 1-1)의 용액에 피페리딘-4-올 (0.3 g, 3.11 mmol), 탄산세슘 (2.1 g, 6.23 mmol), 아이오딘화구리(I) (0.18 g, 0.93 mmol) 및 2-(디메틸아미노)아세트산 (64.2 mg, 0.62 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 130℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 60 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-올을 담황색 고체로서 수득하였다: MS (ESI, m/z): 295.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.91 (s, 1H), 8.30-8.21 (m, 2H), 8.06 (d, J = 5.7 Hz, 1H), 8.00 (d, J = 3.3 Hz, 1H), 7.62 (s, 2H), 6.84 (d, J = 3.3 Hz, 1H), 4.74 (d, J = 5.2 Hz, 1H), 3.71-3.57 (m, 3H), 2.98-2.91 (m, 2H), 1.89-1.81 (m, 2H), 1.53-1.42 (m, 2H).
단계 2: 1-(5-(4-플루오로피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (43)의 합성. 디클로로메탄 (10 mL) 중 1-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)피페리딘-4-올 (100 mg, 0.34 mmol)의 용액에 -78℃에서 디에틸아미노황트리플루오라이드 (DAST, 548 mg, 3.40 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 4시간 동안 교반하고, 물 (30 mL)로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(4-플루오로피페리딘-1-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 297.1 [M + 1]+; 1H NMR (400 MHz, CD3OD) δ 8.87 (s, 1H), 8.31(d, J = 3.2 Hz, 1H), 8.27 (d, J = 6.0 Hz, 1H), 8.06 (d, J = 6.0 Hz, 1H), 7.86 (d, J = 3.6 Hz, 1H), 6.67 (dd, J = 3.2 Hz, 8.8 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 3.6 Hz, 1H), 4.93-4.91 (m, 0.5H), 4.84-4.79 (m, 0.5H), 3.53-3.47 (m, 2H), 3.35-3.31 (m, 2H), 2.17-1.94 (m, 4H).
실시예 44 & 45
N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)-3,4'-비피리딘-2'-아민 (45)의 합성 & 1-(6'-플루오로-3,4'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (44)의 합성:
<반응식 42>
Figure 112017002878210-pct00071
단계 1: 1-(6'-플루오로-3,4'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (44)의 합성. 1,4-디옥산 (20 mL) 및 물 (5 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.31 mmol, 1-1)의 용액에 2-플루오로-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)피리딘 (105 mg, 0.47 mmol), 탄산칼륨 (129 mg, 0.93 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (18 mg, 0.016 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 1-(5-(피리딘-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 291.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.87 (s, 1H), 9.16 (d, J = 2.1 Hz, 1H), 8.54 (dd, J = 2.4 Hz, 8.7 Hz, 1H), 8.43 (d, J = 3.3 Hz, 1H), 8.38 (d, J = 5.1 Hz, 1H), 8.32 (d, J = 5.1 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.90 (dd, J = 1.8 Hz, 3.6 Hz, 1H), 7.76 (s, 1H), 7.69 (dd, J = 0.9 Hz, 5.4 Hz, 1H), 6.90 (d, J = 3.3 Hz, 1H).
단계 2: N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)-3,4'-비피리딘-2'-아민 (45)의 합성. 메탄올 중 디메틸아민의 용액 (5 mL, 33% w/w)에 1-(6'-플루오로-3,4'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (50 mg, 0.17 mmol)을 첨가하였다. 생성된 용액을 밀봉된 튜브 중에서 100℃에서 16시간 동안 유지하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 N,N-디메틸-6-(1H-피롤로[2,3-c]피리딘-1-일)-3,4'-비피리딘-2'-아민을 무색 고체로서 수득하였다: MS (ESI, m/z): 316.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.04 (d, J = 2.1 Hz, 1H), 8.43-8.39 (m, 2H), 8.30 (d, J = 5.4 Hz, 1H), 8.20 (d, J = 6.0 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.67 (dd, J = 0.6 Hz, 5.1 Hz, 1H), 7.03-6.89 (m, 2H), 6.89 (d, J = 3.3 Hz, 1H).
실시예 46
1-(5-(피리미딘-4-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (46)의 합성:
<반응식 43>
Figure 112017002878210-pct00072
단계 1: 1-(5-(트리부틸스탄닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (46-1)의 합성. 아세토니트릴 (50 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (1.51 g, 4.67 mmol, 1-1)의 용액에 1,1,1,2,2,2-헥사부틸디스탄난 (8.13 g, 14.01 mmol), 트리페닐포스핀 (0.37 g, 1.40 mmol), 트리에틸아민 (4.73 g, 46.71 mmol) 및 아세트산팔라듐(II) (0.11 g, 0.47 mmol)을 첨가하였다. 생성된 용액을 질소 분위기 하에 16시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (100 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(트리부틸스탄닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 486.0 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 9.66 (s, 1H), 9.60 (s, 1H), 8.38 (d, J = 5.6 Hz, 1H), 7.95 (d, J = 1.6 Hz, 1H), 7.73 (d, J = 4.8 Hz, 1H), 7.62 (d, J = 6.4 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 2.8 Hz, 1H), 1.65-1.61 (m, 6H), 1.42-1.35 (m, 6H), 1.15-1.13 (m, 6H), 0.95-0.91 (m, 9H).
단계 2: 1-(5-(피리미딘-4-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (46)의 합성. N,N-디메틸포름아미드 (20 mL) 중 1-(5-(트리부틸스탄닐)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (120 mg, 0.25 mmol)의 용액에 4-브로모피리미딘 (59 mg, 0.37 mmol), 아이오딘화구리(I) (5 mg, 0.026 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (29 mg, 0.025 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 40℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (60 mL)로 희석하고, 에틸 아세테이트 (3 x 80 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1-(5-(피리미딘-4-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 274.0 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.89 (s, 1H), 9.44 (d, J = 2.0 Hz, 1H), 9.32 (d, J = 1.2 Hz, 1H), 8.95 (d, J = 5.6 Hz, 1H), 8.78 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 8.45 (d, J = 3.6 Hz, 1H), 8.33 (d, J = 5.2 Hz, 1H), 8.28 (dd, J = 1.2 Hz, 5.2 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 5.2 Hz, 1H), 6.92 (d, J = 3.6 Hz, 1H).
실시예 47
2-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (47)의 합성:
<반응식 44>
Figure 112017002878210-pct00073
단계 1: (E)-에틸 3-(4-아미노피리딘-3-일)아크릴레이트 (47-1)의 합성. N,N-디메틸포름아미드 (50 mL) 중 3-브로모피리딘-4-아민 (5 g, 28.9 mmol)의 용액에 에틸 아크릴레이트 (4.4 g, 43.3 mmol), 트리페닐포스핀 (1.7 g, 6.4 mmol), 아세트산팔라듐(II) (0.65 g, 2.9 mmol) 및 트리에틸아민 (2.9 g, 28.9 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 100℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (200 mL)로 희석하고, 에틸 아세테이트 (3 x 100 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 (E)-에틸 3-(4-아미노피리딘-3-일)아크릴레이트를 황색 고체로서 수득하였다: MS (ESI, m/z): 193.0 [M + 1]+; 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 16.4 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 16.4 Hz, 1H), 5.10 (br s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H).
단계 2: 1,6-나프티리딘-2(1H)-온 (47-2)의 합성. 나트륨 (0.96 g, 41.6 mmol)을 0℃에서 무수 에탄올 (60 mL) 중에 용해시키고, 이어서 (E)-에틸 3-(4-아미노피리딘-3-일)아크릴레이트 (2.1 g, 10.4 mmol)를 첨가하였다. 생성된 용액을 2시간 동안 환류한 다음, 주위 온도로 냉각시키고, 아세트산 (2.5 g, 41.6 mmol)으로 중화시켰다. 생성된 용액을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 1,6-나프티리딘-2(1H)-온을 황색 고체로서 수득하였다: MS (ESI, m/z): 147.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 12.18 (br s, 1H), 8.83 (s, 1H), 8.46 (d, J = 5.7 Hz, 1H), 8.00 (d, J = 9.3 Hz, 1H), 7.20 (d, J = 5.7 Hz, 1H), 6.57 (d, J = 9.6 Hz, 1H).
단계 3: 2-클로로-1,6-나프티리딘 (47-3)의 합성. 포스포릴 트리클로라이드 (20 mL) 중 1,6-나프티리딘-2(1H)-온 (2 g, 13.68 mmol)의 용액을 16시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 디클로로메탄 (100 mL)으로 녹이고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-클로로-1,6-나프티리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 165.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.43 (s, 1H), 8.83 (d, J = 6.0 Hz, 1H), 8.69 (d, J = 11.7 Hz, 1H), 7.88 (d, J = 5.7 Hz, 1H), 7.86 (d, J = 9.6 Hz, 1H).
단계 4: 2-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘 (47)의 합성. N,N-디메틸포름아미드 (10 mL) 중 1H-피롤로[2,3-c]피리딘 (48 mg, 0.41 mmol)의 용액에 2-클로로-1,6-나프티리딘 (60 mg, 0.37 mmol) 및 탄산세슘 (119 mg, 0.37 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 120℃에서 12시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (50 mL)로 희석하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 2-(1H-피롤로[2,3-c]피리딘-1-일)-1,6-나프티리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 247.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.24 (br s, 1H), 9.37 (s, 1H), 8.78-8.74 (m, 2H), 8.58 (d, J = 3.6 Hz, 1H), 8.38 (d, J = 4.8 Hz, 1H), 8.27 (d, J = 9.0 Hz, 1H), 8.02 (d, J = 6.0 Hz, 1H), 7.71 (d, J = 5.1 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H).
실시예 48
N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-(2-플루오로에톡시)벤즈아미드 (48)의 합성:
<반응식 45>
Figure 112017002878210-pct00074
단계 1: N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-히드록시벤즈아미드 (48-1)의 합성. N,N-디메틸포름아미드 (15 mL) 중 6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-아민 (100 mg, 0.48 mmol)의 용액에 4-메톡시벤조산 (98 mg, 0.71 mmol), O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트 (HATU) (271 mg, 0.71 mmol) 및 트리에틸아민 (144 mg, 1.43 mmol)을 첨가하였다. 생성된 용액을 질소 분위기 하에 주위 온도에서 16시간 동안 교반하였다. 반응물을 물 (50 mL)로 켄칭하고, 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~2% 메탄올로 용리시키면서 정제하여 N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-히드록시벤즈아미드를 담황색 고체로서 수득하였다: MS (ESI, m/z): 331.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.83 (br s, 1H), 9.67 (s, 1H), 8.97 (d, J = 2.4 Hz, 1H), 8.40 (dd, J = 2.7 Hz, 9.0 Hz, 1H), 8.28-8.25 (m, 2H), 7.88 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 5.4 Hz, 1H), 7.45-7.33 (m, 3H), 7.03 (dd, J = 2.7 Hz, 9.0 Hz, 1H), 6.83 (d, J = 3.3 Hz, 1H).
단계 2: N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-(2-플루오로에톡시)벤즈아미드 (48)의 합성. N,N-디메틸포름아미드 (10 mL) 중 N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-히드록시벤즈아미드 (40 mg, 0.12 mmol)의 용액에 주위 온도에서 1-브로모-2-플루오로에탄 (23 mg, 0.18 mmol) 및 탄산칼륨 (50 mg, 0.36 mmol)을 첨가하였다. 생성된 혼합물을 80℃에서 16시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 물 (50 mL)로 희석하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 50 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 N-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-3-(2-플루오로에톡시)벤즈아미드를 무색 고체로서 수득하였다: MS (ESI, m/z): 377.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.68 (br s, 1H), 8.98 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 2.7 Hz, 8.7 Hz, 1H), 8.28-8.25 (m, 2H), 7.92 (d, J = 8.7 Hz, 1H), 7.72-7.48 (m, 4H), 7.24 (dd, J = 2.4 Hz, 7.5 Hz, 1H), 6.84 (d, J = 3.6 Hz, 1H), 4.88 (d, J = 3.9 Hz, 1H), 4.72 (d, J = 3.9 Hz, 1H), 4.41 (d, J = 3.9 Hz, 1H), 4.30 (d, J = 3.9 Hz, 1H).
실시예 49
[3H]-6의 방사화학적 합성
<반응식 46>
Figure 112017002878210-pct00075
[3H]-6의 방사화학적 합성: 삼중수소화 용기에 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (2.8 mg, 11.4 μmol) 및 로듐 블랙 (2.4 mg, 23.3 μmol)에 이어서 THF (0.3 mL)를 첨가하였다. 용기를 삼중수소화 매니폴드에 걸고, 2회의 동결-해동 사이클 (액체 질소)에 통과시켰다. 반응물을 동결시킨 상태에서, 삼중수소 기체 (1.02 Ci)를 첨가하였다. 블랙 현탁액을 실온으로 가온하고, 16시간 동안 교반하였다. 반응물을 액체 질소로 동결시키고, 과량의 삼중수소 기체를 제거한 다음, 용기를 반응 포트로부터 제거하였다. 현탁액이 실온으로 가온되었을 때, 이를 EtOH를 사용하여 셀라이트의 작은 플러그를 통해 여과하였다. 여과물을 농축시켜 박막을 수득하였으며, 이를 EtOH에 녹이고, 농축시키고, 10 mL EtOH에 녹이고, 카운팅하여 총 494.7 mCi를 생성하였다. RP-HPLC에 의한 분석 (제미니(Gemini) C18, 4.6 x 150 mm, 254 nm, (55:45) 0.05M pH 9.5 TEAA:CH3CN, 1 mL/분). 배치의 일부를 역상 HPLC (제미니 C18, 10x250mm, 254 nm, (60:40) 0.05M pH 9.5 TEAA:CH3CN, 5 mL/분)에 의해 정제하여 99.4 mL EtOH 중 135.18 mCi의 [3H]-6의 배치를 수득하였다. 비활성은 37.8 Ci/mmol인 것으로 결정되었다.
실시예 50
6-플루오로-3-(5-메톡시-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (L-005587122-000U)의 합성:
Figure 112017002878210-pct00076
6-플루오로-3-(5-메톡시-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린의 합성. 테트라히드로푸란 (50 mL) 중 1H-피롤로[2,3-c]피리딘 (163 mg, 1.10 mmol) 및 3-클로로-6-플루오로이소퀴놀린 9-3 (200 mg, 1.10 mmol)의 교반 용액에 주위 온도에서 소듐 2-메틸프로판-2-올레이트 (212 mg, 2.20 mmol) 및 t-BuXPhos 팔라듐(II) 비페닐-2-아민 메실레이트 (351 mg, 0.44 mmol)를 첨가하였다. 생성된 혼합물을 질소 분위기 하에 55℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 반응물을 물 (100 mL)로 켄칭하고, 에틸 아세테이트 (3 x 50 mL)로 추출하였다. 합한 유기 층을 염수 (2 x 100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 6-플루오로-3-(5-메톡시-1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다 (270 mg, 83%): MS (ESI, m/z): 293.9 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.41 (s, 1H), 9.36 (s, 1H), 8.35 (d, J = 3.6 Hz, 1H), 8.34-8.30 (dd, J = 9.2 Hz, 6.0 Hz, 1H), 8.24 (s, 1H), 7.80 (dd, J = 2.0 Hz, 10.0 Hz, 1H), 7.59-7.54 (m, 1H), 7.03 (d, J = 0.8 Hz, 1H), 6.77 (d, J = 3.6 Hz, 1H), 3.91 (s, 3H).
[18F]-리간드의 방사화학적 합성
일반적 방법
[18F]플루오라이드를 음이온 교환 수지 상에서 방사화학 실험실로 수송하고, 용리시킨 후에 사용하였다. 구체적으로 언급되지 않는 한, [18F]플루오라이드 함유 음이온 교환 수지를 아세토니트릴/물 (80/20, 0.7 ml) 중 크립토픽스222(Kryptofix222) (7 mg, 19 μmol) 및 K2CO3 (2.1 mg, 15 μmol)으로 용리시키고, 마이크로웨이브 캐비티 내의 배기된 1-ml V-형상의 바이알로 옮겼다. 플루오라이드를 아르곤 유동 및 마이크로웨이브 가열 (35 W/90℃) 하에 건조시켰다. 추가 분취량의 아세토니트릴 (3 x 0.5 ml)을 35 W/90℃에서 공비 건조를 위해 첨가하였다.
[18F]-리간드에 대한 전구체의 합성 절차:
1. 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (9a)의 합성
Figure 112017002878210-pct00077
6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (9a)의 합성.
단계 1: 물 (5 mL) 중 황산제2구리 (1 g, 6.29 mmol)의 용액을 주위 온도에서 물 (5 mL) 중 아황산나트륨 (1 g, 7.94 mmol)의 교반 용액에 첨가하였다. 10분 후, 여과를 수행하고, 필터 케이크를 물 (3 x 10 mL)로 세척하여 습윤 아황산제2구리를 갈색 고체로서 수득하였으며, 이를 주위 온도에서 아질산나트륨의 포화 수용액 (50 mL) 중에 용해시켰다.
단계 2: 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (300 mg, 1.15 mmol)을 황산의 20% (w/w) 수용액 (5 mL) 중에 용해시키고, 이어서 0℃에서 아질산나트륨 (95 mg, 1.38 mmol)을 첨가하였다. 15분 동안 교반한 후, 생성된 용액을 상기 용액에 주위 온도에서 10분에 걸쳐 첨가하였다. 10분 동안 교반한 후, 반응물을 암모니아 (5 mL)의 25% (w/w) 수용액으로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1% 메탄올로 용리시키면서 정제하여 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 황색 고체로서 수득하였다 (31.6 mg, 10%): MS (ESI, m/z): 291.1 [M + 1]+; 1H NMR (300 MHz, CDCl3) δ 9.81-9.77 (m, 1H), 9.45 (s, 1H), 8.84 (d, J = 1.8 Hz, 1H), 8.43-8.41 (m, 1H), 8.35 (d, J = 2.1 Hz, 1H), 8.28 (d, J = 9.3 Hz, 1H), 8.09 (s, 1H), 8.03 (s, 1H), 7.75-7.68 (m, 1H), 6.88 (t, J = 9.0 Hz, 1H).
2. 디tert-부틸 (6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-일)카르바메이트 (18a)의 합성:
단계 1: N-(3-클로로-6-니트로이소퀴놀린-5-일)아세트아미드의 합성
Figure 112017002878210-pct00078
2000-mL 4구 둥근 바닥 플라스크에, DCE/THF (550/183 mL) 중 3-클로로이소퀴놀린-5-아민 (33 g, 184.75 mmol, 1.00 당량)의 용액, 아세트산 무수물 (150.77 g, 1.48 mol, 8.00 당량), Bi(NO3)3.5H2O (79.6 g, 184.69 mmol, 1.00 당량)를 넣었다. 생성된 용액을 오일 조 중에서 50℃에서 2시간 동안 교반하였다. 생성된 혼합물을 진공 하에 농축시켰다. 잔류물을 에틸 아세테이트/석유 에테르 (3:1)를 사용하여 실리카 겔 칼럼 상에 적용하였다. 이렇게 하여 N-(3-클로로-8-니트로이소퀴놀린-5-일)아세트아미드 및 N-(3-클로로-6-니트로이소퀴놀린-5-일)아세트아미드의 19 g 혼합물 (38%)을 황색 고체로서 수득하였다.
단계 2: N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)아세트아미드; N-(8-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)의 합성
Figure 112017002878210-pct00079
퍼징하고 질소의 불활성 분위기로 유지시킨 1000-mL 4구 둥근 바닥 플라스크에, NMP (480 mL) 중 N-(3-클로로-8-니트로이소퀴놀린-5-일)아세트아미드 및 N-(3-클로로-6-니트로이소퀴놀린-5-일)아세트아미드 (19 g 혼합물, 35.76 mmol, 1.00 당량)의 용액, 3st t-BuXPhos 전촉매 (5.7 g, 7.18 mmol, 0.10 당량), Cs2CO3 (70 g, 215.52 mmol, 3.00 당량)을 넣었다. 생성된 용액을 오일 조 중에서 60℃에서 2시간 동안 교반하였다. 이어서, 반응물을 물 3000 mL를 첨가하여 켄칭하였다. 생성된 용액을 에틸 아세테이트 3x500 mL로 추출하고, 유기 층을 합하였다. 생성된 혼합물을 물 2x500 mL로 세척하였다. 혼합물을 무수 황산나트륨 상에서 건조시키고, 진공 하에 농축시켰다. 이렇게 하여 N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)아세트아미드; N-(8-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)아세트아미드의 20 g 혼합물 (81%)을 적색 오일로서 수득하였다.
단계 3: tert-부틸 N-아세틸-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트의 합성
Figure 112017002878210-pct00080
1000-mL 4구 둥근 바닥 플라스크에, DCM/THF (500/50 mL) 중 N-(8-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)아세트아미드/N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)아세트아미드 (20 g, 57.58 mmol, 1.00 당량)의 용액, (Boc)2O (18.8 g, 86.14 mmol, 1.50 당량), TEA (17.46 g, 172.55 mmol, 3.00 당량), DMPA (1.4 g, 11.48 mmol, 0.20 당량)를 넣었다. 생성된 용액을 실온에서 밤새 교반하였다. 생성된 혼합물을 진공 하에 농축시켰다. 잔류물을 에틸 아세테이트/석유 에테르 (3:1)를 사용하여 실리카 겔 칼럼 상에 적용하였다. 이렇게 하여 tert-부틸 N-아세틸-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 6.8 g (26%)을 황색 고체로서 수득하였다.
단계 4: tert-부틸 N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트의 합성
Figure 112017002878210-pct00081
250-mL 4구 둥근 바닥 플라스크에, 메탄올 (100 mL) 중 tert-부틸 N-아세틸-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 (6.8 g, 15.20 mmol, 1.00 당량)의 용액, 탄산칼륨 (20.9 g, 151.45 mmol, 10.00 당량)을 넣었다. 생성된 용액을 실온에서 2시간 동안 교반하였다. 고체를 여과하였다. 여과물을 진공 하에 농축시켰다. 잔류물을 에틸 아세테이트/석유 에테르 (3:1)를 사용하여 실리카 겔 칼럼 상에 적용하였다. 이렇게 하여 tert-부틸 N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 4.8 g (78%)을 황색 고체로서 수득하였다.
단계 5: tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 (18a)의 합성
Figure 112017002878210-pct00082
100-mL 4구 둥근 바닥 플라스크에, tert-부틸 N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 (4.8 g, 11.84 mmol, 1.00 당량), (Boc)2O (3.86 g, 17.69 mmol, 1.50 당량), TEA (3.59 g, 35.48 mmol, 3.00 당량), 4-디메틸아미노피리딘 (290 mg, 2.37 mmol, 0.20 당량), 디클로로메탄 (100 mL)을 넣었다. 생성된 용액을 실온에서 2시간 동안 교반하였다. 생성된 혼합물을 진공 하에 농축시켰다. 잔류물을 에틸 아세테이트/석유 에테르 (3:1)를 사용하여 실리카 겔 칼럼 상에 적용하였다. 이렇게 하여 tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 3.52 g (59%)을 황색 고체로서 수득하였다: MS (ESI, m/z): 505 [M+1]+; 1H NMR (300MHz, CDCl3): δ 1.39 (18H, s), 6.85 (1H, d), 7.65 (1H, d),7.88 (1H, s), 7.95 (1H, d), 8.10 (1H, d), 8.21 (1H, d), 8.43 (1H, d), 9.43 (1H, s), 9.750 (1H, d).
3. tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-{1H-피롤로[2,3-c]피리딘-1-일}이소퀴놀린-7-일)카르바메이트 (105a)의 합성:
Figure 112017002878210-pct00083
단계 1: (4-브로모-3-플루오로페닐)메탄올의 합성. 테트라히드로푸란 (150 mL) 중 4-브로모-3-플루오로벤조산 (25 g, 114 mmol)의 용액에 테트라히드로푸란 중 보란의 1M 용액 (228 mL, 228 mmol)을 0℃에서 1시간에 걸쳐 첨가하였다. 생성된 혼합물을 주위 온도에서 밤새 교반하였다. 반응물을 메탄올 (200 mL)에 의해 켄칭하고, 감압 하에 농축시켰다. 잔류물을 에틸 아세테이트 (200 mL) 중에 용해시키고, 염수 (100 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 (4-브로모-3-플루오로페닐)메탄올을 무색 고체로서 수득하였다 (23 g, 98%): 1H NMR (300 MHz, DMSO-d6) δ 7.63 (t, J = 7.8 Hz, 1H), 7.29-7.25 (m, 1H), 7.12 (t, J = 0.9 Hz, 1H), 5.38 (t, J = 5.7 Hz, 1H), 4.48 (d, J = 5.7 Hz, 2H).
단계 2: 1-브로모-4-(클로로메틸)-2-플루오로벤젠의 합성. 디클로로메탄 (500 mL) 중 (4-브로모-3-플루오로페닐)메탄올 (46 g, 0.23 mol)의 용액에 0℃에서 아황산 디클로라이드 (107 g, 0.89 mol)를 첨가하고, 이어서 N,N-디메틸포름아미드 (1 mL)를 첨가하였다. 생성된 혼합물을 주위 온도에서 3시간 동안 교반하였다. 혼합물을 감압 하에 농축시키고, 잔류물을 에틸 아세테이트 (150 mL) 중에 용해시키고, 염수 (200 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 1-브로모-4-(클로로메틸)-2-플루오로벤젠을 황색 오일로서 수득하였다 (47.5 g, 95%): 1H NMR (300 MHz, DMSO-d6) δ 7.72 (t, J = 7.8 Hz, 1H), 7.49-7.45 (m, 1H), 7.26-7.23 (m, 1H), 4.75 (s, 2H).
단계 3: 디에틸 2-(4-브로모-3-플루오로벤질)말로네이트의 합성. N,N-디메틸포름아미드 (200 mL) 중 디에틸 말로네이트 (59.8 g, 0.37 mol)의 용액을 수소화나트륨 (14.9 g, 0.37 mol) (미네랄 오일 중에 분산된 60% w/w)으로 주위 온도에서 30분에 동안 처리하고, 이어서 1-브로모-4-(클로로메틸)-2-플루오로벤젠 (41.5 g, 0.19 mol)을 0℃에서 30분에 걸쳐 첨가하였다. 생성된 혼합물을 주위 온도에서 16시간 동안 교반한 다음, 포화 수성 염화암모늄 (1500 mL)으로 켄칭하고, 에틸 아세테이트 (3 x 500 mL)로 추출하였다. 합한 유기 층을 염수 (5 x 500 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~2% 에틸 아세테이트로 용리시키면서 정제하여 디에틸 2-(4-브로모-3-플루오로벤질)말로네이트를 무색 오일로서 수득하였다 (36 g, 34%): MS (ESI, m/z): 346.9, 348.9 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 7.40-7.38 (m, 1H), 7.33 (s, 1H), 7.18-7.16 (m, 1H), 4.13-4.05 (m, 4H), 3.94 (t, J = 8.0 Hz, 1H), 3.10 (d, J = 8.0 Hz, 2H), 1.15-1.08 (m, 6H).
단계 4: 2-(4-브로모-3-플루오로벤질)말론산의 합성. 에탄올 (100 mL) 중 디에틸 2-(4-브로모-3-플루오로벤질)말로네이트 (34 g, 58.8 mmol)의 용액을 수산화칼륨의 6 N 수용액 (50 mL, 300 mmol)으로 환류 하에 4시간 동안 처리하였다. 주위 온도로 냉각시킨 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 물 (200 mL)로 희석하고, 진한 염산 (12 N)으로 pH=1로 산성화시켰다. 고체를 여과에 의해 수집하고, 진공 오븐 중에서 건조시켜 2-(4-브로모-3-플루오로벤질)말론산을 백색 고체로서 수득하였다 (16 g, 94%): 1H NMR (400 MHz, DMSO-d6) δ 12.89 (br s, 2H), 7.39-7.32 (m, 1H), 7.29 (d, J = 13.2 Hz, 1H), 7.17-7.11 (m, 1H), 3.69 (t, J = 8.0 Hz, 1H), 3.02 (d, J = 8.0 Hz, 2H).
단계 5: 3-(4-브로모-3-플루오로페닐)프로판산의 합성. 크실렌 (150 mL) 중 2-(4-브로모-3-플루오로벤질)말론산 (16 g, 55 mmol)의 현탁액을 4시간 동안 환류하였다. 주위 온도로 냉각시킨 후, 크실렌을 감압 하에 증발에 의해 제거하여 3-(4-브로모-3-플루오로페닐)프로판산을 무색 고체로서 수득하였다 (13 g, 94%): 1H NMR (400 MHz, DMSO-d6) δ 12.21 (br s, 1H), 7.32-7.29 (m, 2H), 7.16-7.13 (m, 1H), 2.83 (t, J = 7.6 Hz, 2H), 2.56 (d, J = 7.6 Hz, 2H).
단계 6: 6-브로모-5-플루오로-2,3-디히드로-1H-인덴-1-온의 합성. 3-(4-브로모-3-플루오로페닐)프로판산 (60 g, 0.24 mol) 및 폴리인산 (300 mL)의 혼합물을 80℃에서 160시간 동안 유지하였다. 주위 온도로 냉각시킨 후, 혼합물을 빙수 (1200 g)에 붓고, 에틸 아세테이트 (3 x 500 mL)로 추출하였다. 합한 유기 층을 염수 (300 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 5~10% 에틸 아세테이트로 용리시키면서 정제하여 6-브로모-5-플루오로-2,3-디히드로-1H-인덴-1-온을 담황색 고체로서 수득하였다 (26 g, 47%): MS (ESI, m/z): 229.0, 231.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 7.92 (d, J = 6.9 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 3.08 (t, J = 5.4 Hz, 2H), 2.68 (d, J = 5.4 Hz, 2H).
단계 7: (E)-6-브로모-5-플루오로-2-(히드록시이미노)-2,3-디히드로-1H-인덴-1-온의 합성. 디에틸 에테르 (150 mL) 및 디클로로메탄 (50 mL) 중 6-브로모-5-플루오로-2,3-디히드로-1H-인덴-1-온 (22 g, 96 mmol)의 용액에 0℃에서 메탄올 (25 mL, 주위 온도에서 HCl로 포화됨) 및 이소펜틸 니트라이트 (16.9 g, 144 mmol)를 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하였다. 여과를 수행하고, 필터 케이크를 차가운 디에틸 에테르 (2 x 50 mL)로 세척하여 (E)-6-브로모-5-플루오로-2-(히드록시이미노)-2,3-디히드로-1H-인덴-1-온을 담황색 고체로서 수득하였다 (15 g, 60%): MS (ESI, m/z): 258.0, 260.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 12.78 (s, 1H), 8.06 (d, J = 6.9 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 3.75 (s, 2H).
단계 8: 1,3,7-트리브로모-6-플루오로이소퀴놀린 (8)의 합성. 1,2-디클로로에탄 (200 mL, 건조 HCl로 포화됨) 중 (E)-6-브로모-5-플루오로-2-(히드록시이미노)-2,3-디히드로-1H-인덴-1-온 (13.5 g, 52.3 mmol)의 용액에 주위 온도에서 포스포릴 트리브로마이드 (30.0 g, 105 mmol)를 첨가하였다. 생성된 혼합물을 80℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 감압 하에 농축시키고, 잔류물을 빙수 (500 g) 상에 조심스럽게 부었다. 여과를 수행하고, 필터 케이크를 물 (2 x 100 mL)로 세척하고, 진공 오븐 중에서 건조시켜 1,3,7-트리브로모-6-플루오로이소퀴놀린을 담황색 고체로서 수득하였다 (14 g, 63%): MS (ESI, m/z): 384.0, 386.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.38 (d, J = 6.6 Hz, 1H), 8.24 (s, 1H), 7.96 (d, J = 9.3 Hz, 1H).
단계 9: 3,7-디브로모-6-플루오로이소퀴놀린의 합성. 아세트산 (100 mL) 중 1,3,7-트리브로모-6-플루오로이소퀴놀린 (13.5 g, 35.2 mmol)의 교반 용액에 주위 온도에서 HI의 55% 수용액 (50 mL) 및 적린 (2.7 g, 88.1 mmol)을 첨가하였다. 생성된 용액을 110℃에서 2시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 감압 하에 농축시켰다. 잔류물을 에틸 아세테이트 (300 mL)로 녹이고, 중탄산나트륨의 포화 수용액 (100 mL)으로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~6% 에틸 아세테이트로 용리시키면서 정제하여 3,7-디브로모-6-플루오로이소퀴놀린을 회백색 고체로서 수득하였다 (7 g, 62%): MS (ESI, m/z): 306.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.15 (s, 1H), 8.68 (d, J = 6.9 Hz, 1H), 8.20 (s, 1H), 7.94 (d, J = 9.3 Hz, 1H).
단계 10: 3,7-디브로모이소퀴놀린-6-아민 (10)의 합성. 1,4-디옥산 (150 mL) 중 3,7-디브로모-6-플루오로이소퀴놀린 (5.0 g, 16.4 mmol)의 용액에 건조 암모니아 기체를, 생성된 용액이 0℃에서 포화될 때까지 버블링하였다. 생성된 용액을 고압 오토클레이브에 넣고, 120℃에서 24시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~8% 에틸 아세테이트로 용리시키면서 정제하여 3,7-디브로모이소퀴놀린-6-아민을 담황색 고체로서 수득하였다 (2.5 g, 48%): MS (ESI, m/z): 302.7 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 8.76 (s, 1H), 8.27 (s, 1H), 7.73 (s, 1H), 6.93 (s, 1H), 6.34 (br s, 2H).
단계 11: tert-부틸 (3,7-디브로모이소퀴놀린-6-일)카르바메이트 (11)의 합성. 디클로로메탄 (50 mL) 중 3,7-디브로모이소퀴놀린-6-아민 (2.50 g, 8.28 mmol)의 용액에 주위 온도에서 트리에틸아민 (2.51 g, 24.84 mmol), 디-tert-부틸 디카르보네이트 (5.42 g, 24.84 mmol) 및 N,N-디메틸피리딘-4-아민 (51 mg, 0.41 mmol)을 첨가하였다. 추가로 4시간 후, 생성된 용액을 감압 하에 농축시키고, 잔류물을 메탄올 (50 mL) 중에 용해시키고, 이어서 탄산칼륨 (2.5 g, 18.11 mmol)을 첨가하였다. 생성된 혼합물을 50℃에서 30분 동안 교반하였다. 주위 온도로 냉각시킨 후, 여과를 수행하고, 여과물을 감압 하에 농축시켜 잔류물을 수득하였으며, 이를 실리카 겔 칼럼 크로마토그래피에 의해 석유 에테르 중 1~5% 에틸 아세테이트로 용리시키면서 정제하여 tert-부틸 (3,7-디브로모이소퀴놀린-6-일)카르바메이트를 회백색 고체로서 수득하였다 (1.8 g, 52%): MS (ESI, m/z): 402.8 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.05 (s, 1H), 8.75 (s, 1H), 8.54 (s, 1H), 8.20 (s, 1H), 8.18 (s, 1H), 1.50 (s, 9H).
단계 12: tert-부틸 (7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-일)카르바메이트 (12)의 합성. 테트라히드로푸란 (10 mL) 중 tert-부틸 (3,7-디브로모이소퀴놀린-6-일)카르바메이트 (1.2 g, 2.98 mmol)의 교반 용액에 질소 분위기 하에 주위 온도에서 1H-피롤로[2,3-c]피리딘 (0.71 g, 5.97 mmol), t-BuXPhos 팔라듐(II) 비페닐-2-아민 메실레이트 (0.71 g, 0.89 mmol) 및 소듐 2-메틸프로판-2-올레이트 (1.15 g, 11.94 mmol)를 첨가하였다. 생성된 혼합물을 70℃에서 2시간 동안 마이크로웨이브로 조사하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 tert-부틸 (7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-일)카르바메이트를 담황색 고체로서 수득하였다 (0.2 g, 16%): MS (ESI, m/z): 439.0, 441.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.72 (s, 1H), 9.31 (s, 1H), 8.73 (s, 1H), 8.59 (s, 1H), 8.37-8.34 (m, 2H), 8.29-8.28 (m, 2H), 7.67 (d, J = 4.8 Hz, 1H), 6.88 (d, J = 3.3 Hz, 1H), 1.50 (s, 9H).
단계 13: 7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민의 합성. 디클로로메탄 (20 mL) 중 tert-부틸 (7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-일)카르바메이트 (0.47 g, 1.07 mmol)의 용액을 2,2,2-트리플루오로아세트산 (1.14 g, 10 mmol)으로 주위 온도에서 2시간 동안 처리하였다. 반응물을 물 (50 mL)로 켄칭하고, 중탄산나트륨 (0.84 g, 10 mmol)으로 중화시켰다. 생성된 혼합물을 디클로로메탄 (3 x 100 mL)으로 추출하고, 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시켜 7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민을 담황색 고체로서 수득하였다 (0.35 g, 95%): MS (ESI, m/z): 339.0, 341.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.65 (s, 1H), 9.06 (s, 1H), 8.34 (s, 1H), 8.31-8.17 (m, 2H), 7.84 (s, 1H), 7.65 (d, J = 5.4 Hz, 1H), 7.10 (s, 1H), 6.82 (d, J = 3.0 Hz, 1H), 6.31 (br s, 2H).
단계 14: 7-브로모-6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린의 합성.
단계 1: 물 (5 mL) 중 황산제2구리 (1 g, 6.29 mmol)의 용액을 주위 온도에서 물 (5 mL) 중 아황산나트륨 (1 g, 7.94 mmol)의 교반 용액에 첨가하였다. 10분 후, 여과를 수행하고, 필터 케이크를 물 (3 x 10 mL)로 세척하여 습윤 아황산제2구리를 갈색 고체로서 수득하였으며, 이를 주위 온도에서 아질산나트륨의 포화 수용액 (50 mL) 중에 용해시켰다.
단계 2: 아세토니트릴 (20 mL) 및 물 (20 mL) 중 7-브로모-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-6-아민 (0.3 g, 0.88 mmol)의 현탁액에 트리플루오로메탄술폰산 (0.65, 4.4 mmol)을 첨가하고, 이어서 0℃에서 아질산나트륨 (61 mg, 0.88 mmol)을 첨가하였다. 15분 후, 생성된 용액을 상기 용액에 10분에 걸쳐 첨가하였다. 추가로 10분 후, 암모니아의 25% 수용액 (10 mL)을 첨가하고, 생성된 혼합물을 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1% 메탄올로 용리시키면서 정제하여 7-브로모-6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다 (70 mg, 20%): MS (ESI, m/z): 368.8, 370.8 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.75 (s, 1H), 9.55 (s, 1H), 8.86 (s, 1H), 8.77 (s, 1H), 8.47 (s, 1H), 8.37 (s, 1H), 8.33 (d, J = 7.2 Hz, 1H), 7.69 (d, J = 5.4 Hz, 1H), 6.93 (d, J = 3.3 Hz, 1H).
단계 15: 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민의 합성. 톨루엔 (15 mL) 중 7-브로모-6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (50 mg, 0.14 mmol)의 현탁액에 질소 분위기 하에 디페닐메탄이민 (73.6 mg, 0.41 mmol), 탄산세슘 (88 mg, 0.27 mmol), XantPhos (15.7 mg, 0.027 mmol) 및 트리스(디벤질리덴아세톤)디팔라듐(0) (14 mg, 0.014 mmol)을 첨가하였다. 생성된 혼합물을 90℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 생성된 혼합물을 감압 하에 농축시키고, 잔류물을 테트라히드로푸란 (20 mL)으로 녹이고, 이어서 히드로클로라이드의 2 N 수용액 (3.0 mL)을 첨가하였다. 주위 온도에서 2시간 동안 교반한 후, 생성된 혼합물을 중탄산나트륨의 포화 수용액 (50 mL)으로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민을 자주색 고체로서 수득하였다 (35 mg, 90%): MS (ESI, m/z): 305.9 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.52 (s, 1H), 9.23 (s, 1H), 8.86 (s, 1H), 8.27-8.199 (m, 3H), 7.66 (d, J = 5.1 Hz, 1H), 7.57 (s, 1H), 6.97 (br s, 2H), 6.83 (d, J = 3.0 Hz, 1H).
단계 16: tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-{1H-피롤로[2,3-c]피리딘-1-일}이소퀴놀린-7-일)카르바메이트 (105a)의 합성. N,N-디메틸포름아미드 (10 mL) 중 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민 (35 mg, 0.11 mmol)의 용액에 주위 온도에서 트리에틸아민 (35 mg, 0.34 mmol), 디-tert-부틸 디카르보네이트 (75 mg, 0.34 mmol) 및 N,N-디메틸피리딘-4-아민 (5 mg, 0.04 mmol)을 첨가하였다. 1시간 후, 반응물을 물 (50 mL)로 켄칭하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 염수 (3 x 30 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 정제용-TLC에 의해 디클로로메탄 중 4% 메탄올로 용리시키면서 정제하여 tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-{1H-피롤로[2,3-c]피리딘-1-일}이소퀴놀린-7-일)카르바메이트를 황색 고체로서 수득하였다 (45 mg, 78%): MS (ESI, m/z): 506.0 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, 1H), 9.59 (s, 1H), 8.94 (s, 1H), 8.60 (s, 1H), 8.48 (s, 1H), 8.37 (d, J = 3.6 Hz, 1H), 8.32 (d, J = 5.1 Hz, 1H), 7.71 (d, J = 5.4 Hz, 1H), 6.94 (d, J = 3.3 Hz, 1H), 1.36 (s, 18H).
실시예 51
[18F] 1-(5-(1-(2-플루오로에틸)-1H-피라졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 ([18F]-104)의 합성:
<반응식 47>
Figure 112017002878210-pct00084
단계 1: 1-(5-(1H-피라졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (50-1)의 합성. 1,4-디옥산 (20 mL) 및 물 (5 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.31 mmol, 1-1)의 용액에 1H-피라졸-3-일보론산 (53 mg, 0.47 mmol), 탄산칼륨 (129 mg, 0.93 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(0) (18 mg, 0.016 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 디클로로메탄 (3 x 100 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~5% 메탄올로 용리시키면서 정제하여 1-(5-(1H-피라졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘을 무색 고체로서 수득하였다: MS (ESI, m/z): 262.1 [M + 1]+; 1H NMR (400 MHz, d6-DMSO) δ 13.09 (s, 1H), 9.78 (s, 1H), 9.06 (s, 1H), 8.40 (dd, J = 1.6 Hz, 6.8 Hz, 1H), 8.30 (s, 1H), 8.28 (d, J = 5.2 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.89 (s, 1H), 7.67 (d, J = 5.6 Hz, 1H), 6.91 (s, 1H), 6.86 (d, J = 3.2 Hz, 1H).
단계 2: 2-(3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-1H-피라졸-1-일)에틸 4-메틸벤젠술포네이트 (50-2)의 합성. 아세토니트릴 (20 mL) 중 1-(5-(1H-피라졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (0.20 g, 0.77 mmol)의 용액에 주위 온도에서 탄산세슘 (0.50 g, 1.53 mmol) 및 에탄-1,2-디일 비스(4-메틸벤젠술포네이트) (0.42 g, 1.15 mmol)를 첨가하였다. 60℃에서 2시간 동안 교반한 후, 반응물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.5~1.5% 메탄올로 용리시키면서 정제하여 2-(3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-1H-피라졸-1-일)에틸 4-메틸벤젠술포네이트를 회백색 고체로서 수득하였다: MS (ESI, m/z): 460.2 [M + 1]+; 1H NMR (300 MHz, d6-DMSO) δ 10.03 (s, 1H), 9.02 (d, J = 3.3 Hz, 1H), 8.98 (d, J = 2.1 Hz, 1H), 8.52 (d, J = 5.7 Hz, 1H), 8.37 (dd, J = 2.4 Hz, 6.3 Hz, 1H), 8.30 (d, J = 6.3 Hz, 1H), 8.09 (d, J = 9.3 Hz, 1H), 7.83 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.30 (s, 1H), 6.88 (d, J = 1.5 Hz, 1H), 4.45 (br s, 4H), 2.23 (s, 3H).
단계 3: [18F] 1-(5-(1-(2-플루오로에틸)-1H-피라졸-3-일)피리딘-2-일)-1H-피롤로[2,3-c]피리딘 ([18F]-104)의 방사화학적 합성: DMSO 또는 DMF (0.25 ml) 중 2-(3-(6-(1H-피롤로[2,3-c]피리딘-1-일)피리딘-3-일)-1H-피라졸-1-일)에틸 4-메틸벤젠술포네이트 (1 mg)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 110℃ (75 W)에서 10분 동안 가열하였다. < 50℃로 냉각시킨 후, 반응물을 H2O (0.6 ml)로 희석하고, 혼합하고, 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스(Zorbax Eclipse) XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트(Agilent))를 사용하여 정제하였다. 이동상은 15분 동안 30에서 70%로의 아세토니트릴 / 수성 NaH2PO4 (10 mM)였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (워터스(Waters))에 의해 유량 1 mL/분에서 제미니, 5 μm, 4.6 x 150 mm 칼럼 (페노메넥스(Phenomenex))을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 50% 및 물 중 0.1% 트리플루오로아세트산 50%로 이루어진 혼합물이었다. [18F]-104의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 104의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔(Bioscan))를 사용하여 결정하였다. 화합물 [18F]-104에 대한 체류 시간은 4.2분이고, 화학적 및 방사화학적 순도는 100%였다.
실시예 52
[18F] 7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 ([18F]-17)의 방사화학적 합성:
<반응식 48>
Figure 112017002878210-pct00085
단계 1: 7-(메틸티오메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (51-1)의 합성. N,N-디메틸포름아미드 (6 mL) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-올 (0.4 g, 1.53 mmol, 15)의 용액을 수소화나트륨 (80 mg, 2 mmol, 미네랄 오일 중에 분산된 60% w/w)으로 0℃에서 10분 동안 처리하고, 이어서 (클로로메틸)(메틸)술판 (289 mg, 3 mmol)을 첨가하였다. 생성된 혼합물을 주위 온도에서 2시간 동안 교반하고, 염화암모늄의 포화 수용액 (30 mL)으로 켄칭하였다. 생성된 혼합물을 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 20 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~2% 메탄올로 용리시키면서 정제하여 7-(메틸티오메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 담황색 고체로서 수득하였다: MS (ESI, m/z): 322.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.64 (s, 1H), 9.30 (s, 1H), 8.32 (d, J = 3.3 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 8.24 (s, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.68 (dd, J = 0.9 Hz, 5.1 Hz, 1H), 7.57 (dd, J = 2.4 Hz, 9.0 Hz, 1H), 6.86 (d, J = 3.3 Hz, 1H), 5.47 (s, 2H), 2.25 (d, J = 4.5 Hz, 3H).
단계 2: 3-(1H-피롤로[2,3-c]피리딘-1-일)-7-((6-(트리플루오로메틸)-1H-벤조[d][1,2,3]트리아졸-1-일옥시)메톡시)이소퀴놀린 (51-3)의 합성. 디클로로메탄 (10 mL) 중 7-(메틸티오메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (0.15 g, 0.46 mmol)의 용액에 0℃에서 술푸릴 디클로라이드 (0.18 g, 1.31 mmol)를 첨가하였다. 생성된 용액을 주위 온도에서 1시간 동안 교반하고, 감압 하에 농축시켜 조 7-(클로로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린을 수득하였다. 디클로로메탄 (10 mL) 중 상기 조 7-(클로로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린의 용액을 0℃에서 N,N-디메틸포름아미드 (20 mL) 중 6-(트리플루오로메틸)-1H-벤조[d][1,2,3]트리아졸-1-올 (0.3 g, 1.48 mmol) 및 수소화나트륨 (59 mg, 1.48 mmol)의 용액에 첨가하였다. 주위 온도에서 추가로 3시간 후, 반응물을 염화암모늄의 포화 수용액 (50 mL)을 첨가하여 켄칭하고, 에틸 아세테이트 (3 x 60 mL)로 추출하였다. 합한 유기 층을 염수 (3 x 20 mL)로 세척하고, 무수 황산나트륨 상에서 건조시켰다. 여과한 후, 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 1~3% 메탄올로 용리시키면서 정제하여 3-(1H-피롤로[2,3-c]피리딘-1-일)-7-((6-(트리플루오로메틸)-1H-벤조[d][1,2,3]트리아졸-1-일옥시)메톡시)이소퀴놀린을 무색 고체로서 수득하였다: MS (ESI, m/z): 477.1 [M + 1]+; 1H NMR (400 MHz, DMSO-d6) δ 9.68 (s, 1H), 9.42 (s, 1H), 8.36-8.33 (m, 3H), 8.30 (d, J = 5.6 Hz, 1H), 8.15 (s, 1H), 8.13-8.11 (m, 1H), 7.91 (s, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.68 (dd, J = 0.4 Hz, 5.2 Hz, 1H), 7.64 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 6.88 (d, J = 3.2 Hz, 1H), 6.48 (s, 2H).
단계 3: [18F] 7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 ([18F]-17)의 방사화학적 합성. DMSO (0.25 mL) 및 아세토니트릴 (0.15 mL) 중 3-(1H-피롤로[2,3-c]피리딘-1-일)-7-((6-(트리플루오로메틸)-1H-벤조[d][1,2,3]트리아졸-1-일옥시)메톡시)이소퀴놀린 (0.6 mg, 51-3)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 90℃에서 5분 동안에 이어서 110℃에서 5분 동안 및 120℃에서 5분 동안 가열하였다 (50 W). < 50℃로 냉각시킨 후, 반응물을 H2O (0.6 mL)로 희석하고, 혼합하고, 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스 XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트)를 사용하여 정제하였다. 이동상은 15분 동안 30에서 70%로의 아세토니트릴 / 수성 NaH2PO4 (10 mM)였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (워터스)에 의해 유량 2 mL/분에서 엑스브리지 페닐(Xbridge Phenyl), 3.5 μm, 4.6 x 150 mm 칼럼 (워터스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 50% 및 물 중 0.1% 트리플루오로아세트산 50%로 이루어진 혼합물이었다. [18F]-17의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 17의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. 화합물 [18F]-17에 대한 체류 시간은 5.3분이었다.
실시예 53
[18F] 1-(2'-플루오로-[3,4'-비피리딘]-6-일)-1H-피롤로[2,3-c]피리딘 ([18F]-44)의 방사화학적 합성:
<반응식 49>
Figure 112017002878210-pct00086
단계 1: 1-(6'-니트로-3,4'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘 (52-1)의 합성. 1,4-디옥산 (30 mL) 중 1-(5-아이오도피리딘-2-일)-1H-피롤로[2,3-c]피리딘 (100 mg, 0.31 mmol)의 용액에 주위 온도에서 비스(피나콜레이토)디보론 (158 mg, 0.62 mmol), 아세트산칼륨 (60 mg, 0.62 mmol) 및 [1,1'-비스(디페닐포스피노)페로센]-디클로로팔라듐(II) (23 mg, 0.031 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 3시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 4-브로모-2-니트로피리딘 (125 mg, 0.62 mmol)을 혼합물에 첨가하고, 이어서 탄산칼륨 (85 mg, 0.62 mmol), 물 (3 mL) 및 테트라키스(트리페닐-포스핀)팔라듐(0) (35 mg, 0.031 mmol)을 첨가하였다. 생성된 혼합물을 질소 분위기 하에 80℃에서 4시간 동안 교반하였다. 주위 온도로 냉각시킨 후, 혼합물을 물 (100 mL)로 희석하고, 디클로로메탄 (3 x 50 mL)으로 추출하였다. 합한 유기 층을 무수 황산나트륨 상에서 건조시키고, 여과하였다. 여과물을 감압 하에 농축시키고, 잔류물을 실리카 겔 칼럼 크로마토그래피에 의해 디클로로메탄 중 0.3~3% 메탄올로 용리시키면서 정제하여 1-(6'-니트로-3,4'-비피리딘-6-일)-1H-피롤로[2,3-c]피리딘을 황색 고체로서 수득하였다: MS (ESI, m/z): 318.1 [M + 1]+; 1H NMR (300 MHz, DMSO-d6) δ 9.93 (s, 1H), 9.24 (d, J = 2.1 Hz, 1H), 8.81-7.92 (m, 2H), 8.65 (dd, J = 2.4 Hz, 8.7 Hz, 1H), 8.47 (d, J = 3.3 Hz, 1H), 8.41 (dd, J = 1.5 Hz, 5.1 Hz, 1H), 8.33 (d, J = 5.1 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 5.7 Hz, 1H), 6.93 (d, J = 3.6 Hz, 1H).
단계 2: [18F] 1-(2'-플루오로-[3,4'-비피리딘]-6-일)-1H-피롤로[2,3-c]피리딘 ([18F]-44)의 방사화학적 합성. DMSO (0.25 mL) 중 1-(2'-니트로-[3,4'-비피리딘]-6-일)-1H-피롤로[2,3-c]피리딘 (0.4 mg, 52-1)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 140℃ (75 W)에서 3분 동안 가열하였다. < 50℃로 냉각시킨 후, 반응물을 H2O (0.6 mL)로 희석하고, 혼합하고, 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스 XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트)를 사용하여 정제하였다. 이동상은 아세토니트릴 / 수성 NaH2PO4 (10 mM) 45 / 55였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (워터스)에 의해 유량 1 mL/분에서 제미니, 5 μm, 4.6 x 150 mm 칼럼 (페노메넥스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 10분 동안 50에서 85%로의 아세토니트릴 / 물 중 0.1% 트리플루오로아세트산 (10 mM)이었다. [18F]-52의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 52의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. 화합물 [18F]-52에 대한 체류 시간은 6.6분이었다.
실시예 54
[18F] d2-7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (d2, [18F]-17)의 방사화학적 합성:
<반응식 50>
Figure 112017002878210-pct00087
단계 1: [d2, 18F]-7-(플루오로메톡시)-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 ([d2, 18F]-17)의 방사화학적 합성: [18F]플루오라이드 함유 음이온 교환 수지를 아세토니트릴/물 (80/20, 0.7 mL) 중 크립토픽스222 (7 mg, 19 μmol) 및 K2CO3 (2.1 mg, 15 μmol)로 용리시키고, 배기된 5-ml V-형상의 바이알로 옮겼다. [18F]플루오라이드를 아르곤 유동 가열 (95℃) 하에 건조시켰다. 추가 분취량의 아세토니트릴 (3 x 0.5 mL)을 90℃에서 공비 건조를 위해 첨가하였다. 건조 아세토니트릴 중 디브로모메탄-d2 (50 μL)를 건조 [18F]플루오라이드에 첨가하고, 반응 용기를 밀봉하였다. 혼합물을 95℃에서 5분 동안 가열하였다. 냉각시킨 후, 반응 용기를 열고, [d2, 18F]브로모플루오로메탄을 실온에서 테플론 튜빙을 통해 디메틸포름아미드 (300 μL) 중 15 (0.36mg, 1.38 μmol) 및 탄산세슘 (4 mg, 120 μmol)을 함유하는 0.9 mL 바이알로 옮겼다. 생성된 반응 혼합물을 70℃에서 15분 동안 가열하였다. 용액을 실온에서 물 (700 μL)을 함유하는 0.9 mL 바이알로 옮기고, 혼합하고, 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스 XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트)를 사용하여 정제하였다. 이동상은 15분 동안 30에서 70%로의 아세토니트릴 / 수성 NaH2PO4 (10 mM)였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (워터스)에 의해 유량 2 mL/분에서 엑스브리지 페닐, 3.5 μm, 4.6 x 150 mm 칼럼 (워터스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 50% 및 물 중 0.1% 트리플루오로아세트산 50%로 이루어진 혼합물이었다. [d2, 18F]-17 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 17의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. [d2, 18F]-17에 대한 체류 시간은 5.3분이었다.
실시예 55
[18F]6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 [18F]-9의 방사화학적 합성
Figure 112017002878210-pct00088
DMF (0.25 mL) 중 명칭 6-니트로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린 (0.3 mg, 9a)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 140℃ (65 W)에서 4분 동안 가열하였다. < 50℃로 냉각시킨 후, 반응물을 H2O (0.6 mL)로 희석하고, 혼합하고, 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스 XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트)를 사용하여 정제하였다. 이동상은 15분 동안 50에서 80%로의 아세토니트릴 / 수성 NaH2PO4 (10 mM)였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (워터스)에 의해 유량 1 mL/분에서 오닉스 모노리식(Onix Monolithic) C-18 100 x 3.0 mm 칼럼 (페노메넥스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 / 물 0.1% 트리플루오로아세트산 : 30/70이었다. [18F]-9의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 9의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. 화합물 [18F]-9에 대한 체류 시간은 3.2분이었다.
실시예 56
[18F] 6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-5-아민 ([18F]-18)의 방사화학적 합성.
Figure 112017002878210-pct00089
DMF (0.25 mL) 중 tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-[1H-피롤로[2,3-c]피리딘-1-일]이소퀴놀린-5-일)카르바메이트 (1 mg, 18a)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 90℃ (55 W)에서 3분 동안, 이어서 110℃ (55 W)에서 3분 동안, 이어서 120℃ (55 W)에서 3분 동안 및 140℃ (55 W)에서 3분 동안 가열하였다. TFA (물 중 5%)를 첨가하고, 혼합물을 110℃ (55 W)에서 3분 동안 가열하였다. < 50℃로 냉각시킨 후, 반응물을 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 4 mL/분에서 제미니 C6 - 페닐 110A, 5 μm, 10 x 250 mm (페노메넥스)를 사용하여 정제하였다. 이동상은 에탄올 / 아세트산나트륨 pH 4 (10 mM) 25 / 75였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (애질런트)에 의해 유량 2 mL/분에서 엑스브리지 페닐 3.5 μ 4.6x150 mm 칼럼 (워터스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 / 아세트산나트륨 pH4 (10 mM): 20/80이었다. [18F]-18의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 18의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. 화합물 [18F]-18에 대한 체류 시간은 7.1분이었다.
실시예 57
[18F]6-플루오로-3-(1H-피롤로[2,3-c]피리딘-1-일)이소퀴놀린-7-아민 ([18F]-105)의 방사화학적 합성.
Figure 112017002878210-pct00090
DMF (0.25 mL) 중 tert-부틸 N-[(tert-부톡시)카르보닐]-N-(6-니트로-3-{1H-피롤로[2,3-c]피리딘-1-일}이소퀴놀린-7-일)카르바메이트 (1.5 mg, 105a)의 용액을 건조 [18F]플루오라이드를 함유하는 마이크로웨이브 바이알에 첨가하고, 배기 라인을 제거하고, 반응 혼합물을 90℃ (55 W)에서 3분 동안, 이어서 110℃ (55 W)에서 3분 동안, 이어서 120℃ (55 W)에서 3분 동안 및 140℃ (55 W)에서 3분 동안 가열하였다. TFA (물 중 5%)를 첨가하고, 혼합물을 110℃ (55 W)에서 3분 동안 가열하였다. < 50℃로 냉각시킨 후, 반응물을 반정제용 HPLC 칼럼에 주입하였다. 생성물을 유량 5 mL/분에서 조르박스 이클립스 XDB-C-18, 5 μm, 9.4 x 250 mm (애질런트)를 사용하여 정제하였다. 이동상은 15분 동안 30에서 70%로의 아세토니트릴 / 수성 NaH2PO4 (10 mM) 구배였다. 관심 방사성 분획을 수집하고, 음압 하에 증발시키고, 0.9% 염수 용액 (3 mL)으로 희석하고, 멸균 용기로 옮겼다. 최종 생성물을 분석용 HPLC 시스템 (애질런트)에 의해 유량 2 mL/분에서 엑스브리지 페닐 3.5 μ 4.6x150 mm 칼럼 (워터스)을 사용하여 화학적 및 방사화학적 순도에 대해 시험하였다. 이동상은 아세토니트릴 / 아세트산나트륨 pH4 (10 mM): 20/80이었다. [18F]-105의 농도를 자외선 검출기 (254 nm)에 의해 결정하였다. 생성물의 동일성의 확인을 화합물 105의 샘플의 공주입에 의해 결정하고, 방사화학적 순도를 아이오딘화나트륨 검출기 (바이오스캔)를 사용하여 결정하였다. 화합물 [18F]-105에 대한 체류 시간은 5.4분이었다.
조직 균질물 결합 검정을 위한 절차
알츠하이머병 (AD)의 동결된 인간 뇌 샘플을 애널리틱 바이올로지칼 서비시즈 인크.(Analytic Biological Services Inc.)로부터 구입하였다. 이들은 AD의 임상 진단을 받은 공여자로부터의 사후 조직이었다. 조직 제제를 회백질에 대해 풍부화시키기 위해, 가능한 한 많은 백질을 전두 피질로부터 절제해 내었다. 회백질 풍부 전두 피질의 뇌 균질물은 조직을 빙냉 포스페이트 완충 염수 (PBS), pH 7.4 중에 1 mL당 80 mg 습윤 중량 조직으로 16의 폴리트론(Polytron) 설정에서 4℃에서 45초 동안 균질화함으로써 제조하였다. 균질물을 빙냉 PBS로 1 mL당 30 mg 습윤 중량 조직으로 추가로 희석하고, 추가로 1분 동안 상기 기재된 바와 같이 균질화하였다. 균질물을 5 ml/튜브 중에 분취하고, 사용될 때까지 -70℃에서 저장하였다.
고온 포화 결합 검정을 위해, 실시예 49의 [3H]화합물에 대해 0.02 내지 57 nM 범위인 다양한 농도의 방사성리간드를 검정 완충제 (PBS 플러스 0.1% BSA) 플러스 20% DMSO 중에 제조하였다. 0.002 내지 5.7 nM 범위인 방사성리간드의 최종 농도 및 100 μg 습윤 중량의 최종 막/검정 튜브 (인큐베이션, 여과, 및 검정에 사용되는 방사성리간드 양의 결정은 하기 기재되어 있음)를 위해 25 μl의 방사성리간드를 225 μl의 검정 완충제 중 0.5 mg/ml로 희석된 막 희석물에 첨가하였다. 비표지된 화합물의 자기-블록을 사용하여 비-특이적 결합을 결정하였다. 포화 데이터를 그래프패드(Graphpad)/프리즘(Prism) 소프트웨어를 사용하여 분석하였다. 도 1은 [3H]-6의 고온 포화 결합의 예를 제시하고 있다. 방사성리간드는 0.2 nM의 측정된 해리 상수로 AD 뇌 균질물에서 타우에 대해 높은 친화도를 나타내었다.
치환 타우 결합 검정을 위해, 비표지 시험 화합물을 DMSO 중에 1 mM로 용해시켰다. 시험 화합물의 다양한 농도로의 희석은 100% DMSO 중에 1000x 최종 검정 농도로 이루어지고, 0.225 μl 분취물을 검정 플레이트에 분배하였다. 뇌 균질물을 검정 완충제 중에 원래 30 mg/mL 부피로부터 0.5 mg/mL로 희석하고, 200 μl를 100 μg 습윤 중량/검정 튜브의 최종 농도를 위해 검정 플레이트에 첨가하였다. [3H]-6을 검정 완충제 플러스 20% DMSO 중 10x 최종 농도로 제조하고, 25 μl를 0.25 nM의 최종 검정 농도를 위해 검정 플레이트에 첨가하였다. 검정 플레이트를 실온 (25℃)에서 90분 동안 인큐베이션하였다. 비결합 및 결합 리간드를 팩커드 유니필터 하베스터(Packard UniFilter Harvester)를 사용하여 GF/C 필터 플레이트 (0.2% 폴리에틸렌이민으로 30분 동안 전처리됨) 상의 결합물의 여과에 의해 분리하고, 비결합물을 웰당 2.5 ml의 빙냉 5 mM 트리스, pH 7.4로 세척해 내었다. 필터 플레이트를 진공 오븐 중에서 1시간 동안 건조시키고, 50 μl/웰 마이크로신트(MicroScint)-20을 첨가하였다. 플레이트를 팩커드 탑카운트(Topcount)에 의해 웰당 1분 카운팅하였다. 검정에 사용되는 방사성리간드의 총량을 25 μl의 10x 리간드 원액을 카운팅함으로써 결정하였다. 데이터를 액티비티 베이스(Activity Base) 소프트웨어를 사용하여 분석하여 4p 핏의 용량 반응을 생성하고; Ki 값을 계산하였다. 본 발명의 대표적인 화합물에 대한 타우 Ki 데이터는 표 1에 밝혀져 있다. 도 2에 제시된 바와 같이, 화합물 6 (비표지)은 0.43 nM의 Ki 값으로 [3H]-6을 자기-치환하였다.
<도 1> AD 뇌 균질물에서의 [3H]-6 (실시예 49)의 포화 결합
Figure 112017002878210-pct00091
<도 2> AD 뇌 균질물에서의 [6]의 치환 결합
Figure 112017002878210-pct00092
AD 및 비-AD 인간 뇌 샘플로부터의 균질물을 항-Aβ 항체 6E10 및 항-포스포-타우 항체 PHF6 또는 AT8에 대한 그의 면역반응성에 대해 평가하였다. 가장 높은 수준의 PHF6 또는 AT8 면역반응성을 갖는 뇌 절편을 치환 타우 결합 검정을 위해 선택하고, 낮은 수준의 PHF6 또는 AT8 면역반응성과 조합된 가장 높은 수준의 6E10을 갖는 뇌 절편을 아밀로이드 조직 균질물 결합 검정을 위해 선택하였다.
아밀로이드 결합 검정 (카운터스크린)을 위한 절차는 참조 방사성리간드로서 [3H]-131을 사용하는 타우 결합 검정과 동일하였다.
Figure 112017002878210-pct00093
본 발명의 대표적인 화합물에 대한 타우 Ki 및/또는 아밀로이드 Ki 데이터는 표 1에 밝혀져 있다.
본 발명은 특정의 특정한 특정한 실시양태를 참조하여 기재 및 예시되었지만, 관련 기술분야의 통상의 기술자는 절차 및 프로토콜의 다양한 적합화, 변화, 변형, 치환, 삭제 또는 추가가 본 발명의 취지 및 범주로부터 벗어나지 않으면서 이루어질 수 있다는 것을 인지할 것이다. 따라서, 본 발명은 하기 청구범위의 범주에 의해 정의되며, 이러한 청구범위는 합리적인 한 가장 넓게 해석되도록 의도된다.

Claims (38)

  1. 화학식 I의 화합물 또는 그의 제약상 허용되는 염.
    <화학식 I>
    Figure 112022096803778-pct00094

    여기서
    X는 CH, 또는 N을 나타내고;
    R은 수소, 또는 -C1-6알킬을 나타내고, 상기 알킬은 1 내지 3개의 -CN, CF3, -C1-6알킬, -C2-6알케닐, -C2-6알키닐, C6-10 아릴, -C5-10 헤테로시클릴, NO2, (CH2)n할로겐, -O(CH2)n할로겐, (CH2)nOH, (CH2)nOC1-6알킬, -O(CH2)nC6-10 아릴, -(CH2)nN(H)2, -(CH2)nNHC1-6알킬, -(CH2)nN(C1-6알킬)2, -C(O)N(H)2, -C(O)NHC1-6알킬, -C(O)N(C1-6알킬)2, -N(CH3)(CH2)nOH, -N(CH3)(CH2)nOC1-6알킬, -NHCOH, -NHCOC1-6알킬, -NC1-6알킬COH, -NC1-6알킬COC1-6알킬, -COH, -COC1-6알킬, -NH(CH2)n할로, -NC(O)CC6-10 아릴, -N(CH3)(CH2)n할로겐, C(O)C6-10 아릴, -CO2H, 또는 -CO2C1-6알킬의 기로 임의로 치환되고, 상기 알킬, 알케닐, 알키닐, 아릴, 및 헤테로시클릴은 1 내지 3개의 수소, -C1-6알킬, -OC1-6알킬, -(CH2)nN(H)2, -(CH2)nN(C1-6알킬)2, 또는 할로겐의 기로 임의로 치환되고;
    R1은 수소, -C1-6알킬, -CN, -(CH2)nNH(CH2)nN(R)2, -C2-6알케닐, -(CH2)nOR, 또는 -(CH2)n할로겐을 나타내고;
    R2는 -OC1-6 알킬, -C2-6알케닐R3, -(CH2)nOR, -(CH2)n할로겐, -O(CH2)n할로겐, -C6-10 아릴, -C5-10 헤테로시클릴, -O(CH2)nRa, -N(CH3)(CH2)nOR, -NRC(O)R, -NH(CH2)n할로, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -N(CH3)(CH2)n할로겐, 또는 -C(O)NC6-10 아릴을 나타내고, 상기 알킬, 아릴, 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환되거나, 또는
    인접한 R1은 R2와 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 N, S 및/또는 O가 임의로 개재된 9 내지 10원 비시클릭 고리를 형성할 수 있고, 상기 비시클릭 고리는 1 내지 3개의 Ra의 기로 임의로 치환되고;
    R3은 수소, -C1-6알킬, -(CH2)n할로겐, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, -C6-10 아릴, 또는 -C5-10 헤테로아릴을 나타내고, 상기 알킬, 아릴, 및 헤테로아릴은 1 내지 3개의 Ra의 기로 임의로 치환되고;
    Ra는 -CN, CF3, -C1-6알킬, -C2-6알케닐, -C2-6알키닐, C6-10 아릴, -C5-10 헤테로시클릴, NO2, (CH2)n할로겐, -O(CH2)n할로겐, (CH2)nOR, -O(CH2)nC6-10 아릴, -(CH2)nN(R)2, -C(O)N(R)2, -N(CH3)(CH2)nOR, -NRCOR, -COR, -NH(CH2)n할로, -NC(O)CC6-10 아릴, -N(CH3)(CH2)n할로겐, C(O)C6-10 아릴, 또는 -CO2R을 나타내고, 상기 알킬, 알케닐, 알키닐, 아릴, 및 헤테로시클릴은 1 내지 3개의 Rb의 기로 임의로 치환되고;
    Rb는 수소, -C1-6알킬, -OR, -(CH2)nN(R)2, 또는 할로겐을 나타내고;
    n은 0-4를 나타낸다.
  2. 제1항에 있어서, X는 CH인 화합물.
  3. 제1항에 있어서, X는 N인 화합물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, R2는 -C2-6알케닐R3, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환된 것인 화합물.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 인접한 R1은 R2와 조합하여 9 내지 10원 비사이클 고리를 형성하고, 상기 고리에는 N, S 및/또는 O가 임의로 개재되고, 상기 고리는 1 내지 3개의 Ra의 기로 임의로 치환된 것인 화합물.
  6. 제5항에 있어서, 형성된 비사이클이 임의로 치환된 피롤로피리디닐, 푸로피리디닐, 나프티리디닐, 테트라히드로나프티리디닐, 퀴나졸리닐, 퀴놀리닐, 및 이소퀴놀리닐로 이루어진 군으로부터 선택된 것인 화합물.
  7. 제1항 또는 제2항에 있어서,
    X는 CH이고,
    R2는 -C2-6알케닐R3, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환되고, R3은 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 것인
    화합물.
  8. 제1항 또는 제2항에 있어서,
    X는 CH이고,
    R2는 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 9 내지 10원 비사이클 고리를 형성하고, 상기 비시클릭 고리에는 N, S 및/또는 O가 임의로 개재되고, 상기 비사이클은 1 내지 3개의 Ra의 기로 임의로 치환된 것인
    화합물.
  9. 제8항에 있어서, 형성된 비사이클 고리는 임의로 치환된 피롤로피리디닐, 푸로피리디닐, 나프티리디닐, 테트라히드로나프티리디닐, 퀴놀리닐, 또는 이소퀴놀리닐로 이루어진 군으로부터 선택된 것인 화합물.
  10. 제1항 또는 제3항에 있어서,
    X는 N이고,
    R2는 -C2-6알케닐R3, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -C6-10 아릴, 및 -C5-10 헤테로시클릴로 이루어진 군으로부터 선택되고, 상기 아릴 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환되고,
    R3은 메틸, 에틸, 프로필, (CH2)nF, -(CH2)nN(R)2, -(CH2)nNR(CH2)nN(R)2, 임의로 치환된 페닐, 피리딜 및 티아졸릴로 이루어진 군으로부터 선택된 것인
    화합물.
  11. 제1항 또는 제3항에 있어서,
    X는 N이고,
    R2는 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 9 내지 10원 비사이클 고리를 형성하고, 상기 비시클릭 고리에는 N, S 및/또는 O가 임의로 개재되고, 상기 비사이클은 1 내지 3개의 Ra의 기로 임의로 치환된 것인
    화합물.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서, 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 또는 131I로 동위원소 표지된 화합물.
  13. 제1항에 있어서, 구조 화학식 Ia에 의해 나타내어진 화합물 또는 그의 제약상 허용되는 염.
    <화학식 Ia>
    Figure 112022096803778-pct00095

    여기서 R1 및 R2는 제1항에 기재된 바와 같다.
  14. 제13항에 있어서,
    R2는 -C2-6알케닐R3, C6-10 아릴, -C5-10 헤테로시클릴, -NC(O)C6-10 아릴, -NC(O)C5-10 헤테로시클릴, -N(CH3)(CH2)n할로겐, 및 C(O)NC6-10 아릴로 이루어진 군으로부터 선택되고, 상기 아릴, 및 헤테로시클릴은 1 내지 3개의 Ra의 기로 임의로 치환되고,
    R3은 수소, -(CH2)n할로겐, -(CH2)nN(R)2, (CH2)nNR(CH2)nN(R)2, C6-10 아릴, -C5-10 헤테로아릴로 이루어진 군으로부터 선택되고, 상기 아릴, 및 헤테로아릴은 1 내지 3개의 Ra의 기로 임의로 치환된 것인
    화합물.
  15. 제13항에 있어서, R2는 인접한 R1과 조합하여 R1 및 R2가 부착되어 있는 고리와 함께 9 내지 10원 비사이클 고리를 형성하고, 상기 비시클릭 고리에는 N, S, 및/또는 O가 임의로 개재되고, 상기 비사이클은 1 내지 3개의 Ra의 기에 의해 임의로 치환된 것인 화합물.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서, 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 또는 131I로 동위원소 표지된 화합물.
  17. 제1항에 있어서, 구조 화학식 II에 의해 나타내어진 화합물 또는 그의 제약상 허용되는 염.
    <화학식 II>
    Figure 112017002878210-pct00096

    Figure 112017002878210-pct00097

    여기서 Ib= Ib1, Ib2, Ib3, 또는 Ib4이고, W, W1, W2, W3은 독립적으로 -CH- 및 -N-으로부터 선택되고, R, Ra 및 Rb는 원래 기재된 바와 같다.
  18. 제1항에 있어서, 구조 화학식 III에 의해 나타내어진 화합물.
    <화학식 III>
    Figure 112017002878210-pct00098

    여기서 Ra', Ra", Ra"', 및 Raiv는 독립적으로 수소 및 Ra로부터 선택되고, Ra 및 Rb는 원래 기재된 바와 같다.
  19. 제18항에 있어서,
    Ra', Ra", Ra"', 및 Raiv는 독립적으로 수소, -C1-6알킬, -(CH2)n할로겐, -O(CH2)n할로겐, CN, NO2, (CH2)nOR, -(CH2)nN(R)2, -N(CH3)(CH2)nOR, -NH(CH2)n할로, 및 -N(CH3)(CH2)n할로겐으로 이루어진 군으로부터 선택되고,
    Rb는 수소, C1-6알킬, -OR, -(CH2)nN(R)2, 또는 할로겐으로 이루어진 군으로부터 선택된 것인
    화합물.
  20. 제18항 또는 제19항에 있어서,
    Ra', Ra", Ra"', 및 Raiv는 독립적으로 수소, 아미노, 플루오로, 및 아이오도로 이루어진 군으로부터 선택되고,
    Rb는 수소, 메톡시, 아미노, 메틸 아미노, 디메틸아미노, 및 히드록시로 이루어진 군으로부터 선택된 것인
    화합물.
  21. 제18항 또는 제19항에 있어서,
    Ra', Ra", Ra"', 및 Raiv 중 1개는 아미노이고, Ra', Ra", Ra"', 및 Raiv 중 1개는 플루오로 또는 아이오도이고, Ra', Ra", Ra"', 및 Raiv 중 나머지는 수소이고,
    Rb는 수소인
    화합물.
  22. 제18항 또는 제19항에 있어서, 동위원소 표지된 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 및 131I로부터 선택된 화합물.
  23. 하기로 이루어진 군으로부터 선택된 표 1 및 2에서의 화합물 또는 그의 제약상 허용되는 염.
    <표 1>
    Figure 112022029384835-pct00129

    Figure 112022029384835-pct00130

    Figure 112022029384835-pct00131

    Figure 112022029384835-pct00132

    Figure 112022029384835-pct00133

    Figure 112022029384835-pct00134

    Figure 112022029384835-pct00135

    Figure 112022029384835-pct00136

    Figure 112022029384835-pct00137

    Figure 112022029384835-pct00138

    Figure 112022029384835-pct00139

    Figure 112022029384835-pct00140

    Figure 112022029384835-pct00141

    Figure 112022029384835-pct00142

    Figure 112022029384835-pct00143

    Figure 112022029384835-pct00144

    <표 2>
    Figure 112022029384835-pct00117

    Figure 112022029384835-pct00118

    Figure 112022029384835-pct00119

    Figure 112022029384835-pct00120

    Figure 112022029384835-pct00121
  24. 제18항에 있어서, 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I, 125I 또는 131I로 동위원소 표지된 화합물.
  25. 제23항 또는 제24항에 있어서, 18F 또는 123I로 동위원소 표지된 화합물.
  26. 제23항에 있어서, 18F로 동위원소 표지된 화합물.
  27. 하기 화학식의 화합물 또는 그의 제약상 허용되는 염.
    Figure 112020058550010-pct00125
  28. 제27항에 있어서, 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 76Br, 77Br, 123I, 124I 또는 131I로 동위원소 표지된 화합물.
  29. 구조 화학식 [18F]-18에 의해 나타내어진 동위원소 표지된 화합물 또는 그의 제약상 허용되는 염.
    Figure 112020058550010-pct00126
  30. 구조 화학식 [18F]-18에 의해 나타내어진 동위원소 표지된 화합물.
    Figure 112020058550010-pct00127
  31. 구조 화학식 [18F]-18에 의해 나타내어진 동위원소 표지된 화합물의 제약상 허용되는 염.
    Figure 112020058550010-pct00128
  32. 제1항에 따른 화합물 및 제약상 허용되는 담체를 포함하는, 타우 응집체의 영상화를 위한 제약 조성물.
  33. 방사성-표지된 제1항의 화합물 및 제약상 허용되는 담체를 포함하는, 타우 응집체의 영상화를 위한 조성물.
  34. 검출가능한 양의 제1항의 화학식 I의 화합물 또는 그의 제약상 허용되는 염을 포함하는, 환자에서 알츠하이머병, 가족성 알츠하이머병, 다운 증후군, 정신분열증에서의 인지 결핍, 전두측두엽 치매 (FTD), 진행성 핵상 마비 (PSP), 피질기저 변성 (CBD), 만성 외상성 뇌병증 (CTE), 또는 픽병을 진단하고 그의 치료를 모니터링하는데 있어서 타우 침착물을 측정하기 위한 제약 조성물이며,
    검출가능한 양의 상기 화합물 또는 그의 제약상 허용되는 염을 투여하는 단계, 및
    환자에서 타우 침착물에 대한 상기 화합물의 결합을 검출하는 단계
    를 포함하는 방법에 사용되는 제약 조성물.
  35. 제34항에 있어서, 검출이 양전자 방출 단층촬영 (PET) 영상화, 단일 광자 방출 컴퓨터 단층촬영 (SPECT), 자기 공명 영상화 또는 자가방사선촬영을 수행함으로써 실행되는 것인 제약 조성물.
  36. 제1항에 따른 화합물을 포함하는, 알츠하이머병, 가족성 알츠하이머병, 다운 증후군, 정신분열증에서의 인지 결핍, 전두측두엽 치매 (FTD), 진행성 핵상 마비 (PSP), 피질기저 변성 (CBD), 만성 외상성 뇌병증 (CTE), 또는 픽병을 치료 및/또는 예방하기 위한 제약 조성물.
  37. 삭제
  38. 삭제
KR1020177000709A 2014-06-13 2015-06-09 신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘 KR102478430B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/079834 WO2015188368A1 (en) 2014-06-13 2014-06-13 Pyrrolo[2,3-c]pyridines as imaging agents for neurofibrilary tangles
CNPCT/CN2014/079834 2014-06-13
PCT/US2015/034794 WO2015191506A2 (en) 2014-06-13 2015-06-09 Pyrrolo[2,3-c]pyridines as imaging agents for neurofibrilary tangles

Publications (2)

Publication Number Publication Date
KR20170016481A KR20170016481A (ko) 2017-02-13
KR102478430B1 true KR102478430B1 (ko) 2022-12-15

Family

ID=54832744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177000709A KR102478430B1 (ko) 2014-06-13 2015-06-09 신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘

Country Status (15)

Country Link
US (2) US9808542B2 (ko)
EP (1) EP3154970B1 (ko)
JP (1) JP6513107B2 (ko)
KR (1) KR102478430B1 (ko)
CN (1) CN106661018B (ko)
AU (1) AU2015274843B2 (ko)
BR (1) BR112016028345B1 (ko)
CA (1) CA2948528C (ko)
DK (1) DK3154970T3 (ko)
ES (1) ES2763095T3 (ko)
HU (1) HUE048395T2 (ko)
MX (1) MX2016016384A (ko)
PL (1) PL3154970T3 (ko)
RU (1) RU2695373C2 (ko)
WO (2) WO2015188368A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053484B1 (ko) 2012-12-21 2019-12-06 국립연구개발법인 양자과학기술연구개발기구 뇌 안에 축적된 타우 단백질을 이미징하기 위한 신규한 화합물
WO2018015546A1 (en) 2016-07-22 2018-01-25 Ac Immune S.A. Compounds for imaging tau protein aggregates
SG11201811311VA (en) 2016-07-22 2019-01-30 Ac Immune Sa Compounds for imaging tau protein aggregates
RU2019138538A (ru) 2017-06-02 2021-07-09 ФУДЖИФИЛМ Тояма Кемикал Ко., Лтд. СРЕДСТВО ДЛЯ УМЕНЬШЕНИЯ КОЛИЧЕСТВА АМИЛОИДНОГО β-БЕЛКА
IL270910B2 (en) 2017-06-02 2024-03-01 Fujifilm Toyama Chemical Co Ltd 1-(3-(2-(1-benzothiophene-5-yl)ethoxy)propyl)aztidine-3-ol or a salt thereof for use in suppressing cerebral atrophy
EP3636262A4 (en) 2017-06-02 2020-06-10 FUJIFILM Toyama Chemical Co., Ltd. AGENT FOR PREVENTING OR TREATING ALZHEIMER-LIKE DEMENTIA
KR20220101001A (ko) * 2017-06-02 2022-07-18 후지필름 도야마 케미컬 가부시키가이샤 타우병증 예방 또는 치료제
BR112019024851A2 (pt) 2017-06-02 2020-06-09 Fujifilm Toyama Chemical Co Ltd agente para evitar ou tratar atrofia cerebral
EP3705121B1 (en) 2017-10-30 2023-08-30 FUJIFILM Toyama Chemical Co., Ltd. Emopamil binding protein binding agent and use thereof
US20210041447A1 (en) 2018-01-24 2021-02-11 Ac Immune Sa Azacarboline compounds for the detection of tau aggregates
US11306089B2 (en) 2018-01-24 2022-04-19 Life Molecular Imaging Limited Gamma-carboline compounds for the detection of Tau aggregates
CN111770924B (zh) * 2018-04-04 2023-05-09 深圳福沃药业有限公司 用于治疗乳腺癌的雌激素受体降解剂
KR102017324B1 (ko) * 2018-04-30 2019-09-02 경북대학교 산학협력단 신규한 asm 활성 직접 억제 화합물 2-아미노-2-(1,2,3-트리아졸-4-일)프로판-1,3-디올 유도체 및 이의 용도
EP3790883A4 (en) * 2018-05-09 2022-08-24 Aprinoia Therapeutics Limited HETEROARYL COMPOUNDS AND USES THEREOF
CN108676007B (zh) * 2018-06-22 2020-06-26 厦门大学 放射性核素标记的苯并蝶啶类衍生物及其制备方法和应用
JP2023502605A (ja) 2019-11-13 2023-01-25 アプリノイア セラピューティクス リミテッド タウタンパク質凝集物を分解する化合物及びその使用
US20220008563A1 (en) * 2020-07-10 2022-01-13 The Regents Of The University Of California Radiolabelled and nonradiolabelled pegylated compounds and uses thereof
CN112939753B (zh) * 2020-09-15 2022-04-05 浙江大学 一种1-茚酮类化合物的合成方法
KR102240400B1 (ko) * 2020-11-19 2021-04-15 한국원자력연구원 베타-아밀로이드 검출용 수용성 화합물
CN112745299B (zh) * 2021-01-07 2022-01-25 温州大学 4-氰基-7,8-二氢异喹啉衍生物及其制备方法和应用
TWI782769B (zh) * 2021-10-28 2022-11-01 行政院原子能委員會核能研究所 一種新穎神經纖維糾結微管相關蛋白質Tau造影化合物、其製備方法及用途
CN114149425A (zh) * 2021-11-16 2022-03-08 上海应用技术大学 5-氟甲基吡啶衍生物和18-f同位素标记的5-氟甲基吡啶衍生物及其制备与应用
CN114276259B (zh) * 2022-01-04 2022-12-06 济川(上海)医学科技有限公司 一种马来酸二甲茚定关键中间体的制备方法
CN115417816B (zh) * 2022-09-05 2024-01-26 江苏南大光电材料股份有限公司 一种3,6-二溴-1-氯-异喹啉的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516004A (ja) 2004-10-07 2008-05-15 メルク エンド カムパニー インコーポレーテッド チアゾリルmglur5アンタゴニスト及びそれらの使用のための方法
WO2009155024A1 (en) 2008-05-30 2009-12-23 Merck & Co., Inc. Novel substituted indoles
US20130102587A1 (en) 2010-03-15 2013-04-25 Proximagen Limited New Enzyme Inhibitor Compounds
WO2013181075A1 (en) 2012-05-29 2013-12-05 Merck Sharp & Dohme Corp. Isotopically labeled biaryl urea compounds
CN103450152A (zh) * 2012-06-04 2013-12-18 济南海乐医药技术开发有限公司 基于吲唑、吲哚或氮杂吲唑、氮杂吲哚的双芳基脲类结构抗肿瘤药物
WO2014140592A1 (en) 2013-03-13 2014-09-18 Proximagen Limited Imidazo[4,5-c]pyridine and pyrrolo[2,3-c]pyridine derivatives as ssao inhibitors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451566A (en) * 1993-11-17 1995-09-19 Zeneca Limited Herbicidal pyrrolopyridine compounds
US20080027044A1 (en) 2006-06-13 2008-01-31 Kim Lewis Prodrug antibiotic screens
WO2008103615A1 (en) 2007-02-21 2008-08-28 Kalypsys, Inc. Isoquinolines useful as inducible nitric oxide synthase inhibitors
TW200902499A (en) * 2007-05-15 2009-01-16 Astrazeneca Ab New compounds
WO2010129816A2 (en) 2009-05-07 2010-11-11 Intellikine, Inc. Heterocyclic compounds and uses thereof
EP2637669A4 (en) 2010-11-10 2014-04-02 Infinity Pharmaceuticals Inc Heterocyclic compounds and their use
USRE47009E1 (en) 2011-02-01 2018-08-28 The Children's Hospital Of Philadelphia HDAC inhibitors and therapeutic methods using the same
US8684313B2 (en) 2011-02-02 2014-04-01 Ocean Rodeo Sports Inc. Inflatable kite with leading edge swept forwards at wingtip
US20140348748A1 (en) * 2011-09-16 2014-11-27 Lisheng Cai Beta-amyloid imaging agents, methods of manufacture, and methods of use thereof
GB201404498D0 (en) * 2014-03-13 2014-04-30 Proximagen Ltd New compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516004A (ja) 2004-10-07 2008-05-15 メルク エンド カムパニー インコーポレーテッド チアゾリルmglur5アンタゴニスト及びそれらの使用のための方法
US20090203903A1 (en) * 2004-10-07 2009-08-13 Cosford Nicholas D Thiazolyl mglur5 antagonists and methods for their use
WO2009155024A1 (en) 2008-05-30 2009-12-23 Merck & Co., Inc. Novel substituted indoles
US20130102587A1 (en) 2010-03-15 2013-04-25 Proximagen Limited New Enzyme Inhibitor Compounds
WO2013181075A1 (en) 2012-05-29 2013-12-05 Merck Sharp & Dohme Corp. Isotopically labeled biaryl urea compounds
CN103450152A (zh) * 2012-06-04 2013-12-18 济南海乐医药技术开发有限公司 基于吲唑、吲哚或氮杂吲唑、氮杂吲哚的双芳基脲类结构抗肿瘤药物
WO2014140592A1 (en) 2013-03-13 2014-09-18 Proximagen Limited Imidazo[4,5-c]pyridine and pyrrolo[2,3-c]pyridine derivatives as ssao inhibitors

Also Published As

Publication number Publication date
CN106661018A (zh) 2017-05-10
WO2015191506A2 (en) 2015-12-17
BR112016028345B1 (pt) 2022-11-29
WO2015191506A3 (en) 2016-02-04
US10022461B2 (en) 2018-07-17
DK3154970T3 (da) 2020-01-20
KR20170016481A (ko) 2017-02-13
RU2019115483A (ru) 2019-06-13
AU2015274843A1 (en) 2016-11-10
RU2016150404A (ru) 2018-07-18
AU2015274843B2 (en) 2018-11-22
BR112016028345A2 (pt) 2017-08-22
US20180071412A1 (en) 2018-03-15
JP6513107B2 (ja) 2019-05-15
MX2016016384A (es) 2017-05-01
BR112016028345A8 (pt) 2021-06-29
WO2015188368A1 (en) 2015-12-17
JP2017521387A (ja) 2017-08-03
US9808542B2 (en) 2017-11-07
CA2948528A1 (en) 2015-12-17
RU2695373C2 (ru) 2019-07-23
CA2948528C (en) 2022-05-31
US20170119912A1 (en) 2017-05-04
ES2763095T3 (es) 2020-05-27
EP3154970A4 (en) 2017-11-15
EP3154970A2 (en) 2017-04-19
HUE048395T2 (hu) 2020-08-28
CN106661018B (zh) 2019-07-19
PL3154970T3 (pl) 2020-04-30
RU2016150404A3 (ko) 2018-11-30
EP3154970B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
KR102478430B1 (ko) 신경원섬유 엉킴에 대한 영상화제로서의 피롤로[2,3-c]피리딘
US11312716B2 (en) 9H-pyrrolo-dipyridine derivatives
EP2300481A2 (en) Novel substituted azabenzoxazoles
AU2015357596A1 (en) Heterocyclic compounds as biogenic amine transport modulators
CA2725934A1 (en) Novel substituted indoles
CA2741668A1 (en) Novel substituted azabenzoxazoles
RU2788916C2 (ru) Пирроло[2,3-с]пиридины в качестве визуализирующих агентов для нейрофибриллярных клубков
NZ621092B2 (en) COMPOUNDS AND COMPOSITIONS AS c-KIT KINASE INHIBITORS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant