KR102410416B1 - 작업 기계 - Google Patents

작업 기계 Download PDF

Info

Publication number
KR102410416B1
KR102410416B1 KR1020207004318A KR20207004318A KR102410416B1 KR 102410416 B1 KR102410416 B1 KR 102410416B1 KR 1020207004318 A KR1020207004318 A KR 1020207004318A KR 20207004318 A KR20207004318 A KR 20207004318A KR 102410416 B1 KR102410416 B1 KR 102410416B1
Authority
KR
South Korea
Prior art keywords
load
work
machine
overflow
bucket
Prior art date
Application number
KR1020207004318A
Other languages
English (en)
Other versions
KR20200030571A (ko
Inventor
사토시 나카무라
구니츠구 도미타
Original Assignee
히다치 겡키 가부시키 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 겡키 가부시키 가이샤 filed Critical 히다치 겡키 가부시키 가이샤
Publication of KR20200030571A publication Critical patent/KR20200030571A/ko
Application granted granted Critical
Publication of KR102410416B1 publication Critical patent/KR102410416B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/083Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles lift truck scale

Abstract

컨트롤러는, 작업 대상물의 하중값, 작업기의 자세, 및 작업기의 운동 상태의 상호 관계로 규정된 로드 오버플로우 기준값이 기억된 기억 장치를 구비한다. 컨트롤러는, 작업기의 자세를 연산하고, 작업기의 운동 상태를 나타내는 물리량(예를 들면 선회 속도)을 연산하며, 기억 장치에 기억된 기준값, 연산한 작업 대상물의 하중값, 연산한 작업기의 자세, 및 연산한 작업기의 운동 상태를 나타내는 물리량에 의거하여, 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하고, 로드 오버플로우가 발생하였다고 판정한 경우, 그 취지를 모니터에 의해 통지한다.

Description

작업 기계
본 발명은, 작업기에 의해 운반 기계의 상방으로 운반되는 작업 대상물의 하중값을 연산하는 컨트롤러를 구비하는 작업 기계에 관한 것이다.
일반적으로, 유압 셔블로 대표되는 작업 기계는, 예를 들면 광산에 있어서의 광물의 굴삭과 덤프트럭으로의 적입(積入)과 같이, 굴삭물(본고(本稿)에서는 「작업 대상물」이라고 칭하는 경우가 있음)을 운반 기계에 적입하는 작업(적입 작업)을 행하는 경우가 있다.
이와 같은 작업일 때, 운반 기계로의 적입량(운반 기계 상의 작업 대상물의 총 중량)을 적당량으로 할 수 있으면, 적입 부족에 의한 생산량의 저하나 과적재에 의한 다시 적재하는 수고를 삭감하여, 현장의 생산 효율을 향상시킬 수 있다.
운반 기계로의 적입량을 적당량으로 하는 수단으로서, 적입 기계에 의한 굴삭물(작업 대상물)의 운반 중에 굴삭물의 하중을 계측하고, 그것을 작업 기계의 조작자에게 제시하는 방법이 있다. 굴삭물의 하중이 제시됨으로써 작업 기계의 조작자는 운반 기계로의 적입량을 파악할 수 있고, 다음번 이후의 굴삭량을 조정하여, 운반 기계로의 적입량을 적당량으로 하는 것이 가능해진다.
작업 기계가 운반 기계에 굴삭물(작업 대상물)을 적입하는 작업에서는 대체로 작업기는 연속하여 동작하고 있으므로, 하중의 계측을 위해 조작자가 적입 작업을 중단하지 않고, 작업기의 동작 중에 하중을 계측하는 것이 바람직하다. 이 때문에, 작업기가 운반 동작 중인 것을 판별하여, 운반 동작 중의 특정의 기간에 계측을 완료해야 한다.
작업 기계가 운반하고 있는 굴삭물의 하중을 계측하는 장치에 있어서, 운반 작업 중에 하중을 계측하는 기술이 알려져 있다. 작업 대상물의 하중 계측 장치로서, 일본국특허 제5406223호 공보(특허 문헌 1)에는, 작업 기계의 작업 사이클을, 굴삭물을 작업 도구에 넣어 운반하는 구간인 운반 상태 구간(적재 상태 이동 구간)을 포함하는 복수의 구간으로 분할하고, 그 작업 사이클의 운반 상태 구간에 있어서, 작업 기계의 작업 도구(툴)의 속도가 대략 일정한 기간을 판정하고, 당해 기간 중에 기록된 작업 도구(툴)의 인상력에 의거하여 굴삭물의 하중(툴의 페이로드)을 계측하고, 이것을 표시하는 페이로드 감시 시스템이 개시되어 있다.
일본국특허 제5406223호 공보
특허 문헌 1의 페이로드 감시 시스템에서는, 일반적인 운반 작업에 있어서 하중 계측의 정밀도가 좋은 작업 도구의 속도가 대략 일정한 기간 중에 기록된 작업 도구의 인상력에 의거하여 굴삭물(작업 대상물)의 하중을 계측하고 있지만, 작업 환경이나 조작자의 조작 스킬에 따라서는, 하중 계측 후에 로드 오버플로우를 일으키는 경우가 있다. 조작자가 로드 오버플로우를 눈치채지 못하고 그대로 운반 기계로 적입을 행한 경우, 하중의 계측 결과와 실제의 적입량에 괴리가 발생하여, 운반 기계로의 적입량의 정밀도가 얻어지지 않는 작업 사이클이 발생한다고 하는 문제가 있다.
본 발명은, 작업 대상물의 하중값을 연산하는 작업 기계에 있어서, 로드 오버플로우의 발생을 통지 가능하게 하는 것에 있다.
본원은 상기 과제를 해결하는 수단을 복수 포함하고 있지만, 그 예를 들면, 버킷을 가지는 다관절형의 작업기와, 상기 작업기를 구동하는 액추에이터와, 조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와, 운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비하는 작업 기계에 있어서, 상기 컨트롤러는, 상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 기억된 기억 장치를 구비하고, 상기 작업기의 자세를 연산하며, 상기 작업기의 운동 상태를 나타내는 물리량을 연산하고, 상기 기억 장치에 기억된 상기 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며, 상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정한 취지를 통지하는 통지 장치를 더 구비한다.
본 발명에 의하면, 작업 대상물의 하중값, 작업기의 자세, 작업기의 운동 상태를 나타내는 물리량에 의거하여 로드 오버플로우의 발생을 추정하고, 로드 오버플로우의 발생이 추정된 경우에는 작업기의 조작자에게 작업 대상물의 하중값의 재계측을 촉구할 수 있으므로, 운반 기계로의 적입량의 정밀도를 향상시킬 수 있다.
도 1은 본 발명의 실시 형태와 관련된 유압 셔블의 측면도.
도 2는 본 발명의 실시 형태와 관련된 유압 셔블의 유압 회로의 개략도.
도 3은 제 1 실시 형태의 하중 계측 시스템의 시스템 구성도.
도 4는 유압 셔블의 작업의 일례를 나타내는 개관도(槪觀圖).
도 5는 제 1 실시 형태에 있어서의 운반 판정부가 실행하는 플로우 차트.
도 6은 아암 보텀압 센서의 검출값 및 버킷 각도 센서의 검출값과 운반 판정부(50)에 의한 판정 결과의 관계를 나타내는 그래프의 일례.
도 7은 제 1 실시 형태에 있어서의 로드 오버플로우 기준값을 나타내는 그래프.
도 8은 하중의 크기의 분류 방법을 나타내는 버킷(15)의 측면도.
도 9는 컨트롤러(21)에 있어서의 하중 연산부(51)에 의한 버킷(15) 내의 작업 대상물의 순시(瞬時) 하중 Ml의 연산 방법의 설명도.
도 10은 제 1 실시 형태의 컨트롤러(21)가 실행하는 하중값 확정 처리와 로드 오버플로우 추정 처리를 나타내는 플로우 차트.
도 11은 순시 하중값 Ml의 시간 변화를 나타내는 그래프.
도 12는 운반 중의 로드 오버플로우의 발생을 추정할 때에 이용하는 그래프(로드 오버플로우 기준값)의 설명도.
도 13a는 로드 오버플로우를 추정하고 있지 않을 때(로드 오버플로우 추정 플래그 OFF일 때)의 모니터(23)의 출력 화면을 나타내는 외관도.
도 13b는 로드 오버플로우를 추정하였을 때(로드 오버플로우 추정 플래그 ON일 때)의 모니터(23)의 출력 화면을 나타내는 외관도.
도 14는 제 2 실시 형태의 하중 계측 시스템의 시스템 구성도.
도 15는 제 2 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트.
도 16은 제 2 실시 형태의 로드 오버플로우 요인 기준값의 설명도.
도 17은 로드 오버플로우를 추정하였을 때(로드 오버플로우 추정 플래그 ON일 때)의 모니터(23)의 출력 화면을 나타내는 외관도.
도 18은 제 3 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트.
도 19는 제 3 실시 형태의 로드 오버플로우 여유도의 설명도.
도 20은 로드 오버플로우를 추정하고 있지 않을 때(로드 오버플로우 추정 플래그 OFF일 때)의 모니터(23)의 출력 화면을 나타내는 외관도.
도 21은 제 4 실시 형태의 하중 계측 시스템의 시스템 구성도.
도 22는 제 4 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트.
도 23은 로드 오버플로우를 추정하였을 때(로드 오버플로우 추정 플래그 ON일 때)의 모니터(23)의 출력 화면을 나타내는 외관도.
도 24는 제 5 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트.
도 25는 도 24 중의 로드 오버플로우 추정 처리의 플로우 차트.
도 26은 도 25 중의 단계 S150에서 연산되는 버킷 중심 위치 L, H의 설명도.
도 27은 도 25 중의 단계 S151-153과 관련된 로드 오버플로우 기준값의 그래프.
도 28은 도 25 중의 단계 S15-156과 관련된 로드 오버플로우 기준값의 그래프.
이하, 본 발명의 실시 형태에 대하여 도면을 이용하여 설명한다. 이하에서는, 작업 기계의 하중 계측 시스템을 구성하는 적입 기계로서 유압 셔블을, 운반 기계로서 덤프트럭을 이용하는 경우에 대하여 설명한다.
본 발명이 대상으로 하는 작업 기계(적입 기계)는, 어태치먼트로서 버킷을 가지는 유압 셔블에 한정되지 않고, 그래플이나 리프팅 마그넷 등, 운반물의 보지(保持)·해방이 가능한 것을 가지는 유압 셔블도 포함된다. 또한, 유압 셔블과 같은 선회 기능이 없는 작업 아암을 구비하는 휠 로더 등에도 본 발명은 적용 가능하다.
<제 1 실시 형태>
-전체 구성-
도 1은 본 실시 형태와 관련된 유압 셔블의 측면도이다. 도 1의 유압 셔블(1)은, 하부 주행체(10)와, 하부 주행체(10)의 상부에 선회 가능하게 마련된 상부 선회체(11)와, 상부 선회체(11)의 전방에 탑재된 다관절형의 작업 아암인 프론트 작업기(12)와, 상부 선회체(11)를 회전 운동하는 유압 모터인 선회 모터(19)와, 상부 선회체(11)에 마련되어 조작자(조작자)가 올라타서 셔블(1)을 조작하는 조작실(운전실)(20)과, 조작실(20) 내에 마련되며, 유압 셔블(1)에 탑재된 액추에이터의 동작을 제어하기 위한 조작 레버(조작 장치)(22(22a, 22b))와, 기억 장치(예를 들면, ROM, RAM), 연산 처리 장치(예를 들면 CPU) 및 입출력 장치를 가지고 유압 셔블(1)의 동작을 제어하는 컨트롤러(21)에 의해 구성되어 있다.
프론트 작업기(12)는, 상부 선회체(11)에 회전 운동 가능하게 마련된 붐(13)과, 붐(13)의 선단에 회전 운동 가능하게 마련된 아암(14)과, 아암(14)의 선단에 회전 운동 가능하게 마련된 버킷(어태치먼트)(15)과, 붐(13)을 구동하는 유압 실린더인 붐 실린더(16)와, 아암(14)을 구동하는 유압 실린더인 아암 실린더(17)와, 버킷(15)을 구동하는 유압 실린더인 버킷 실린더(18)를 구비하고 있다.
붐(13), 아암(14), 버킷(15)의 회전 운동축에는 각각 붐 각도 센서(24), 아암 각도 센서(25), 버킷 각도 센서(26)가 장착되어 있다. 이들 각도 센서(24, 25, 26)로부터는 붐(13), 아암(14), 버킷(15) 각각의 회전 운동 각도를 취득할 수 있다. 또한, 상부 선회체(11)에는 선회 각속도 센서(예를 들면, 자이로스코프)(27)와 경사 각도 센서(28)가 장착되어 있으며, 각각 상부 선회체(11)의 선회 각속도와 상부 선회체(11)의 전후 방향의 경사 각도를 취득할 수 있게 구성되어 있다. 각도 센서(24, 25, 26, 27, 28)의 검출값으로부터는 프론트 작업기(12)의 자세를 특정할 수 있다.
붐 실린더(16) 및 아암 실린더(17)에는 각각 붐 보텀압 센서(29), 붐 로드압 센서(30), 아암 보텀압 센서(31), 아암 로드압 센서(32)가 장착되어 있으며, 각 유압 실린더 내부의 압력을 취득할 수 있게 구성되어 있다. 압력 센서(29, 30, 31, 32)의 검출값으로부터는 각 실린더(16, 18)의 추력, 즉 프론트 작업기(12)에 부여되는 구동력을 특정할 수 있다.
또한, 붐 각도 센서(24), 아암 각도 센서(25), 버킷 각도 센서(26), 경사 각도 센서(28), 선회 각속도 센서(27)는, 프론트 작업기(12)의 자세에 관한 물리량을 검출할 수 있는 것이면 다른 센서로 대체 가능하다. 예를 들면, 붐 각도 센서(24), 아암 각도 센서(25) 및 버킷 각도 센서(26)는 각각 경사각 센서나 관성 계측 장치(IMU)로 대체 가능하다. 또한, 붐 보텀압 센서(29), 붐 로드압 센서(30), 아암 보텀압 센서(31), 아암 로드압 센서(32)는, 붐 실린더(16) 및 아암 실린더(17)가 발생시키는 추력, 즉 프론트 작업기(12)에 부여되는 구동력에 관한 물리량을 검출할 수 있는 것이면 다른 센서로 대체 가능하다. 또한 추력이나 구동력의 검출 대신에, 붐 실린더(16) 및 아암 실린더(17)의 동작 속도를 스트로크 센서로 검출하거나, 붐(13) 및 아암(14)의 동작 속도를 IMU로 검출하거나 함으로써 프론트 작업기(12)의 동작을 검출해도 된다.
조작실(20)의 내부에는 컨트롤러(21)에서의 연산 결과(예를 들면, 하중 연산부(51)에 연산된 버킷(15) 내의 작업 대상물(4)의 하중값) 등을 표시하는 모니터(표시 장치)(23)가 비치되고, 상부 선회체(11)의 상면에는 컨트롤러(21)가 외부의 컴퓨터 등과 통신하기 위한 무선 송수신기(도시 생략)가 장착되어 있다.
본 실시 형태의 모니터(23)는, 터치패널을 가지고 있으며, 조작자가 컨트롤러(21)로의 정보의 입력을 행하기 위한 입력 장치로서도 기능한다. 모니터(23)로서는 예를 들면 터치패널을 가지는 액정 디스플레이가 이용 가능하다. 모니터(23)의 화면 상에는 덤프트럭(운반 기계)에 대한 작업 대상물의 적입량 계측의 리셋을 지시하기 위한 리셋 스위치가 표시 가능하게 마련되어 있으며, 그 스위치를 압하하면 리셋 신호가 컨트롤러(21)에 출력되도록 되어 있다.
조작 레버(22a)는, 붐(13)의 인상·인하(붐 실린더(16)의 신축)와 버킷(15)의 덤프·크라우드(버킷 실린더(18)의 신축)를 각각 지시하고, 조작 레버(22b)는, 아암(14)의 덤프·크라우드(아암 실린더(17)의 신축)와 상부 선회체(11)의 좌·우선회(유압 모터(19)의 좌우 회전)를 각각 지시한다. 조작 레버(22a)와 조작 레버(22b)는 2복합의 멀티 기능 조작 레버이며, 조작 레버(22a)의 전후 조작이 붐(13)의 인상·인하, 좌우 조작이 버킷(15)의 크라우드·덤프, 조작 레버(22b)의 전후 조작이 아암(14)의 덤프·크라우드, 좌우 조작이 상부 선회체(11)의 좌·우 회전에 대응하고 있다. 레버를 경사 방향으로 조작하면, 해당하는 2개의 액추에이터가 동시에 동작한다. 또한, 조작 레버(22a, 22b)의 조작량은 액추에이터(16-19)의 동작 속도를 규정한다.
도 2는 본 실시 형태와 관련된 유압 셔블(1)의 유압 회로의 개략도이다. 붐 실린더(16), 아암 실린더(17), 버킷 실린더(18), 및 선회 모터(19)는, 메인 펌프(39)로부터 토출되는 작동유에 의해 구동된다. 각 유압 액추에이터(16-19)로 공급되는 작동유의 유량 및 유통 방향은, 조작 레버(22a, 22b)의 조작 방향 및 조작량에 따라 컨트롤러(21)로부터 출력되는 구동 신호에 의해 동작하는 컨트롤 밸브(35, 36, 37, 38)에 의해 제어된다.
조작 레버(22a, 22b)는, 그 조작 방향 및 조작량에 따른 조작 신호를 생성하여 컨트롤러(21)에 출력한다. 컨트롤러(21)는, 조작 신호에 대응한 구동 신호(전기 신호)를 생성하고, 이것을 전자 비례 밸브인 컨트롤 밸브(35-38)에 출력함으로써, 컨트롤 밸브(35-38)를 동작시킨다.
조작 레버(22a, 22b)의 조작 방향은 유압 액추에이터(16-19)의 동작 방향을 규정한다. 붐 실린더(16)를 제어하는 컨트롤 밸브(35)의 스풀은, 조작 레버(22a)가 전(前)방향으로 조작되면 도 2 중의 좌측으로 이동하여 붐 실린더(16)의 보텀측에 작동유를 공급하고, 조작 레버(22a)가 후(後)방향으로 조작되면 동(同)우측으로 이동하여 붐 실린더(16)의 로드측에 작동유를 공급한다. 아암 실린더(17)를 제어하는 컨트롤 밸브(36)의 스풀은, 조작 레버(22b)가 전방향으로 조작되면 동좌측으로 이동하여 아암 실린더(17)의 보텀측에 작동유를 공급하고, 조작 레버(22b)가 후방향으로 조작되면 동우측으로 이동하여 아암 실린더(17)의 로드측에 작동유를 공급한다. 버킷 실린더(18)를 제어하는 컨트롤 밸브(37)의 스풀은, 조작 레버(22a)가 좌측 방향으로 조작되면 동좌측으로 이동하여 버킷 실린더(18)의 보텀측에 작동유를 공급하고, 조작 레버(22a)가 우측 방향으로 조작되면 동우측으로 이동하여 버킷 실린더(18)의 로드측에 작동유를 공급한다. 선회 모터(19)를 제어하는 컨트롤 밸브(38)의 스풀은, 조작 레버(22b)가 좌측 방향으로 조작되면 동좌측으로 이동하여 선회 모터(19)에 동좌측으로부터 작동유를 공급하고, 조작 레버(22b)가 우측 방향으로 조작되면 동우측으로 이동하여 선회 모터(19)에 동우측으로부터 작동유를 공급한다.
또한, 컨트롤 밸브(35-38)의 밸브의 개방도는, 대응하는 조작 레버(22a, 22b)의 조작량에 따라 변화된다. 즉, 조작 레버(22a, 22b)의 조작량은 유압 액추에이터(16-19)의 동작 속도를 규정한다. 예를 들면, 조작 레버(22a, 22b)의 어느 방향의 조작량을 증가시키면, 그 방향에 대응하는 컨트롤 밸브(35-38)의 밸브의 개방도가 증가하고, 유압 액추에이터(16-19)에 공급되는 작동유의 유량이 증가하며, 이로써 유압 액추에이터(16-19)의 속도가 증가한다. 이와 같이, 조작 레버(22a, 22b)에서 생성되는 조작 신호는, 대상의 유압 액추에이터(16-19)에 대한 속도 지령의 측면을 가지고 있다. 따라서 본고에서는 조작 레버(22a, 22b)가 생성하는 조작 신호를, 유압 액추에이터(16-19)(컨트롤 밸브(35-38))에 대한 속도 지령이라고 칭하는 경우가 있다.
메인 펌프(39)로부터 토출되는 작동유의 압력(작동유압)은, 릴리프압으로 작동유 탱크(41)와 연통하는 릴리프 밸브(40)에 의해 과대해지지 않도록 조정되고 있다. 유압 액추에이터(16-19)에 공급된 압유가 컨트롤 밸브(35-38)를 통하여 다시 작동유 탱크(41)로 되돌아가도록, 컨트롤 밸브(35-38)의 복귀 유로는 작동유 탱크(41)와 연통하고 있다.
컨트롤러(21)는, 붐 각도 센서(24), 아암 각도 센서(25), 버킷 각도 센서(26), 선회 각속도 센서(27), 경사 각도 센서(28)와, 붐 실린더(16)에 장착된 붐 보텀압 센서(29)와 붐 로드압 센서(30)와, 아암 실린더(17)에 장착된 아암 보텀압 센서(31)와 아암 로드압 센서(32)의 신호가 입력되도록 구성되어 있으며, 이들의 센서 신호를 기초로 컨트롤러(21)는 하중을 연산하고, 하중 계측 결과는 모니터(23)에 표시되도록 구성되어 있다.
-시스템 구성-
도 3은 본 실시 형태의 하중 계측 시스템의 시스템 구성도이다. 본 실시 형태의 하중 계측 시스템은, 몇 개의 소프트웨어의 조합으로서 컨트롤러(21) 내부에 실장되어 있으며, 센서(24-32)의 신호, 및 모니터(23)에 장착된 스위치 신호를 입력하고, 컨트롤러(21) 내부에서 작업 대상물의 하중값을 연산하여, 모니터(23)에 하중값을 표시하도록 구성되어 있다.
도 3의 컨트롤러(21)의 내부에는 컨트롤러(21)가 가지는 기능을 블록도로 나타내고 있다. 컨트롤러(21)는, 각도 센서(24-28)의 검출값에 의거하여 프론트 작업기(12)의 자세 정보를 연산하는 자세 연산부(55)와, 프론트 작업기(12)의 운동 상태를 나타내는 물리량(본 실시 형태에서는 선회 속도)을 연산하는 운동 상태 연산부(56)와, 프론트 작업기(12)에 의한 덤프트럭(운반 기계)의 짐받이의 상방으로의 작업 대상물의 운반의 개시 시(즉, 운반 동작의 개시 시)를 아암 실린더(17)의 부하 정보(예를 들면, 아암 보텀압 센서(31)의 검출값)에 의거하여 판정하는 운반 판정부(50)와, 덤프트럭의 짐받이의 상방으로의 작업 대상물의 운반이 프론트 작업기(12)에 의해 행해지고 있는 동안(즉, 운반 동작 중)에 동작하는 붐 실린더(16)의 추력 정보(예를 들면, 붐 실린더(16)의 보텀압 센서(29)와 로드압 센서(30)의 검출값)에 의거하여 작업 대상물의 하중값을 연산하는 하중 연산부(51)와, 프론트 작업기(12)로부터의 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 프론트 작업기(12)의 자세, 및 프론트 작업기(12)의 운동 상태의 상호 관계로 규정된 기준값(이하 「로드 오버플로우 기준값」 또는 「로드 오버플로우 허용 범위」라고 칭하는 경우가 있음)이 기억된 로드 오버플로우 기준 기억부(52)와, 하중 연산부(51)에서 연산된 작업 대상물의 하중값에 의거하여 로드 오버플로우 기준 기억부(52)에 기억된 복수의 기준값으로부터 하나의 기준값을 선택하는 로드 오버플로우 기준 선택부(53)와, 로드 오버플로우 기준 기억부(52)에 기억된 로드 오버플로우 기준값, 하중 연산부(51)에서 연산된 작업 대상물의 하중값, 자세 연산부(55)에서 연산된 프론트 작업기(12)의 자세, 및 운동 상태 연산부(56)에서 연산된 프론트 작업기(12)의 운동 상태를 나타내는 물리량에 의거하여, 프론트 작업기(12)가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하는 로드 오버플로우 추정부(54)와, 하중 연산부(51)와 로드 오버플로우 추정부(54)의 출력에 의거하여 모니터(23)에 표시하는 정보를 생성하는 출력 정보 생성부(57)에 의해 구성되어 있다. 또한, 하중 연산부(51)는 작업 대상물의 하중을 적산하여 운반 기계(2)로의 적입량을 연산하고, 모니터(23)에 마련된 적산 리셋 스위치(94)(도 13a, 도 13b 참조)가 출력하는 리셋 신호의 입력에 의거하여, 운반 기계(2)로의 적입량을 리셋하도록 구성되어 있다.
본 실시 형태에 있어서의 운동 상태 연산부(56)는, 프론트 작업기(12)의 운동 상태를 나타내는 물리량으로서 프론트 작업기(12)의 이동 속도, 보다 구체적으로는 상부 선회체(11)의 선회 속도를 산출하고 있다.
이어서 본 발명의 실시 형태의 일례인 작업 기계의 하중 계측 시스템이 작업 사이클 개시 시에 있어서의 프론트 작업기(12)의 자세에 의거하여 프론트 작업기(12)의 조작 지시를 보정하고, 하중을 계측하는 방법에 대하여 설명한다.
-덤프트럭으로의 적입 작업 중의 유압 셔블의 동작의 정의-
도 4는 유압 셔블(1)의 작업의 일례를 나타내는 개관도이다. 본고에서는 편의상, 유압 셔블(적입 기계)(1)에 의한 덤프트럭(운반 기계)(2)으로의 「적입 작업(운반 작업)」을, A) 작업 대상물(운반물)(3)을 굴착하여 버킷(15) 내에 작업 대상물(「굴삭물」이라고도 칭함)(4)을 적입하는 「굴삭 동작」과, B) 상부 선회체(11)의 선회와 프론트 작업기(12)의 동작을 조합하여 덤프트럭(2)의 짐받이 위까지 버킷을 이동하는 「운반 동작」과, C) 버킷(15) 내의 작업 대상물(4)을 덤프트럭(2)의 짐받이에 방출(방토)하는 「적입 동작」과, D) 굴삭 동작을 개시하기 위해 작업 대상물 상의 원하는 위치로 버킷(15)을 이동시키는 「리칭 동작」이라고 하는 4개의 동작을 포함하는 작업이라고 정의한다. 대부분 경우, 유압 셔블(1)은, 이 4개의 동작을 이 순서로 반복하여 실시함으로써 덤프트럭(2)의 짐받이를 작업 대상물(4)로 가득 차게 한다. B)의 운반 동작은 대부분의 경우 선회 붐 인상에 의해 행해진다. C)의 적입 동작은, 대부분의 경우 버킷 덤프에 의해 행해진다.
덤프트럭(2)의 가대에 작업 대상물(4)을 과잉으로 적입하면 과적재가 되어, 덤프트럭(2)의 효율 저하나 손상을 초래하고, 또한 작업 대상물(4)의 적입이 과소인 경우에는 운반량이 적기 때문에 현장의 생산량이 떨어지게 되므로, 덤프트럭(2)으로의 적입량은 적정하게 하는 것이 바람직하다.
적입 작업 중에 작업 대상물(4)의 하중을 계측한 후에 부적절한 조작을 행하면, 버킷(15) 내부의 작업 대상물(4)이 넘쳐흐르는 경우가 있다. 조작자가 넘쳐흐른 것을 눈치채지 못하고 그대로 운반 기계(2)로 적입을 실시한 경우, 계측한 작업 대상물(4)의 하중과 실제로 덤프트럭(2)으로 적입을 행한 하중에 차가 발생한다. 이 때문에, 작업 대상물(4)의 하중을 적산하여 구한 운반 기계(2)로의 적입량과 실제의 적입량이 달라져버려, 덤프트럭(2)으로의 적입량을 적정하게 관리할 수 없게 되므로, 작업 대상물(4)이 넘쳐흐를 가능성이 있는 경우에는 조작자에게 알리는 것이 바람직하다.
-운반 판정부(50)에 의한 운반 동작의 개시 판정·종료 판정-
도 5는 컨트롤러(21)에 있어서의 운반 판정부(50)가, 프론트 작업기(12)에 의한 덤프트럭(2)의 짐받이의 상방으로의 작업 대상물(4)의 운반의 개시와 종료를 판정하는 방법을 나타내는 플로우 차트이며, 도 6은 아암 보텀압 센서(31)의 검출값(아암 실린더 보텀 압력) 및 버킷 각도 센서(26)의 검출값(아암-버킷 상대 각도)과 운반 판정부(50)에 의한 판정 결과의 관계를 나타내는 그래프의 일례이다.
도 5의 플로우 차트는 유압 셔블(1)의 컨트롤러(21)에 있어서 미리 정해진 샘플링 주기마다 실행된다.
운반 판정부(50)는, 단계 S100에서 아암 보텀압 센서(31)의 출력을 감시하고, 미리 설정되어 있는 임계값 1보다 낮은 상태로부터 임계값 1을 초과하였는지 아닌지 판정한다. 유압 셔블(1)은 아암 실린더(17)를 압출하여 굴착하기 때문에, 도 6의 하측의 그래프에 나타내는 바와 같이 아암 실린더 보텀압은 굴삭 동작 중에 커지므로, 본 실시 형태에서는 아암 보텀압이 임계값 1을 상회한 타이밍에서 굴삭 동작을 개시했다고 간주하고 있다. 단계 S100에서 아암 보텀압이 임계값 1보다 낮은 상태로부터 임계값 1을 초과하였다고 판정된 경우에는, 운반 판정부(50)는 유압 셔블(1)이 굴삭 동작을 개시했다고 판정하여 단계 S101로 진행된다. 반대로 아암 보텀압이 임계값 1보다 낮은 상태로부터 임계값 1을 초과하지 않는 경우(임계값 1 이하를 보지하는 경우)에는 단계 S100의 이전으로 되돌아가, 아암 보텀압 센서(31)의 출력의 감시를 속행한다.
단계 S101에서는 계속해서 아암 보텀압 센서(31)의 출력을 감시하고, 미리 설정되어 있는 임계값 2보다 높은 상태로부터 임계값 2를 하회하였는지 아닌지 판정한다. 도 6의 하측의 그래프에 나타내는 바와 같이 아암 실린더 보텀압은 굴삭 동작이 종료되면 작아지므로, 본 실시 형태에서는 아암 보텀압이 임계값 2를 하회한 타이밍에서 굴삭 동작이 종료되고, 운반 동작을 개시했다고 간주하고 있다. 단계 S101에서 아암 보텀압이 임계값 2보다 높은 상태로부터 임계값 2를 하회하였다고 판정된 경우에는, 운반 판정부(50)는 유압 셔블(1)이 굴삭 동작을 종료하고 또한 운반 동작을 개시하였다고 판정하여 단계 S102로 진행된다. 반대로 아암 보텀압이 임계값 2보다 높은 상태로부터 임계값 2를 하회하지 않는 경우(임계값 2 이상을 보지하는 경우)에는 운반 판정부(50)는 굴삭 동작이 계속되고 있다고 판정하고, 단계 S101의 이전으로 되돌아가 아암 보텀압 센서(31)의 출력의 감시를 속행한다.
또한, 임계값 1과 임계값 2의 관계에 관하여, 도 6에 나타낸 예에서는 임계값 1<임계값 2의 관계가 성립되고 있지만 이것은 일례에 지나지 않고, 유압 셔블(1)의 굴삭 동작의 개시와 종료의 판정이 가능한 범위에서 임의의 값을 설정할 수 있다. 또한 그 때, 임계값 1과 임계값 2의 대소 관계는 묻지 않는 것으로 한다.
단계 S102에서는 운반 판정부(50)는 운반 동작이 개시되었다고 하는 판정(운반 개시 판정)을 외부에 출력하고 단계 S103으로 진행된다. 이 때의 판정의 출력처에는 하중 연산부(51)가 포함된다.
단계 S103에서는, 운반 판정부(50)는 버킷 각도 센서(26)의 출력을 감시하고, 아암-버킷간의 상대 각도(아암(14)과 버킷(15)이 이루는 각)가 미리 설정되어 있는 임계값 3보다 작은 각도로부터 임계값 3을 상회하였는지 아닌지 판정한다. 운반 동작을 마치고 적입 동작을 개시하는 유압 셔블(1)은 버킷(15) 내의 토사(굴삭 대상물)를 방출하기 위해 아암(14)과 버킷(15)이 이루는 각을 좁히도록 동작한다. 즉 도 6의 상측의 그래프에 나타내는 바와 같이 아암(14)과 버킷(15)의 상대 각도는 운반 동작으로부터 적입 동작으로 천이할 때에 커지므로, 본 실시 형태에서는 아암(14)과 버킷(15)의 상대 각도가 임계값 3을 상회한 타이밍에서 운반 동작이 종료되고, 적입 동작을 개시하였다고 간주하고 있다. 단계 S103에서 아암-버킷 상대 각도가 임계값 3을 상회하였다고 판정된 경우에는, 운반 판정부(50)는 유압 셔블(1)이 운반 동작을 종료하고 또한 적입 동작을 개시하였다고 판정하여 단계 S104로 진행된다. 반대로 아암-버킷 상대 각도가 임계값 3을 상회하지 않는다고 판정된 경우(임계값 3 미만을 보지하는 경우)에는, 운반 판정부(50)는 운반 동작이 계속되고 있다고 판정하고, 단계 S103의 이전으로 되돌아가 버킷 각도 센서(26)의 출력의 감시를 속행한다.
단계 S104에서는 운반 판정부(50)는 운반 동작이 종료되었다고 하는 판정(운반 종료 판정)을 외부에 출력하고 단계 S100으로 되돌아간다. 이 때의 판정의 출력처에는 하중 연산부(51)가 포함된다.
-로드 오버플로우 기준값-
도 7은 본 실시 형태의 로드 오버플로우 기준값을 나타내는 그래프이며, 도 8은 하중의 크기의 분류 방법을 나타내는 버킷(15)의 측면도이다. 도 7 및 도 8을 이용하여, 로드 오버플로우 기준 기억부(52)에 기억되어 있는 로드 오버플로우 기준값에 대하여 설명한다. 로드 오버플로우 기준 기억부(52)는 컨트롤러(21)의 기억 장치 내에 확보된 기억 영역이며, 로드 오버플로우 기준 기억부(52)가 취급하는 데이터는 컨트롤러(21)의 기억 장치에 기억된다.
로드 오버플로우 기준값은, 도 7의 그래프에 나타내는 바와 같이, 버킷(15)의 개구면의 수평면에 대한 각도(이하 「버킷 절대 각도」나 「버킷 각도」라고 칭하는 경우가 있음)를 세로축(제 1 축)으로 하고, 상부 선회체(11)의 선회 각속도를 가로축(제 2 축)으로 하는 직교 좌표계상의 소정의 영역으로서 규정되어 있으며, 그 영역은 굴삭물(작업 대상물)(4)의 하중값마다 복수 규정된 복수의 영역으로 되어 있다. 세로축(버킷 각도)은 버킷 개구면이 수평일 때(도면 중의 점선)를 0으로 한다. 또한, 상세한 것은 후술하지만, 도면 중의 괄호 내의 대, 중, 소는 「하중의 크기」를 나타내고, 버킷 각도나 선회 각속도의 크기를 나타내는 것은 아니다. 예를 들면, θsp(대)는 하중이 클 때의 버킷 각도의 최대값이며, ωsp(대)는 하중이 클 때의 선회 각속도의 최대값을 나타낸다.
버킷(15)의 개구면이 수평인 상태에서 상부 선회체(11)의 선회 속도를 크게 하면, 버킷(15)에 작용하는 원심력이나 관성력에 의해 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 넘쳐 떨어진다. 또한, 버킷(15)의 개구면을 수평인 상태로부터 기울이고 있으면, 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 넘쳐 떨어지기 쉬워지기 때문에, 상부 선회체(11)의 선회 속도가 작은 경우에 있어서도 넘쳐 떨어진다. 또한 버킷(15)의 개구면을 수평인 상태로부터 기울이고 있으면, 어느 각도가 된 곳에서 상부 선회체(11)가 선회하고 있지 않은 경우에도 넘쳐흐름이 발생한다. 이들의 관계를 나타내기 위해, 본 실시 형태에서는, 로드 오버플로우가 발생하는 경우의 버킷(15)의 절대 각도와 상부 선회체(11)의 선회 속도의 크기의 관계를 나타내는 로드 오버플로우 기준값의 분포를 도 7에 나타내는 바와 같이 반타원 형상으로 한다(이하, 편의상, 반타원을 「타원」이라고 간략하게 칭하는 경우가 있다.). 로드 오버플로우 추정부(54)는, 실제의 버킷(15)의 절대 각도와 상부 선회체(11)의 선회 속도의 크기와 조합이 타원의 외부에 포함되는 경우에는 굴삭물(4)의 운반 중에 로드 오버플로우가 발생하였다고 판정하고, 당해 타원의 내부에 포함되는 경우에는 로드 오버플로우는 발생하지 않았다고 판정한다.
굴삭물(4)의 하중이 큰 경우에는, 도 8에서 「하중: 대」라고 부여된 도와 같이 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 크고, 굴삭물(4)이 넘쳐흐르기 쉬워진다. 이 때문에, 도 7에서 「하중: 대」라고 부여된 타원이 나타내는 바와 같이 타원의 크기는 작아진다. 한편, 굴삭물(4)의 하중이 작은 경우에는, 도 8에서 「하중: 소」라고 부여된 도와 같이 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 작아, 굴삭물(4)이 넘쳐흐르기 어려워진다. 이 때문에, 도 7에서 「하중: 소」라고 부여된 타원이 나타내는 바와 같이 타원은 커지며, 로드 오버플로우가 발생하지 않는 버킷(15)의 절대 각도와 상부 선회체(11)의 선회 각속도의 크기의 조합에 여유가 생긴다.
또한, 도 8의 「하중: 대」의 경우에는, 버킷 측면에서 볼 때 굴삭물의 구배가 1대 1이 되는 경우의 하중(최대 하중)을 상한으로 하는 소정의 하중값의 범위를 나타내고, 「하중: 소」의 경우에는, 버킷 측면에서 볼 때 굴삭물의 상면이 버킷(15)의 개구면과 대략 일치하는 경우의 하중을 상한으로 하는 소정의 하중값의 범위를 나타내며, 「하중: 중」의 경우에는 「하중: 대」의 경우의 범위의 하한을 상한으로 하고, 「하중: 소」의 경우의 상한을 하한으로 하는 하중값의 범위를 나타내는 것으로 한다. 본 실시 형태에서는 3종의 하중 범위에 대응하는 3종의 타원(로드 오버플로우 기준값)을 규정했지만, 이 이외의 수의 종류의 하중 범위와 타원을 규정해도 된다.
상기 3종의 하중 범위(대, 중, 소)에 대응하는 로드 오버플로우 기준값(타원)에 있어서의 수평면에 대한 버킷(15)의 절대 각도의 최대값을 각각 θsp(대), θsp(중), θsp(소)로 하고, 마찬가지로 상부 선회체(11)의 선회 각속도의 최대값을 각각 ωsp(대), ωsp(중), ωsp(소)로 하며, 버킷 각도를 θbk, 선회 각속도의 크기를 ωsw로 하면, 로드 오버플로우가 발생하지 않는 범위인 타원의 내부의 영역은 하기 식 (1)에 의해 나타낼 수 있다.
(θbk)2/(θsp)2+(ωsw)2/(ωsp)2≤1 (1)
정수값인 θsp(대), θsp(중), θsp(소), 및 ωsp(대), ωsp(중), ωsp(소)를 포함하는 로드 오버플로우 기준값은 미리 실측하여 로드 오버플로우 기준 기억부(52)에 기록할 수 있다. 예를 들면, 도 8에 나타내는 바와 같이 하중을 대, 중, 소로 설정하고, 각각의 설정과 마찬가지인 적입를 실시하며, 그 상태에 있어서의 하중을 계측한다. 그리고, 대, 중, 소의 각 하중 상태에 있어서 선회하지 않고 버킷(15)의 개구면을 수평의 상태로부터 기울여 로드 오버플로우가 발생하였을 때의 버킷(15)의 절대 각도를 θsp로서 설정하고, 버킷(15)을 수평으로 한 상태에서 선회하여 로드 오버플로우가 발생하였을 때의 선회 각도를 ωsp로서 설정한다.
-하중 연산부(51)에 의한 하중값 연산-
도 9는 컨트롤러(21)에 있어서의 하중 연산부(51)에 의한 버킷(15) 내의 작업 대상물의 순시 하중 Ml의 연산 방법의 설명도이다. 도 9를 이용하여, 하중 연산부(51)가 하중을 연산하는 방법을 설명한다. 하중의 계측은 붐(13)의 회전 운동축 둘레에 작용하고, 붐 실린더(16)가 발생시키는 토크와, 프론트 작업기(12)가 중력과 선회 원심력에 의해 발생시키는 토크와, 적재물이 중력과 선회 원심력에 의해 발생시키는 토크의 균형을 이용한다.
붐 실린더(16)의 추력 Fcyl은 붐 보텀압 센서(29)의 출력 신호를 P1, 붐 로드압 센서(30)의 출력 신호를 P2, 붐 실린더(16)의 수압(受壓) 면적을 A1, A2로 하여, 이하의 식 (2)로 산출된다.
Fcyl=A1·P1-A2·P2…(2)
붐 실린더(16)가 발생시키는 토크 Tbm은, 붐 회전 운동축과 붐 실린더(16)의 추력의 작용점을 연결한 선분의 길이를 Lbm, 붐 실린더(16)의 추력 Fcyl과 선분 Lbm과 추력의 방향이 이루는 각도를 θ로 하여 이하의 식 (3)으로 산출된다.
Tbm=Fcyl·Lbm·sin(θcyl)…(3)
프론트 작업기(12)가 중력에 의해 발생시키는 토크 Tgfr은, 프론트 작업기(12)의 중심 중량을 Mfr, 중력 가속도를 g, 붐 회전 운동축과 프론트 중심까지의 전후 방향의 길이(차체 전후 방향의 길이)를 Lfr, 붐 회전 운동축과 프론트 중심을 잇는 선분과 수평면이 이루는 각도를 θfr로 하여 이하의 식 (4)로 산출된다.
Tgfr=Mfr·g·Lfr·cos(θfr)…(4)
프론트 작업기(12)가 선회 원심력에 의해 발생시키는 토크 Tcfr은, 상부 선회체(11)의 선회 중심과 프론트 중심까지의 전후 방향의 길이를 Rfr, 선회 각속도를 ω로 하여 이하의 식 (5)로 산출된다.
Tcfr=Mfr·Rfr·ω2·sin(θfr)…(5)
또한, Mfr, Lfr, Rfr, θfr은 미리 설정된 상부 선회체(11), 붐(13), 아암(14), 버킷(15) 각각의 길이, 중심 위치, 중량과, 붐 각도 센서(24), 아암 각도 센서(25), 버킷 각도 센서(26)로부터 출력되는 각도 신호로부터 산출된다.
적재물이 중력에 의해 발생시키는 토크 Tgl은, 적재물의 중량을 Ml, 붐 회전 운동축과 버킷 중심까지의 전후 방향의 길이를 Ll, 붐 회전 운동축과 적재물 중심을 잇는 선분과 수평면이 이루는 각도를 θl로 하여 이하의 식 (6)으로 산출된다.
Tgl=Ml·g·Ll·cos(θl)…(6)
적재물이 선회 원심력에 의해 발생시키는 토크 Tcl은, 상부 선회체(11)의 선회 중심과 버킷 중심까지의 전후 방향의 길이를 Rl로 하여 이하의 식 (7)로 산출된다.
Tcl=Ml·Rl·ω2·sin(θl)…(7)
식 (3) 내지 (7)의 균형을 변형하여 적재물 중량 Ml에 관하여 전개하면, 적재물 중량 Ml은 이하의 식 (8)로 산출된다.
Ml=(Tbm-Tgfr-Tcfr)/(Ll·g·cos(θl)+Rl·ω2·sin(θl))…(8)
식 (2)-(8)에 의한 하중의 연산은, 센서의 노이즈나 유압 회로의 특성 등에 의해 운반 동작 중에는 항상 일정한 값을 출력할 수 없는 경우가 있으므로, 운반 동작 중의 소정 기간의 적재물 중량 Ml을 평균화하여 하중값을 확정한다.
-하중값 확정 처리와 로드 오버플로우 추정 처리-
도 10은 제 1 실시 형태의 컨트롤러(21)가 실행하는 하중값 확정 처리와 로드 오버플로우 추정 처리를 나타내는 플로우 차트이며, 도 11은 순시 하중값 Ml의 시간 변화를 나타내는 그래프이며, 도 12는 운반 중의 로드 오버플로우의 발생을 추정할 때에 이용하는 그래프(로드 오버플로우 기준값)의 설명도이다. 도 10 내지 도 12를 이용하여, 하중 연산부(51)가 유압 셔블(1)의 운반 동작 중에 하중을 확정한 후, 그 하중값에 의거하여 로드 오버플로우 기준 선택부(53)가 로드 오버플로우 기준값을 선택하고, 그 선택된 로드 오버플로우 기준값에 의거하여 로드 오버플로우 추정부(54)가 로드 오버플로우의 유무를 추정하는 방법에 대하여 서술한다.
도 10의 플로우 차트는 컨트롤러(21)에 있어서 미리 정해진 샘플링 주기로 실행된다.
하중 연산부(51)는, 단계 S110에서 모니터(23)로부터 적입량의 리셋 신호가 출력되고 있는지 아닌지 판정하고, 리셋 신호가 출력되고 있지 않은 경우에는 단계 S112로 진행되고, 리셋 신호가 출력되고 있는 경우에는 단계 S111에서 운반 기계(2)로의 적입량을 리셋하고, 단계 S112로 진행된다.
단계 S112에서는, 하중 연산부(51)는, 운반 판정부(50)로부터 운반 개시 판정이 출력되었는지 아닌지 감시한다. 운반 개시 판정이 출력되고 있는 경우에는 단계 S113으로 진행되고, 그렇지 않은 경우에는 단계 S110의 이전으로 되돌아가, 모니터(23) 및 운반 판정부(50)의 출력을 감시한다.
단계 S113에서는, 하중 연산부(51)는, 상기의 식 (2)-(8)에 관한 연산을 행하고, 순시의 굴삭물 중량(순간 하중값) Ml을 연산하며, 계속해서 단계 S114에서는 순시의 순시 하중값 Ml을 기록하고, 단계 S115로 진행된다.
단계 S115에서는, 하중 연산부(51)는, 운반 판정부(50)로부터 운반 개시 판정이 출력되고 나서 소정 시간(「하중 연산 기간」이라고 칭하는 경우가 있음)이 경과하고 있는지 아닌지 판정하고, 소정 시간이 경과하고 있지 않은 경우에는 단계 S113의 이전으로 되돌아가 단계 S113과 S114를 다시 실행한다. 한편, 소정 시간이 경과하고 있는 경우에는 단계 S116으로 진행된다.
단계 S116에서는, 하중 연산부(51)는, 소정 시간에 연산한 순시 하중값 Ml의 평균 하중값을 연산한다. 도 11에 나타내는 바와 같이 하중 연산 기간 중의 순시 하중값 Ml은 샘플링마다 상이하므로, 하중 연산 기간 중에 연산된 값의 평균을 취함으로써 하중값을 확정한다. 단계 S116에서 하중값이 확정되면, 그 확정한 하중값을 출력 정보 생성부(57)에 송신하고(단계 S117) 단계 S118로 진행된다. 출력 정보 생성부(57)는, 단계 S117에서 입력되는 하중값을 기초로 모니터(23)의 화면상의 운반 중 하중 표시부(93)의 수치를 갱신한다.
단계 S118에서는, 로드 오버플로우 기준 선택부(53)는, 단계 S116에서 연산한 굴삭물(4)의 하중값 Ml의 크기를, 미리 설정하고 있는 임계값에 의거하여 대, 중, 소의 3개로 분류하고, 도 7에 있어서의 로드 오버플로우 기준 기억부(52)가 기록하고 있는 3개의 타원 형상의 로드 오버플로우 기준값(로드 오버플로우 허용 범위)의 중으로부터, 분류한 굴삭물(4)의 하중값에 적합한 기준값을 선택한다. 그리고, 선택한 로드 오버플로우 기준값을 로드 오버플로우 추정부(54)에 출력하여 로드 오버플로우 기준값으로서 설정하고 단계 S119로 진행된다. 여기서는 단계 S118에서 도 12에 나타내는 로드 오버플로우 기준값이 선택·설정된 것으로서 계속해서 설명한다.
단계 S119에서는, 로드 오버플로우 추정부(54)는, 로드 오버플로우를 추정하였을 때에 ON으로 설정되는 로드 오버플로우 추정 플래그를 OFF로 설정하고, 단계 S120으로 진행된다.
단계 S120에서는, 로드 오버플로우 추정부(54)는, 단계 S118에서 설정한 기준값과, 자세 연산부(55)로부터 입력하는 현재의 수평면에 대한 버킷(15)의 절대 각도와, 운동 상태 연산부(56)로부터 입력하는 현재의 상부 선회체(11)의 선회 각속도의 크기에 의거하여, 현재의 수평면에 대한 버킷(15)의 절대 각도와 상부 선회체(11)의 선회 각속도의 크기가 식 (1)에 나타내는 관계를 충족시키는지 여부를 판정한다. 식 (1)의 관계를 충족시킨다고 판정한 경우(즉, 도 12 중의 점선의 원이 나타내는 바와 같이 버킷 각도와 선회 각속도의 조합이 허용 범위 내에 있다고 판정한 경우)에는 로드 오버플로우의 발생은 없었던 것으로 간주하여 단계 S122로 진행된다. 반대로, 식 (1)의 관계를 충족시키지 않는다고 판정한 경우(즉, 도 12 중의 실선의 원이 나타내는 바와 같이 버킷 각도와 선회 각속도의 조합이 허용 범위 외에 있다고 판정한 경우)에는 단계 S121에서 로드 오버플로우가 발생한 것으로 간주하여, 로드 오버플로우 추정 플래그를 ON으로 설정하고 단계 S122로 진행된다.
단계 S122에서는, 로드 오버플로우 추정부(54)는, 로드 오버플로우 추정 플래그가 ON으로 되어 있는지 아닌지 판정한다. 로드 오버플로우 추정 플래그가 OFF인 경우에는 단계 S125로 진행되고, 로드 오버플로우 추정 플래그가 ON인 경우에는 단계 S123으로 진행된다.
단계 S125에서는, 하중 연산부(51)는, 운반 판정부(50)로부터 운반 종료 판정(단계 S104)이 출력되었는지 아닌지 감시하고, 운반 종료 판정이 검출되지 않는 경우에는 단계 S120의 이전으로 되돌아가 로드 오버플로우 추정부(54)에 의한 로드 오버플로우의 유무의 판정을 속행하고, 운반 종료 판정이 검출된 경우에는 단계 126으로 진행된다.
단계 S123에서는, 출력 정보 생성부(57)는, 로드 오버플로우 통지 메시지(95)를 생성하여 모니터(23) 상에 표시함으로써 로드 오버플로우 추정을 조작자에게 통지하고(후술의 도 13b 참조), 단계 S124로 진행된다. 로드 오버플로우 통지 메시지(95)는 적어도 로드 오버플로우 추정 플래그가 ON으로 되어 있는 기간에 모니터(23) 상에 표시된다.
단계 S124에서는, 하중 연산부(51)는, 붐 각도 센서(24)의 출력을 확인하고, 운반 종료 판정의 검출까지의 동안에 붐 인상이 검출되는지 여부를 판정한다. 운반 종료 판정까지 붐 인상이 검출된 경우에는, 로드 오버플로우 통지 메시지(95)에 의거하여 조작자가 하중값의 재계측을 개시한 것으로 간주하여, 단계 S113의 이전으로 되돌아가 다시 하중을 계측한다. 도 11에 나타내는 바와 같이, 로드 오버플로우를 추정한 후에 붐 인상을 검출한 경우, 붐 인상 검출 후의 소정 기간 중에 순시 하중값 Ml을 다시 계측하여, 하중값을 갱신한다. 한편, 단계 S124에서 붐 인상을 검출할 수 없는 경우에는, 로드 오버플로우가 추정되었지만 조작자가 재계측을 하지 않아 운반 동작을 종료한 것으로 간주하여 단계 S126으로 진행된다.
단계 S126에서는, 하중 연산부(51)는, 단계 S116에서 연산한 평균 하중을 적산하여 운반 기계(2)로의 적입량을 연산한다. 단계 S127에서는, 하중 연산부(51)는, 단계 S116에서 연산한 평균 하중을 리셋한다. 단계 S128에서는, 단계 S126에서 연산된 운반 기계(2)로의 적입량과 단계 S127에서 리셋된 평균 하중값을 출력 정보 생성부(57)에 출력하고, 단계 S110의 이전으로 되돌아간다. 출력 정보 생성부(57)는 단계 S128의 출력에 의거하여 표시를 갱신한다.
도 13a 및 도 13b는 본 실시 형태의 모니터(23)의 출력 화면을 나타내는 외관도이며, 도 13a는 로드 오버플로우를 추정하고 있지 않을 때(로드 오버플로우 추정 플래그 OFF일 때)의 출력 화면, 도 13b는 로드 오버플로우를 추정하였을 때(로드 오버플로우 추정 플래그 ON일 때)의 출력 화면이다. 도 13a, b를 이용하여 출력 정보 생성부(57)가 하중 계측 결과와 로드 오버플로우의 추정 결과에 따라 모니터(23)의 표시를 변경하는 방법에 대하여 설명한다.
모니터(23)의 출력 화면(표시 화면)에는, 목표 하중 표시부(90)와, 합계 하중 표시부(91)와, 잔여 하중 표시부(92)와, 운반 중 하중 표시부(93)와, 적산 리셋 스위치(94)가 마련되어 있다. 목표 하중 표시부(90)에 표시되는 목표 하중값은 각 덤프트럭(2)의 베셀 용량에 의거하여 미리 설정되어 있다. 합계 하중 표시부(91)에 표시되는 합계 하중값은, 도 10에 있어서의 단계 S126에서 연산된 운반 기계(2)의 적입량(평균 하중값의 적산값)이며, 적산 리셋 스위치(94)가 압하되는 타이밍에서 제로로 리셋된다. 잔여 하중 표시부(92)에 표시되는 잔여 하중값은 목표 하중 표시부(90)의 목표 하중값에서부터 합계 하중 표시부(92)의 합계 하중값을 뺀 값이다. 운반 중 하중 표시부(93)에는, 도 10의 단계 S116에서 연산되는 운반 중의 하중값이 표시되고, 단계 S129의 타이밍에서 제로로 리셋된다. 출력 정보 생성부(57)는, 도 9에 있어서의 단계 S123에서 로드 오버플로우 추정 플래그가 ON으로 되어 있는 기간은, 로드 오버플로우 통지 메시지(95)를 생성하고, 그 로드 오버플로우 통지 메시지(95)를 도 13b에 나타내는 바와 같이 모니터(23) 상에 중첩하여 표시한다. 로드 오버플로우 통지 메시지(95)로서는, 조작자에 대하여 신속한 붐 인상의 실행을 촉구하는 메시지나 도형을 추가해도 된다.
-동작·효과-
상기한 바와 같이 구성된 유압 셔블에 있어서, 아암 크라우드를 조작하여 프론트 작업기(12)로 작업 대상물(4)을 굴삭하는 굴삭 동작을 개시하면, 버킷(15)이 지표에 접촉하여 아암 실린더 보텀압이 임계값 1을 초과하여 상승하고, 그 후, 굴삭이 종료되어 아암 실린더 부하가 저감되면 아암 실린더 보텀압이 임계값 2 이하로 저하되어 운반 판정부(50)는 운반 개시 판정을 출력한다(도 5의 S102). 굴삭 동작으로 이어지는 운반 동작에서는, 작업 대상물(4)을 덤프트럭(2)의 짐받이의 위까지 선회 붐 인상으로 운반하는 동작이 행해지고, 이 운반 동작 중에 컨트롤러(21)는 도 10의 단계 S113-S122까지의 처리를 실행한다. 구체적으로는, 우선 하중 연산부(51)가 순시 하중값 Ml과 평균 하중값의 연산을 행한다(단계 S113-S116). 그리고, 로드 오버플로우 추정부(54)가 그 평균 하중값에 적합한 로드 오버플로우 기준값을 설정하고(단계 S118), 평균 하중값의 연산 후에 운반 동작 종료 판정의 출력 전의 사이에 자세 연산부(55)가 연산한 버킷 각도와 운동 상태 연산부(56)가 연산한 선회 각속도의 조합이 로드 오버플로우 기준값을 규정하는 타원의 내부에 위치하는지 여부를 판정함으로써 로드 오버플로우가 발생하였는지 여부를 추정한다(단계 S120). 이 판정으로 로드 오버플로우가 발생한 것이라고 추정된 경우에는, 모니터(23)의 화면 상에 로드 오버플로우 통지 메시지(95)(도 13b)가 표시되고(단계 S123), 이로써 조작자에게 로드 오버플로우가 발생한 것이 운반 동작 중(즉, 버킷 덤프에 의한 굴삭물(4)의 덤프트럭(2)으로의 방토 전)에 통지된다. 통지 메시지(95)를 인식한 조작자는 조속히 붐 인상을 다시 행하고(단계 S124), 이로써 로드 오버플로우 후의 굴삭물(4)의 평균 하중값이 하중 연산부(51)에 의해 연산된다(단계 S113-S116). 하중 연산부(51)에 의한 평균 하중값의 연산이 완료되면, 모니터(23) 상의 운반 중 하중 표시부(93)의 수치가 갱신되므로(단계 S117), 이 수치의 갱신을 인식함으로써 조작자는 로드 오버플로우 후의 굴삭물(4)의 평균 하중값의 연산이 완료된 것을 파악할 수 있으며, 다음의 적입 동작으로 원활하게 이행할 수 있다. 그 후, 로드 오버플로우 후의 굴삭물(4)의 평균 하중값이 덤프트럭(2)으로의 적입량으로서 적산된다(단계 S126).
이와 같이 운반 동작 중에 로드 오버플로우의 발생의 유무를 판정함으로써, 조작자가 평균 하중 계측 후의 로드 오버플로우를 못보고 놓치는 경우가 사라지고, 로드 오버플로우 발생 시에는 평균 하중값을 재계측함으로써 덤프트럭(2)으로의 적입량을 양호한 정밀도로 연산할 수 있다.
<제 2 실시 형태>
이어서 본 발명의 제 2 실시 형태에 대하여 설명한다. 도 14는 제 2 실시 형태의 하중 계측 시스템의 시스템 구성도이며, 이전의 실시 형태와 동일한 부분에는 동일한 부호를 부여하고 설명을 생략하는 경우가 있다. 본 실시 형태의 컨트롤러(21)는, 제 1 실시 형태의 각 구성에 더해, 프론트 작업기(12)의 자세(버킷 각도)와 운동 상태(선회 각속도) 중 어느 것이 로드 오버플로우의 요인이 되고 있는지를 판별하기 위한 기준값(「로드 오버플로우 요인 기준값」이라고 칭하는 경우가 있음)이 기억된 로드 오버플로우 요인 기준 기억부(60)로서 기능한다. 로드 오버플로우 요인 기준 기억부(60)는 컨트롤러(21)의 기억 장치 내에 확보된 기억 영역이며, 로드 오버플로우 요인 기준 기억부(60)가 취급하는 데이터는 컨트롤러(21)의 기억 장치에 기억된다.
도 15는 제 2 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트이며, 단계 S121의 이후에 단계 S130, 131, 132의 처리가 실행되는 점에서 제 1 실시 형태의 도 10의 것과 상이하다. 도 10과 동일한 부호가 부여된 단계는 도 10과 동일한 단계이기 때문에 설명을 생략한다.
로드 오버플로우 추정부(54)는, 단계 S120에서 로드 오버플로우가 발생했다고 판정하여 단계 S121에서 로드 오버플로우 추정 플래그를 ON으로 설정하면, 단계 S130에서 버킷(15)의 절대 각도가 로드 오버플로우 요인 판별 기준값 내인지 아닌지에 의거하여 로드 오버플로우 요인을 판정한다. 도 16은 본 실시 형태의 로드 오버플로우 요인 기준값의 설명도이며, 본 실시 형태의 로드 오버플로우 요인 기준값은 버킷(15)의 절대 각도가 수평이 되는 제로를 포함하는 소정의 범위로 규정되어 있다. 도 16의 예에서는, 로드 오버플로우 요인 기준값은 버킷 절대각이 -θsp1(하한값) 내지 +θsp1(상한값)의 범위로 설정되어 있다.
단계 S130에서 로드 오버플로우 추정부(54)가, 버킷(15)의 절대 각도가 로드 오버플로우 요인 판별 기준값 내에 포함된다고 판정한 경우(즉, 도 16 중의 점선의 원이 나타내는 바와 같이 버킷 절대 각도가 로드 오버플로우 요인 판별 기준값 내에 있다고 판정한 경우)에는 단계 S131에 있어서 로드 오버플로우의 주된 요인은 「선회 속도」인 것이라고 추정하고, 그 추정 결과를 출력 정보 생성부(57)에 출력한다. 한편, 버킷(15)의 절대 각도가 로드 오버플로우 요인 판별 기준 내는 아니라고 판정한 경우(즉, 도 16 중의 실선의 원이 나타내는 바와 같이 버킷 절대 각도가 로드 오버플로우 요인 판별 기준값 외에 있다고 판정한 경우)에는 단계 S132에 있어서 로드 오버플로우의 주된 요인은 「버킷(15)의 각도」인 것으로 추정하고, 그 추정 결과를 출력 정보 생성부(57)에 출력한다. 단계 S131과 S132 중 어느 처리가 종료되면 단계 S122로 진행된다.
출력 정보 생성부(57)는, 단계 S123에 있어서, 로드 오버플로우 통지 메시지(95)를 모니터(23)에 표시함과 동시에, 단계 S131 또는 S132에서 입력한 로드 오버플로우 요인의 추정 결과에 따른 로드 오버플로우 요인 통지 메시지(98)를 표시한다. 예를 들면, 버킷(15)의 절대 각도가 로드 오버플로우 요인의 판별 기준값의 범위 외일 때(즉, 단계 S132를 통과하였을 때)에는, 도 17에 나타내는 바와 같이 버킷(15)의 기울어짐(절대 각도)이 요인이기 때문에 로드 오버플로우가 발생하였다고 추정하여, 버킷(15)의 기울어짐에 주의하도록 모니터(23)의 표시를 통하여 조작자에게 통지한다. 또한, 도면에 나타내는 것은 생략하지만, 단계 S131을 통과하여 로드 오버플로우 요인이 선회 속도라고 추정된 경우에는, 선회 속도가 로드 오버플로우의 요인이며, 조작자에게 선회 속도에 대한 주의를 촉구하는 메시지를 모니터(23)에 표시한다. 또한, 도 16의 예에서도 도 13b의 예와 같이 로드 오버플로우 통지 메시지(95)로서 「다시 계측해 주세요.」라고 하는 붐 인상에 의한 재계측을 촉구하는 메시지를 표시해도 된다.
상기와 같이 구성한 본 실시 형태에 의하면, 로드 오버플로우가 발생하였을 때의 프론트 작업기(12)의 자세(버킷 절대 각도)와 운동 상태(선회 각도)와 로드 오버플로우 요인 기준값에 의거하여 로드 오버플로우 요인의 추정 결과를 모니터(23)에 표시함으로써, 조작자에게 로드 오버플로우 요인을 파악시킬 수 있다. 이로써 조작자가 자신의 조작 경향을 객관적으로 파악하는 것이 가능해져, 조작자의 스킬 업을 촉구하는 것을 기대할 수 있다.
또한, 도 16의 로드 오버플로우 요인 기준값은 일례에 지나지 않고, 버킷 절대 각도의 상한값(최대값)과 하한값(최소값)은 상이한 값으로 설정해도 된다.
<제 3 실시 형태>
이어서 본 발명의 제 3 실시 형태에 대하여 설명한다. 본 실시 형태의 하중 계측 시스템의 시스템 구성도는 도 3에 나타낸 제 1 실시 형태와 동일하기 때문에 설명은 생략한다.
도 18은 제 3 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트이며, 단계 S122의 이후에 단계 S135, 136, 137의 처리가 실행되는 점에서 제 1 실시 형태의 도 10의 것과 상이하다. 도 10과 동일한 부호가 부여된 단계는 도 10과 동일한 단계이기 때문에 설명을 생략한다.
로드 오버플로우 추정부(54)는, 단계 S120에서 로드 오버플로우가 발생하였다고 판정하여 단계 S121에서 로드 오버플로우 추정 플래그를 ON으로 설정하면, 로드 오버플로우 기준 선택부(53)에 선택된 로드 오버플로우 기준값에 대한, 운동 상태 연산부(56)에서 연산된 상부 선회체(11)의 선회 각속도(프론트 작업기(12)의 운동 상태를 나타내는 물리량)의 여유도(로드 오버플로우 여유도)를 단계 S135에서 연산한다. 구체적으로는, 단계 S135에 있어서, 로드 오버플로우 추정부(54)는, 도 19 에 나타내는 바와 같이, 단계 S135의 실행 시에 자세 연산부(55)가 연산한 버킷 각도와 운동 상태 연산부(56)가 연산한 선회 각속도의 조합으로 이루어지는 점과, 로드 오버플로우 기준값을 규정하는 타원과의 선회 각속도의 크기 방향에 있어서의 거리(수평 거리)를 로드 오버플로우에 대한 여유도로서 연산한다. 즉, 로드 오버플로우에 대한 여유도 ωm은 식 (1)을 변형하여 이하의 식 (9)로 연산할 수 있다.
ωm=((ωsp)2×(1-θbk)2/(θsp)2))1/2-ωsw (9)
계속해서 단계 S136에서는, 로드 오버플로우 추정부(54)는, 로드 오버플로우 여유도가 소정의 설정값(임계값)을 상회하고 있는지 아닌지 판정한다. 로드 오버플로우 여유도가 설정값 이하인 경우에는, 단계 S125로 진행되어 운반이 종료되었는지 아닌지 감시한다. 한편, 로드 오버플로우 여유도가 설정값을 초과하는 경우에는, 출력 정보 생성부(57)에 단계 S135에서 연산한 여유도를 출력하고, 단계 S137로 진행된다.
단계 S137에서는, 출력 정보 생성부(57)는, 로드 오버플로우 추정부(54)로부터 단계 S136에서 출력된 로드 오버플로우 여유도에 의거하여 모니터(23)에 로드 오버플로우에 대한 여유도 메시지(96)를 표시한다. 로드 오버플로우에 대하여 상부 선회체(11)의 선회 각속도의 크기에 여유가 있는 경우, 도 20에 나타내는 여유도 메시지(96)와 같이 선회 각속도(프론트 작업기(12)의 운동 상태를 나타내는 물리량)를 증가시켜도 로드 오버플로우가 발생하지 않는 취지를 조작자에게 통지한다.
이와 같이 로드 오버플로우 추정부(54)에서 로드 오버플로우가 발생하지 않는다고 추정된 경우에는, 여유도 메시지(96)를 모니터(23)에 표시하여 로드 오버플로우에 대한 여유도를 조작자에게 통지함으로써, 조작자는 로드 오버플로우가 일어나지 않는 범위에서 재빠른 조작을 실시할 수 있게 되므로 작업 효율을 향상시킬 수 있다. 또한, 운반 중의 적절한 조작 방법을 파악할 수 있으므로 조작자의 스킬 업으로 이어진다.
또한, 본 실시 형태에서는, 선회 속도의 여유도를 산출하여 조작자에게 통지했지만, 버킷 절대 각도의 여유도, 즉 도 19의 수직 방향 거리(구체적으로는, 단계 S135의 실행 시의 버킷 각도와 선회 각속도의 조합으로 이루어지는 점과 로드 오버플로우 기준값을 규정하는 타원과의 버킷 각도의 크기 방향에 있어서의 거리)를 산출하여 조작자에게 통지해도 된다.
<제 4 실시 형태>
이어서 본 발명의 제 4 실시 형태에 대하여 설명한다. 도 21은 제 4 실시 형태의 하중 계측 시스템의 시스템 구성도이며, 이전의 실시 형태와 동일한 부분에는 동일한 부호를 부여하고 설명을 생략하는 경우가 있다. 본 실시 형태의 컨트롤러(21)는, 프론트 작업기(12)가 작업 대상물(4)의 운반 중에 로드 오버플로우를 발생시켰다고 로드 오버플로우 추정부(54)가 추정한 횟수(로드 오버플로우 카운트 수)를 카운트하는 로드 오버플로우 추정 빈도 연산부(61)로서 기능하고, 로드 오버플로우 추정 빈도 연산부(61)에 의해 카운트된 횟수가 소정의 설정값을 초과하였을 때, 로드 오버플로우 기준 기억부(53)가 선택한 로드 오버플로우 기준값의 변경을 촉구하는 취지를 모니터(23)가 더 통지하는 점에 특징이 있다. 또한, 도 21의 시스템은 로드 오버플로우 요인 기준 기억부(60)를 가지는 제 2 실시 형태의 도 15의 시스템 구성이 기초로 되어 있지만, 제 1 실시 형태의 도 10의 시스템 구성에 로드 오버플로우 추정 빈도 연산부(61)를 추가해도 동일한 시스템을 구축할 수 있다.
도 22는 제 4 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트이며, 단계 S120의 이후에 단계 S140의 처리가 실행되고, 단계 S121의 이후에 단계 S141, 142, 143, 144의 처리가 실행되는 점에서 제 1 실시 형태의 도 10의 것과 상이하다. 도 10과 동일한 부호가 부여된 단계는 도 10과 동일한 단계이기 때문에 설명을 생략한다.
로드 오버플로우 추정 빈도 연산부(61)는, 로드 오버플로우 추정부(54)가 단계 S120에서 로드 오버플로우를 추정하지 않은 경우에는, 컨트롤러(21)의 내부에 보지하고 있는 로드 오버플로우 카운트 수를 단계 S140에서 1만큼 감산하고, 단계 S122로 진행된다.
한편, 로드 오버플로우 추정부(54)가 단계 S120에서 로드 오버플로우를 추정한 경우에는, 로드 오버플로우 추정 빈도 연산부(61)는, 단계 S121의 이후의 단계 S141에서 로드 오버플로우 카운트 수를 1만큼 가산하여 단계 S142로 진행된다. 단계 S142에서는, 로드 오버플로우 추정 빈도 연산부(61)는, 로드 오버플로우 카운트 수가 미리 설정되어 있는 설정값보다 많은지 여부를 판정하고, 카운트 수가 당해 설정값 이하인 경우에는 단계 S122로 진행된다. 한편, 카운트 수가 당해 설정값보다 많은 경우, 로드 오버플로우 추정 빈도 연산부(61)는, 단계 S143에서 로드 오버플로우 추정 플래그를 OFF로 설정하고, 계속해서 단계 S144에서 에러 신호를 출력 정보 생성부(57)에 출력한다.
출력 정보 생성부(57)는 단계 S144에서, 로드 오버플로우 추정 빈도 연산부(61)로부터 에러 신호가 출력된 경우, 도 23에 나타내는 바와 같이 로드 오버플로우 기준 기억부(52)의 로드 오버플로우 기준값의 설정 변경을 촉구하는 로드 오버플로우 기준값 설정 변경 통지 메시지(97)를 모니터(23)에 표시한다. 즉, 로드 오버플로우의 추정이 많은 경우, 로드 오버플로우 기준 기억부(52)의 로드 오버플로우 기준값의 설정을 수정하도록 조작자에게 통지한다.
이와 같이 로드 오버플로우의 추정 빈도에 따라 로드 오버플로우 기준의 설정 변경을 촉구함으로써, 로드 오버플로우 기준 기억부(52)에 기억된 로드 오버플로우 기준값의 설정이 작업 현장의 환경에 부적합하다고 파악할 수 있고, 그 설정을 수정함으로써 작업 현장의 환경에 적합한 로드 오버플로우 추정을 행할 수 있다.
<제 5 실시 형태>
이어서 본 발명의 제 5 실시 형태에 대하여 설명한다. 본 실시 형태의 하중 계측 시스템의 시스템 구성도는 도 3에 나타낸 제 1 실시 형태와 동일하기 때문에 설명은 생략한다.
본 실시 형태는, 우선, 자세 연산부(55)에서 연산되는 프론트 작업기(12)의 자세에, 상부 선회체(11)(차체 본체)로부터 프론트 작업기(12)의 선단부에 위치하는 버킷(15)까지의 수평 방향 거리 L(도 26 참조)이 포함되어 있으며, 그 수평 방향 거리 L의 감소에 따라 로드 오버플로우 기준값을 규정하는 타원의 넓이가 도 27에 나타내는 바와 같이 선회 각속도 방향에 있어서 증가하도록 규정되어 있는(환언하면, 수평 방향 거리 L의 감소에 따라 타원의 장축 방향의 길이가 증가하도록 규정되어 있는) 것을 특징으로 한다.
또한, 본 실시 형태는, 자세 연산부(55)가, 프론트 작업기(12)의 자세로서 버킷(15)의 위치를 산출하고 있으며, 운동 상태 연산부(56)가, 자세 연산부(55)에서 연산된 버킷(15)의 위치에 의거하여, 프론트 작업기(12)의 운동 상태를 나타내는 물리량으로서 버킷(15)의 연직 방향 가속도와 수평 방향 가속도를 산출하고 있고, 로드 오버플로우 기준 기억부(52)에 기억된 로드 오버플로우 기준값이, 버킷(15)의 연직 방향 가속도를 제 1 축으로 하고, 버킷(15)의 수평 방향 가속도를 제 2 축으로서 가지는 좌표계상의 소정의 영역으로서 규정되어 있으며(도 27 참조), 그 영역은 작업 대상물(4)의 하중값(평균 가중)마다 복수 규정된 복수의 영역이며(도 27참조), 로드 오버플로우 기준 선택부(53)가, 하중 연산부(51)에서 연산된 작업 대상물(4)의 하중값(평균 하중)에 의거하여 로드 오버플로우 기준 기억부(52)에 기억된 복수의 로드 오버플로우 기준값으로부터 1개의 로드 오버플로우 기준값을 선택하고, 로드 오버플로우 추정부(54)가, 운동 상태 연산부(56)에서 연산된 버킷(15)의 연직 방향 가속도와 수평 방향 가속도가 선택부(53)에서 선택된 로드 오버플로우 기준값이 규정하는 영역의 외부에 포함되는 경우에 프론트 작업기(12)가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰다고 판정하는 것을 특징으로 한다.
도 24는 제 5 실시 형태의 컨트롤러(21)가 실행하는 처리의 플로우 차트이며, 단계 S119의 이후에 도 25에 나타내는 로드 오버플로우 추정 처리가 실행되고, 그 도 25의 로드 오버플로우 추정 처리의 이후에 단계 S122 이후의 처리가 실행되는 점에서 제 1 실시 형태의 도 10의 것과 상이하다. 도 24, 25에 있어서 도 10과 동일한 부호가 부여된 단계는 도 10과 동일한 단계이기 때문에 설명을 생략한다. 도 26은 도 25 중의 단계 S150에서 연산되는 버킷 중심 위치 L, H의 설명도이며, 도 27은 도 25 중의 단계 S151-153과 관련된 로드 오버플로우 기준값의 그래프이고, 도 28은 도 25 중의 단계 S15-156과 관련된 로드 오버플로우 기준값의 그래프이다.
도 25의 단계 S150에서는, 자세 연산부(55)는, 붐(13)의 회전 운동 중심으로부터 버킷 중심까지의 수평 방향 거리 L 및 연직 방향 거리 H를 각각 이하의 식 (10), (11)로 연산한다.
H=Lbm·sin(θbm)+Lam·sin(θbm+θam)+Lbk·sin(θbm+θam+θbm)…(10)
L=Lbm·cos(θbm)+Lam·cos(θbm+θam)+Lbk·cos(θbm+θam+θbm)…(11)
계속해서 단계 S151에서, 로드 오버플로우 추정부(54)는, 단계 S150에서 연산한 수평 방향 거리 L이 미리 설정되어 있는 붐의 회전 운동 중심에 대한 수평 방향 거리의 설정값 Lth보다 큰지 아닌지 판정하고, 큰 경우에는 버킷 중심이 도 26 중의 영역 B에 있다고 판정하여 단계 S153으로 진행된다. 한편, 수평 방향 거리 L이 설정값 Lth 이하인 경우에는 버킷 중심이 도 26 중의 영역 A에 있다고 판정하여 단계 S152로 진행된다.
그런데, 수평 방향 거리 L이 상대적으로 큰 경우에는 선회 반경이 크고, 선회에 의해 발생되는 원심력이나 관성력이 커지므로, 선회 각속도가 커지면 로드 오버플로우가 발생하기 쉬워진다. 반대로, 수평 방향 거리 L이 상대적으로 작은 경우에는 선회 반경이 작고, 선회 각속도가 커도 로드 오버플로우가 발생하기 어려워진다. 이 때문에, 도 27에 나타내는 바와 같이 유압 셔블(1)의 주위의 영역을 수평 방향에서 2개의 영역 A, B로 분할한 경우에는, 굴삭물(4)이 동일한 하중(단계 S116의 평균 하중)이어도, 로드 오버플로우 기준값은 어느 영역에 버킷 중심이 위치하는지에 따라 상이한 범위가 된다. 또한 도 27의 예에서는 하중(중)의 로드 오버플로우 기준값만을 표시하고, 하중(소) 및 하중 (대)의 로드 오버플로우 기준값을 생략하고 있지만, 하중(중)의 경우와 마찬가지로 버킷 중심의 위치에 따라 타원의 장축 방향의 길이가 변경되는 것은 말할 필요도 없다. 또한, 도 27의 예에서는 영역 A, B의 2개로 나누어 로드 오버플로우 기준값을 보정했지만, 수평 방향 거리 L의 감소에 따라 타원의 장축 방향의 길이(선회 각속도 방향의 길이)가 단조롭게 증가하도록 로드 오버플로우 기준값을 규정해도 된다.
단계 S152에서는(버킷 중심이 영역 A에 있는 경우), 로드 오버플로우 추정부(54)는, 도 27의 실선의 타원이 나타내는 영역 A의 ωsp(중 A)에 로드 오버플로우 기준값을 설정하여 단계 S120으로 진행된다. 단계 S153으로 진행된 경우(버킷 중심이 영역 B에 있는 경우), 로드 오버플로우 추정부(54)는, 도 27의 점선의 타원이 나타내는 영역 B의 ωsp(중 B)에 로드 오버플로우 기준값을 설정하고 단계 S120으로 진행된다.
단계 S120에서는, 단계 S152 또는 단계 S153에서 선택한 로드 오버플로우 기준값을 이용하여 이전의 실시 형태와 마찬가지의 로드 오버플로우의 유무의 판정을 행하고, 로드 오버플로우가 있다고 판정된 경우에는 단계 S121에서 로드 오버플로우 추정 플래그를 ON으로 하여 단계 S154로 진행된다. 한편, 로드 오버플로우가 없다고 판정된 경우에는 단계 S121을 스킵하고 단계 S154로 진행된다.
단계 S154에서는, 운동 상태 연산부(56)는, 버킷 중심 위치의 수평 방향 거리 L과 연직 방향 거리 H에 대하여 2차 미분을 실시함으로써 L과 H의 가속도(즉, 버킷(15)의 수평 방향 가속도와 연직 방향 가속도)를 연산하고, 단계 S155로 진행된다.
그런데, 연직 방향 거리 H의 가속도가 0인 상태에서, 수평 방향 거리 L의 가속도의 절대값이 커지면, 버킷(15)에 작용하는 관성력에 의해 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 넘쳐 떨어지기 쉬워진다. 또한, 수평 방향 거리 L의 가속도가 0인 상태에서 연직 방향 거리 H의 가속도가 작아지는, 즉 버킷(15)이 낙하하는 방향으로 가속도가 작용하면, 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 넘쳐 떨어지기 쉬워진다. 이들의 관계를 나타내면, 버킷(15)의 중심 위치의 연직 방향 거리 H와 수평 방향 거리 L의 가속도의 크기에 의거한 로드 오버플로우 기준값은, 도 28에 나타내는 바와 같이, 연직 방향 거리 H의 가속도가 0 이하인 경우에는 타원 형상, 연직 방향 거리 H의 가속도가 0 이상인 경우에는 수평 방향 거리 L의 가속도의 크기만이 대상이 되도록 직사각형 형상으로 규정된다. 굴삭물(4)의 하중이 큰 경우에는, 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 크고, 굴삭물(4)이 넘쳐 흐르기 쉬워지기 때문에, 도 27에 나타내는 바와 같이 허용 범위는 작아진다. 한편, 굴삭물(4)의 하중이 작은 경우에는, 버킷(15)의 개구면으로부터 돌출되어 있는 굴삭물(4)의 부위가 작고, 굴삭물(4)이 넘쳐 흐르기 어려워지기 때문에, 도 27의 그래프에 나타내는 바와 같이 허용 범위는 커져, 여유가 생긴다.
단계 S155에서는, 로드 오버플로우 추정부(54)는, 버킷 중심 위치 L, H의 가속도의 조합이, 도 28의 로드 오버플로우 기준값의 내부에 위치하는지 여부를 추가로 판정한다. 즉, 단계 S120과 마찬가지로 버킷 중심 위치의 연직 방향 거리 H와 수평 방향 거리 L의 가속도의 크기가 도 28에 나타내는 허용 범위 내인지 여부를 판정하며, 허용 범위 내인 경우에는 그대로 처리를 종료하고, 허용 범위 외인 경우에는 단계 S156에 있어서 로드 오버플로우 추정 플래그를 ON으로 설정하고, 처리를 종료한다.
이와 같이, 로드 오버플로우의 기준의 지표는, 버킷 절대 각도와 선회 각속도(즉, 버킷(15)의 이동 속도) 크기에 한정되지 않고, 버킷(15)의 수평 방향 거리, 수평 방향 가속도, 수직 방향 가속도도 포함해도 된다. 또한 복수의 기준을 3차원 이상으로 매핑하여 로드 오버플로우의 기준을 설정하고 있어도 된다. 또한, 로드 오버플로우의 기준은 고정된 것에 한정되지 않고, 예를 들면 모니터(23)를 통하여 외부로부터 설정 가능하도록 구성되어 있어도 되는 것은 명백하다.
또한, 제 5 실시 형태에서는, 도 7 등에 나타낸 버킷 절대 각도와 선회 각속도로 이루어지는 로드 오버플로우 기준값과, 도 28의 버킷 중심 위치의 연직 방향 거리 H와 수평 방향 거리 L의 가속도로 이루어지는 로드 오버플로우 기준값을 병용했지만, 후자의 로드 오버플로우 기준값만을 이용하여 로드 오버플로우의 발생의 유무를 판정해도 된다.
<그 외>
또한, 본 발명은, 상기의 각 실시 형태에 한정되는 것은 아니고, 그 요지를 일탈하지 않는 범위 내의 다양한 변형예가 포함된다. 예를 들면, 본 발명은, 상기의 각 실시 형태에서 설명한 모든 구성을 구비하는 것에 한정되지 않고, 그 구성의 일부를 삭제한 것도 포함된다. 또한, 어는 실시 형태와 관련된 구성의 일부를, 다른 실시 형태와 관련된 구성에 추가 또는 치환하는 것이 가능하다.
예를 들면, 본 발명의 설명에 이용한 유압 셔블(1)은 상부 선회체(11), 붐(13), 아암(14), 버킷(15)을 가지고 있지만, 작업 기계의 구성은 이에 한정되지 않고, 예를 들면 리프팅 마그넷기와 같은 상이한 형태의 프론트 작업기를 가지는 작업 기계에 적용할 수 있다.
또한, 운반 판정부(50)에 있어서의 운반 개시 판정은 상기 서술한 바와 같이 아암 실린더 보텀압과 버킷 각도를 이용한 방법에 한정되는 것은 아니다. 예를 들면 리프팅 마그넷기와 같은 작업 기계의 경우, 마그넷의 흡착의 ON/OFF 신호에 의거하여 운반 동작의 개시와 종료를 판정하는 것은 용이하다.
하중의 연산은 도 9에 나타낸 모델에 한정되는 것은 아니고, 상이한 연산식을 이용해도 되는 것은 명백하다. 예를 들면, 붐(13), 아암(14), 버킷(15)에 의해 구성되는 프론트 작업기(12)의 운동 방정식에 의거하여 하중을 연산해도 된다.
굴삭물(4)의 하중값의 확정 방법은 도 10에 나타내는 방법에 한정되는 것은 아니다. 예를 들면 붐(13)의 회전 운동 가속도가 소정값 이하인 기간을 추출하여, 그 기간에 있어서의 하중을 평균화함으로써 확정해도 된다. 하중을 다시 계측하기 위한 붐 인상 동작의 검출은 붐의 각도 검출에 한정되는 것은 아니고, 조작 장치(22)에 대한 조작 입력량이나 버킷(15)의 갈고리끝 위치 등을 검출하도록 구성해도 되는 것은 명백하다.
로드 오버플로우 기준값은 도 7이나 도 12 등에 나타낸 것에 한정되는 것은 아니다. 예를 들면 상부 선회체(11)의 선회 속도의 크기가 아닌, 조작자의 선회 조작량으로 치환해도 된다.
로드 오버플로우 추정이 통지된 후의 붐 인상 동작에서 평균 하중값의 재연산이 완료된 취지를 적극적으로 조작자에게 통지하기 위해, 단계 S117에서 운반 중 하중 표시부(93)의 수치를 갱신할뿐만 아니라 로드 오버플로우 후의 평균 하중값의 연산이 완료된 취지를 모니터(23)에 표시해도 된다.
로드 오버플로우의 요인 판별 기준은 도 15에 나타내는 설정에 한정되는 것은 아니고, 선회 속도의 크기의 상한을 설정해도 된다.
로드 오버플로우에 대한 여유도의 연산 방법은 도 17에 나타내는 방법에 한정되는 것은 아니고, 버킷의 절대 각도에 대한 여유도를 연산하여 표시하도록 구성해도 되는 것은 명백하다.
상기의 각 실시 형태에서는, 로드 오버플로우 기준값을 굴삭물(4)의 하중값에 따라 변경했지만, 굴삭물의 하중값에 큰 변동이 없는 경우에는 미리 정한 하나의 로드 오버플로우 기준값만을 이용하도록 시스템 구성해도 된다.
1…유압 셔블, 2…덤프트럭, 12…프론트 작업기, 13…붐, 14…아암, 15…버킷, 16…붐 실린더, 17…아암 실린더, 18…버킷 실린더, 21…컨트롤러, 22…조작 레버(조작 장치), 23…모니터(표시 장치, 입력 장치), 24…붐 각도 센서, 25…아암 각도 센서, 26…버킷 각도 센서, 27…선회 각속도 센서, 28…경사 각도 센서, 29…붐 보텀압 센서, 30…붐 로드압 센서, 31…아암 보텀압 센서, 32…아암 로드압 센서, 50…운반 판정부, 51…하중 연산부, 52…로드 오버플로우 기준 기억부(기억 장치), 53…로드 오버플로우 기준 선택부, 54…로드 오버플로우 추정부, 55…자세 연산부, 56…운동 상태 연산부, 60…로드 오버플로우 요인 기준 기억부(기억 장치), 61…로드 오버플로우 추정 빈도 연산부

Claims (7)

  1. 버킷을 가지는 다관절형의 작업기와,
    상기 작업기를 구동하는 액추에이터와,
    조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와,
    운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 컨트롤러는,
    상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 복수개 기억된 기억 장치를 구비하고,
    연산된 상기 작업 대상물의 하중값에 기초하여, 상기 기억 장치에 기억된 복수의 상기 기준값으로부터 하나의 기준값을 선택하고,
    상기 작업기의 자세를 연산하며,
    상기 작업기의 운동 상태를 나타내는 물리량을 연산하고,
    상기 하나의 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며,
    상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정된 취지를 통지하는 통지 장치를 더 구비하는 것을 특징으로 하는 작업 기계.
  2. 제 1 항에 있어서,
    상기 기억 장치에는, 또한, 상기 작업기의 자세와 운동 상태 중 어느 것이 로드 오버플로우의 요인으로 되어 있는지를 판별하기 위한 기준값이 기억되어 있으며,
    상기 컨트롤러는, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰다고 판정하였을 때, 상기 기억 장치에 기억된 기준값, 상기 작업기의 자세, 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 로드 오버플로우의 요인을 추정하고,
    상기 통지 장치는, 상기 컨트롤러에 의해 추정된 로드 오버플로우의 요인을 추가로 통지하는 것을 특징으로 하는 작업 기계.
  3. 버킷을 가지는 다관절형의 작업기와,
    상기 작업기를 구동하는 액추에이터와,
    조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와,
    운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 컨트롤러는,
    상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 기억된 기억 장치를 구비하고,
    상기 작업기의 자세를 연산하며,
    상기 작업기의 운동 상태를 나타내는 물리량을 연산하고,
    상기 기억 장치에 기억된 상기 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며,
    상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정된 취지를 통지하는 통지 장치를 더 구비하고,
    상기 컨트롤러는, 또한, 상기 기억 장치에 기억된 상기 기준값에 대한 상기 작업기의 운동 상태를 나타내는 물리량의 여유도를 연산하고,
    상기 통지 장치는, 상기 여유도가 임계값을 초과하였을 때, 상기 작업기의 운동 상태를 나타내는 물리량이 증가해도 로드 오버플로우가 발생하지 않는 취지를 추가로 통지하는 것을 특징으로 하는 작업 기계.
  4. 버킷을 가지는 다관절형의 작업기와,
    상기 작업기를 구동하는 액추에이터와,
    조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와,
    운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 컨트롤러는,
    상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 기억된 기억 장치를 구비하고,
    상기 작업기의 자세를 연산하며,
    상기 작업기의 운동 상태를 나타내는 물리량을 연산하고,
    상기 기억 장치에 기억된 상기 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며,
    상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정된 취지를 통지하는 통지 장치를 더 구비하고,
    상기 컨트롤러는, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰다고 로드 오버플로우 추정부가 추정한 횟수를 카운트하고,
    상기 통지 장치는, 상기 횟수가 소정의 값을 초과하였을 때, 상기 기억 장치에 기억된 상기 기준값의 변경을 촉구하는 취지를 추가로 통지하는 것을 특징으로 하는 작업 기계.
  5. 버킷을 가지는 다관절형의 작업기와,
    상기 작업기를 구동하는 액추에이터와,
    조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와,
    운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 컨트롤러는,
    상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 기억된 기억 장치를 구비하고,
    상기 작업기의 자세를 연산하며,
    상기 작업기의 운동 상태를 나타내는 물리량을 연산하고,
    상기 기억 장치에 기억된 상기 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며,
    상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정된 취지를 통지하는 통지 장치를 더 구비하고,
    상기 컨트롤러는, 상기 작업기의 자세로서 상기 버킷의 수평면에 대한 각도를 산출하고 있으며,
    상기 컨트롤러는, 상기 작업기의 운동 상태를 나타내는 물리량으로서 상기 작업기의 이동 속도를 산출하고 있고,
    상기 기억 장치에 기억된 상기 기준값은, 상기 버킷의 수평면에 대한 각도를 제 1 축으로 하고, 상기 작업기의 이동 속도를 제 2 축으로서 가지는 좌표계상의 소정의 영역으로서 규정되어 있으며, 그 영역은 작업 대상물의 하중값마다 복수 규정된 복수의 영역이고,
    상기 컨트롤러는, 상기 작업 대상물의 하중값에 의거하여 상기 기억 장치에 기억된 상기 복수의 영역으로부터 하나의 영역을 선택하며,
    상기 컨트롤러는, 상기 버킷의 수평면에 대한 각도와 상기 작업기의 이동 속도가 상기 선택된 영역의 외부에 포함되는 경우에 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰다고 판정하는 것을 특징으로 하는 작업 기계.
  6. 제 5 항에 있어서,
    상기 작업기의 자세에는, 상기 작업 기계로부터 상기 작업기의 선단부까지의 수평 방향 거리가 포함되어 있으며, 상기 수평 방향 거리의 감소에 따라 상기 영역의 넓이가 증가하도록 규정되어 있는 것을 특징으로 하는 작업 기계.
  7. 버킷을 가지는 다관절형의 작업기와,
    상기 작업기를 구동하는 액추에이터와,
    조작량에 따라 상기 액추에이터에 대한 속도 지령을 생성하는 조작 장치와,
    운반 기계의 상방으로의 작업 대상물의 운반이 상기 작업기에 의해 행해지고 있는 동안의 상기 액추에이터의 추력 정보에 의거하여 상기 작업 대상물의 하중값을 연산하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 컨트롤러는,
    상기 버킷으로부터 작업 대상물의 로드 오버플로우가 발생하였는지 여부를 추정하기 위한 기준값으로서, 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태의 상호 관계로 규정된 기준값이 기억된 기억 장치를 구비하고,
    상기 작업기의 자세를 연산하며,
    상기 작업기의 운동 상태를 나타내는 물리량을 연산하고,
    상기 기억 장치에 기억된 상기 기준값, 상기 작업 대상물의 하중값, 상기 작업기의 자세, 및 상기 작업기의 운동 상태를 나타내는 물리량에 의거하여, 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰는지 여부를 추정하며,
    상기 컨트롤러로 로드 오버플로우가 발생하였다고 판정된 취지를 통지하는 통지 장치를 더 구비하고,
    상기 컨트롤러는, 상기 작업기의 자세로서 상기 버킷의 위치를 산출하고 있으며,
    상기 컨트롤러는, 상기 버킷의 위치에 의거하여, 상기 작업기의 운동 상태를 나타내는 물리량으로서 상기 버킷의 연직 방향 가속도와 수평 방향 가속도를 산출하고 있고,
    상기 기억 장치에 기억된 상기 기준값은, 상기 버킷의 연직 방향 가속도를 제 1 축으로 하고, 상기 버킷의 수평 방향 가속도를 제 2 축으로서 가지는 좌표계상의 소정의 영역으로서 규정되어 있으며, 그 영역은 작업 대상물의 하중값마다 복수 규정된 복수의 영역이고,
    상기 컨트롤러는, 상기 작업 대상물의 하중값에 의거하여 상기 기억 장치에 기억된 상기 복수의 영역으로부터 하나의 영역을 선택하며,
    상기 컨트롤러는, 상기 버킷의 연직 방향 가속도와 수평 방향 가속도가 상기 선택된 영역의 외부에 포함되는 경우에 상기 작업기가 작업 대상물의 운반 중에 로드 오버플로우를 발생시켰다고 판정하는 것을 특징으로 하는 작업 기계.
KR1020207004318A 2018-03-07 2019-03-06 작업 기계 KR102410416B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018041286A JP6849623B2 (ja) 2018-03-07 2018-03-07 作業機械
JPJP-P-2018-041286 2018-03-07
PCT/JP2019/008972 WO2019172346A1 (ja) 2018-03-07 2019-03-06 作業機械

Publications (2)

Publication Number Publication Date
KR20200030571A KR20200030571A (ko) 2020-03-20
KR102410416B1 true KR102410416B1 (ko) 2022-06-22

Family

ID=67847184

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207004318A KR102410416B1 (ko) 2018-03-07 2019-03-06 작업 기계

Country Status (6)

Country Link
US (1) US11236488B2 (ko)
EP (1) EP3763886A4 (ko)
JP (1) JP6849623B2 (ko)
KR (1) KR102410416B1 (ko)
CN (1) CN111051620B (ko)
WO (1) WO2019172346A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160965A1 (en) * 2017-03-03 2018-09-07 Cnh Industrial America Llc System and method for estimating implement load weights for a work vehicle
JP6849623B2 (ja) * 2018-03-07 2021-03-24 日立建機株式会社 作業機械
JP7149912B2 (ja) * 2019-09-25 2022-10-07 日立建機株式会社 作業機械
JP7234891B2 (ja) * 2019-09-30 2023-03-08 コベルコ建機株式会社 作業機械
JP7287320B2 (ja) * 2020-03-19 2023-06-06 コベルコ建機株式会社 作業機械
US11920321B2 (en) 2020-03-30 2024-03-05 Cnh Industrial America Llc System and method for automatically performing an earthmoving operation
JPWO2021241526A1 (ko) * 2020-05-25 2021-12-02
JP2022157266A (ja) * 2021-03-31 2022-10-14 株式会社小松製作所 演算装置および演算方法
JP2023010087A (ja) 2021-07-09 2023-01-20 コベルコ建機株式会社 作業機械
KR20230111516A (ko) * 2022-01-18 2023-07-25 에이치디현대인프라코어 주식회사 웨잉 값을 산출하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004336A (ja) * 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd 油圧ショベルの操作土量算出方法
JP2002242233A (ja) 2000-12-18 2002-08-28 Caterpillar Inc 関節型作業機械のための機械安定化装置及び方法
JP2015141092A (ja) 2014-01-28 2015-08-03 日立建機株式会社 建設機械における積載重量超過予測装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546223B2 (ko) 1973-10-16 1979-03-26
DE3376573D1 (en) * 1982-12-01 1988-06-16 Hitachi Construction Machinery Load weight indicating system for load moving machine
JPH0626073A (ja) * 1992-07-08 1994-02-01 Yutani Heavy Ind Ltd 建設機械の自動制御方法
JPH0783740A (ja) * 1993-09-14 1995-03-31 Shin Caterpillar Mitsubishi Ltd 重量物搬送積載装置
US5659470A (en) * 1994-05-10 1997-08-19 Atlas Copco Wagner, Inc. Computerized monitoring management system for load carrying vehicle
US5493798A (en) * 1994-06-15 1996-02-27 Caterpillar Inc. Teaching automatic excavation control system and method
ES2161794T3 (es) * 1995-04-03 2001-12-16 Ascorel Controle Et Regulation Procedimiento de pesaje y vehiculo elevador para la puesta en practica del procedimiento.
KR100493357B1 (ko) * 1997-11-29 2005-08-29 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 중장비전도방지장치
JP3830151B2 (ja) * 2001-10-18 2006-10-04 日立建機株式会社 油圧ショベルの作業量検出装置及び作業量検出方法並びに作業量検出結果表示装置
SE526913C2 (sv) * 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap
US7276669B2 (en) * 2004-10-06 2007-10-02 Caterpillar Inc. Payload overload control system
US7555855B2 (en) * 2005-03-31 2009-07-07 Caterpillar Inc. Automatic digging and loading system for a work machine
JP4338678B2 (ja) * 2005-06-06 2009-10-07 Tcm株式会社 作業用車両の荷重検出方法および装置
KR101228504B1 (ko) * 2005-11-14 2013-01-31 볼보 컨스트럭션 이큅먼트 에이비 굴삭기의 자가진단 제어장치
US8340872B2 (en) * 2005-12-12 2012-12-25 Caterpillar Inc. Control system and method for capturing partial bucket loads in automated loading cycle
US7865285B2 (en) * 2006-12-27 2011-01-04 Caterpillar Inc Machine control system and method
KR20090034618A (ko) * 2007-10-04 2009-04-08 두산인프라코어 주식회사 건설 기계의 과부하 경고 장치 및 그 제어 방법
US8156048B2 (en) 2008-03-07 2012-04-10 Caterpillar Inc. Adaptive payload monitoring system
KR101090619B1 (ko) * 2008-03-26 2011-12-08 가부시끼 가이샤 구보다 작업기의 표시 장치
JP2010253049A (ja) 2009-04-24 2010-11-11 Toshiba Corp 放射線治療装置および放射線透視装置
JP5132635B2 (ja) * 2009-07-09 2013-01-30 株式会社クボタ フロントローダ
US9232687B2 (en) * 2010-09-15 2016-01-12 Dawn Equipment Company Agricultural systems
JP2013001362A (ja) * 2011-06-21 2013-01-07 Komatsu Ltd 運搬車両
JP5315443B2 (ja) * 2012-07-03 2013-10-16 株式会社小松製作所 ホイールローダ
US8838331B2 (en) * 2012-09-21 2014-09-16 Caterpillar Inc. Payload material density calculation and machine using same
JP5624101B2 (ja) * 2012-10-05 2014-11-12 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示用コンピュータプログラム
US8965642B2 (en) * 2012-10-05 2015-02-24 Komatsu Ltd. Display system of excavating machine and excavating machine
US8924094B2 (en) * 2012-10-17 2014-12-30 Caterpillar Inc. System for work cycle detection
KR20150041936A (ko) * 2013-10-10 2015-04-20 현대중공업 주식회사 최대 적재하중 제어장치를 갖춘 휠 로더
DE112015000241B4 (de) 2015-12-09 2020-04-02 Komatsu Ltd. Arbeitsfahrzeuge und Verfahren zum Erfassen des Kippwinkels
US9695571B1 (en) * 2015-12-10 2017-07-04 Caterpillar Inc. Payload monitoring system
JP6849623B2 (ja) * 2018-03-07 2021-03-24 日立建機株式会社 作業機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004336A (ja) * 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd 油圧ショベルの操作土量算出方法
JP2002242233A (ja) 2000-12-18 2002-08-28 Caterpillar Inc 関節型作業機械のための機械安定化装置及び方法
JP2015141092A (ja) 2014-01-28 2015-08-03 日立建機株式会社 建設機械における積載重量超過予測装置

Also Published As

Publication number Publication date
KR20200030571A (ko) 2020-03-20
JP2019157362A (ja) 2019-09-19
EP3763886A1 (en) 2021-01-13
US11236488B2 (en) 2022-02-01
CN111051620B (zh) 2022-02-25
CN111051620A (zh) 2020-04-21
US20200208373A1 (en) 2020-07-02
EP3763886A4 (en) 2021-12-08
JP6849623B2 (ja) 2021-03-24
WO2019172346A1 (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
KR102410416B1 (ko) 작업 기계
JP6807293B2 (ja) 作業機械
CN111094661B (zh) 作业机械
KR102234963B1 (ko) 유압 셔블
JP6986853B2 (ja) 作業機械および作業機械の制御方法
US11427984B2 (en) Work machine
KR20210111838A (ko) 작업 기계, 시스템 및 작업 기계의 제어 방법
US20220341123A1 (en) Work machine
US20230122177A1 (en) Work machine
US20240044110A1 (en) Work machine
WO2021085167A1 (ja) 作業機械

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant