KR102348770B1 - 곡선형 벽 열교환기 - Google Patents

곡선형 벽 열교환기 Download PDF

Info

Publication number
KR102348770B1
KR102348770B1 KR1020210016871A KR20210016871A KR102348770B1 KR 102348770 B1 KR102348770 B1 KR 102348770B1 KR 1020210016871 A KR1020210016871 A KR 1020210016871A KR 20210016871 A KR20210016871 A KR 20210016871A KR 102348770 B1 KR102348770 B1 KR 102348770B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
core
passageways
flow
passages
Prior art date
Application number
KR1020210016871A
Other languages
English (en)
Other versions
KR20210018889A (ko
Inventor
라몬 마르티네즈
니콜라스 크리스토퍼 사보
커트 에드워드 호건
마이클 스티븐 팝
제프리 더글라스 램보
자레드 매튜 울프
Original Assignee
제네럴 일렉트릭 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제네럴 일렉트릭 컴퍼니 filed Critical 제네럴 일렉트릭 컴퍼니
Publication of KR20210018889A publication Critical patent/KR20210018889A/ko
Application granted granted Critical
Publication of KR102348770B1 publication Critical patent/KR102348770B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0021Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for aircrafts or cosmonautics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0026Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion engines, e.g. for gas turbines or for Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Abstract

열교환기와 열교환기 코어(208)가 제공된다. 열교환기 코어(208)는 열교환기 코어(208)의 유입 플리넘과 열교환기 코어(208)의 유출 플리넘 사이에서 연장되는 복수 개의 컬럼형 통로(306)를 포함하며, 컬럼형 통로(306)는 단일 제조 프로세스에서 모놀리식으로(monolithically) 형성된다.

Description

곡선형 벽 열교환기{CONTOURED WALL HEAT EXCHANGER}
본 개시의 분야는 일반적으로 가스 터빈 엔진에 관한 것으로, 보다 구체적으로는 곡선형 벽을 갖고, 모놀리식으로 형성된 열교환기에 관한 것이다.
적어도 몇몇 기지의 열교환 디바이스는 조립된 구조체에 대한 공급 및 추출을 가능하게 하도록, 오리피스 플레이트와 같은 별개의 평행 플레이트와 같은 다수의 부재를 포함한다. 별개의 플레이트는 용접, 브레이징에 의해 또는 볼트 결합형 및 실링형 플랜지를 포함하는 것에 의해 실링되어야만 한다. 상기한 별개로 조립된 구조체는 누설의 위험을 포함하므로, 작동 유체와 냉각 유체가 혼합되거나, 작동 유체와 냉각 유체 중 어느 하나 또는 양자 모두가 손실된다. 열교환기의 별개의 구성요소의 오조립은 누설 문제를 야기할 수 있다. 열교환기 유체 통로의 무결성을 주기적으로 확인하기 위해 추가의 메인터넌스가 수행된다. 더욱이, 제한하는 것은 아니지만 시일과 같이 시간이 갈수록 마모하는 열교환기의 구성요소를 위해, 추가의 예비 부품 재고가 필요할 수 있다. 열교환기 패키징은 통상적으로, 제조성 문제로 인한 열교환기 구성요소의 제한된 구성으로 인해 상이한 어플리케이션에 대해 조정하기가 쉽지 않다. 추가로, 유입 플리넘에서 흐름을 분할하고 유출 플리넘에서 흐름을 결합시키는 데 관련된 복잡한 기하 형태로 인해, 작동 유체와 냉각 유체를 향류식(counter-flow) 열교환기의 코어에 있는 그들 각각의 열교환기 유체 통로로 채널링하는 것이 어렵다.
일실시예에서, 열교환기 코어는 열교환기 코어의 유입 플리넘과 열교환기 코어의 유출 플리넘 사이에서 연장되는 복수 개의 컬럼형 통로를 포함하며, 이 컬럼형 통로는 단일 제조 프로세스에서 모놀리식으로 형성된다.
선택적으로, 복수 개의 컬럼형 통로 각각은 흐름 갭에 의해 분리된 한 쌍의 인접한 측벽을 포함한다. 역시 선택적으로, 한 쌍의 인접한 측벽의 적어도 하나의 측벽은 흐름 갭 내로 연장되는 복수 개의 표면 피쳐(feature)를 포함한다. 복수 개의 컬럼형 통로는 평행 흐름 연통식으로 커플링되는 제1 세트의 제1 통로와, 평행 흐름 연통식으로 커플링되는 제2 세트의 제2 통로를 포함할 수 있으며, 제2 세트의 제2 통로는 제1 세트의 제1 통로와의 흐름 연통으로부터 격리된다. 제3 세트의 제3 통로는 평행 흐름 연통식으로 커플링될 수 있고, 제3 세트의 제3 통로는 제1 세트의 제1 통로 및 제2 세트의 제2 통로와의 흐름 연통으로부터 격리될 수 있다. 선택적으로, 제1 세트의 제1 통로와 제2 세트의 제2 통로 중 적어도 하나는, 제1 세트의 제1 통로와 제2 세트의 제2 통로 중 적어도 하나의 나머지 코어 흐름 통로와 상이하게 크기가 정해진 개별 코어 흐름 통로를 포함할 수 있다. 제1 세트의 제1 통로와 제2 세트의 제2 통로는 열교환기 코어의 유입 플리넘과 열교환기 코어의 유출 플리넘 사이에서 제1 세트의 제1 통로와 제2 세트의 제2 통로의 길이를 따라 서로 열전도 연통식으로 커플링될 수 있다. 선택적으로, 복수 개의 컬럼형 통로는 복수 개의 비평면형 측벽을 포함한다. 또한 선택적으로, 복수 개의 컬럼형 통로는 복수 개의 흐름 안내부, 복수 개의 딤플, 복수 개의 범프 및 복수 개의 스파이크 중 적어도 하나를 포함한다. 열교환기 코어는 제1 열교환기 매니폴드와 제2 열교환기 매니폴드를 더 포함할 수 있고, 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 중 적어도 하나의 매니폴드의 각각의 단부에 천이 부재가 형성되며, 천이 부재는 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 중 적어도 하나의 매니폴드로부터 나온 유체의 흐름을 복수 개의 컬럼형 통로의 각각의 통로로 지향시키도록 구성된 복수 개의 안내 베인을 포함할 수 있다.
다른 실시예에서, 열교환기는 열교환기 본체를 포함하고, 열교환기 본체는 제1 열교환기 매니폴드, 제2 열교환기 매니폴드, 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 사이의 사행형 경로를 따라 연장되는 복수 개의 작동 유체 통로, 및 사행형 경로를 따라 연장되고, 복수 개의 작동 유체 통로와 접촉하는 복수 개의 냉각제 유체 통로를 포함한다. 제1 열교환기 매니폴드, 제2 열교환기 매니폴드, 복수 개의 작동 유체 통로 및 복수 개의 냉각제 유체 통로는 소결 재료로 모놀리식으로 형성된다.
선택적으로, 사행형 경로는 간단한 아치형 경로, 복잡한 아치형 경로, 지그재그형 경로, 파형 경로, 직선형 경로, 선형 경로 및 이들의 조합 중 적어도 하나를 포함한다. 또한 선택적으로, 제1 열교환기 매니폴드는 작동 유체 유입 헤더와 냉각제 유체 유출 헤더를 포함하고, 제2 열교환기 매니폴드는 작동 유체 유출 헤더와 냉각제 유체 유입 헤더를 포함할 수 있다. 또한 선택적으로, 제1 열교환기 매니폴드는 작동 유체 유입 헤더와 작동 유체 유출 헤더를 포함하고, 제2 열교환기 매니폴드는 냉각제 유체 유출 헤더와 냉각제 유체 유입 헤더를 포함한다. 선택적으로, 제1 헤더 부재는 열교환기 본체와 모놀리식으로 형성되고, 제1 헤더 부재는 제1 개구, 제2 개구 및 이들 개구 사이에서 연장되는 작동 유체 플리넘을 포함하며, 제1 헤더 부재는 제3 개구, 제4 개구 및 이들 개구 사이에서 연장되는 냉각제 유체 플리넘을 포함한다. 또한 선택적으로, 열교환기는 열교환기 본체와 모놀리식으로 형성되는 제2 헤더 부재를 포함하고, 제2 헤더 부재는 제1 개구, 제2 개구 및 이들 개구 사이에서 연장되는 작동 유체 플리넘을 포함하며, 제2 헤더 부재는 제3 개구, 제4 개구 및 이들 개구 사이에서 연장되는 냉각제 유체 플리넘을 포함한다. 제1 열교환기 매니폴드, 제2 열교환기 매니폴드, 복수 개의 작동 유체 통로 및 복수 개의 냉각제 유체 통로는 시일 없이 함께 형성될 수 있다. 선택적으로, 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 중 적어도 하나의 매니폴드는 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 중 적어도 하나와 모놀리식으로 형성된 플랜지를 포함한다.
또 다른 실시예에서, 열교환기는 모놀리식으로 형성된 플랜지를 포함하는 제1 열교환기 매니폴드, 모놀리식으로 형성된 플랜지를 포함하는 제2 열교환기 매니폴드 및 제1 열교환기 매니폴드와 제2 열교환기 매니폴드 사이에서 적어도 부분적으로 아치형 경로를 따라 연장되는 복수 개의 측벽을 포함한다. 복수 개의 측벽은 흐름 갭에 의해 분리되어, 복수 개의 작동 유체 통로와, 이 복수 개의 작동 유체 통로와 열전도 연통식으로 교호하는 복수 개의 냉각제 유체 통로를 형성한다. 제1 열교환기 매니폴드, 제2 열교환기 매니폴드 및 복수 개의 측벽은 소결 재료로 모놀리식으로 형성된다.
선택적으로, 소결 재료는 기본 금속, 금속 합금, 세라믹, 플라스틱 및 이들의 조합 중 임의의 것을 포함한다. 또한 선택적으로, 소결 재료는 소결 구조와 부분 소결 구조 중 적어도 하나를 포함한다. 제1 열교환기 매니폴드 및 플랜지와, 제2 열교환기 매니폴드 및 플랜지와, 복수 개의 작동 유체 통로, 그리고 복수 개의 냉각제 유체 통로는 시일 없이 함께 형성될 수 있다. 복수 개의 측벽 중 적어도 하나는, 흐름 혼합, 터뷸레이션(turbulation) 및 핀 효과를 통해 복수 개의 작동 유체 통로와 복수 개의 냉각제 유체 통로 사이의 열전달을 증가시키는 복수 개의 표면 피쳐를 포함할 수 있다. 복수 개의 측벽 중 적어도 하나는 흐름 갭 내로 연장되는 복수 개의 표면 피쳐를 포함할 수 있고, 복수 개의 표면 피쳐는 복수 개의 흐름 안내부, 복수 개의 딤플, 복수 개의 범프 및 복수 개의 스파이크 중 적어도 1종으로 형성될 수 있다.
도 1 내지 도 8은 여기에서 설명되는 장치의 예시적인 실시예를 보여주는 도면.
도 1은 본 개시의 예시적인 실시예에 따른 가스 터빈 엔진의 개략적인 단면도.
도 2는 열교환기 본체를 갖는 도 1에 도시한 열교환기의 사시도.
도 3은 도 1에 도시한 열교환기의 부분 절결도.
도 4는 도 2에 도시한 제2 열교환기 매니폴드의 내부 통로의 절결도.
도 5는 도 2에 도시한 제2 열교환기의 내부 통로의 확대 절결도.
도 6는 열교환기 본체를 갖는 열교환기의 다른 실시예의 사시도.
도 7은 선 7-7을 따라 취한 (도 6에 도시한) 열교환기의 절결도.
도 8은 도 6에 도시한 열교환기의 제1 매니폴드의 절결도.
다양한 실시예의 특별한 피쳐들이 몇몇 도면에는 도시되고 다른 도면에는 도시되어 있지 않지만, 이는 단지 편의를 위한 것이다. 임의의 도면의 임의의 피쳐는 임의의 다른 도면의 임의의 피쳐와 조합되어 인용 및/또는 청구될 수 있다.
달리 나타내지 않는 한, 여기에서 제공되는 도면은 본 개시의 실시예의 피쳐를 예시하는 것이다. 이들 피쳐는 본 개시의 하나 이상의 실시예를 포함하는 폭 넓은 시스템에서 적용 가능한 것으로 생각된다. 이와 같이, 도면은 여기에 개시된 실시예를 실시해야만 하는 당업자에 의해 알려진 종래의 피쳐 전부를 포함하는 것으로 의도되지 않는다.
아래의 상세한 설명은 본 개시의 실시예를 예로써 예시하는 것이지 제한하는 것은 아니다. 본 개시는 산업, 상업 및 주거 어플리케이션에서 사용하기 적합한, 모놀리식으로 형성된 시일이 없는 열교환기를 제조 및 작동시키는 다양한 실시예에 대한 일반적인 어플리케이션을 갖는 것으로 예상된다. 여기에서 사용되는 “모놀리식으로 형성된(monolithically formed)”이라는 구문은 단일 부재로 형성되거나 주조되는 구성요소 또는 구조체를 칭한다.
여기에서는 열교환기 시스템의 실시예가 설명된다. 열교환기 시스템은, 헤더/매니폴드가 적어도 2개의 상이한 유체 스트림을 패턴화된 채널 구성으로 공급 및/또는 복귀시키도록 구성될 수 있는 모놀리식으로 형성된 열교환기로 구현된다. 평행한 곡선형 벽 세트는 유체 스트림을 분리하고, 구조적 무결성을 제공하며, 열교환을 위한 표면적을 증가시킨다. 모놀리식으로 형성되는 안내 베인은 흐름을 모놀리식 채널 구성으로 그리고 모놀리식 채널 구성으로부터 이동시킨다. 단일 부재 구성은 용접, 브레이징 또는 볼트 결합을 통해 별개의 부품 또는 구성요소를 실링할 필요성을 제거한다.
모놀리식으로 형성된 열교환기 구성은, 유체 스트림들 사이에 노출되는 표면적을 증가시키면서 적어도 2개의 유체 스트림 간의 열교환을 허용한다. 곡선형 벽은 모놀리식으로 형성된 열교환기에 대한 구조적 무결성을 제공하면서 표면적을 증가시킨다. 안내 베인은 유체 스트림을 곡선형 벽 구성 내외로 지향시키고, 압력차를 다루는 유닛의 압력 용기 용량을 향상시키도록 이격될 수 있다. 열교환기 구성은 별개의 유체 스트림의 혼합을 방지하면서 열교환을 허용한다.
채널의 패턴형, 체크무늬형 또는 갈짓자형 구성은 2개 이상의 유체 스트림이 열을 교환하게 하는 콤팩트하고 효율적인 방식이다. 여기에서 설명하는 열교환기는 패턴형 채널 구성으로부터 적어도 2개의 유체 스트림의 공급 또는 추출을 허용하는 헤더/매니폴드로서 구성 가능하다. 모놀리식으로 형성된 곡선형 벽은, 몇몇 실시예에서 패키지 크기를 최적화하고, 열교환을 위한 표면적을 최대화하기 위해 채널 구성 패턴의 둘레에 일치한다.
모놀리식으로 형성된 안내 베인은 다기능 구성 피쳐이다. 안내 베인은 흐름을 패턴형 채널 어레이 내외로 이동시키고, 열교환을 위한 표면적을 최대화하며, 곡선형 벽에 구조적 강도 및 압력 용기 용량을 제공하고, 모놀리식으로 형성된 열교환기의 제조의 용이를 위한 지지부를 제공한다.
여기에서 설명되는 열교환기는 모놀리식으로 형성된 구성의 패턴형 채널 구성 배열에 대한 적어도 2개의 상이한 유체 스트림의 공급 및 추출을 허용한다. 종래 기술은 열교환기 구조체에 대한 공급 및 추출을 가능하게 하기 위해 오리피스 플레이트와 같은 별개의 평행한 플레이트와 다수의 부재의 사용을 요구한다. 별개의 플레이트는 용접, 브레이징에 의해 또는 볼트 결합형 및 실링형 플랜지를 포함하는 것에 의해 실링되어야만 한다. 유체들의 혼합을 초래하는 누설에 대한 우려는 모놀리식으로 형성된 구조체의 사용에 의해 감소된다. 시일 마모 또는 오조립에 대한 우려는 모놀리식으로 형성된 구성에서 제거된다. 열교환기 패키징은 모놀리식으로 형성된 곡선형 벽의 사용을 통한 열교환에 이용 가능한 총 표면적의 증가에 의해 최적화된다.
아래의 설명은 첨부도면을 참고하며, 첨부도면에서는 반대되는 설명이 부재하는 한, 상이한 도면에서의 동일한 참조부호는 유사한 요소를 나타낸다.
도 1은 본 개시의 예시적인 실시예에 따른 가스 터빈 엔진의 개략적인 단면도이다. 예시적인 실시예에서, 가스 터빈 엔진은 하이-바이패스 가스 터빈 엔진(high-bypass gas turbine engine)(110)으로서 구현된다. 도 1에 도시한 바와 같이, 가스 터빈 엔진(110)은 축방향(A)[기준을 위해 마련되는 종방향 중심선(112)에 평행하게 연장됨]과, 반경방향(R)[종방향 중심선(112)에 수직하게 연장됨]을 획정한다. 일반적으로, 가스 터빈 엔진(110)은 팬 케이스 조립체(114)와, 팬 케이스 조립체(114) 하류에 배치된 가스 터빈 엔진 코어(116)를 포함한다.
가스 터빈 엔진 코어(116)는 환형 유입구(120)를 획정하는 대략 원통형 또는 튜브형 외측 케이싱(118)을 포함한다. 외측 케이싱(118)은 순차적인 흐름 관계로 부스터 또는 저압(LP) 압축기(122) 및 고압(HP) 압축기(124)를 포함하는 압축기 섹션; 연소 섹션(126); 고압(HP) 터빈(128)과 저압(LP) 터빈(130)을 포함하는 터빈 섹션; 및 배기 노즐 섹션(132)을 에워싼다. 고압(HP) 스풀 또는 샤프트(134)는 HP 터빈(128)을 HP 압축기(124)에 구동 가능하게 연결한다. 저압(LP) 스풀 또는 샤프트(136)는 LP 터빈(130)을 LP 압축기(122)에 구동 가능하게 연결한다. 각각의 샤프트(134, 136)는, 복수 개의 베어링 조립체(138)로부터 오일 흐름을 받고, 예컨대 연료를 사용하여 오일을 냉각하며, 오일을 복수 개의 베어링 조립체(138)로 복귀시키도록 구성된 열교환기(140)에 흐름 연통식으로 커플링되는 복수 개의 베어링 조립체(138)에 의해 지지된다. LP 압축기(122), HP 압축기(124), 연소 섹션(126), HP 터빈(128), LP 터빈(130) 및 배기 노즐 섹션(132)은 함께 코어 기류 경로(137)를 획정한다.
예시적인 실시예에서, 팬 케이스 조립체(114)는 복수 개의 팬 블레이드(144)가 이격된 방식으로 디스크(146)에 커플링된 팬(142)을 포함한다. 도시한 바와 같이, 팬 블레이드(144)는 대체로 반경방향(R)을 따라 디스크(146)로부터 외측방향으로 연장된다. 팬 블레이드(144)와 디스크(146)는 샤프트(136)에 의해 종방향 중심선(112)을 중심으로 함께 회전 가능하다.
계속해서 도 1의 예시적인 실시예를 참고하면, 디스크(146)는 기류가 복수 개의 팬 블레이드(144)를 통과하는 것을 촉진하도록 공기역학적으로 윤곽 형성된 회전형 전방 허브(148)에 의해 커버된다. 추가로, 예시적인 팬 케이스 조립체(114)는 팬(142) 및/또는 가스 터빈 엔진 코어(116)의 적어도 일부를 둘레방향으로 둘러싸는 환형 팬 케이싱 또는 외측 나셀(150)을 포함한다. 외측 나셀(150)은 유출 안내 베인 조립체(152)에 의해 가스 터빈 엔진 코어(116)에 대해 지지되도록 구성될 수 있다. 더욱이, 외측 나셀(150)의 하류 섹션(154)은 그 사이에 바이패스 기류 통로(156)를 획정하도록 가스 터빈 엔진 코어(116)의 외측 부분에 걸쳐 연장될 수 있다.
가스 터빈 엔진(110)의 작동 중에, 소정 체적의 공기(158)가 외측 나셀(150) 및/또는 팬 케이스 조립체(114)의 관련 유입구(160)를 통해 가스 터빈 엔진(110)에 진입한다. 공기(158)가 팬 블레이드(144)를 가로질러 통과할 때, 공기(158)의 제1 부분(162)이 바이패스 기류 통로(156)로 지향되거나 라우팅되고, 공기(158)의 제2 부분(164)이 코어 기류 경로(137)로 또는 보다 구체적으로는 LP 압축기(122)로 지향되거나 라우팅된다. 공기(158)의 제1 부분과 공기(158)의 제2 부분(164) 간의 비는 통상적으로 바이패스 비로 알려져 있다. 공기(158)의 제2 부분(164)의 압력은, 공기의 제2 부분이 HP 압축기(124)를 통해 연소 섹션(126)으로 라우팅될 때에 증가되며, 연소 섹션에서 공기의 제2 부분이 연료와 혼합되고 연소되어, 연소 가스(166)를 공급한다.
연소 가스(166)는 HP 터빈(128)을 통과하도록 라우팅되고, HP 터빈에서 연소 가스(166)로부터의 열 및/또는 운동 에너지의 일부가, 외측 케이싱(118)에 커플링된 HP 터빈 스테이터 블레이드(168)와, HP 스풀 또는 샤프트(134)에 커플링된 HP 터빈 로터 블레이드(170)의 순차적인 단을 통해 추출되고, 이에 따라 HP 스툴 또는 샤프트(134)가 회전하여 HP 압축기(124)의 작동을 지원한다. 그 후, 연소 가스(166)는 LP 터빈(130)을 통과하도록 라우팅되고, LP 터빈에서 열 및 운동 에너지의 제2 부분이, 외측 케이싱(118)에 커플링된 LP 터빈 스테이터 블레이드(172)와, LP 스풀 또는 샤프트(136)에 커플링된 LP 터빈 로터 블레이드(174)의 순차적인 단을 통해 추출되고, 이에 따라 LP 스툴 또는 샤프트(136)가 회전하여 LP 압축기(122)의 작동 및/또는 팬(142)의 회전을 지원한다. 연소 가스(166)는 이어서 가스 터빈 엔진 코어(116)의 배기 노즐 섹션(132)을 통해 라우팅되어, 추진력을 제공한다. 이와 동시에, 공기(158)의 제1 부분(162)의 압력은, 공기의 제1 부분이 가스 터빈 엔진(110)의 팬 노즐 배기 섹션(176)으로부터 배기되기 전에, 유출 안내 베인 조립체(152)를 통과하는 것을 포함하여 바이패스 기류 통로(156)를 통과하도록 라우팅될 때에 증가하여, 역시 추진력을 제공한다. HP 터빈(128), LP 터빈(130) 및 배기 노즐 섹션(132)은 연소 가스(166)를 가스 터빈 엔진 코어(116)를 통과하도록 라우팅하는 고온 가스 경로(178)를 적어도 부분적으로 획정한다.
몇몇 실시예에서, 가스 터빈 엔진(110)은 피치 변경 메커니즘(180)을 포함하고, 팬 블레이드(144)의 피치는 피치 변경 메커니즘(180)을 사용하여 피치축(P)을 중심으로 변경될 수 있다. 가스 터빈 엔진(110)은 하나 이상의 기어박스(182)도 또한 포함할 수 있다. 상기 경우, 이들 구성요소도 또한 존재 시에 열교환기(140)와 흐름 연통식으로 커플링될 수 있고, 열교환기는 또한 피치 변경 메커니즘(180) 및/또는 하나 이상의 기어박스(182)를 통과하는 오일 흐름에 대한 냉각을 제공한다.
그러나, 도 1에 도시한 예시적인 가스 터빈 엔진(110)은 단지 예일뿐이며, 다른 예시적인 실시예에서 가스 터빈 엔진(110)이 임의의 다른 적절한 구성을 가질 수 있다는 점을 이해해야만 한다. 또 다른 예시적인 실시예에서, 본 개시의 양태는 임의의 다른 적절한 가스 터빈 엔진에 포함될 수 있다는 점도 또한 이해해야만 한다. 예컨대, 다른 예시적인 실시예에서 본 개시의 양태는, 예컨대 터보 프롭 엔진(turboprop engine), 군용 엔진, 코어 엔진, 보조 동력 장치, 테스트 리그(rig) 및 해양 또는 육상 기반 항공 전용 엔진에 포함될 수 있다.
도 2는 열교환기 본체(202)를 갖는 열교환기(140)의 사시도이다. 예시적인 실시예에서, 열교환기(140)는 제1 열교환기 매니폴드(204)와 제2 열교환기 매니폴드(206)를 포함한다. 열교환기(140)는 또한 제1 열교환기 매니폴드(204)와 제2 열교환기 매니폴드(206) 사이에서 연장되는 열교환기 코어(208)를 포함한다. 다양한 실시예에서, 열교환기 코어(208)는 열교환기 코어(208)의 유입 플리넘과 열교환기 코어(208)의 유출 플리넘 사이에서 연장되는 복수 개의 컬럼형 통로를 포함한다. 몇몇 실시예에서, 컬럼형 통로는, 제한하는 것은 아니지만 선택적 레이저 소결(SLS), 잉크젯 및 레이저젯과 같은 3D 프린팅, 스테레오리소그래피(SLS), 직접 선택적 레이저 소결(Direct Selective Laser Sintering; DSLS), 전자 빔 소결(Electron Beam Sintering; EBS), 전자 빔 용융(Electron Beam Melting; EBM), 레이저 가공 순성형(Laser Engineered Net Shaping; LENS), 레이저 순성형 가공(Laser Net Shape Manufacturing; LNSM), 직접 금속 성막(Direct Metal Deposition; DMD) 등을 포함하는 다층 박막 적층 구성(layer-by-layer construction) 또는 적층 가공을 이용하는 제조 방법을 통해 형성된다. 복수 개의 작동 유체 통로는 제1 열교환기 매니폴드(204)와 제2 열교환기 매니폴드(206) 사이의 사행형 경로를 따라 연장된다. 도 2에서는 사행형 형상을 갖는 것으로 도시되어 있지만, 열교환기 코어(208)는 또한 단순한 아치형 경로, 복잡한 아치형 경로, 지그재그 경로, 파형 경로, 직선형 경로, 선형 경로 또는 열교환기(140)가 여기에 설명한 기능을 수행하는 것을 용이하게 하는 임의의 다른 형상의 경로로 성형될 수도 있다.
천이 부재가 제1 열교환기 매니폴드(204)와 제2 열교환기 매니폴드(206)의 각 단부 상에 형성된다. 제1 천이 부재(210), 제2 천이 부재(212), 제3 천이 부재(214) 및 제4 천이 부재(216) 모두는 제1 열교환기 매니폴드(204) 및 제2 열교환기 매니폴드(206) 각각의 내외로 흐름을 채널링한다. 제2 천이 부재(212)와 제4 천이 부재(216)는, 각각의 연결 플랜지(218, 220)가 구성요소 또는 파이프에 커플링되게 구성되도록 형성된다.
다양한 실시예에서, 제1 열교환기 매니폴드(204)는 열교환기 코어(208)와 제1 천이 부재(210) 사이에서 연장되는 제1 헤더(222)를 포함한다. 제1 열교환기 매니폴드(204)는 열교환기 코어(208)와 제2 천이 부재(212) 사이에서 연장되는 제2 헤더(224)도 또한 포함한다. 제2 열교환기 매니폴드(206)는 열교환기 코어(208)와 제3 천이 부재(214) 사이에서 연장되는 제3 헤더(226)를 포함한다. 제2 열교환기 매니폴드(206)는 열교환기 코어(208)와 제4 천이 부재(216) 사이에서 연장되는 제4 헤더(228)도 또한 포함한다. 헤더(222, 224, 226, 228)는 열교환기 코어(208)와, 제1 천이 부재(210), 제2 천이 부재(212), 제3 천이 부재(214) 및 제4 천이 부재(216) 각각 사이에서 냉각제 또는 작동 유체의 각각의 흐름을 채널링하도록 구성된다.
도 3은 (도 1에 도시한) 열교환기(140)의 부분 절결도이다. 도 4는 제2 열교환기 매니폴드(206)의 내부 통로의 절결도이다. 예시적인 실시예에서, 도 4의 절결도는 열교환기 코어(208)로부터 제2 열교환기 매니폴드(206)를 들여다본 것이다. 도 3 및 도 4를 참고하면, 예시적인 실시예에서 제2 열교환기 매니폴드(206)는, 복수 개의 베어링 조립체(138)(도 1에 도시함)로부터의 오일과 같은 작동 유체 또는 냉각을 목적으로 열교환기 코어(208)에 있는 복수 개의 코어 흐름 통로(306)로부터 제2 열교환기 매니폴드(206)를 통해 제3 천이 부재(214)로 라우팅되는 연료와 같은 냉각제 유체를 채널링하는 흐름 안내부로서도 또한 기능하는 복수 개의 주 스티프너(302)(major stiffener)와 복수 개의 부 스티프너(304)를 포함한다. 예시적인 실시예에서, 복수 개의 주 스티프너(302)와 복수 개의 부 스티프너(304)는, 예컨대 적층 가공 프로세스에 의해 제2 열교환기 매니폴드(206)와 제3 천이 부재(214)에 의해 모놀리식으로 형성된다. 다양한 실시예에서, 제2 열교환기 매니폴드(206)와 제4 천이 부재(216)도 또한, 역시 흐름 안내부로서 기능하는 유사하게 형성된 스티프너(308)를 갖는다. 도 3에 도시하지는 않았지만, 제1 열교환기 매니폴드(204) 및 제1 천이 부재(210)와, 제1 열교환기 매니폴드(204)와 제2 천이 부재(212)도 또한, 역시 흐름 안내부로서 기능하는 유사하게 형성된 스티프너를 갖는다. 복수 개의 매니폴드 흐름 통로(310)는 복수 개의 코어 흐름 통로(306)를 제2 열교환기 매니폴드(206)로 연장시킨다.
코어 흐름 통로(306)는 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)로 분할된다. 일실시예에서, 제1 세트(312)의 코어 흐름 통로(306)는 복수 개의 냉각제 유체 통로로서 구성되고, 제2 세트(314)의 코어 흐름 통로(306)는 복수 개의 작동 유체 통로로서 구성된다. 다른 실시예에서, 제1 세트(312)의 코어 흐름 통로(306)는 복수 개의 작동 유체 통로로서 구성되고, 제2 세트(314)의 코어 흐름 통로(306)는 복수 개의 냉각제 유체 통로로서 구성된다. 코어 흐름 통로(306)는 열교환기 코어(208)의 경로를 따라 연장되고, 복수 개의 작동 유체 통로로서 구성되는 코어 흐름 통로(306)와 열전도 연통되는 복수 개의 냉각제 유체 통로로서 구성된다. 추가로, 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)는 향류식 또는 대향 흐름식으로 구성될 수도 있고, 평행 흐름식으로 구성될 수도 있다. 여기에서 사용되는, 향류 또는 대향 흐름은 인접한 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)를 반대 방향으로 통과하는 흐름을 일컫는다. 평행 흐름은 인접한 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)를 동일 방향으로 통과하는 흐름을 일컫는다. 코어 흐름 통로(306)의 높이(402)는 코어 흐름 통로(306)의 폭(404)보다 훨씬 크다. 일실시예에서, 코어 흐름 통로(306)의 높이(402)는 폭(404)보다 대략 10배 더 크다. 다른 실시예에서, 코어 흐름 통로(306)의 높이(402)는 폭(404)보다 대략 20배 더 크다. 또 다른 실시예에서, 코어 흐름 통로(306)의 높이(402)는 폭(404)보다 대략 40배 더 크다. 코어 흐름 통로(306)의 폭보다 큰 높이는 인접한 코어 흐름 통로(306)들 사이의 열전달 표면의 표면적을 증가시킨다. 다양한 실시예에서, 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)는 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)의 나머지 코어 흐름 통로(306)와 상이하게 크기가 정해지는 개별 코어 흐름 통로(306)를 갖는다.
예시적인 실시예에서, 제1 열교환기 매니폴드(204), 제2 열교환기 매니폴드(206), 제1 세트(312)의 코어 흐름 통로(306) 및 제2 세트(314)의 코어 흐름 통로(306)는 적층 가공 프로세스에서 소결 재료로 모놀리식으로 형성된다. 여기에서 사용되는 “적층 가공(additive manufacturing)”이라는 용어는, 3차원 물체를 형성하고, 한 번에 한 층씩 물체의 형상을 순차적으로 형성하는 단계를 포함하는 임의의 프로세스를 일컫는다. 적층 가공 프로세스는, 예컨대 3차원 프린팅, 레이저 순형상 가공, 직접 금속 레이저 소결(Direct Metal Laser Sintering; DMLS), 직접 금속 레이저 용융(DMLM), 선택적 레이저 소결(SLS), 플라즈마 이행 아크, 자유 형상 제작(freeform fabrication) 등을 포함한다. 적층 가공 프로세스의 한가지 예시적인 타입은 분말 재료를 소결 또는 용융시키기 위해 레이저 빔을 사용한다. 적층 가공 프로세스는 원료로서 금속 분말 재료나 와이어를 채용할 수 있다. 더욱이, 적층 가공 프로세스는 일반적으로, 복수 개의 얇은 단위 층이 순차적으로 형성되어 물체를 형성하는, 물체(물품, 구성요소, 부품, 제품 등)를 제조하는 신속한 방식에 관한 것일 수 있다. 예컨대, 분말 재료로 이루어진 층이 마련되고(예컨대, 적층되고), 에너지 빔(에컨대, 레이저 빔)으로 조사되어, 각 층 내에 있는 분말 재료의 입자가 순차적으로 소결(융해)되거나 용융되어 층을 고화시킨다. 여기에서 사용되는 “소결 재료”라는 용어는 소결 구조체 또는 부분 소결 구조체를 포함한다. 다양한 실시예에서, 소결 재료는 기본 금속, 금속 합금, 세라믹, 플라스틱 및 이들의 조합 중 임의의 것을 포함한다.
도 5는 제2 열교환기 매니폴드(206)의 내부 통로의 확대 절결도이다. 예시적인 실시예에서, 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306)는 복수 개의 코어 통로벽(502)에 의해 분리된다. 예시적인 실시예에서, 복수 개의 코어 통로벽(502) 각각은 주름지거나, 파형 단면을 갖는다. 다른 실시예에서, 복수 개의 코어 통로벽(502)은 편평하다. 또 다른 실시예에서, 복수 개의 코어 통로벽(502)은 흐름 혼합, 터뷸레이션 및 핀 효과 중 적어도 하나를 통한, 제1 세트(312)의 코어 흐름 통로(306)와 제2 세트(314)의 코어 흐름 통로(306) 사이의 열교환을 증가시키는 것을 용이하게 하는 표면 피쳐를 갖는다. 표면 피쳐는, 예컨대 제한하는 것은 아니지만 복수 개의 흐름 안내부(504), 복수 개의 딤플(506), 복수 개의 범프(508) 및 복수 개의 스파이크(510)로 구현될 수 있다.
도 6은 열교환기 본체(602)를 갖는 열교환기(600)의 다른 실시예의 사시도이다. 예시적인 실시예에서, 열교환기(600)는 제1 열교환기 매니폴드(604)와 제2 열교환기 매니폴드(606)를 포함한다. 열교환기(600)는 또한 제1 열교환기 매니폴드(604)와 제2 열교환기 매니폴드(606) 사이에서 연장되는 열교환기 코어(608)를 포함한다. 도 6에서, 열교환기 코어(608)는 제1 열교환기 매니폴드(604)와 제2 열교환기 매니폴드(606) 사이에 원형 경로의 일부를 형성하는 단순한 아치형 경로로 성형된다. 다른 실시예에서, 열교환기 코어(608)는 제한하는 것은 아니지만 복잡한 아치형 형상과 같은 다른 형상이나, 열교환기(600)가 여기에서 설명하는 기능을 수행하는 것을 용이하게 하는 임의의 다른 형상으로 형성된다.
천이 부재가 제1 열교환기 매니폴드(604)와 제2 열교환기 매니폴드(606)의 각 단부 상에 형성된다. 제1 천이 부재(610), 제2 천이 부재(612), 제3 천이 부재(614) 및 제4 천이 부재(616) 모두는 제1 열교환기 매니폴드(604) 및 제2 열교환기 매니폴드(606) 각각의 내외로 흐름을 채널링한다. 제1 연결 파이프(618)가 제1 천이 부재(610)에 커플링되거나, 제1 천이 부재(610)와 함께 형성된다. 제2 연결 파이프(620)가 제2 천이 부재(612)에 커플링되거나, 제2 천이 부재(610)와 함께 형성된다. 제3 연결 파이프(622)가 제3 천이 부재(614)에 커플링되거나 제3 천이 부재와 함께 형성되고, 제4 연결 파이프(624)가 제4 천이 부재(624)에 커플링되거나 제4 천이 부재와 함께 형성된다. 제2 연결 파이프(620)와 제4 연결 파이프(624)는, 각각의 연결 플랜지(626, 628)가 제2 연결 파이프(620) 및 제4 연결 파이프(624) 각각에 커플링되거나 이들과 함께 형성되고, 구성요소 또는 파이핑에 커플링되도록 구성되게 형성된다. 직교류식 또는 대향 흐름 열교환기 구성의 예시적인 실시예에서, 제1 유체(630, 632)의 흐름은 제2 연결 파이프(620)를 통해 열교환기(600)에 진입하고, 제1 연결 파이프(618)를 통해 열교환기(600)를 빠져나간다. 제2 유체(634, 636)의 흐름은 제3 연결 파이프(622)를 통해 열교환기(600)에 진입하고, 제4 연결 파이프(624)를 통해 열교환기(600)를 빠져나간다. 열교환기(600)는 다른 실시예에서는 평행 흐름 구성으로 구성될 수 있다. 평행 흐름 구성에서는, 제1 유체(630, 632) 흐름과 제2 유체(634, 636) 흐름 중 어느 하나의 흐름 방향이 역전된다.
도 7은 (도 6에 도시한) 선 7-7을 따라 취한 열교환기(600)의 절결도이다. 예시적인 실시예에서, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)는 열교환기(600)의 외측 반경방향 둘레(706)에서 내측 반경방향 둘레(708)까지 서로 인접하게 교호한다. 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)는 적층 가공 프로세스에서 동시에 그리고 시일 없이 컬럼형 측벽(710)으로 형성된다. 따라서, 컬럼형 측벽(710)의 물리적인 구조는 소결 또는 완전 용융 적층 가공 프로세스를 나타낸다. 다양한 실시예에서, 컬럼형 측벽(710)은 도 5에 도시한, 범프, 스파이크 등과 유사한 표면 윤곽 또는 표면 피쳐 - 컬럼형 측벽(710)의 강도를 증가시키고, 컬럼형 측벽(710)의 표면적을 증가시키며, 및/또는 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)를 통한 층류를 감소시킴 - 를 갖는다.
도 8은 (도 6에 도시한) 열교환기(600)의 제1 매니폴드(802)의 절결도이다. 도 6 내지 도 8을 참고하면, 예시적인 실시예에서 제1 매니폴드(802)는, 도 6 내지 도 8에 도시한 바와 같은 열교환기(600)의 배향으로 인해 “하부” 매니폴드(802)라고도 할 수 있다. 그러나, 열교환기(600)는, 제1 매니폴드(802)가 열교환기(600)의 나머지 부분보다 높이 위치 설정되는 배향을 포함하여 복수 개의 상이한 배향으로 사용될 수 있다. 예시적인 실시예에서, 제2 연결 파이프(620)는 유체 흐름, 예컨대 제1 유체(630, 632) 흐름을 수용하고, 제1 유체(630, 632) 흐름을 제2 천이 부재(612)로 채널링하도록 구성되고, 제2 천이 부재에서는 복수 개의 주 안내 베인(804)이 제1 유체(630, 632) 흐름을 둘레방향(C)으로 채널링한다. 제1 유체(630, 632) 흐름은 복수 개의 부 안내 베인(806)으로 더욱 지향되며, 부 안내 베인은 제1 유체(630, 632) 흐름을 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)로 지향시키는 것을 용이하게 하고, 축방향(A)으로의 제1 유체(630, 632) 흐름을 열교환기 코어(608)로 선회시키는 것을 용이하게 한다.
추가로, 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은 또한 열교환기(600)와 열교환기 코어(608)를 위한 추가의 구조적 무결성도 또한 제공한다. 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은, 구성요소들을 비평면형으로 굴곡시키지 않고 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)를 현저히 상이한 압력으로 작동시키는 것을 허용하는 강성 또는 강도를 제공한다. 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은 또한, 예컨대 제2 천이 부재(612)에서 90° 굴곡된 예리부(sharp)를 통해 제1 유체(630, 632)의 흐름을 선회시키는 것을 용이하게 하는 것에 의해 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)를 통한 압력 강하에서의 감소를 제공한다. 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은, 열교환기 코어(608)에 들어오는 제1 유체(630, 632) 흐름의 손실 계수를 감소시키는 보다 효율적인 방식으로 제1 유체(630, 632) 흐름이 열교환기 코어(608)로 선회되도록 한다. 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은 또한 적층 가공 프로세스를 용이하게 한다. 일실시예에서, 리코터 블레이드(recoater blade)는 적층 가공 기계의 베드에 대해 분말을 성막하거나 제거한다. 열교환기를 형성하는 동안에 리코터 블레이드의 작용은 조성되는 구조체에 측력을 가한다. 너무 얇은 구조체는 인가되는 힘을 버틸 수 없고, 적층 가공 프로세스 중에 붕괴될 수 있다. 복수 개의 주 안내 베인(804)과 복수 개의 부 안내 베인(806)은 추가의 지지를 제공하고, 얇고 키가 큰 벽을 지닌 열교환기(600) 형성을 가능하게 한다.
제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)는 열교환기 코어(608)의 원형 프로파일 둘레에서 만곡된다. 이와 같이, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)가 외측 반경방향 둘레(706)에 근접할수록, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 길이는 상대적으로 길어지고, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)가 내측 반경방향 둘레(708)에 근접할수록, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 길이는 상대적으로 짧아진다. 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)가 원형 열교환기 코어(608) 둘레로 평행하게 연장되기 때문에, 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 서로 전혀 다른 길이는 바람직하지 않은 효과를 야기할 수 있다. 예컨대, 증가된 길이는 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 반경방향 최외측을 통한 손실 수두(head loss)를 증가시킨다. 증가된 손실 수두는 열교환기 코어(608)에 걸친 상이한 흐름을 형성하고, 이것은 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 열교환 용량에 영향을 줄 수 있다. 그러한 영향은 반경방향 외측 둘레(706) 측으로 위치 설정되는 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)의 코어 흐름 통로를, 반경방향 내측 둘레(708) 측으로 위치 설정되는 제1 세트의 복수 개의 코어 흐름 통로(702)와 제2 세트의 복수 개의 코어 흐름 통로(704)를 상이하게 형성하는 것에 의해 완화될 수 있다.
모놀리식으로 형성된 열교환기에 관한 전술한 실시예는 시일이 없는 열교환기를 제공하는 비용 효율적이고 신뢰성 있는 수단을 기술한다. 보다 상세하게는, 여기에서 설명한 방법 및 시스템은 열교환기 코어 또는 열교환기의 구성요소들과, 유입 및 유출 헤더, 그리고 매니폴드 사이에 시일 또는 조인트가 없는 열교환기를 형성하는 것을 용이하게 한다. 추가로, 전술한 방법 및 시스템은 적층 가공을 이용하여, 작동 중에 열교환기 구조체의 강도 및 안정성뿐만 아니라 제조 문제를 위해 안내 베인을 사용하는 열교환기를 제조하는 것을 용이하게 한다. 그 결과, 여기에서 설명하는 열교환기는 비용 효율적이고 신뢰성 있는 방식으로 구성요소의 냉각을 용이하게 향상시킨다.
본 개시의 다양한 실시예의 특별한 피쳐들이 몇몇 도면에는 도시되고 다른 도면에는 도시되어 있지 않지만, 이는 단지 편의를 위한 것이다. 본 개시의 원리에 따르면, 도면의 임의의 피쳐는 임의의 다른 도면의 임의의 피쳐와 조합되어 인용 및/또는 청구될 수 있다.
이 서술된 설명은 최상의 모드를 포함하는 실시예를 개시하고, 또한 임의의 디바이스 또는 시스템을 제작 및 사용하고 임의의 통합된 방법을 수행하는 것을 포함하여 당업자가 실시예를 실시할 수 있도록 하기 위한 예를 사용한다. 본 개시의 특허 가능한 범위는 청구항에 의해 규정되며, 당업자에게 떠오르는 다른 예를 포함할 수 있다. 그러한 다른 예는, 사실상 청구범위와 다르지 않은 구조 요소를 갖거나, 사실상 청구범위와 대단치 않은 차이를 지닌 등가의 구조 요소를 포함하는 경우, 청구범위의 범주 내에 속하는 것으로 의도된다.

Claims (6)

  1. 열교환기 코어(208)로서,
    열교환기 코어(208)의 유입 플리넘과 열교환기 코어(208)의 유출 플리넘 사이에서 연장되는 복수 개의 코어 흐름 통로(306)로서, 코어 흐름 통로(306)는 단일 제조 프로세스에서 모놀리식으로(monolithically) 형성되고, 각각의 코어 흐름 통로(306)는 코어 통로벽(502)들에 의해 분리되며, 각각의 코어 통로벽(502)은 주름진 단면을 갖는 것인, 복수 개의 코어 흐름 통로(306),
    모놀리식으로 형성된 플랜지를 포함하는 제1 열교환기 매니폴드(204)로서, 제1 열교환기 매니폴드(204)는 각 단부에 제1 및 제2 천이 부재를 포함하고, 제1 천이 부재는 복수 개의 제1 및 제2 스티프너를 포함하며, 제2 천이 부재는 복수 개의 제3 스티프너를 포함하고, 제1 열교환기 매니폴드(204)는 열교환기 코어와 제1 천이 부재 사이에서 연장되는 제1 헤더 및 열교환기 코어와 제2 천이 부재 사이에서 연장되는 제2 헤더를 더 포함하는 것인, 제1 열교환기 매니폴드(204),
    모놀리식으로 형성된 플랜지를 포함하는 제2 열교환기 매니폴드(206)로서, 제2 열교환기 매니폴드(206)는 각 단부에 제3 및 제4 천이 부재를 포함하고, 제3 천이 부재는 복수 개의 제1 및 제2 스티프너를 포함하며, 제4 천이 부재는 복수 개의 제3 스티프너를 포함하고, 제2 열교환기 매니폴드(206)는 열교환기 코어와 제3 천이 부재 사이에서 연장되는 제3 헤더 및 열교환기 코어와 제4 천이 부재 사이에서 연장되는 제4 헤더를 더 포함하는 것인, 제2 열교환기 매니폴드(206), 및
    제1 열교환기 매니폴드(204)와 제2 열교환기 매니폴드(206) 사이에서 적어도 부분적으로 아치형 경로를 따라 연장되는 복수 개의 측벽으로서, 복수 개의 측벽은 흐름 갭(404)에 의해 분리되어 복수 개의 작동 유체 통로를 형성하고, 복수 개의 작동 유체 통로는 복수 개의 작동 유체 통로와 열전도 연통식인 복수 개의 냉각제 유체 통로와 교호하는 것인, 복수 개의 측벽
    을 포함하고,
    제1 열교환기 매니폴드(204), 제2 열교환기 매니폴드(206) 및 복수 개의 측벽은 소결 재료로 모놀리식으로 형성되며,
    복수 개의 측벽 중 적어도 하나는, 흐름 혼합, 터뷸레이션(turbulation) 및 핀 효과 중 적어도 하나를 통해 복수 개의 작동 유체 통로와 복수 개의 냉각제 유체 통로 사이의 열전달을 증가시키는 복수 개의 표면 피쳐를 포함하고,
    복수 개의 표면 피쳐 중 적어도 하나는 흐름 갭(404) 내로 연장되며,
    복수 개의 제1 스티프너가 유체의 흐름을 채널링 하고, 그 다음에 복수 개의 제2 스티프너가 상기 유체의 흐름을 복수 개의 코어 흐름 통로(306)로 더욱 지향시키는 것인, 열교환기 코어.
  2. 제1항에 있어서, 복수 개의 코어 흐름 통로(306)는
    평행 흐름 연통식으로 커플링되는 제1 세트의 제1 통로(312); 및
    평행 흐름 연통식으로 커플링되는 제2 세트의 제2 통로(314)
    를 포함하고, 제2 세트의 제2 통로(314)는 제1 세트의 제1 통로(312)와의 흐름 연통으로부터 격리되는 것인 열교환기 코어.
  3. 제2항에 있어서, 열교환기 코어는 평행 흐름 연통식으로 커플링되는 제3 세트의 제3 통로를 더 포함하고, 제3 세트의 제3 통로는 제1 세트의 제1 통로(312) 및 제2 세트의 제2 통로(314)와의 흐름 연통으로부터 격리되는 것인 열교환기 코어.
  4. 제2항에 있어서, 제1 세트의 제1 통로(312)와 제2 세트의 제2 통로(314) 중 적어도 하나는 개별 코어 흐름 통로를 포함하고, 상기 개별 코어 흐름 통로는 제1 세트의 제1 통로(312)와 제2 세트의 제2 통로(314) 중 상기 적어도 하나의 나머지 코어 흐름 통로와 상이하게 크기가 정해지는 것인 열교환기 코어.
  5. 제2항에 있어서, 제1 세트의 제1 통로(312)와 제2 세트의 제2 통로(314)는 열교환기 코어(208)의 유입 플리넘과 열교환기 코어(208)의 유출 플리넘 사이에서 제1 세트의 제1 통로(312)와 제2 세트의 제2 통로(314)의 길이를 따라 서로 열전도 연통식으로 커플링되는 것인 열교환기 코어.
  6. 제1항에 있어서, 복수 개의 코어 흐름 통로(306)는 복수 개의 흐름 안내부(504), 복수 개의 딤플(506), 복수 개의 범프(508) 및 복수 개의 스파이크(510) 중 적어도 1종을 포함하는 것인 열교환기 코어.
KR1020210016871A 2017-11-17 2021-02-05 곡선형 벽 열교환기 KR102348770B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/816,499 US10809007B2 (en) 2017-11-17 2017-11-17 Contoured wall heat exchanger
US15/816,499 2017-11-17
KR1020180139696A KR20190056983A (ko) 2017-11-17 2018-11-14 곡선형 벽 열교환기

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139696A Division KR20190056983A (ko) 2017-11-17 2018-11-14 곡선형 벽 열교환기

Publications (2)

Publication Number Publication Date
KR20210018889A KR20210018889A (ko) 2021-02-18
KR102348770B1 true KR102348770B1 (ko) 2022-01-06

Family

ID=64316443

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180139696A KR20190056983A (ko) 2017-11-17 2018-11-14 곡선형 벽 열교환기
KR1020210016871A KR102348770B1 (ko) 2017-11-17 2021-02-05 곡선형 벽 열교환기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020180139696A KR20190056983A (ko) 2017-11-17 2018-11-14 곡선형 벽 열교환기

Country Status (7)

Country Link
US (3) US10809007B2 (ko)
EP (2) EP3486595B1 (ko)
JP (2) JP7005093B2 (ko)
KR (2) KR20190056983A (ko)
CN (1) CN109798800A (ko)
AU (1) AU2018260943B2 (ko)
CA (1) CA3023538C (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830543B2 (en) * 2015-02-06 2020-11-10 Raytheon Technologies Corporation Additively manufactured ducted heat exchanger system with additively manufactured header
US10247296B2 (en) * 2016-12-12 2019-04-02 General Electric Company Additively manufactured gearbox with integral heat exchanger
US10184728B2 (en) * 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
US10809007B2 (en) * 2017-11-17 2020-10-20 General Electric Company Contoured wall heat exchanger
US11255615B2 (en) * 2018-01-23 2022-02-22 Hamilton Sundstrand Corporation Heat exchanger flexible manifold
US20210041188A1 (en) * 2019-08-06 2021-02-11 Meggitt Aerospace Limited Turning vanes and heat exchangers and methods of making the same
JP7358152B2 (ja) 2019-09-24 2023-10-10 住友精密工業株式会社 熱交換器
US11448132B2 (en) 2020-01-03 2022-09-20 Raytheon Technologies Corporation Aircraft bypass duct heat exchanger
US11525637B2 (en) 2020-01-19 2022-12-13 Raytheon Technologies Corporation Aircraft heat exchanger finned plate manufacture
US11674758B2 (en) 2020-01-19 2023-06-13 Raytheon Technologies Corporation Aircraft heat exchangers and plates
US11585273B2 (en) 2020-01-20 2023-02-21 Raytheon Technologies Corporation Aircraft heat exchangers
US11460252B2 (en) 2020-01-24 2022-10-04 Hamilton Sundstrand Corporation Header arrangement for additively manufactured heat exchanger
US11453160B2 (en) 2020-01-24 2022-09-27 Hamilton Sundstrand Corporation Method of building a heat exchanger
US11703283B2 (en) 2020-01-24 2023-07-18 Hamilton Sundstrand Corporation Radial configuration for heat exchanger core
US11441850B2 (en) 2020-01-24 2022-09-13 Hamilton Sundstrand Corporation Integral mounting arm for heat exchanger
US11585605B2 (en) 2020-02-07 2023-02-21 Raytheon Technologies Corporation Aircraft heat exchanger panel attachment
JP7390929B2 (ja) * 2020-02-27 2023-12-04 三菱重工業株式会社 熱交換器、熱交換器の製造方法、及び熱交換器の閉塞確認方法
JP7389686B2 (ja) 2020-03-12 2023-11-30 三菱重工業株式会社 流体間の熱交換ができる装置およびその製法
EP3904819B1 (en) 2020-04-27 2023-09-27 Hamilton Sundstrand Corporation Heat exchanger header fabricated with integral flange using additive metal process
US11662150B2 (en) * 2020-08-13 2023-05-30 General Electric Company Heat exchanger having curved fluid passages for a gas turbine engine
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11434772B2 (en) 2020-09-29 2022-09-06 General Electric Company Turbine nozzle and method of manufacture
US11371786B2 (en) * 2020-10-21 2022-06-28 General Electric Company Heat exchanger for a gas turbine engine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
EP3992565B1 (en) * 2020-10-28 2024-03-13 B/E Aerospace, Inc. Heat exchanger manifold
CN112324576B (zh) * 2020-10-29 2021-07-09 中国航发湖南动力机械研究所 散热装置
GB202019056D0 (en) * 2020-12-03 2021-01-20 Bae Systems Plc Heat exchanger
JP2022120257A (ja) * 2021-02-05 2022-08-18 三菱重工業株式会社 熱交換コア及び熱交換器
DE102021201532A1 (de) * 2021-02-17 2022-08-18 JustAirTech GmbH Wärmetauscher, verfahren zum betreiben eines wärmetauschers, verfahren zum herstellen eines wärmetauschers, gaskältemaschine mit einem wärmetauscher als rekuperator, vorrichtung zum behandeln von gas und raumlufttechnisches gerät
WO2022263006A1 (de) * 2021-06-18 2022-12-22 Schunk Ingenieurkeramik Gmbh Rekuperator-brenner mit einem rekuperator zum führen gegenströmender fluide
KR20240021979A (ko) * 2021-06-18 2024-02-19 셩크 인제니어커라미크 게엠베하 역류 유체를 가이드하기 위한 복열 장치를 갖는 복열 장치 버너
US20220412668A1 (en) * 2021-06-23 2022-12-29 Hamilton Sundstrand Corporation Wavy adjacent passage heat exchanger core and manifold
US20220412658A1 (en) * 2021-06-23 2022-12-29 Hamilton Sundstrand Corporation Wavy adjacent passage heat exchanger core
US11493286B1 (en) 2021-10-12 2022-11-08 Hamilton Sundstrand Corporation Header for high-pressure heat exchanger
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages
CN115420037B (zh) * 2022-08-15 2023-12-15 深圳市正浩创新科技股份有限公司 微通道换热装置及换热设备
US11939878B1 (en) 2022-12-15 2024-03-26 Ge Infrastructure Technology Llc Turbomachine component having self-breaking supports
US11920794B1 (en) 2022-12-15 2024-03-05 Ge Infrastructure Technology Llc Combustor having thermally compliant bundled tube fuel nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133198A (ja) * 2009-12-25 2011-07-07 Tokyo Radiator Mfg Co Ltd 車両用インタークーラ
JP2017032271A (ja) * 2015-07-30 2017-02-09 ゼネラル・エレクトリック・カンパニイ 螺旋状通路を備えた向流式熱交換器

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583814A (en) 1944-01-17 1946-12-31 James Frank Belaieff Improvements in or relating to secondary surface heat exchange apparatus
NL80122C (ko) 1948-07-24
US3118498A (en) 1959-08-19 1964-01-21 Borg Warner Heat exchangers
US3272260A (en) * 1961-08-11 1966-09-13 Union Carbide Corp Corrosion resistant heat exchanger
US3460611A (en) 1967-10-06 1969-08-12 Gen Motors Corp Heat exchanger of plate fin modules
DE2707290C3 (de) * 1977-02-19 1979-09-20 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Rekuperativer Wärmeübertrager aus keramischem Material
FR2436958A2 (fr) 1978-09-22 1980-04-18 Ceraver Procede de fabrication d'un element d'echange indirect de chaleur en matiere ceramique, et element obtenu par ce procede
JPS60141541A (ja) * 1983-12-29 1985-07-26 Nippon Soken Inc ブロツク型熱交換エレメントの製造方法
JPS60228895A (ja) * 1984-04-27 1985-11-14 Matsushita Electric Ind Co Ltd 積層式らせん状熱交換器
DE3630084A1 (de) * 1986-09-04 1988-03-17 Hengst Walter Gmbh & Co Kg Kraftstoff-vorwaermer
JPH0365263A (ja) * 1989-07-31 1991-03-20 Tonen Corp 超音波霧化装置
US5458187A (en) * 1993-12-01 1995-10-17 Honeywell Inc. Dual core air-to-air heat exchanger
DE9319430U1 (de) * 1993-12-17 1994-03-03 Carbone Ag Wärmetauscherblock
DE19653989C2 (de) 1996-12-21 1998-11-26 Degussa Reaktorkopf für einen monolithischen Gleich- oder Genstromreaktor
US6221463B1 (en) * 1998-07-08 2001-04-24 Eugene W. White Three-dimensional film structures and methods
JP2000193390A (ja) 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器
NO321805B1 (no) 2001-10-19 2006-07-03 Norsk Hydro As Fremgangsmate og anordning for a lede to gasser inn og ut av kanalene i en flerkanals monolittenhet.
JP4192835B2 (ja) * 2004-04-28 2008-12-10 株式会社デンソー 熱交換器のヘッダタンク
JP2006022031A (ja) 2004-07-07 2006-01-26 Hiroki Koma 藻類防除剤および藻類防除方法
JP2006220319A (ja) * 2005-02-08 2006-08-24 Dainippon Ink & Chem Inc マイクロ熱交換器
US8387362B2 (en) 2006-10-19 2013-03-05 Michael Ralph Storage Method and apparatus for operating gas turbine engine heat exchangers
EP2098285B1 (en) 2008-02-29 2010-09-22 Corning Incorporated Methods and devices for falling film reactors with integrated heat exchange
US8228675B2 (en) 2007-12-18 2012-07-24 Sandia Corporation Heat exchanger device and method for heat removal or transfer
US8770269B2 (en) 2010-06-11 2014-07-08 Hs Marston Aerospace Ltd. Three phase fin surface cooler
FR2963091B1 (fr) * 2010-07-20 2012-08-17 Univ Savoie Module de circulation de fluides
JP5141730B2 (ja) * 2010-07-23 2013-02-13 三菱電機株式会社 熱交換器及び冷凍空調装置
DE102012108427A1 (de) 2012-09-10 2014-03-13 FTAS GmbH Rohrwärmetauscher
US9739171B2 (en) 2012-11-16 2017-08-22 United Technologies Corporation Turbine engine cooling system with an open loop circuit
JP2016512320A (ja) 2013-03-15 2016-04-25 タール・エネルギー・エル・エル・シー 対向流式熱交換器/反応器
US10871334B2 (en) 2013-07-03 2020-12-22 Hamilton Sundstrand Corporation Heat exchangers with multi-layer structures
JP2015031420A (ja) * 2013-07-31 2015-02-16 株式会社神戸製鋼所 水素ガスの冷却方法及び水素ガスの冷却システム
US10094284B2 (en) 2014-08-22 2018-10-09 Mohawk Innovative Technology, Inc. High effectiveness low pressure drop heat exchanger
WO2016029184A1 (en) * 2014-08-22 2016-02-25 Peregrine Turbine Technologies, Inc. Power generation system and method for generating power
CA2962484A1 (en) * 2014-10-07 2016-04-14 Unison Industries, Llc Multi-branch furcating flow heat exchanger
US9657999B2 (en) 2014-11-11 2017-05-23 Northrop Grumman Systems Corporation Alternating channel heat exchanger
US10048019B2 (en) 2014-12-22 2018-08-14 Hamilton Sundstrand Corporation Pins for heat exchangers
WO2017008108A1 (en) 2015-07-10 2017-01-19 Conflux Enterprises Pty Ltd (As Trustee) Heat exchanger
US20170089643A1 (en) * 2015-09-25 2017-03-30 Westinghouse Electric Company, Llc. Heat Exchanger
JP6095079B1 (ja) * 2015-10-01 2017-03-15 株式会社エー・アンド・デイ タイヤ試験装置
US20170146305A1 (en) * 2015-11-24 2017-05-25 Hamilton Sundstrand Corporation Header for heat exchanger
CN205209293U (zh) 2015-12-04 2016-05-04 中国航空工业集团公司沈阳飞机设计研究所 一种双螺旋式换热器
US20170198978A1 (en) * 2016-01-13 2017-07-13 Hamilton Sundstrand Corporation Heat exchangers
US11243030B2 (en) * 2016-01-13 2022-02-08 Hamilton Sundstrand Corporation Heat exchangers
JP6659374B2 (ja) * 2016-01-22 2020-03-04 株式会社神戸製鋼所 熱交換器及び熱交換方法
US11530878B2 (en) * 2016-04-07 2022-12-20 Hamilton Sundstrand Corporation Spiral tube heat exchanger
CN206321103U (zh) 2016-12-09 2017-07-11 中国航空工业集团公司沈阳飞机设计研究所 一种换热器
SE1651723A1 (en) 2016-12-22 2018-06-23 Air To Air Sweden Ab A heat exchanger and a method of producing a heat exchanger
US10809007B2 (en) * 2017-11-17 2020-10-20 General Electric Company Contoured wall heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133198A (ja) * 2009-12-25 2011-07-07 Tokyo Radiator Mfg Co Ltd 車両用インタークーラ
JP2017032271A (ja) * 2015-07-30 2017-02-09 ゼネラル・エレクトリック・カンパニイ 螺旋状通路を備えた向流式熱交換器

Also Published As

Publication number Publication date
EP4230948A3 (en) 2023-12-20
US20210239402A1 (en) 2021-08-05
EP3486595B1 (en) 2023-08-23
US20190154345A1 (en) 2019-05-23
EP4230948A2 (en) 2023-08-23
EP3486595A1 (en) 2019-05-22
JP7005093B2 (ja) 2022-01-21
CA3023538A1 (en) 2019-05-17
AU2018260943A1 (en) 2019-06-06
US10809007B2 (en) 2020-10-20
JP2019095186A (ja) 2019-06-20
CA3023538C (en) 2020-11-03
AU2018260943B2 (en) 2020-07-23
JP2022003295A (ja) 2022-01-11
KR20210018889A (ko) 2021-02-18
CN109798800A (zh) 2019-05-24
KR20190056983A (ko) 2019-05-27
US20230228494A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
KR102348770B1 (ko) 곡선형 벽 열교환기
US10434575B2 (en) Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
US10782071B2 (en) Tubular array heat exchanger
US10670349B2 (en) Additively manufactured heat exchanger
US20180283795A1 (en) Tubular Array Heat Exchanger
EP3081755B1 (en) Gas turbine engine component with integrated heat pipe
US11125160B2 (en) Method and system for combination heat exchanger
US11236674B2 (en) Additively manufactured heat exchanger
US10746326B2 (en) Additively manufactured tube array
US11561048B2 (en) Circular crossflow heat exchanger
US20180038654A1 (en) System for fault tolerant passage arrangements for heat exchanger applications
US20190024988A1 (en) Header assembly for a heat exchanger
US20200200040A1 (en) Aircraft surface cooler assembly

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant