KR102300233B1 - 천공 장치 및 천공 방법 - Google Patents

천공 장치 및 천공 방법 Download PDF

Info

Publication number
KR102300233B1
KR102300233B1 KR1020187034176A KR20187034176A KR102300233B1 KR 102300233 B1 KR102300233 B1 KR 102300233B1 KR 1020187034176 A KR1020187034176 A KR 1020187034176A KR 20187034176 A KR20187034176 A KR 20187034176A KR 102300233 B1 KR102300233 B1 KR 102300233B1
Authority
KR
South Korea
Prior art keywords
tube
photodetector
opening
lining material
longitudinal direction
Prior art date
Application number
KR1020187034176A
Other languages
English (en)
Other versions
KR20190010573A (ko
Inventor
타카오 카미야마
타카시 카토
Original Assignee
가부시키가이샤 쇼난 고세이쥬시 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 쇼난 고세이쥬시 세이사쿠쇼 filed Critical 가부시키가이샤 쇼난 고세이쥬시 세이사쿠쇼
Publication of KR20190010573A publication Critical patent/KR20190010573A/ko
Application granted granted Critical
Publication of KR102300233B1 publication Critical patent/KR102300233B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/44Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cup or like cutting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/45Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member the movement of which is not covered by any preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/007Control means comprising cameras, vision or image processing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/02Means for moving the cutting member into its operative position for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • B26D5/34Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier scanning being effected by a photosensitive device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/16Perforating by tool or tools of the drill type
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • E03F7/12Installations enabling inspection personnel to drive along sewer canals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/04Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/10Treating the inside of pipes

Abstract

천공 장치는 천공날(28)을 탑재해 본관 내를 이동하는 작업 로봇(20)과, 조명광에 의해 관 라이닝재 내면에 형성되는 개구부상(34)의 윤곽을 검출하는 광검출기(40)를 갖는다. 개구부상이 주사되어 광검출기(40)에서 검출된 윤곽점(P0~P8)에 의거하여 개구부상에 대응하는 2차원 화상이 생성되어 표시기에 표시된다. 표시기 상에서의 2차원 화상의 중심과 천공날(28)의 회전축의 축심(C)의 위치 어긋남량이 연산되고, 이 위치 어긋남량이 없어지는 방향으로 위치 어긋남량만큼 천공날이 이동되어 관 라이닝재가 천공된다.

Description

천공 장치 및 천공 방법
본 발명은 지관 개구부를 폐쇄하고 있는 관 라이닝재를 천공하는 천공 장치 및 천공 방법에 관한 것이다.
종래 지중에 매설된 하수도관 등의 기설관이 노후화되었을 경우에 기설관을 관 라이닝재로 라이닝하는 라이닝 공법이 알려져 있다. 관 라이닝재는 기설관의 형상에 대응한 관형상의 유연한 부직포로 이루어지는 수지 흡수재에 미경화의 액상 경화성 수지를 함침시킨 것이며, 수지 흡수재의 외주면에는 기밀성이 높은 플라스틱 필름이 부착되어 있다. 관 라이닝재는 반전법 또는 인입법에 의해 기설관에 삽입되어 기설관의 내주면에 압박된 상태로 액상 경화성 수지가 가열, 경화되어 라이닝이 행해진다.
하수관 등의 본관에는 지관이 합류하고 있기 때문에 관 라이닝재로 본관을 라이닝한 경우에는 관 라이닝재가 지관의 합류 부분의 단부의 개구부를 막아버린다. 이 때문에 천공기와 TV 카메라를 탑재한 작업 로봇을 본관에 넣어서 지상으로부터 원격 조작하고, 천공기의 커터(천공날)를 회전 구동하여 지관 개구부를 막고 있는 관 라이닝재의 부분을 본관측으로부터 천공하는 작업을 행하고 있다.
그러나 이 작업에서는 천공 전에 천공기의 커터의 위치 결정을 본관의 관 길이 방향 및 둘레 방향 각각에 대해서 행할 필요가 있다. 이것은 TV 카메라로 본관 내를 모니터링하면서 행하지만, 본관 내에는 안표가 없으므로 위치 결정을 잘못하는 경우가 있다.
이것을 해결하기 위해서 하기 특허문헌 1에는 도전성 또는 자성 재료로 된 캡 부재를 지관과 본관의 분기 개구부에 장착하고, 본관 라이닝 후 관내 이동 로봇의 검지 수단이 캡 부재의 유전율 또는 투자율의 변화가 최대가 되는 곳을 지관의 개구부로서 검출하여 본관의 라이닝재로 폐쇄된 지관 개구부를 천공하는 방법이 기재되어 있다.
또한, 특허문헌 2에는 지관측에 자기 발생 부재를 배치하고, 라이닝되어 있는 본관을 따라 자기 검출부를 이동해서 자기 발생 부재로부터의 자기를 검출하고, 지관과 본관의 분기 개구부를 검출해서 상기 개구부의 라이닝재를 절삭하는 구성이 기재되어 있다.
또한, 특허문헌 3에는 지관의 관축과 동심으로 코일과 공진체로 이루어지는 마커를 메워 넣고, 본관 라이닝 후 천공 로봇에 탑재된 루프 안테나가 마커를 여진(勵振)시키는 구성이 기재되어 있다. 이 구성에서는 루프 안테나가 분기 개구부에 가까이 가면 마커가 공진 주파수에서 공진하고, 이 공진 신호의 수신 레벨이 최소가 되는 위치를 분기 개구부의 중심 위치로서 특정하여 천공 작업을 행하고 있다.
일본 특허공개 2002-22062호 공보 일본 특허공개 2008-142827호 공보 일본 특허공개 평 7-88915호 공보
그러나 특허문헌 1의 구성에서는 도전성 또는 자성 재료로 된 캡 부재를 준비할 필요가 있으며, 캡 부재의 제작 비용이 높은 것 외에 검지 수단은 캡 부재의 유전율 또는 투자율의 변화가 최대가 되는 곳을 정확하게 검출할 수 없다는 결점이 있다.
또한, 특허문헌 2에서도 자기 발생 부재를 지관의 축심과 일치시켜서 부착할 필요가 있으며, 그 위치 결정이 불완전하기 때문에 지관과 본관의 분기 개구부의 중심을 정확하게 특정하는 것이 곤란하다는 결점이 있다.
한편, 특허문헌 3에서는 마커의 제작에 수정 진동자 등의 압전 진동체가 필요해짐과 아울러, 마커로부터의 여진 신호가 첨예하지 않아 분기 개구부의 중심 위치를 특정하는 것이 곤란하다는 결점이 있다.
또한, 어느 특허문헌에서도 센서를 본관의 관 길이 방향으로 이동시켜서 천공을 위한 마커(안표)를 검출하고 있으므로 마커의 부착 위치가 본관의 둘레 방향으로 어긋나 있으면, 마커를 검출할 수 없어 센서를 둘레 방향으로 이동시켜서 검출을 다시 할 필요가 있으며, 천공 효율이 저하되어 있었다.
따라서, 본 발명은 이러한 문제점을 해결하기 위해 이루어진 것이며, 관 라이닝재로 막혀 있는 지관 개구부를 저렴한 방법으로, 게다가 효율 좋게 검출해서 관 라이닝재를 천공하는 것이 가능한 천공 장치 및 천공 방법을 제공하는 것을 과제로 한다.
본 발명은,
지관측으로부터의 조명광이 지관 개구부를 폐쇄하고 있는 관 라이닝재를 투과함으로써 관 라이닝재 내면에 지관 개구부에 대응한 개구부상이 형성되는 관 라이닝재를 본관측으로부터 천공하는 천공 장치로서,
관 라이닝재를 천공하기 위한 회전 가능한 천공날과,
상기 천공날을 본관 관 길이 방향으로 연장되는 축을 중심으로 둘레 방향으로 선회할 수 있도록 탑재해서 본관 내를 관 길이 방향으로 이동하는 작업 로봇과,
본관 둘레 방향으로 배열된 복수의 광검출 소자를 구비하고, 개구부상을 관 길이 방향으로 주사해서 그 윤곽점을 검출하는 광검출기와,
상기 광검출기에 의해 검출된 윤곽점에 의거하여 개구부상의 윤곽을 나타내는 2차원 화상을 생성하는 화상 생성 수단과,
생성된 2차원 화상의 중심 위치와 천공날의 회전축의 축심 위치의 관 길이 방향과 둘레 방향 위치 어긋남량을 연산하는 연산 수단을 구비하고,
상기 위치 어긋남량이 없어지는 방향으로 위치 어긋남량만큼 천공날을 관 길이 방향으로 이동시킴과 아울러, 둘레 방향으로 선회시켜서 관 라이닝재를 천공하는 것을 특징으로 한다.
또한, 본 발명은,
지관측으로부터의 조명광이 지관 개구부를 폐쇄하고 있는 관 라이닝재를 투과함으로써 관 라이닝재 내면에 지관 개구부에 대응한 개구부상이 형성되는 관 라이닝재를 본관측으로부터 천공하는 천공 방법으로서,
관 라이닝재를 천공하기 위한 회전 가능한 천공날을 본관 관 길이 방향으로 연장되는 축을 중심으로 선회할 수 있도록 탑재한 작업 로봇을 본관 관 길이 방향으로 이동시키는 공정과,
상기 조명광에 의해 관 라이닝재 내면에 형성된 개구부상을 복수의 광검출 소자를 본관 둘레 방향으로 배열한 광검출기에 의해 관 길이 방향으로 주사하여 그 윤곽점을 검출하는 공정과,
상기 검출된 윤곽점에 의거하여 개구부상의 윤곽을 나타내는 2차원 화상을 생성하고, 생성된 2차원 화상의 중심 위치와 천공날의 회전축의 축심 위치의 본관 관 길이 방향과 둘레 방향 위치 어긋남량을 연산하는 공정과,
상기 위치 어긋남량이 없어지는 방향으로 위치 어긋남량만큼 천공날을 관 길이 방향으로 이동시킴과 아울러, 둘레 방향으로 선회시켜서 관 라이닝재를 천공하는 공정을 구비하는 것을 특징으로 한다.
(발명의 효과)
본 발명에서는 복수의 광검출 소자를 본관 둘레 방향으로 배열한 광검출기에 의해 개구부상을 본관 관 길이 방향으로 주사해서 그 윤곽을 나타내는 2차원 화상을 생성하고, 생성된 2차원 화상의 중심 위치와 천공날의 회전축의 축심 위치의 본관 관 길이 방향과 둘레 방향 위치 어긋남량을 연산하고 있다. 따라서, 간단한 구성으로 천공날의 개구부상에 대한 관 길이 방향과 둘레 방향의 위치 어긋남량을 구할 수 있어 정확한 천공날의 위치 결정이 가능해진다.
도 1은 본관이 라이닝된 상태를 나타내는 설명도이다.
도 2는 천공 장치를 본관 내에서 이동시키는 상태를 나타내는 설명도이다.
도 3은 지관의 개구부상을 주사하는 상태를 나타내는 설명도이다.
도 4는 지관의 개구부상의 주사를 종료했을 때의 상태를 나타내는 설명도이다.
도 5는 지관 개구부를 천공하는 상태를 나타내는 설명도이다.
도 6은 지관 개구부가 천공되어 개구한 상태를 나타내는 설명도이다.
도 7은 본관 내로부터 본 지관 개구부의 상을 나타내는 사시도이다.
도 8은 광검출 소자를 일정 속도로 이동했을 때의 경시 시간에 대한 출력파형을 나타낸 선도이다.
도 9는 광검출기의 측면, 상면, 및 정면을 나타내는 도면이다.
도 10은 천공 장치를 제어하는 구성을 나타낸 블록도이다.
도 11은 천공 공정의 흐름을 나타내는 플로우 차트이다.
도 12는 지관의 개구부상을 주사하는 상태를 나타내는 설명도이다.
도 13은 지관의 개구부상의 윤곽점을 검출하는 상태를 나타내는 설명도이다.
도 14는 천공날의 템플릿을 개구부상의 2차원 화상에 위치 맞춤하는 상태를 나타내는 설명도이다.
도 15는 광검출기의 다른 실시예의 측면, 상면, 및 정면을 나타내는 도면이다.
도 16은 도 15의 광검출기를 사용하여 천공할 때의 흐름을 나타내는 플로우 차트이다.
도 17은 도 15의 광검출기를 사용하여 지관의 개구부상을 검출하는 상태를 나타내는 설명도이다.
도 18은 천공날의 템플릿을 도 15의 광검출기를 사용했을 때 취득되는 개구부상의 2차원 화상에 위치 맞춤하는 상태를 나타내는 설명도이다.
도 19는 광검출기의 또 다른 실시예의 측면, 상면, 및 정면을 나타내는 도면이다.
도 20은 작업 로봇 상을 이동하는 주사 유닛을 사용하여 지관의 개구부상을 주사하는 상태를 나타내는 설명도이다.
도 21은 작업 로봇 상을 이동하는 주사 유닛을 사용하여 개구부상의 주사가 종료되었을 때의 상태를 나타내는 설명도이다.
도 22는 작업 로봇 상을 이동하는 주사 유닛에 탑재된 광검출기의 측면, 상면, 및 정면을 나타내는 도면이다.
도 23은 주사 유닛을 사용하여 지관의 개구부상을 주사하는 상태를 나타내는 설명도이다.
도 24는 주사 유닛을 사용하여 지관의 개구부상의 윤곽점을 검출하는 상태를 나타내는 설명도이다.
도 25는 천공날의 템플릿을 주사 유닛을 사용하여 취득된 개구부상의 2차원 화상에 위치 맞춤하는 상태를 나타내는 설명도이다.
도 26은 광검출기의 광검출 소자의 다른 배치예를 나타낸 사시도이다.
도 27은 광검출기의 다른 실시예를 나타낸 정면도이다.
도 28은 도 27에 나타내는 광검출기를 사용하여 지관의 개구부상을 주사하는 상태를 나타내는 설명도이다.
도 29는 도 27에 나타내는 광검출기를 사용한 천공 공정의 흐름을 나타내는 플로우 차트이다.
도 30은 이상적인 지관의 개구부상의 주사를 나타내는 설명도이다.
도 31은 검출된 지관의 개구부상의 윤곽점을 나타내는 설명도이다.
도 32는 광검출 소자로부터 출력되는 출력파형을 나타낸 선도이다.
이하, 첨부된 도면을 참조해서 본 발명의 실시예를 설명한다. 본 실시예에서는 기설관을 하수도의 본관으로 하고, 상기 본관을 관 라이닝재로 라이닝한 후 관 라이닝재로 막힌 지관 개구부를 천공하는 예가 설명되지만, 본 실시예는 하수도뿐만 아니라 그 밖의 관로에서 라이닝 후 관 라이닝재로 막혀 있는 개구부를 천공하는 것에도 적용할 수 있다.
실시예 1
도 1에는 노후화된 하수도의 본관(11)의 내면이 관 라이닝재(13)를 사용해서 라이닝된 상태가 나타내어져 있다. 이 라이닝은 잘 알려져 있는 바와 같이 관 라이닝재(13)를 반전법 또는 인입법에 의해 본관(11) 내에 유도하고, 본관 내면에 압압함으로써 행해진다.
관 라이닝재(13)는 관형상의 유연한 부직포로 이루어지는 수지 흡수재에 미경화의 액상 경화성 수지를 함침시킨 것이며, 수지가 열경화성의 수지일 경우에는 본관 내면에 압압된 관 라이닝재(13)가 가열되고, 또한 수지가 광경화성 수지일 경우에는 자외선이 조사되어 관 라이닝재(13)가 경화되어서 본관(11)의 내면이 라이닝된다.
본관(11)에는 복수의 지관(12)이 분기되어 있어 가정이나 빌딩 등의 하수가 지관(12)을 통해 본관(11)에 배출된다. 본관(11)이 도 1에 도시한 바와 같이 관 라이닝재(13)에 의해 라이닝되면 개방되어 있던 지관(12)의 개구부(12a)가 관 라이닝재(13)에 의해 막혀버린다.
도 2는 이렇게 관 라이닝재(13)로 막혀 있는 지관 개구부를 천공하는 천공 장치를 나타낸다.
천공 장치는 도 2에 도시한 바와 같이 본관(11) 내를 본관의 관 길이 방향(수평 방향)으로 이동하는 작업 로봇(20)을 구비하고, 그 작업 로봇(20)에 천공날(28)이 탑재된다. 작업 로봇(20)은 4륜을 구비하고, 작업 로봇(20) 내에 탑재된 모터(21)를 구동함으로써, 또는 작업 로봇(20)의 전후에 결합된 와이어(도시하지 않음)를 지상의 윈치로 감아 올림으로써 본관 관 길이 방향으로 전후로 이동할 수 있다.
작업 로봇(20)의 상부에는 TV 카메라(27)가 부착되고, 그 측면에 부착된 조명 장치(도시하지 않음)로 조명된 본관 내부는 TV 카메라(27)로 촬영된다. 촬영된 화상은 케이블 파이프(15) 내의 신호 케이블을 통해 지상에 설치된 작업 트랙(14) 내의 표시기(52)(도 10)에 표시되어 작업자가 본관 내부를 관찰할 수 있도록 되어 있다.
작업 로봇(20)의 전방으로 그 좌우 방향(본관 둘레 방향)의 중앙 위치에는 모터(22)가 부착된다. 모터(22)의 선단에는 마운트(23)를 개재하여 지지판(24)이 부착되고, 그 지지판(24)에는 원반상의 헤드(25a)를 상부에 구비한 유압 실린더(25)가 고정된다. 유압 실린더(25)의 헤드(25a)에는 상부에 다수의 비트를 원형으로 배열한 날면(28a)과 회전축(28b)을 갖는 원기둥상의 천공날(28)이 연직 방향으로 부착되고, 천공날(28)을 회전시키는 모터(26)가 그 회전축을 유압 실린더(25)의 피스톤로드와 동축으로 해서 부착된다.
모터(22)는 그 회전축(22a)이 본관(11)의 관축(11a)과 평행하게 본관 관 길이 방향으로 연장되어 있으며, 작업 로봇(20)이 본관 내에서 정상인 위치를 취할 때에는, 예를 들면 회전축(22a)이 본관(11)의 관축(11a)과 동축이 되도록(도 4) 작업 로봇(20)에 부착된다. 모터(22)가 회전하면 천공날(28)은 관 길이 방향으로 연장되는 관축(11a)을 중심으로 본관 둘레 방향으로 선회한다. 또한, 천공날(28)은 도 5에 나타낸 바와 같이 날면(28a)의 외경(d1)이 지관의 내경(d2)보다 약간 작아져 있으며, 유압 실린더(25)에 의해 유압으로 상하 방향으로 승강되어 모터(26)에 의해 회전시킬 수 있다.
작업 로봇(20)의 상부에는 받침대 부재(29)가 설치되어 있으며, 천공 시에는 받침대 부재(29)가 상승해서 관 라이닝재(13)의 상면에 부딪혀 작업 로봇(20)을 안정시킨다.
관 라이닝재(13)를 천공할 때에는 지상으로부터 지관(12) 내에 조명 램프(30)가 투입되고, 조명 램프(30)는 전원선(31)을 통해 전원(32)에 의해 점등되어 지관 개구부(12a)를 폐쇄하고 있는 관 라이닝재(13)를 상부로부터 조명한다. 관 라이닝재(13)는 부직포로 되어 있으므로 거기에 함침되어 있는 수지가 경화한 경우에도 조명광은 관 라이닝재를 투과한다. 본관(11) 내로부터 이 투과광을 보면 도 7에 나타낸 바와 같이 본관(11)의 내면에 대응해서 만곡한 밝은 개구부상(34)이 되어 관찰할 수 있다. 개구부상(34)은 지관(12)이 본관(11)과 수직으로 교차할 경우에는 원형상으로서 관찰되고, 또한 도 2에 나타낸 바와 같이 비스듬히 교차할 경우에는 그 경사도에 따른 타원상으로서 관찰된다.
작업 로봇(20)에는 도 9에 나타낸 바와 같이 블록상의 기대(41)가 고정되고, 기대(41) 상에 세워서 설치된 중공의 지주(42) 내에는 스프링(44)으로 상방에 바이어싱되어 승강 가능한 센서 로드(43)가 수납된다. 센서 로드(43)의 상부에는 센서 홀더(45)와 금속제 또는 수지제의 볼(46)을 전동(轉動)시키는 볼 베어링(47)이 부착된다.
센서 홀더(45)에는 도 9 하방에 나타낸 바와 같이 관 라이닝재(13)의 곡률을 따라 만곡한 센서 부착판(48)이 고정된다. 센서 부착판(48)의 상부에는 각각 CdS(황화카드뮴)셀 또는 포토다이오드로 이루어지는 5개의 광검출 소자(48a~48e)가 본관의 둘레 방향으로 등간격(θ1)으로 사이를 두고 부착된다. 이들 광검출 소자(48a~48e)는 작업 로봇(20)의 이동에 따라 개구부상(34)을 본관 관 길이 방향으로 광학적으로 주사하여 검출하는 광검출기(40)를 구성한다.
작업 로봇(20)을 일정 속도로 이동시켰을 때의 각 광검출 소자(48a~48e)의 경과 시간(t)에 대한 출력 신호의 파형이 도 8에 도시되어 있다. 각 광검출 소자(48a~48e)는 개구부상(34)의 밝음에 따라 점선으로 도시한 바와 같이 v0부터 v1까지의 전압을 출력한다. 출력 신호는, 예를 들면 v1/2의 역치 전압을 설정하고, 그것을 초과하면 하이 레벨의 신호(v1)를, 또한 그 이하에서는 로우 레벨(v0)의 신호를 발생하도록 디지털화된다.
후술하는 바와 같이 작업 로봇(20)이 소정의 일정 속도로 이동할 때 광검출기(40)의 광검출 소자는 시간(t1)에서 개구부상의 최초의 윤곽점을 검출하고, 그 출력 신호는 로우 레벨로부터 하이 레벨로 스위칭된다. 계속해서 광검출 소자의 출력 신호는 지관 개구부의 지름(d2)에 대응하는 밝은 영역에서는 하이 레벨을 유지하고, 시간(t2)에서 후의 윤곽점을 검출했을 때에 로우 레벨로 스위칭된다. 또한, 레벨이 스위칭되는 역치 전압은 개구부상의 밝음, 광검출 소자의 감도에 따라 조정할 수 있도록 되어 있다.
도 10은 천공 장치의 동작을 제어하는 제어계의 블록도가 도시되어 있다. 제어 수단 및 연산 수단으로서의 컴퓨터(CPU)(50)는 기본 프로그램 등을 격납한 ROM(50a), 처리 데이터, 연산 데이터 등을 격납하는 작업용 RAM(50b)을 갖는다.
컴퓨터(50)는 화상 처리부(50c)를 구비하고 있으며, 이 화상 처리부(50c)의 화상 생성부(50d)에서는 광검출 소자(48a~48e)로부터 출력되는 신호를 처리해서 개구부상에 대응하는 2차원 화상이 생성된다. 또한, 화상 처리부(50c)의 위치 어긋남량 연산부(50e)에서는 생성된 2차원 화상의 중심 위치와 개구부상(34)의 주사 종료 시에 위치하는 천공날(28)의 회전축(28)의 축심의 위치 어긋남량이 연산되고, 화상 처리부(50c)는 그 외 화상 형성에 필요한 여러 가지의 화상 처리를 행한다. 또한, 컴퓨터(50)에는 제어 프로그램, 화상 처리 프로그램, 템플릿 등을 격납한 하드디스크로 이루어지는 기억 장치(51)가 접속된다.
모터(21)는, 예를 들면 로터리 인코더를 구비한 DC 모터로 구성되어 작업 로봇(20)을 본관 관 길이 방향으로 전후 이동시킨다. 모터(21)의 회전수는 컴퓨터(50)에 입력되어 작업 로봇(20)의 이동 속도, 이동 거리가 연산된다.
모터(22)는 스테핑 모터 또는 로터리 인코더를 구비한 서보 모터로 구성되고, 그 모터축(22a)은 본관(11)의 관축(11a)과 동축으로 되어 있어서 천공날(28)을 모터축(22a)을 중심으로 소정 각도 단위로 시계 방향 또는 반시계 방향으로 선회시킨다. 또한, 컴퓨터(50)는 유압 실린더(25)를 구동해서 천공날(28)을 상하 이동시키고, 모터(26)를 구동해서 천공날(28)을 회전시키고, 유압 실린더(53)를 구동해서 받침대 부재(29)를 상하 이동시킨다. 또한, 컴퓨터(50)는 TV 카메라(27)의 자세를 제어하여 TV 카메라(27)로 촬영된 화상을 도입한다.
또한, 컴퓨터(50)에는 표시기(52)가 접속되고, 표시기(52)에는 검출된 개구부상의 윤곽점, 그것에 의거하여 생성된 2차원 화상, TV 카메라로 촬영된 화상, 연산된 데이터, 제어 데이터 등이 표시된다. 또한, 컴퓨터(50)에는 마우스(54), 키보드(55)가 접속된다. 컴퓨터(50), 기억 장치(51), 표시기(52), 마우스(54), 키보드(55)는 천공 장치의 일부로서 작업용 트랙(14)에 탑재된다.
모터(21, 22, 26), 유압 실린더(25, 53)는 케이블 파이프(15) 내의 전원 케이블을 통해 작업 트랙(14)에 탑재된 전원에 접속되어 있으며, 컴퓨터(50)에 의해 제어된다. 또한, 이들의 구동 수단은 작업 트랙 내의 콘솔에 배치된 스위치나 조이스틱 등을 통해 각각 개별적으로 구동, 제어할 수 있도록 되어 있다. 또한, TV 카메라(27)로 촬영된 화상 데이터 또는 광검출 소자로부터의 신호는 케이블 파이프(15) 내의 신호 케이블을 통해 컴퓨터(50)에 입력된다.
이어서, 이렇게 구성된 천공 장치의 동작을 도 11에 나타내는 흐름을 따라 설명한다.
작업 로봇(20)은 맨홀(16)을 통해 본관(11) 내에 투입되어 본관(11) 내를 전진한다(스텝 S1). 이때 스프링(44)에 의해 상방으로 바이어싱된 볼(46)은 관 라이닝재(13)의 내면에 점접촉해서 전동하므로 센서 부착판(48)에 부착된 광검출 소자(48a~48e)는 그 검출면이 관 라이닝재(13)의 내면에 접촉하는 일 없이 관 라이닝재(13)의 내면에 대하여 지름 방향으로 등거리를 사이를 두고 근접하여 개구부상(34)의 밝음을 광학적으로 검출한다.
작업 로봇(20)은 반드시 수직인 자세로 전진하는 것은 아니고, 예를 들면 도 12에 도시한 바와 같이 작업 로봇(20)은 본관(11)의 관축(11a)을 중심으로 어느 정도 시계 방향으로 Δθ 회동한 상태로 전진한다. 이 상태에서는 광검출기(40)도 Δθ만큼 기울어지므로 광검출 소자(48a~48e)는 가상선으로 나타낸 개구부상(34)을 좌우 대칭이 아니라 오른쪽으로 기울어 어긋난 상태로 검출한다. 이 Δθ는 상방으로부터 보았을 때의 어긋남량 Δx로서 도 12에 도시되어 있다.
작업 로봇(20)이 전진을 계속해서 광검출기(40)가 개구부상(34)에 근접하면 어느 하나의 광검출 소자(48a~48e), 예를 들면 중앙의 광검출 소자(48c)가 개구부상(34)의 윤곽선(34a) 상의 점을 검출하고, 이 윤곽점에서 광검출 소자(48c)의 출력 신호가 로우 레벨로부터 하이 레벨로 스위칭된다. 이때의 작업 로봇(20)의 위치가 도 3에도 도시되어 있다.
어느 하나의 광검출 소자(48a~48e)가 개구부상(34)의 윤곽점을 검출했을 경우(스텝 S2의 긍정), 작업 로봇(20)을 소정 거리만큼 후진시키고, 이 위치를 개구부상(34)의 주사 개시 위치(H1)로 한다(스텝 S3). 주사 개시 위치(H1)는 개구부상(34)의 윤곽점의 좌표를 구할 때의 홈 포지션이 된다.
지관(12)의 지름은 여러 가지의 지름이 존재하므로 사용되어 있는 지관의 최대 지름으로부터 소정 거리 길이 치수(D1)를 설정하고, 도 13에 나타낸 바와 같이 작업 로봇(20)을 주사 개시 위치(H1)로부터 개구부상(34)을 초과한 거리(D1)만큼 본관 관 길이 방향으로 이동시켜 거기에서 작업 로봇(20)을 정지시킨다. 이 작업 로봇(20)의 정지 위치(H2)를 개구부상의 주사 종료 위치로 한다.
작업 로봇(20)이 주사 개시 위치(H1)로부터 주사 종료 위치(H2)로 이동하는 사이에 개구부상(34)의 2차원 주사가 행해진다(스텝 S4). 작업 로봇(20)이 전진하면 도 13에 나타낸 바와 같이 광검출 소자(48a~48e)가 각각 로우 레벨로부터 하이 레벨로 스위칭됨으로써 개구부상(34)의 전방의 윤곽점(P2, P1, P0, P8, P7)이 검출된다. 또한, 작업 로봇(20)이 더 전진하여 광검출 소자(48a~48d)가 하이 레벨로부터 로우 레벨로 스위칭됨으로써 후방의 윤곽점(P3, P4, P5, P6)이 검출된다. 도 12의 예에서는 개구부상(34)의 윤곽이 불선명한 곳이 있기 때문에 윤곽점(P2, P5)은 개구부상(34)의 윤곽선(34a)으로부터 어긋나게 검출되어 있으며, 또한 작업 로봇(20)이 Δθ 기울고 있으므로 최우단의 광검출 소자(48e)는 전방의 윤곽점(P7)밖에 검출되어 있지 않다.
또한, 작업 로봇(20)의 경사가 클 경우에는 개구부상의 윤곽을 검출할 수 없는 경우가 있으므로 복수 개의 윤곽점, 예를 들면 6개 이상의 윤곽점이 검출되었는지를 판단하고(스텝 S5), 검출할 수 없었을 경우에는 스텝 S3으로 되돌아가서 작업 로봇(20)을 주사 개시 위치(H1)까지 후퇴시켜 소정 개수의 윤곽점이 검출될 때까지 동일 처리를 반복한다.
스텝 S5의 판단이 긍정된 경우에는 컴퓨터(50)에 의해 윤곽점(P0~P8)의 좌표값이 연산된다. 좌표값을 연산할 때의 y축은, 예를 들면 본관(11)의 관축(11a)과 평행한 축이며, 좌우 방향으로 중앙의 광검출 소자(48c)의 위치를 통과하는 축으로 설정되고, 또한 x축은 y축에 직교하는 수평축이며, 중앙의 광검출 소자(48c)의 주사 개시 위치(H1)를 통과하는 축으로 설정된다. y축은 작업 로봇(20)의 좌우 방향의 중앙에 설정되므로 천공날(28)의 회전축(28b)의 축심(C)의 바로 위에 있다. 또한, 주사 개시 위치(H1)를 통과하는 연직선은 x축과 직교한다.
컴퓨터(50)는 광검출 소자(48a~48e)마다 시간 카운터를 각각 구비하고 있으며, 작업 로봇(20)이 주사 개시 위치(H1)로부터 이동하는 것과 동시에 각 시간 카운터가 작동하고, 각 광검출 소자(48a~48e)가 각각 로우 레벨로부터 하이 레벨로 스위칭될 때까지의 시간(t1)(도 8)을 계측한다.
모터(21)의 회전 속도를 로터리 인코더로 계측함으로써 작업 로봇(20)의 차륜 지름에 의거하여 그 이동 속도를 구할 수 있으므로 작업 로봇의 이동 속도와 로우 레벨로부터 하이 레벨로 스위칭될 때까지의 시간(t1)을 승산함으로써 광검출 소자(48a~48e)의 주사 개시 위치(H1)로부터 개구부상(34)의 전방의 윤곽점(P2, P1, P0, P8, P7)까지의 y축 방향(관 길이 방향)의 이동 거리(윤곽점 거리)(y2, y1, y0, y8, y7)를 연산할 수 있다.
또한, 각 광검출 소자가 하이 레벨로부터 로우 레벨로 스위칭될 때까지의 시간(t2)을 계측하여 이동 속도를 승산함으로써 광검출 소자(48a~48e)의 주사 개시 위치(H1)로부터 개구부상(34)의 후방의 윤곽점(P3, P4, P5, P6)까지의 y축 방향 이동 거리(y3, y4, y5, y6)가 연산된다.
여기에서 각 광검출 소자(48a~48e)의 광검출 소자(8c)로부터의 x축 방향의 거리는 도 9의 중앙에 나타내어져 있는 바와 같이 x2, x1, 0, x1, x2이므로 개구부상(34)의 각 윤곽점(P0~P8)이 xy축에서 정해지는 xy평면으로 사영되었을 때의 윤곽점(P0~P8)의 xy 좌표값은 도 13의 우측에 도시한 바와 같은 값이 된다.
이러한 윤곽점(P0~P8)의 좌표값의 연산은 화상 처리부(50c)의 화상 생성부(50d)에서 행해진다. 화상 생성부(50d)는 필요에 따라 윤곽점(P0~P8)을 보간하여 윤곽점을 추가하고, 윤곽점(P0~P8) 및 추가된 윤곽점을, 예를 들면 스플라인 곡선으로 연결하고, 도 14 상방에 나타낸 바와 같은 개구부상(34)의 윤곽을 나타내는 2차원 화상(35)을 생성한다(스텝 S6).
또한, 천공날(28)의 회전축(28b)의 축심(C)의 xy 좌표값은 C{0, (D1+D2)}가 된다. 여기에서 D1은 상술한 바와 같이 지관의 최대 지름보다 소정 거리 길이 치수를 고려한 작업 로봇(20)의 주사 개시 위치(H1)로부터 관 길이 방향 이동 거리이며, D2는 광검출 소자(48c)와 천공날(28)의 축심(C)까지의 관 길이 방향 거리이다. 또한, D1은 작업 로봇(20)의 주사 개시 시에 시간 카운터를 기동시켜 작업 로봇(20)이 주사 종료 위치(H2)에서 정지했을 때의 시간을 측정하여 작업 로봇(20)의 이동 속도를 승산함으로써 구할 수 있고, D2는 작업 로봇(20)의 설계값으로 정해지는 값이다. 또한, 이동 거리(y0~y8), D1은 모터(21)의 회전수를 로터리 인코더를 사용하여 계측함으로써 구할 수도 있다.
계속해서, 도 14 상방에 나타낸 바와 같이 화상 생성부(50d)에서 생성된 2차원 화상(35)을 표시기(52)에 표시한다(스텝 S7). 이때 윤곽점(P0~P8)의 xy 좌표값은 작업 로봇(20)에 설정되는 좌표계에서의 실거리에 의거하여 연산되어 큰 값이 되므로 적당히 1/m배로 축소해서 표시하도록 한다.
계속해서, 표시기(52)에 표시된 2차원 화상(35)의 중심 위치를 검출한다(스텝 S8). 이 중심을 검출하는 하나의 방법(수단)은 천공날(28)의 날면(28a)의 외경(d1)(도 5)의 1/m배의 지름을 갖는 원형형상의 템플릿(36)을 사용하는 방법이다. 이러한 템플릿(36)을 기억 장치(51)로부터 판독하고, 도 14의 하방에 나타낸 바와 같이, 예를 들면 마우스(54)로 템플릿(36)을 드래그하여 템플릿(36)과 2차원 화상(35)의 위치 맞춤을 행한다. 위치 맞춤된 템플릿(36)의 중심(C')의 좌표값(C'(-Xc, Yc))을 구하고, 이것을 2차원 화상(35)의 중심 위치를 나타내는 좌표값으로 한다. 템플릿(36)은 원형이므로 그 중심은 소프트적으로 간단하게 구할 수 있다.
상술한 바와 같은 위치 맞춤은 실제로 본관(11) 내에서 TV 카메라(27)로 개구부상(34)을 비스듬하게 상방으로부터 보면서 천공날(28)을 이동시켜 그 회전면(템플릿(36)에 상당)을 상기 개구부상(34)(2차원 화상(35)에 상당)에 위치 맞춤하는 조작에 대응하고 있다.
2차원 화상(35)의 중심을 검출하는 다른 방법은 템플릿 매칭을 사용하는 것이다. 이 경우에는 템플릿(36)의 화상과 2차원 화상(35)의 일치 정도를 상관계수로부터 연산하고, 상관계수가 최대가 되는 템플릿(36)의 위치를 구하고, 그 중심 위치(C')를 2차원 화상(35)의 중심 위치로 한다. 또는, 2차원 화상(35)의 중심을 연산하고, 그 중심 위치를 2차원 화상(35)의 중심 위치로 할 수도 있다.
한편, 작업 로봇(20)은 주사 종료 시에는 도 13에 나타내는 위치에서 정지하고 있으므로 천공날(28)의 회전축(28b)의 축심(C)은 C{0, (D1+D2)}의 좌표 위치에 있다. 그래서 위치 어긋남량 연산부(50e)에서 2차원 화상의 중심 위치(C'(-Xc, Yc))와 천공날(28)의 축심 위치(C{0, (D1+D2)})의 위치 어긋남량을 연산한다(스텝 S9). 이때 (-Xc, Yc)는 축소된 좌표계에서의 좌표값이므로 m배로 해둔다.
계속해서. 연산된 위치 어긋남량이 없어지는 방향으로 상기 위치 어긋남량 분만큼 천공날(28)을 이동한다(스텝 S10). 즉, 작업 로봇(20)을 (D1+D2)-Yc만큼 후퇴시키고, 모터(22)를 구동해서 천공날(28)을 Xc에 대응하는 각도 θ(Δθ)만큼 반시계 방향으로 선회시킨다.
이 상태에서는 표시기(52) 상에서 템플릿(36)이 2차원 화상(35)에 위치 맞춤되어 있는 것에 대응하여 천공날(28)의 날면(28a)도 개구부상(34)에 위치 맞춤되어 있다. 그래서 유압 실린더(25)를 구동해서 천공날(28)을 상승시키고, 도 5에 나타낸 바와 같이 모터(26)를 구동해서 천공날(28)을 회전시킨다. 이때 작업 로봇(20)의 위치를 안정시키기 위해서 받침대 부재(29)를 관 라이닝재(13)의 내면에 부딪히도록 한다. 이렇게 해서 도 6에 나타낸 바와 같이 지관 개구부(12a)를 폐쇄하고 있는 관 라이닝재(13)가 천공된다(스텝 S11).
이렇게 본 실시예에서는 실제로 본관(11) 내에서 TV 카메라(27)로 개구부상(34)을 비스듬하게 상방으로 보면서 천공날(28)의 날면(28a)을 상기 개구부상(34)에 위치 맞춤하는 조작을 표시기(52) 상에서 개구부상(34)에 상당하는 2차원 화상(35)을 표시해서 정면으로부터 행할 수 있으므로 위치 맞춤이 매우 용이해진다. 게다가, 실제 개구부상(34)의 윤곽에 불선명한 부분이 있거나 개구부상(34) 내에 잡광(노이즈)이 있어도 2차원 화상(35)의 외형을 파악할 수 있는 범위 내에서 위치 맞춤할 수 있어 천공 효율을 높일 수 있다.
또한, 상술한 실시예에서는 5개의 광검출 소자를 사용했지만, 광검출 소자의 수가 많아지면 검출되는 윤곽점도 많아져서 위치 맞춤 정밀도가 향상한다. 또한, 상술한 실시예에서는 5개의 광검출 소자를 둘레 방향으로 등간격으로 배치했지만, 중앙부와 단부에서 소밀(粗密)을 바꾸어서 배치하도록 해도 좋다.
또한, 광검출기(40)로서 미소한 광검출 소자를 가는 피치로 등간격으로 1차원으로 배열한 CCD 또는 CMOS 이미지 센서(70)를 사용하도록 해도 좋다. 1차원 이미지 센서(70)는 도 15에 나타낸 바와 같이 본관의 둘레 방향을 따라 원호상으로 연장되는 센서 부착판(48)에 부착된다.
이러한 1차원 이미지 센서(70)를 사용해서 개구부상(34)을 주사할 경우, 1차원 이미지 센서(70)가 개구부상(34) 중 어느 하나의 윤곽을 검출할 때까지 작업 로봇(20)을 전진시키고(도 16의 스텝 T1, T2), 윤곽이 검출되면 작업 로봇(20)을 소정 거리 후진시키고(스텝 T3), 이 위치를 주사 개시 위치(H1')로 한다(스텝 T3). 계속해서, 지관의 최대 지름으로부터 소정 거리 길이 치수를 D1'로서 설정하고, 도 17에 나타낸 바와 같이 작업 로봇(20)을 주사 개시 위치(H1')로부터 개구부상(34)을 초과한 거리(D1'+D2')에 있는 주사 종료 위치(H2')까지 이동시켜서 개구부상(34)의 전체 영역을 주사하고(스텝 T4), 거기에서 작업 로봇(20)의 이동을 정지시킨다. 또한, D2'는 작업 로봇(20)의 설계값으로 정해지는 값이다.
1차원 이미지 센서(70)의 각 광검출 소자가 검출한 아날로그 신호는 각 광검출 소자의 배열 피치에 상당한 개구부상의 미소 영역의 밝음을 나타내는 디지털 신호로 변환되어 컴퓨터(50)에 입력된다. 광검출기(40)의 관 길이 방향으로의 이동에 따라 1차원 이미지 센서(70)의 각 광검출 소자로부터 순차 출력되는 개구부상(34)의 각 미소 영역마다의 신호값은 RAM(50b)에 순차적으로 기록된다.
화상 생성부(50d)는 RAM(50b)에 기억된 개구부상(34)의 각 미소 영역마다의 신호값을 판독하고, 개구부상(34)의 형상 및 그 밝음을 충실하게 재현한 2차원 화상(72)을 생성한다(스텝 T5). 또한, y축은 도 13과 마찬가지로 본관(11)의 관축(11a)과 평행한 축이며, 1차원 이미지 센서(70)의 중앙의 광검출 소자의 위치를 통과하는 축으로 설정되고, 또한 x축은 y축에 직교하는 수평축이며, 상기 중앙의 광검출 소자의 주사 개시 위치(H1')를 통과하는 축으로 설정된다.
계속해서, 도 11의 스텝(S7~S11)과 마찬가지인 처리가 스텝(T6~T10)에서 행해져 관 라이닝재(13)의 천공이 행해진다.
1차원 이미지 센서(70)를 사용할 경우에는 개구부상(34)의 전체 영역은 광검출 소자의 가는 피치에 상당하는 분해능으로 표시기(52)에 표시된다. 도 18에 있어서 2차원 화상(72)의 윤곽선(72a)은 검은 실선으로서 도시되어 있지만, 실제로는 도 8에서 점선으로 나타낸 신호의 상승부 또는 하락부의 밝음에 따른 상이한 농담이 있는 선상의 윤곽으로 되어 표현된다. 또한, 2차원 화상(72)의 주변 영역(72b, 72c)은 지관 개구부(12a)에 오물이 퇴적했기 때문에 그 부분이 결락된 화상으로 되어 있으며, 또한 중앙 영역(72d)은 노이즈 화상으로서 재현되어 있다.
천공날(28)의 회전축(28a)의 축심(C)의 좌표값은 C{0, (D1'+D2')}가 되고, 2차원 화상(72)의 중심 위치는 도 14와 마찬가지로 C'(-Xc, Yc)로 해서 구해지므로 작업 로봇(20)을 위치 어긋남량 (D1'+D2')-Yc만큼 후퇴시키고, 모터(22)를 구동해서 천공날(28)을 x축에서의 차 Xc(Δx)에 대응하는 각도 θ(Δθ)만큼 반시계 방향으로 회동시켜서 지관(12)의 개구부를 폐쇄하고 있는 관 라이닝재(13)를 천공한다.
1차원 이미지 센서(70)를 사용할 경우에는 개구부상(34)의 전체 영역이 2차원의 평면 화상으로서 충실하게 표시기(52)에 표시되므로 위치 결정이 용이해지고, 또한 그 위치 결정 정밀도가 향상한다.
또한, 광검출기(40)를 도 19에 나타낸 바와 같이 직선형상으로 연장되는 1차원 이미지 센서(75a~75e)를 복수 개 본관의 둘레 방향을 따라 배열한 1차원 이미지 센서로 구성할 수도 있다. 이 경우, 각각의 1차원 이미지 센서(75a~75e)는 직선상으로 연장되는 본관 둘레 방향으로 배열한 센서 부착판(74a~74e)에 부착된다.
화상 생성부(50d)에서는 작업 로봇(20)의 이동에 의해 각각의 1차원 이미지 센서(75a~75e)에 의해 순차 검출된 신호에 의해 개구부상(34)의 윤곽을 나타내는 2차원 화상이 생성된다. 이 경우, 각 직선상의 1차원 이미지 센서의 각 광검출 소자와 관 라이닝재(13)의 내면의 지름 방향의 거리가 상이하다는 점에서 생성되는 2차원 화상의 윤곽이 충실히 재현되지 않게 되지만, 윤곽형상의 어긋남은 적고, 2차원 화상의 거의 중심을 구할 수 있어 동등의 위치 맞춤 정밀도로 천공을 행할 수 있다.
실시예 2
실시예 1에서는 광검출기(40)는 작업 로봇(20)에 고정되어 있으며, 작업 로봇(20)의 관 길이 방향의 이동에 연동하여 이동시켰지만, 작업 로봇(20)의 이동과 독립하여 광검출기(40)를 이동시킴으로써 개구부상(34)을 주사할 수도 있다. 그 실시예가 도 20~도 25에 도시되어 있다.
실시예 2에서는 도 20~도 22에 도시한 바와 같이 4륜을 구비하고, 광검출기(40)를 탑재한 주사 유닛(80)이 사용된다. 주사 유닛(80)은 기대(81) 내에 설치된 모터(82), 예를 들면 스테핑 모터 또는 서보 모터에 의해 작업 로봇(20)의 둘레 방향 중심에 대하여 좌우 대칭으로 배치된 가이드 레일(83, 84)에 안내되어 정지판(85, 86) 사이를 작업 로봇(20)의 평탄부 상에서 관 길이 방향으로 이동한다.
기대(81)의 전후에는 리밋 스위치(81a, 81b)가 부착되어 주사 유닛(80)이 전진 또는 후진해서 작업 로봇(20)에 고정된 정지판(85, 86)에 접촉하면 리밋 스위치(81a, 81b)가 작동해서 모터(82)가 정지하고, 주사 유닛(80)이 정지판(85, 86)을 초과해서 전진 또는 후진할 수 없도록 되어 있다. 또한, 주사 유닛(80)의 기대(81)에는 도 9에서 설명한 부재(42~48)를 통해 광검출 소자(48a~48e)를 구비한 광검출기(40)가 부착된다.
이러한 구성으로 주사 유닛(80)에 의한 개구부상(34)의 주사는 도 11에 나타내는 흐름과 마찬가지인 흐름으로 행해진다. 작업 로봇(20)은 본관(11)의 관축(11a)을 중심으로 어느 정도 시계 방향으로 Δθ 회동한 상태로 전진하고, 주사 유닛(80)은 최후부, 즉 후방의 정지판(86)에 접촉하는 위치에 정지되어 있다고 한다(도 23).
작업 로봇(20)이 전진하고, 도 23의 우측에 나타내는 바와 같이 광검출기(40) 중 어느 하나의 광검출 소자(48a~48e)(중앙의 광검출 소자(48c))가 개구부상(34)의 윤곽을 검출했을 때 동 도면의 좌측에 나타내는 바와 같이 작업 로봇(20)을 소정 거리(Δd)만큼 후진시키고, 이 위치를 개구부상(34)의 주사 개시 위치(H)로 한다(스텝 S1~S3). 주사 개시 위치(H)에서는 상술한 바와 같이 주사 유닛(80)은 정지판(86)에 접촉하여 정지되어 있다. 본관(11)의 관축(11a)과 평행한 축이며, 중앙의 광검출 소자(48c)의 위치를 통과하는 축이 y축으로, 또한 y축에 직교하는 수평축이며, 중앙의 광검출 소자(48c)의 주사 개시 위치(H)를 통과하는 축이 x축으로 설정된다.
실시예 1에서는 이 주사 개시 위치(H)에서 작업 로봇(20)을 전진시켜 개구부상을 주사하고 있지만(스텝 S4), 실시예 2에서는 주사 개시 위치(H)에서 작업 로봇(20)을 정지한 채로 하고, 주사 유닛(80)을 작업 로봇(20) 상에서 전진시켜 개구부상(34)을 주사한다.
주사 유닛(80)의 전진에 따라 광검출기(40)도 관 길이 방향으로 이동한다. 도 24에 나타낸 바와 같이 광검출 소자(48a~48e)는 각각 주사 개시 위치(H)로부터 Y1의 거리 이동하고, 그 동안에 개구부상(34)의 윤곽점(P1~P8)을 검출하고, 주사 유닛(80)은 주사 종료 위치(H')에서 정지한다.
윤곽점(P1~P8)이 검출될 때까지의 광검출 소자(48a~48e)의 주사 개시 위치(H)로부터의 이동 거리(y0'~y8')는 실시예 1과 마찬가지로 각각의 윤곽점이 검출될 때까지의 시간과 주사 유닛(80)의 이동 속도를 승산함으로써 구해지고, 또한 광검출 소자(48a~48e)의 x축 방향의 배열은 실시예 1과 마찬가지이므로 도 24의 우측에 도시한 바와 같은 윤곽점(P0'~P8')의 좌표값이 연산된다.
실시예 1과 마찬가지로 필요에 따라 윤곽점(P0'~P8')을 보간해서 윤곽점을 추가하고, 윤곽점(P0'~P8') 및 추가된 윤곽점을, 예를 들면 스플라인 곡선으로 연결하여 도 25 상방에 나타낸 바와 같은 개구부상(34)의 윤곽을 나타내는 2차원 화상(35')이 생성된다(스텝 S6).
계속해서, 2차원 화상(35')이 표시기(52)에 표시되고(스텝 S7), 실시예 1과 마찬가지인 방법으로 그 중심(C'(-Xc', Yc'))이 구해진다(스텝 S8).
한편, 개구부상(34)이 주사될 때 작업 로봇(20)은 주사 개시 위치(H)에서 정지하고 있고, 천공날(28)의 회전축(28b)의 축심(C)은 C(0, Y2)의 좌표 위치에 있다. Y2는 축심(C)으로부터 주사 개시 위치(H)까지의 y축 방향(관 길이 방향) 거리이며, 정지판(86)의 작업 로봇(20) 상의 부착 위치, 작업 로봇(20), 주사 유닛(80)의 설계값에 의해 결정, 주사 유닛(80)의 이동에는 의존하지 않는 값이다.
계속해서, 2차원 화상(35')의 중심(C'(-Xc', Yc'))과 천공날(28)의 축심(C(0, Y2))의 위치 어긋남량이 연산되고(스텝 S9), 위치 어긋남량이 없어지는 방향으로 상기 위치 어긋남량 분만큼 천공날(28)을 본관 관 길이 방향 및 둘레 방향으로 이동시켜 관 라이닝재(13)를 천공한다(스텝 S10, S11). 또한, 천공이 종료되었을 때 또는 개구부상의 주사가 종료되었을 때에는 주사 유닛(80)을 정지판(86)에 접촉할 때까지 후진시키고, 다음 개구부상의 주사를 위해 대기시킨다.
실시예 2에서는 작업 로봇(20)을 이동시키는 것은 아니며, 작업 로봇(20)과는 독립적으로 주사 유닛(80)을 작업 로봇 상에서 이동시켜서 개구부상(34)을 주사하고 있다. 주사 유닛(80)은 작업 로봇(20)의 평탄한 부분을 이동시킬 수 있으므로 만곡면을 이동하는 작업 로봇(20)에 비교해서 원활하며 또한 안정되게 이동시킬 수 있어 고정밀도로 개구부상의 윤곽점을 검출할 수 있다.
또한, 주사 유닛(80)을 슬립하는 일 없이 일정 속도로 이동시키기 위해 주사 유닛(80)이 이동하는 작업 로봇(20) 상의 주행로에 마찰계수가 큰 시트를 깔도록 해도 좋다. 또한, 주사 유닛의 차륜의 전체 둘레에 기어를 형성하고, 가이드 레일 상에도 상기 기어와 맞물리는 기어를 설치하여 기어의 맞물림에 의해 주사 유닛을 이동시키도록 해도 좋다.
또한, 광검출기(40)는 개별적인 광검출 소자를 배열해서 구성되어 있지만, 실시예 1과 마찬가지로 미소한 광검출 소자를 가는 피치로 등간격으로 1차원으로 배열한 도 15, 도 19에 나타내는 바와 같은 CCD 또는 CMOS의 1차원 이미지 센서를 사용하도록 해도 좋다.
실시예3
상술한 실시예 1, 2에서는 광검출기(40)의 센서 부착판(48)은 본관(11) 또는 그 관 라이닝재(13)의 곡률에 따라 만곡하고 있으므로 본관(11)의 관 지름 또는 관 라이닝재의 층 두께가 상이하면 그것에 따른 곡률의 센서 부착판을 사용할 필요가 있다. 그래서 광검출기(40)의 각 광검출 소자(48a~48d)를 각각 개별 센서 부착판에 부착하고, 각각의 광검출 소자가 독립하여 스프링으로 바이어싱되어 본관(11)의 관 지름 또는 관 라이닝재의 층 두께가 상이해도 각각의 검출면과 관 라이닝재 내면의 거리가 일정해지도록 한다.
도 26은 광검출기(40)의 중앙의 광검출 소자(48c)의 부착을 나타내는 도면이며, 광검출 소자(48c)는 블록상의 센서 부착판(100)에 의해 다른 광검출 소자와 분리해서 센서 홀더(45)에 부착된다. 다른 광검출 소자(48a, 48b, 48d, 48e)도 마찬가지이다.
광검출기(40)의 모든 광검출 소자(48a~48e)는 도 27, 도 28에 나타낸 바와 같이 작업 로봇(20)에 고정된 기대(101)에 본관 둘레 방향으로 등각도(θ1)를 사이에 두고 배열된다. 광검출기(40)의 각 광검출 소자(48a~48e)는 스프링(44)에 의해 다른 광검출 소자와 독립해서 상방에 바이어싱되고, 볼(46)이 각각 관 라이닝재(13)의 내면에 점접촉하여 각 광검출 소자(48a~48e)의 검출면과 관 라이닝재 내면의 거리가 일정해지므로 본관(11)의 관 지름 또는 관 라이닝재(13)의 층 두께가 상이해도 동일 감도로 개구부상을 주사하는 것이 가능해진다.
실시예 3에서의 천공 장치는 광검출기(40)가 도 26, 도 27에 나타낸 바와 같이 구성되는 것을 제외하고, 실시예 1과 마찬가지인 구성이며, 관 라이닝재(13)의 천공은 도 29에 나타내는 흐름을 따라 행해진다. 도 29에 있어서 스텝 U1~U5는 도 11의 스텝 S1~S5와 마찬가지인 처리이다.
여기에서 개구부상(34)이 도 30에 나타내는 바와 같이 그 윤곽이 선명하며 결손부가 없는 경우에는 광검출기(40)의 광검출 소자(48a~48e)는 작업 로봇(20)의 전진에 따라 각각 최초의 윤곽점(Q2, Q1, Q0, Q9, Q8)을 검출하고, 계속해서 후방의 윤곽점(Q3, Q4, Q5, Q6, Q7)을 검출한다.
광검출기(40)의 중앙의 광검출 소자(48c)는, 예를 들면 도 32의 상단과 같은 출력 신호를 출력하고, 시간(t1)에서 윤곽점(Q0)을, 시간(t2)에서 윤곽점(Q5)을 검출한다. 한쪽의 다른 광검출 소자, 예를 들면 광검출 소자(48a)는 감도가 광검출 소자(48c)와 동일하다고 하면 하단에 나타낸 바와 같이 마찬가지인 출력 신호를 출력하고, 시간(t1')에서 윤곽점(Q2)을, 시간(t2')에서 윤곽점(Q3)을 검출한다.
광검출 소자(48c)에서 검출되는 윤곽점(Q0, Q5) 간의 거리는 광검출 소자(48a)에서 검출되는 윤곽점(Q2, Q3) 간의 거리와 상위하지만, 그 중심(Qc, Qa)은 출력 신호가 마찬가지인 파형이면 거의 동일하다. 동일한 것이 다른 광검출 소자에 대해서도 말할 수 있어 이상적으로는 도 30에 나타낸 바와 같이 각 광검출 소자(48a~48e)가 검출하는 윤곽점((Q2, Q3), (Q1, Q4), (Q0, Q5), (Q9, Q6), (Q8, Q7)) 간의 거리의 중심(Qa~Qe)의 y 좌표는 동일한 값이 된다.
실제로는 도 14에 나타낸 것과 마찬가지인 윤곽점(P0~P8)이 검출되어 도 31의 상단에 나타낸 바와 같이 각 윤곽점이 2점 쇄선의 가상선으로 이어져서 표시기(52)에 표시된다. 윤곽점(P2, P5)은 도 14에 관련하여 설명한 바와 같이 개구부상(34)의 윤곽이 불선명하기 때문에 부정확하며, 광검출 소자(48e)는 전방의 윤곽점(P7)밖에 검출하고 있지 않다.
여기에서 표시기(52)에 표시된 화상을 보고 양호하게 윤곽점을 검출했다고 생각되는 광검출 소자를 선택한다. 도 31의 예에서는 광검출 소자(48b, 48d)가 그 예이므로 윤곽점 거리(P1-P4, P8-P6)의 중심(Qb, Qd) 중 어느 하나 또는 그 평균값을 구한다.
각 광검출 소자(48a~48e)가 각각 검출하는 전방의 윤곽점과 후방의 윤곽점 간의 거리의 중심은 이상적으로는 각각 동일하다는 점에서 검출한 윤곽점의 보정을 행한다. 지금의 예에서는 윤곽점(P2, P5)은 부정확하며, 광검출 소자(48e)는 전방의 윤곽점(P7)밖에 검출하고 있지 않다. 따라서, 도 31의 하단에 나타낸 바와 같이 윤곽점 P2를 P2'로, 윤곽점 P5을 P5'로 보정하고, 또한 윤곽점 P7'를 보완하여 각 윤곽점 거리의 중심 Qa, Qc, Qe가 Qb, Qd와 동일한 값이 되도록 한다. 이와 같이 해서 보정 또는 보완된 윤곽점을 포함하여 각 윤곽점을 스플라인 곡선으로 연결해서 2차원 화상(102)을 생성한다(스텝 U6).
계속해서 생성된 2차원 화상(102)의 중심(C')을 구한다(스텝 U7). 각 광검출 소자가 검출한 윤곽점 간의 거리의 중심(Qa~Qe)은 2차원 화상의 중심의 y 좌표에 상당하므로 중심(Qa~Qe) 중 어느 하나 또는 그 평균값(Qy)을 2차원 화상(102)의 중심(C')의 y 좌표값으로 한다. 또한, 2차원 화상(102)의 폭(w)의 중심선과 윤곽점(P0, P5')을 연결하는 선의 x축 방향의 거리(Qx)에 부호를 붙여서 -Qx를 2차원 화상(100)의 중심(C')의 x 좌표값으로 한다.
계속해서, 스텝 U8에서 있어서 2차원 화상(102)의 중심과 천공날의 회전축의 축심 위치의 관 길이 방향과 둘레 방향 위치 어긋남량을 구한다. 관 길이 방향의 위치 어긋남량은 (D1+D2)로부터 2차원 화상(102)의 중심(C')의 y 좌표값을 감산한 값이며, 둘레 방향의 위치 어긋남량은 Qx에 대응하는 각도(Δθ)이므로 그 어긋남량만큼 천공날(28)을 후퇴시켜 천공날(28)을 관축을 중심으로 반시계 방향으로 Δθ만큼 선회시킨다(스텝 U9).
이와 같이 해서 천공날(28)이 옳은 위치에 위치 결정되었으므로 유압 실린더(25)를 구동하여 천공날(28)을 상승시키고, 천공날(28)을 회전시켜서 지관 개구부(12a)를 폐쇄하고 있는 관 라이닝재(13)를 천공한다(스텝 U10).
실시예 3에서는 광검출 소자에서 검출된 윤곽점이 보정되고, 또는 광검출 소자가 검출할 수 없었던 윤곽점이 보완되므로 개구부상(34)에 충실한 2차원 화상(102)을 생성할 수 있고, 실시예 1과 같은 템플릿을 사용하지 않아도 간단한 방법으로 2차원 화상의 중심, 즉 개구부상의 중심을 구할 수 있다.
또한, 실시예 3에서는 광검출기(40)는 작업 로봇(20) 상에 부착되어 작업 로봇(20)의 관 길이 방향 이동에 연동하여 이동하지만, 실시예 2와 마찬가지로 작업 로봇(20) 상을 작업 로봇(20)의 이동과 독립해서 관 길이 방향으로 이동시킬 수도 있다.
11: 본관 12: 지관
12a: 지관 개구부 13: 관 라이닝재
14: 작업 트랙 15: 케이블 파이프
20: 작업 로봇 21: 모터
22: 모터 25: 실린더
26: 모터 27: TV 카메라
28: 천공날 28a: 날면
29: 받침대 부재 30: 조명 램프
34: 개구부상 35: 2차원 화상
36: 템플릿 40: 광검출기
46: 볼 47: 볼 베어링
48: 센서 부착판 48a~48e: 광검출 소자
50: 컴퓨터 50c: 화상 처리부
50d: 화상 생성부 50e: 위치 어긋남량 연산부
51: 기억 장치 52: 표시기
70: 1차원 이미지 센서 72: 2차원 화상
75a~75e: 1차원 이미지 센서 80: 주사 유닛
81: 기대 81a, 81b: 리밋 스위치
82: 모터 83, 84: 가이드 레일
85, 86: 정지판

Claims (9)

  1. 지관측으로부터의 조명광이 지관 개구부를 폐쇄하고 있는 관 라이닝재를 투과함으로써 관 라이닝재 내면에 지관 개구부에 대응한 개구부상이 형성되는 관 라이닝재를 본관측으로부터 천공하는 천공 장치로서,
    관 라이닝재를 천공하기 위한 회전 가능한 천공날과,
    상기 천공날을 본관 관 길이 방향으로 연장되는 축을 중심으로 둘레 방향으로 선회할 수 있도록 탑재해서 본관 내를 관 길이 방향으로 이동하는 작업 로봇과,
    본관 둘레 방향으로 배열된 복수의 광검출 소자를 구비하고, 개구부상을 관 길이 방향으로 주사하여 그 윤곽점을 검출하는 광검출기와,
    상기 광검출기에 의해 검출된 윤곽점에 의거하여 개구부상의 윤곽을 나타내는 2차원 화상을 생성하는 화상 생성 수단과,
    생성된 2차원 화상의 중심 위치와 천공날의 회전축의 축심 위치의 관 길이 방향과 둘레 방향 위치 어긋남량을 연산하는 연산 수단을 구비하고,
    상기 위치 어긋남량이 없어지는 방향으로 위치 어긋남량만큼 천공날을 관 길이 방향으로 이동시킴과 아울러, 둘레 방향으로 선회시켜서 관 라이닝재를 천공하는 것을 특징으로 하는 천공 장치.
  2. 제 1 항에 있어서,
    상기 광검출기는 작업 로봇 상에 부착되어 작업 로봇의 관 길이 방향 이동에 연동되어 이동하는 것을 특징으로 하는 천공 장치.
  3. 제 1 항에 있어서,
    상기 광검출기는 작업 로봇 상을 작업 로봇의 이동과 독립하여 관 길이 방향으로 이동하는 것을 특징으로 하는 천공 장치.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 광검출기의 각 광검출 소자는 각각의 검출면과 관 라이닝재 내면의 거리가 일정해지도록 개별적으로 스프링에 의해 상방으로 바이어싱되는 것을 특징으로 하는 천공 장치.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 광검출기의 각 광검출 소자는 각각의 검출면과 관 라이닝재 내면의 거리가 일정해지도록 본관의 관 지름 및 관 라이닝재의 층 두께에 따른 곡률로 만곡한 부착판에 부착되는 것을 특징으로 하는 천공 장치.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 광검출기의 광검출 소자는 CdS셀 또는 포토다이오드인 것을 특징으로 하는 천공 장치.
  7. 지관측으로부터의 조명광이 지관 개구부를 폐쇄하고 있는 관 라이닝재를 투과함으로써 관 라이닝재 내면에 지관 개구부에 대응한 개구부상이 형성되는 관 라이닝재를 본관측으로부터 천공하는 천공 방법으로서,
    관 라이닝재를 천공하기 위한 회전 가능한 천공날을 본관 관 길이 방향으로 연장되는 축을 중심으로 선회할 수 있도록 탑재한 작업 로봇을 본관 관 길이 방향으로 이동시키는 공정과,
    상기 조명광에 의해 관 라이닝재 내면에 형성된 개구부상을 복수의 광검출 소자를 본관 둘레 방향으로 배열한 광검출기에 의해 관 길이 방향으로 주사하여 그 윤곽점을 검출하는 공정과,
    상기 검출된 윤곽점에 의거하여 개구부상의 윤곽을 나타내는 2차원 화상을 생성하고, 생성된 2차원 화상의 중심 위치와 천공날의 회전축의 축심 위치의 본관 관 길이 방향과 둘레 방향 위치 어긋남량을 연산하는 공정과,
    상기 위치 어긋남량이 없어지는 방향으로 위치 어긋남량만큼 천공날을 관 길이 방향으로 이동시킴과 아울러, 둘레 방향으로 선회시켜서 관 라이닝재를 천공하는 공정을 구비하는 것을 특징으로 하는 천공 방법.
  8. 제 7 항에 있어서,
    상기 생성된 2차원 화상의 중심 위치는 천공날이 그리는 형상에 대응한 형상의 템플릿과의 템플릿 매칭에 의해 구해지는 것을 특징으로 하는 천공 방법.
  9. 제 7 항에 있어서,
    상기 생성된 2차원 화상은 광검출기의 각 광검출 소자가 검출한 최초의 윤곽점과 다음 윤곽점 간의 거리의 중심이 각 광검출 소자에서 동일해지도록 윤곽점이 보정 또는 보완되는 것을 특징으로 하는 천공 방법.
KR1020187034176A 2016-05-23 2017-03-29 천공 장치 및 천공 방법 KR102300233B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2016-102642 2016-05-23
JP2016102642 2016-05-23
PCT/JP2017/012789 WO2017203823A1 (ja) 2016-05-23 2017-03-29 穿孔装置及び穿孔方法

Publications (2)

Publication Number Publication Date
KR20190010573A KR20190010573A (ko) 2019-01-30
KR102300233B1 true KR102300233B1 (ko) 2021-09-08

Family

ID=60411297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187034176A KR102300233B1 (ko) 2016-05-23 2017-03-29 천공 장치 및 천공 방법

Country Status (4)

Country Link
US (1) US10661464B2 (ko)
JP (1) JP6889934B2 (ko)
KR (1) KR102300233B1 (ko)
WO (1) WO2017203823A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202012822A (zh) * 2018-09-18 2020-04-01 日商湘南合成樹脂製作所股份公司 穿孔裝置及穿孔方法
CA3136719A1 (en) * 2019-04-11 2020-10-15 Drew P. HENERY Conduit access
JP7429414B2 (ja) 2019-11-19 2024-02-08 早川ゴム株式会社 更生管の接続方法
CN113374063A (zh) * 2021-07-08 2021-09-10 武汉中地建通产学研工程有限公司 一种管道清淤用三翼钻头
DE102022003373B3 (de) * 2022-09-13 2023-10-12 Ibak Helmut Hunger Gmbh & Co Kg Verfahren zum Sanieren eines Kanalrohrs mittels Schlauch-Relining

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022062A (ja) 2000-07-03 2002-01-23 Tokyo Gas Co Ltd 既設管路の分岐部開口工法
JP2008142827A (ja) 2006-12-08 2008-06-26 S G C Gesuido Center Kk 枝管の分岐位置検出方法および装置、並びに更正ライニング層の除去方法および装置
WO2016163191A1 (ja) 2015-04-07 2016-10-13 株式会社湘南合成樹脂製作所 穿孔装置及び穿孔方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2091611B (en) 1981-01-24 1984-06-20 Insituform Int Inc Cutting of side connections in pipes
JPS6144509A (ja) * 1984-08-01 1986-03-04 Jgc Corp 埋設管のシ−ル穿孔装置
JPH0529767Y2 (ko) * 1987-02-17 1993-07-29
JPH0765710B2 (ja) * 1988-12-05 1995-07-19 積水化学工業株式会社 管内ライニング後の枝管開口部の穿孔方法
US4951758A (en) 1988-01-27 1990-08-28 Sekisui Kagaku Kogo Kabushiki Kaisha Method of drilling a branch line aperture after internal lining of a pipeline and a water plug used in the method
JPH0788915A (ja) 1993-09-21 1995-04-04 Okuma Mach Works Ltd 射出成型機の型厚量検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022062A (ja) 2000-07-03 2002-01-23 Tokyo Gas Co Ltd 既設管路の分岐部開口工法
JP2008142827A (ja) 2006-12-08 2008-06-26 S G C Gesuido Center Kk 枝管の分岐位置検出方法および装置、並びに更正ライニング層の除去方法および装置
WO2016163191A1 (ja) 2015-04-07 2016-10-13 株式会社湘南合成樹脂製作所 穿孔装置及び穿孔方法

Also Published As

Publication number Publication date
US20190210235A1 (en) 2019-07-11
US10661464B2 (en) 2020-05-26
JPWO2017203823A1 (ja) 2019-04-11
KR20190010573A (ko) 2019-01-30
JP6889934B2 (ja) 2021-06-18
WO2017203823A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
KR102300233B1 (ko) 천공 장치 및 천공 방법
JP4658144B2 (ja) 軸穴内径の測量システム
JP6734123B2 (ja) 測定装置及び測量システム
CN1127666C (zh) 探测器
CN109643098A (zh) 用于共享工具制造和设计数据的系统、方法和装置
JP6596488B2 (ja) 穿孔装置及び穿孔方法
CN111770811A (zh) 具有多个定位系统的用于引导工具的系统、方法和装置
CN100583336C (zh) 滑动操纵装置
JP2008122118A (ja) 拡径場所打ち杭用孔の拡径寸法測定装置
CN109500499A (zh) 一种基于三维扫描的激光打标机
JP5422465B2 (ja) 出来形管理システム及び出来形管理方法
CN103047929A (zh) 粉体层体积测定装置
KR101163206B1 (ko) 레이저 조사와 영상촬영을 이용한 3차원 시추공 스캐닝 장치
KR101240619B1 (ko) 지상 및 지하시설물의 위치정보를 기록하는 지아이에스의 실시간 갱신시스템
CN209363872U (zh) 一种基于三维扫描的激光打标机
JP5419742B2 (ja) 裁断装置及び裁断方法
JP2010032330A (ja) 画像計測装置及びコンピュータプログラム
CN105571560A (zh) 一种角度测量装置
WO2018168361A1 (ja) 穿孔装置及び穿孔方法
CN101868140B (zh) 适合于将构件放置在衬底上的装置及其方法
JP5801064B2 (ja) 探知作業用シート及びこの探知作業用シートを用いた地中レーダシステム
JP2010259472A (ja) 清掃装置及び清掃装置の停止具
JP2515823B2 (ja) 管内ライニング後の枝管開口位置の削孔方法及び削孔装置
JP2001020271A (ja) 深度検出システム
JP6097617B2 (ja) 管内径変位測定機及び管内径の変位測定方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant