KR102265351B1 - 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스 - Google Patents

정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스 Download PDF

Info

Publication number
KR102265351B1
KR102265351B1 KR1020167002045A KR20167002045A KR102265351B1 KR 102265351 B1 KR102265351 B1 KR 102265351B1 KR 1020167002045 A KR1020167002045 A KR 1020167002045A KR 20167002045 A KR20167002045 A KR 20167002045A KR 102265351 B1 KR102265351 B1 KR 102265351B1
Authority
KR
South Korea
Prior art keywords
row
column
jumper
segment
conductor
Prior art date
Application number
KR1020167002045A
Other languages
English (en)
Other versions
KR20160022925A (ko
Inventor
조나단 웨스트휴스
션 엠. 돈넬리
제이슨 디. 윌슨
Original Assignee
마이크로소프트 테크놀로지 라이센싱, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 filed Critical 마이크로소프트 테크놀로지 라이센싱, 엘엘씨
Publication of KR20160022925A publication Critical patent/KR20160022925A/ko
Application granted granted Critical
Publication of KR102265351B1 publication Critical patent/KR102265351B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Abstract

정전용량 터치 감응 전극 매트릭스가 제공된다. 전극 매트릭스는, 제1 단부 및 제2 단부를 각각 구비하는 복수의 열 도체를 포함할 수도 있다. 열 도체는 제1 단부와 제2 단부 사이에서 연장되는 열 지그재그 구조체를 더 포함할 수도 있다. 전극 매트릭스는 제1 단부 및 제2 단부를 구비하는 복수의 행 도체를 더 포함할 수도 있다. 행 도체는 제1 단부와 제2 단부 사이에서 연장되는 행 지그재그 구조체를 더 포함할 수도 있다. 복수의 열 도체의 각각의 지그재그 구조체는, 각각의 열 도체의 종축과 각각의 행 도체의 횡축의 교차점에서 형성되는 각각의 교차 영역에서, 복수의 행 도체의 각각의 지그재그 구조체와 교차할 수도 있다.

Description

정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스{ELECTRODE MATRIX FOR A CAPACITIVE TOUCH SENSING DISPLAY DEVICE}
정전용량 터치 감응 디스플레이 디바이스에서, 유저의 손가락 또는 다른 입력 디바이스로부터의 유저 입력을 동시에 검출하면서 이미지가 디스플레이될 수도 있다. 정전용량 터치 감응 디스플레이 디바이스는 터치 표면, 액정 디스플레이(liquid crystal display; LCD) 스택과 같은 디스플레이 스택, 및 이들 사이에 위치되며 정전용량(capacitance)에서의 변화, 예를 들면 열과 행 사이의 정전용량에서의 변화, 또는 행 또는 열과 그라운드 사이의 정전용량에서의 변화에 기초하여 터치 입력을 검출하도록 구성되는 열 및 행(row) 전극의 매트릭스를 포함할 수도 있다. 정전용량에서의 이러한 변화는, 터치 입력에 가장 가까운 열-행 쌍을 결정하기 위해, 그리고 열-행 쌍을 기준으로 터치 입력이 중심에서 벗어나는 정도를 결정하기 위해 사용될 수도 있다. 이 방식에서, 터치 입력은 컴퓨팅 디바이스의 양태를 제어하기 위해 고해상도로 검출되어 해석될 수도 있다.
하나의 종래의 정전용량 터치 센서 디자인에서는, 정전용량 터치 센서에 대해 불투명 금속 도체가 사용되고, 열 및 행 전극은, 디스플레이 스택과 인접한 터치 표면 사이에서, LCD를 기준으로 실질적으로 수직으로 그리고 수평으로 배향된다. 그러나, 이러한 디자인에 의하면, 도전성 엘리먼트는 디스플레이 스택의 일부를 시각적으로 차단하고, 전극-디스플레이 차단에 의해 생성되는 다양한 아티팩트(artifact)의 형성으로 인해 유저로 하여금 터치 센서의 존재를 감지하게 한다. 이들 아티팩트의 인지가능성은 뷰어의 관찰 각도(viewing angle)와 함께 변하지만, 열과 행이, LCD의 기저의(underlying) 픽셀의 수직 열 및 수평 행에 평행하게, 수직으로 그리고 수평으로 배향되기 때문에, 특히 이러한 디자인에서는 가시적이게 된다.
다른 종래의 정전용량 터치 센서 디자인에서는, 시각적 인지가능성을 감소시키기 위해, 정전용량 터치 센서가 인듐 주석 산화물(indium tin oxide; ITO)과 같은 투명한 도전성 산화물(transparent conductive oxide; TCO)로 이루어질 수도 있다. 그러나, 대형 디바이스에서 사용되는 경우, 피시험 정전용량(capacitances under test) 및 다른 부유 정전용량(stray capacitance)과 결합하여, 터치 센서의 달성가능한 여기 주파수를 제한하기에 충분히 느린, 그리고 그에 따라 소망의 SNR의 달성가능한 프레임 레이트를 제한하기에 충분히 느린 RC 시상수로 나타날 수도 있는 전기 저항을 TCO 터치 센서가 갖는다. 결과적으로, TCO는, 일반적으로, 대략 30인치 미만의 대각선 치수를 갖는 디스플레이에서의 적용으로 제한된다.
하기에서 더 상세히 논의되는 바와 같이, 대형의 정전용량 터치 감응 디스플레이 디바이스에 대한 정전용량 터치 센서의 시각적 인지가능성을 최소화하기 위한 도전과제가 존재한다. 이들 도전과제는, 일반적으로, 시장에서의 이러한 디바이스의 개발 및 채택을 느리게 하였다.
이들 이슈를 해결하기 위해, 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스가 제공된다. 전극 매트릭스는 열 도체의 중앙의 종축(longitudinal axis)을 따라 형성되는 제1 단부 및 제2 단부를 각각 구비하는 복수의 열 도체를 포함할 수도 있다. 열 도체는 제1 단부와 제2 단부 사이에서 연장되는 열의 지그재그 구조체를 더 포함할 수도 있고, 종축에 걸쳐 앞뒤로 왕복할(oscillate back and forth) 수도 있다. 전극 매트릭스는, 행 도체의 수평 축을 따라 형성되는 제1 단부 및 제2 단부를 각각 구비하는 복수의 행 도체를 더 포함할 수도 있다. 행 도체는 제1 단부와 제2 단부 사이에서 연장되는 행 지그재그 구조체를 더 포함할 수도 있고, 수평 축에 걸쳐 앞뒤로 왕복할 수도 있다. 복수의 열 도체의 각각의 지그재그 구조체는, 각각의 열 도체의 종축과 각각의 행 도체의 수평 축의 교차점에서 형성되는 각각의 교차 영역에서, 복수의 행 도체의 각각의 지그재그 구조체와 교차할 수도 있다.
이 개요는 하기 상세한 설명에서 더 설명되는 개념의 선택을 간소화된 형태로 소개하기 위해 제공된다. 이 개요는 청구되는 주제의 주요 특징이나 또는 본질적인 특징을 식별하도록 의도된 것이 아니며, 청구되는 주제의 범위를 제한하는 데 사용되도록 의도된 것도 아니다. 또한, 청구되는 주제는 본 개시의 임의의 부분에서 언급되는 임의의 또는 모든 단점을 해결하는 구현예로 한정되지는 않는다.
도 1은 본 개시의 일 실시형태에 따른 대형의 멀티 터치 디스플레이 디바이스의 투시도이다.
도 2는 도 1의 대형의 멀티 터치 디스플레이 디바이스의 정전용량 터치 감응 디스플레이에 대한 광학 스택의 단면도이다.
도 3a 내지 도 3f는, 본 개시의 한 실시형태에 따른 열 전극 매트릭스의 개략적인 상면도를 도시한다.
도 4a 및 도 4b는, 본 개시의 한 실시형태에 따른 행 전극 매트릭스의 개략적인 상면도를 도시한다.
도 5는 도 3a 내지 도 3f의 열 전극 매트릭스, 및 도 4a 및 도 4b의 행 전극 매트릭스를 포함하는 정전용량 터치 감응 전극 매트릭스의 개략적인 상면도이다.
도 6은 도 1의 디스플레이 디바이스에 대한 이미지 소스의 개략도이다.
정전용량 터치 감응 디스플레이 디바이스는 터치 표면, 액정 디스플레이(LCD) 스택과 같은 디스플레이 스택, 및 이들 사이에 위치되는 터치 센서를 형성하는 열 및 행 전극의 매트릭스를 포함할 수도 있다. 이러한 터치 감응 디스플레이 디바이스는, (예를 들면, 유저 손가락 또는 스타일러스와 같은 다른 입력 디바이스를 통한) 터치 입력을 감응하는 전극 매트릭스를 동시에 사용하면서 유저가 볼 수 있는 이미지를 디스플레이하기 위해, 디스플레이 스택을 활용할 수도 있다. 터치 입력은 (예를 들면, 단일의 손가락을 통한) 단일의 터치 입력 또는 멀티 모달 터치 입력(예를 들면, 두 개 이상의 손가락을 통한 동시적 입력)을 포함할 수도 있고, 디스플레이 디바이스가 커플링되는 컴퓨팅 디바이스의 다양한 양태를 제어하도록 해석될 수도 있다.
열-행 전극 매트릭스는, 유저와 면하는 - 예를 들면, 터치 표면과 인접하는 디스플레이 디바이스의 면 상에 배치될 수도 있다. 그러나, 이 구성에서, 전극 매트릭스는 디스플레이 스택의 일부를 차단할 수도 있어서, 디스플레이되는 이미지의 품질을 저하시키고 유저가 전극 매트릭스를 인지하는 것을 허용하게 된다. 그러므로, 전극 매트릭스는 인듐 주석 산화물(ITO)와 같은 투명한 도전성 산화물(TCO)로 형성될 수도 있다. 그러나, TCO로 이루어지는 정전용량 터치 센서는 상대적으로 낮은 전기적 도전성을 나타내며, 대각선 치수가 1미터를 넘는 것과 같은 대형의 터치 감응 디스플레이 디바이스에서의 그들의 사용을 막고 있다.
대안적으로, 정전용량 터치 센서는 낮은 면적 실질률(low areal solidity)을 갖는 불투명 전극으로 이루어질 수도 있다. 본원에서 사용되는 바와 같은 "낮은 면적 실질률"은, 디스플레이 스택에서의 픽셀의 상대적으로 작은 비율(예를 들면, 1-5%)을 차단하는 실질적으로 불투명한 전극을 나타낸다. 그러나, 이러한 낮은 면적 실질률의 전극 매트릭스에 고유한 다수의 이슈가 존재한다.
낮은 면적 실질률의 전극 매트릭스가 디스플레이 영역의 상대적으로 작은 부분을 차단할 수도 있지만, 그 차단은 디스플레이 표면에 걸쳐 균일하게 분포되지 않을 수도 있다. 이것은 소정의 픽셀 또는 픽셀 영역의 외관이 주변의 픽셀 영역보다 더 어둡게 보이게 할 수도 있다. 유저는 더 어두운 픽셀 영역을 감지할 수도 있고 따라서 매트릭스를 형성하는 개개의 도체가 광학적으로 해상될(resolved) 수 없는 경우에도 전극 매트릭스의 존재를 감지할 수도 있다.
또한, 디스플레이 스택의 타입과 차단의 위치에 따라, 다양한 앨리어싱 아티팩트(aliasing artifact)가 유저의 시점에서 나타날 수도 있다. 예를 들면, 그리드에서 수평으로 그리고 수직으로 정렬되는 픽셀을 기준으로 작은 각도로 배치되는 전극 도체는 인지가능한 다색의 또는 그레이 라인 세그먼트, 또는 무아레 패턴과 같은 다른 아티팩트를 생성할 수도 있다. 이러한 아티팩트는 디스플레이 표면을 기준으로 유저의 머리가 이동할 때 생성되는 시차 변화에 의해 과장될 수도 있는데, 머리 모션이 아티팩트에 대해 겉보기 속도를 부여하여, 그들의 인지가능성을 증가시킬 수도 있기 때문이다.
다른 문제는, 기판에 부착되며 수평으로 그리고 수직으로 정렬된 픽셀 그리드를 기준으로 비스듬한 각도로 휘어지는 별개의 와이어로서 형성되는 직선의 도체를 포함하는 전극 매트릭스와 함께 발생한다. 예를 들면, 이러한 매트릭스는, 동일한 직사각형 영역을 채우기 위해, 동일한 전극 피치에서 보다 많은 수의 전극을 필요로 할 수도 있는데, 그 직사각형은 전체적으로 평행사변형 매트릭스의 서브셋만을 채우기 때문이다. 전극은 비스듬한 각도로 직사각형의 에지와 추가적으로 교차할 수도 있는데, 이들 전극을 종단시키는 어려움을 증가시키게 된다. 따라서, 실시형태는, 증가된 균일성을 나타내며 상기에서 설명된 차단 아티팩트의 출현을 최소화하는 전극을 갖는 정전용량 터치 센서를 대상으로 한다.
도 1은 본 개시의 일 실시형태에 따른 대형의 멀티 터치 디스플레이 디바이스(100)를 도시한다. 디스플레이 디바이스(100)는 예를 들면 1미터보다 더 큰 대각선 치수를 가질 수도 있다. 다른, 특히 대형의 실시형태에서, 대각선 치수는 55인치 이상일 수도 있다. 디스플레이 디바이스(100)는 터치 입력의 다수의 소스, 예컨대 유저의 손가락(102) 또는 유저에 의해 조작되는 스타일러스(104)에 의해 인가되는 터치 입력을 감응하도록 구성될 수도 있다. 디스플레이 디바이스(100)는 이미지 소스(S), 예컨대 외부 컴퓨터 또는 온보드 프로세서에 연결될 수도 있다. 이미지 소스(S)는 디스플레이 디바이스(100)로부터 멀티 터치 입력을 수신하고, 멀티 터치 입력을 프로세싱하고, 응답으로 적절한 그래픽 출력(106)을 생성할 수도 있다. 이미지 소스(S)는 도 6을 참조로 하기에서 더 상세히 설명된다.
디스플레이 디바이스(100)는 멀티 터치 감응 기능성을 가능하게 하기 위한 정전용량 터치 감응 디스플레이(108)를 포함할 수도 있다. 정전용량 터치 감응 디스플레이(108)에 대한 광학적 스택의 부분 단면도의 개략도가 도 2에 도시된다. 이 실시형태에서, 디스플레이(108)는, 터치 입력을 수신하기 위한 상면(top surface; 204)을 구비하는 광학적으로 투명한 터치 시트(202), 및 터치 시트(202)의 하면(bottom surface)을 터치 센서(208)의 상면에 결합하는 광학적으로 투명한 접착제 층(206)을 포함한다. 터치 시트(202)는 적절한 재료, 예컨대 유리 또는 플라스틱으로 이루어질 수도 있다. 기술분야에서 통상의 지식을 가진 자는, 광학적으로 투명한 접착제가, 입사하는 가시광선의 실질적으로 전체(예를 들면, 약 99%)를 투과시키는 접착제의 클래스를 가리킨다는 것을 알 수 있을 것이다.
도 3 내지 도 5를 참조로 하기에서 더 상세히 논의되는 바와 같이, 터치 센서(208)는, 터치 시트(202)의 일정 간격 아래에 위치되는 정전용량 엘리먼트를 포함하는 전극의 매트릭스를 구비한다. 도시된 바와 같이, 전극은 두 개의 별개의 층: 수신 전극층(210) 및 송신 전극층(212)에서 형성될 수도 있는데, 이들 각각은, 유리, 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 또는 고리형 올레핀 폴리머(cyclic olefin polymer; COP) 필름을 포함하지만 그러나 이들로 제한되지는 않는 재료를 포함하는 각각의 유전체(dielectric) 기판 상에 형성될 수도 있다. 수신 및 송신 전극층(210 및 212)은 제2 광학적으로 투명한 접착제 층(211)에 의해 서로 결합될 수도 있다. 접착제 층(211)은, 예를 들면, 아크릴계 감압성 접착제 필름일 수도 있다. 그러나, 다른 실시형태에서, 층(210, 211, 및 212)은 단일의 층으로서 일체로 형성될 수도 있는데, 그 일체형 층의 대향 면 상에 전극이 배치된다.
전극층(210 및 212)은 다양하고 적절한 프로세스에 의해 형성될 수도 있다. 이러한 프로세스는, 접착성의 유전체 기판의 표면 상으로의 금속 와이어의 퇴적; (예를 들면, 도금을 통한) 금속 필름의 후속 퇴적을 선택적으로 촉진하는 재료의 패턴화된 퇴적; 포토에칭; (예를 들면, 잉크젯 인쇄, 오프셋 인쇄, 볼록판 인쇄(relief printing) 또는 오목판 인쇄(intaglio printing)를 통한) 도전성 잉크의 패턴화된 퇴적; 도전성 잉크를 이용한 유전체 기판의 그루브의 채움(filling); 비노광 포토레지스트를 제거하기 위한 화학적 현상이 후속하는 (예를 들면, 마스크를 통한 또는 레이저 기록을 통한) 전기적으로 도전성인 포토레지스트의 선택적 노광; 및 잠상(latent image)의 금속 은(metallic silver)으로의 화학적 현상(chemical development)이 후속하고, 그 다음 화학적 고정(chemical fixing)이 후속하는 할로겐화은 에멀젼(silver halide emulsion)의 선택적 노광을 포함할 수도 있다. 일 예에서, 금속화된 센서 필름은 기판의 유저 대향 면 상에서 배치될 수도 있는데, 그 금속은 유저와 멀어지게 향하거나 또는 대안적으로 유저와 금속 사이에 보호 시트(예를 들면, PET로 구성됨)를 구비한 상태로 유저를 향한다. 전극에서 TCO가 통상적으로는 사용되지 않지만, 다른 부분은 금속으로 형성되어 있는 전극의 일부를 형성하기 위한 TCO의 부분적인 사용은 가능하다. 하나의 예에서, 전극은 실질적으로 일정한 단면을 갖는 얇은 금속일 수도 있고, 전극이 광학적으로 해상되지 않을 수도 있도록 따라서 유저의 시점에서 봤을 때 눈에 거슬리지 않을 수도 있도록 사이즈가 정해질 수도 있다. 전극을 형성할 수도 있는 적절한 재료는 다양하고 적절한 금속(예를 들면, 알루미늄, 구리, 니켈, 은, 금 등등), 금속 합금, 도전성의 탄소의 동소체(allotrope)(예를 들면, 그라파이트, 풀러렌, 비정질 탄소 등등), 도전성 폴리머, 및 (예를 들면, 금속 또는 탄소 입자의 첨가를 통해 도전성이 되는) 도전성 잉크를 포함한다.
수신 전극층(210)은, 전극이 종축(수직 축으로 예시됨)에 적어도 부분적으로 정렬되는 열 전극층으로 지정될 수도 있고 한편 송신 전극층(212)은, 전극이 횡축(lateral axis)(수평 축으로 예시됨)에 대해 적어도 부분적으로 정렬되는 행 전극층으로 지정될 수도 있다. 그러나, 이러한 지정은 임의적이며 반대로 될 수도 있다. 본원에서 묘사되는 수직 및 수평 축 및 다른 수직 및 수평 배향은 상대적이며, 고정된 기준 포인트(예를 들면, 지구 상의 한 포인트)를 기준으로 정의될 필요는 없다는 것이 인식될 것이다. 터치 입력을 검출하기 위해, 행 전극은 시변 전압(time-varying)으로 연속적으로 구동될 수도 있고, 한편 열 전극은 그라운드에서 유지되고 각각의 열 전극으로 흘러 들어가는 전류가 측정된다. 상면(204)에 대한 터치 입력에 응답하여, 전극은 매트릭스에서의 커패시터 중 적어도 하나의 정전용량에서의 변화를 나타내도록 구성된다. 커패시터는, 예를 들면, 열 전극과 행 전극 사이의 각각의 수직 교차점에 형성될 수도 있다.
정전용량에서의 변화는 시변 전압이 인가될 때 검출 회로에 의해 검출될 수도 있다. 검출의 시간 및 측정된 전류에서의 감쇠 및/또는 위상 시프트의 정도에 기초하여, 피시험 정전용량이 추정될 수 있고 터치 입력에 대응하는 것으로 식별되는 행 및 열이 추정될 수 있다. 열 및 행 전극의 구조는 도 3 내지 도 5를 참조로 하기에서 상세히 설명된다.
터치 센서(208)의 다양한 양태는, 정전용량 측정치의 SNR을 최대로 하도록 따라서 터치 감응의 품질을 증가시키도록 선택될 수도 있다. 하나의 방식에서, 수신 전극과 발광 디스플레이 스택(214) 사이의 간격은 증가될 수도 있다. 이것은, 예를 들면, 수신 전극에 도달하는 노이즈를 감소시킬 수도 있는 광학적으로 투명한 접착제 층(211)의 두께를 증가시키는 것에 의해 달성될 수도 있다. 비제한적인 예로서, 접착제 층(211)의 두께는 1 mm 미만일 수도 있고 몇몇 실시형태에서는 0.2 mm 미만일 수도 있다. 수신 전극에 도달하는 노이즈는, 대안적으로 또는 추가적으로, 광학적으로 투명한 접착제 층(216)의 두께를 증가시키는 것에 의해 감소될 수도 있다. 또한, 열 및 행 도체의 상대적인 배열은, 터치 센서(208)의 평면에서 - 예를 들면, 도 3 내지 도 5에 도시된 바와 같이, 발광 디스플레이 스택(214)으로부터 광(L)이 방출되는 방향에 실질적으로 수직인 방향에서 - 열 도체와 행 도체 사이의 평균 간격을 최대화한다.
도 2에서 계속하면, 액정 디스플레이(LCD) 스택, 유기 발광 다이오드(organic light-emitting diode; OLED) 스택, 플라즈마 디스플레이 패널(plasma display panel; PDP), 또는 다른 플랫 패널 디스플레이 스택일 수도 있는 발광 디스플레이 스택(214)은 전극층(210 및 212) 아래에 위치된다. 광학적으로 투명한 접착제 층(216)은 송신 전극층(212)의 하면을 디스플레이 스택(214)의 상면에 접합한다. 디스플레이 스택(214)은 디스플레이 스택의 상면을 통해 광(L)이 방출하도록 구성되는데, 그로 인해, 발광된 광은 층(216, 212, 211, 210, 206), 터치 시트(202)를 통해서, 그리고 상면(204)을 통해 밖으로 발광 방향으로 주행한다. 이렇게 하여, 방출된 광은 터치 시트(202)의 상면(204) 상에서 디스플레이된 이미지로서 유저에게 보일 수도 있다.
층(211 및/또는 216)이 생략되는 다른 실시형태가 가능하다. 이 예에서, 터치 센서(208)는 공기 갭을 가질 수도 있고 디스플레이 스택(214)에 광학적으로 분리될 수도 있다. 또한, 층(210 및 212)은 상면(204)에 적층될 수도 있다. 여전히 또한, 층(210)은 상면(204) 상에 배치될 수도 있고 한편 층(212)은 반대로 상면(204) 아래에 배치될 수도 있다.
이제 도 3a를 참조하면, 열 전극 매트릭스(300)의 예시적인 실시형태가 도시되어 있다. 상기에서 설명된 바와 같이, 매트릭스(300)는, 접착성의 유전체 기판의 표면 상으로의 금속 와이어의 퇴적; (예를 들면, 도금을 통한) 금속 필름의 후속 퇴적을 선택적으로 촉진하는 재료의 패턴화된 퇴적; 포토에칭; (예를 들면, 잉크젯 인쇄, 오프셋 인쇄, 볼록판 인쇄 또는 오목판 인쇄를 통한) 도전성 잉크의 패턴화된 퇴적; 도전성 잉크를 이용한 유전체 기판의 그루브의 채움; 비노광 포토레지스트를 제거하기 위한 화학적 현상이 후속하는 (예를 들면, 마스크를 통한 또는 레이저 기록을 통한) 전기적으로 도전성인 포토레지스트의 선택적 노광; 및 잠상의 금속 은으로의 화학적 현상이 후속하고, 그 다음 화학적 고정이 후속하는 할로겐화은 에멀젼의 선택적 노광을 포함하는 다양하고 적절한 프로세스를 통해 전극층(210 또는 212)에 형성될 수도 있다.
이 예에서는, 복수의 추가적인 열 전극과 함께, 열 전극 매트릭스(300)를 형성할 수도 있는 세 개의 열 전극(302)이 도시된다. 열 전극(302)은 열 전극 매트릭스(300)의 중심에 위치되고, 예를 들면, 사이에서 전극의 구조체가 연장하는 제1 단부(304) 및 제2 단부(306)를 포함한다. 제1 및 제2 단부(304 및 306)는 각각, 열 전극(302)을 형성하는 도전성 세그먼트를 전기적으로 접합하고, 그로 인해, 도 4 및 도 5를 참조로 하기에서 추가로 상세히 설명되는, 대응하는 행 전극과 협력하여 터치 입력을 감응하도록 구성되는 연속적인(contiguous) 도전성인 열 전극을 생성하는 단자 패드(예를 들면, 단자 패드(308))에 대응할 수도 있다. 각각의 열 전극(302)의 하부 단자 패드(예를 들면, 단자 패드(308))는, 도 5를 참조로 하기에서 추가로 상세히 설명되는 바와 같이, 열 전극과 행 전극 사이의 정전용량에서의 변화를 감응하도록 구성되는 각각의 검출 회로(310)에 전기적으로 커플링될 수도 있다. 대안적으로, 하부 단자 패드는 하기에서 추가로 상세히 또한 설명되는 구동 회로에 연결될 수도 있다.
이 예에서 열 전극(302)의 제1 및 제2 단부(304 및 306)는, 제1 단부(304)로부터 제2 단부(306)로 연장하는 중앙 수직 축(312)을 따라 형성된다. 중앙 수직 축(312)은, 디스플레이 스택에서의 열 전극 매트릭스(300)과 그 대응하는 층 아래에 위치되는 복수의 픽셀의 수직 축에 대응할 수도 있지만, 중앙 수직 축은 상대적인 배치를 용이하게 할 수도 있고 고정된 기준 포인트(예를 들면, 지구 상의 한 포인트)를 기준으로 정의되지 않을 수도 있다는 것이 인식될 것이다. 예를 들면, 디스플레이 스택(214)에 배치되는 복수의 픽셀은, 송신 전극층(212)에 위치되는 열 전극(302)의 수직 축(312)에 대해 (예를 들면, 5° 내에서) 실질적으로 정렬될 수도 있는데, 송신 전극층은 디스플레이 스택(214) 위에 수직으로 위치된다. 여덟 개의 픽셀(314)이 비제한적인 예로서, 그들의 수직 치수(예를 들면, 길이)를 따라 수직 축(312)에 정렬되어 도시된다. 픽셀(314)은, 픽셀이 수평으로 그리고 수직으로 정렬된 그리드를 형성하도록, 그리고, 디스플레이의 평면에 실질적으로 수직인 방향에서(예를 들면, 도 3a의 지면 안으로 연장하는 방향을 따라) 봤을 때, 복수의 추가적인 픽셀과 함께, 기저의(underlying) 디스플레이를 형성하도록, 수평 축(313)에 대해 또한 정렬된다. 수평 축(313)은, 중앙 수직 축(312)과 마찬가지로, 상대적인 배치를 용이하게 할 수도 있고 고정된 기준 포인트(예를 들면, 지구 상의 한 포인트)를 기준으로 정의되지 않을 수도 있다. 예시된 실시형태를 참조로 본원에서 사용된 바와 같은 "픽셀"은, 총괄하여 전체 픽셀을 형성할 수도 있는 여러 서브픽셀 중 하나를 지칭할 수도 있다는 것이 인식될 것이다. 몇몇 실시형태에서, 대략 1:3(예를 들면, 폭:높이)의 애스펙트비를 각각 갖는 교대하는 컬러(예를 들면, 블루, 레드, 그린)의 세 개의 서브픽셀은, 실질적으로 정사각형인 전체 픽셀을 형성할 수도 있다.
각각의 열 전극(302)은, 각각의 열 전극의 수직 길이를 형성하며 상부 및 하부 연결 구조체(tie structure) 예컨대 단자 패드(예를 들면, 단자 패드(308)) 및 다른 도전성 전극 구조체에 의해 접합되어 연속적인 도전성의 열 전극을 형성하는 한 쌍의 간격을 두고 이격된 열 도체(316)를 포함한다. 열 도체(316) 각각은, 열 지그재그 구조체 부분(318)에 의해 일부가 나타내어진, 제1 단부(304)로부터 제2 단부(306)로 연장하는 열 지그재그 구조체를 포함한다. 이 예에서, 각각의 열 도체는 동일한 지그재그 구조체를 포함하지만, 하나보다 많은 지그재그 구조체가 열 전극 또는 열 전극 매트릭스에서 사용되는 대안적인 실시형태가 가능하며, 비대칭 배열을 포함한다. 전체 열 지그재그 구조체는 수직 축(312)을 따라 연장하며 수직 축에 걸쳐 앞뒤로 왕복하며, 양으로 그리고 음으로 기울어진(positively and negatively angled) 선형의 도체 세그먼트를 교대로 포함한다. 참조를 위해, 열 도체(316)에서, 지면의 위쪽에서부터 아래쪽으로 가로지르는 지그재그 구조체는, 그들이 지면의 오른쪽을 향해 기울어질 때 양으로 전환하고, 그들이 왼쪽으로 복귀할 때 음으로 전환하며, 반면, 하기에서 설명되는 행 도체의 경우, 지그재그 구조체는, 그들이 지면의 위쪽을 향해 위쪽으로 기울어질 때 양으로 전환하고, 그들이 지면의 아래쪽을 향해 아래로 기울어질 때 음으로 전환한다. 예를 들면, 열 지그재그 구조체 부분(318)은, 음으로 기울어진 열 세그먼트(322)의 상부 엔드포인트 위에 수직으로 위치되며 하부 엔드포인트(endpoint)에서 음으로 기울어진 열 세그먼트(322)의 상부 엔드포인트와 접하게 되는 양으로 기울어진 열 세그먼트(320)를 교대로 포함한다. 따라서, 전체 열 지그재그 구조체는, 하부 및 상부 엔드포인트에서 양으로 기울어진 선형의 열 세그먼트에 접하게 되는 음으로 기울어진 선형의 열 세그먼트를 교대로 포함한다.
양으로 기울어진 열 세그먼트(320) 및 음으로 기울어진 열 세그먼트(322)는, 수직 축(312)과 같은 수직 축을 기준으로 비스듬한 각도로 위치될 수도 있다. 이러한 비스듬한 각도의 예는, 수직 축(312)과 같은 수직 축을 기준으로 형성되는, 양의 열 각도(324) 및 음의 열 각도(326)에 의해 나타내어진다. 양으로 기울어진 열 세그먼트(예를 들면, 세그먼트(320))는 수직 축(312)을 기준으로 양의 열 각도(324)로 위치될 수도 있고, 한편 음으로 기울어진 열 세그먼트(예를 들면, 세그먼트(322))는 수직 축(312)을 기준으로 음의 열 각도(326)로 위치될 수도 있다. 비제한적인 예로서, 각도(324 및 326)는 0°와 +/- 45° 사이에 있을 수도 있고, 열 전극이 LCD 디스플레이 스택 위에 수직으로 배치되는 실시형태의 경우 특히 +/- 15°와 +/- 35° 사이에 있을 수도 있다. 몇몇 실시형태에서, 양과 음의 열 각도(324 및 326)는 동일하고 서로의 덧셈의 역원일 수도 있다 - 예를 들면, 음의 열 각도(326)의 각도(θ)는, 열 전극(302)에서의 음으로 기울어진 열 세그먼트(예를 들면, 세그먼트(322))가 열 전극에서의 양으로 기울어진 열 세그먼트(예를 들면, 세그먼트(320))의 수직 축(예를 들면, 수직 축(312))에 관한 거울상(reflection)이 되도록, 양의 열 각도(324)의 각도(-θ)와 동일하게 될 수도 있다.
음으로 그리고 양으로 기울어진 열 세그먼트가 수직 축(312)을 기준으로 비스듬한 각도로 위치될 수도 있기 때문에, 열 세그먼트는 디스플레이 스택(214)의 픽셀 및 디스플레이 스택의 평면(예를 들면, 표면)에 실질적으로 수직한 관찰 방향에서 봤을 때 열 세그먼트의 수직 치수가 연장하는(예를 들면, 수직 축(312)을 따른) 방향을 기준으로 비스듬하게 위치될 수도 있다. 그러므로, 수직 축(312)을 기준으로 하는 비스듬한 각도에서의 열 세그먼트의 배치는, 픽셀 차단을 감소시키고 상기에서 설명된 아티팩트(예를 들면, 다양하게 색을 띠는 라인 세그먼트, 무아레 패턴 등등)의 존재 및 가시성을 최소화할 수도 있다.
열 전극(302)에서의 각각의 열 도체(316)는, 디스플레이 픽셀 피치에 비해 작은 폭(예를 들면, 열 전극 세그먼트에 실질적으로 수직인 방향을 따라 측정됨)을 가질 수도 있다. 본원에서 사용되는 바와 같은 "디스플레이 픽셀 피치"는 동일한 컬러의 인접한 픽셀의 대응하는 포인트 사이의 수평 간격(예를 들면, 수평 축(313)을 따라 측정됨)을 나타낸다. 예를 들면, 레드 픽셀과 그린 픽셀에 의해 분리되는, 인접한 블루 픽셀의 중간포인트(midpoint)로부터 연장하는 픽셀 피치(328)가 도시된다. 비제한적인 예로서, 열 도체(316)의 폭은 각각의 실시형태에서 픽셀 피치(328)의 3%, 2%, 또는 1.5% 미만일 수도 있다. 또한, 열 도체(316)는, 열 도체(316)가 배치되는 층에 수직인 방향에서(예를 들면, 송신 전극층(212)의 표면으로부터 수직하게) 측정되었을 때, 열 도체의 폭 이하의 두께를 가질 수도 있다. 예를 들면, 이 두께는 각각의 실시형태에서, 열 도체의 40% 또는 20%일 수도 있다.
각각의 열 세그먼트(예를 들면, 세그먼트(320 및 322))의 길이는 동일할 수도 있고, 비제한적인 예로서, 수직 축(312)을 따라 측정되었을 때 1.5 mm일 수도 있다. 또한, 각각의 전극(302)에서의 도체(316)는, 예를 들면, 3.2 mm일 수도 있는 공통 열 도체 피치(330)만큼 분리될 수도 있다. 픽셀 피치(328)와 유사하게, 열 도체 피치(330)는 인접한 도체(316) 상의 대응하는 포인트 사이의 수평 축(313)을 따른 수평 간격일 수도 있다. 각각의 열 전극(302)도 또한, 비제한적인 예로서 6.4 mm일 수도 있는 공통 열 전극 피치(332)만큼 분리될 수도 있다. 열 전극 피치는 인접한 전극(302) 상의 대응하는 포인트 사이의 수평 축(313)을 따른 수평 간격일 수도 있다.
열 세그먼트 각도, 열 세그먼트 길이, 및 도체 폭 및 두께를 포함해서, 상기에서 설명된 치수는 비제한적인 예로서 제공되며 소망의 열 전극 밀도에 기초하여 선택되고 열 전극 매트릭스가 위치하게 될 디스플레이 스택의 특성(예를 들면, 해상도)에 적합된다는 것이 인식될 것이다. 이러한 파라미터는 본 개시의 범위를 벗어나지 않으면서 변경될 수도 있다. 예를 들면, 열 전극과 열 도체에서의 열 세그먼트의 수는, 관련 디스플레이 스택의 해상도와 사이즈에 따라 변할 수도 있다. 또한, 부분적으로 직사각형의 형상을 지그재그 구조체를 앞뒤로 왕복시키는 것에 의해 증강시킨 열 전극(302)이 도시되지만, 이러한 직사각형의 프로파일은 본 개시의 범위를 벗어나지 않으면서 변경될 수도 있다. 열 도체(316)의 쌍을 포함하는 열 전극(302)이 도시되지만, 열 전극은 세 개 이상의 열 도체를 포함할 수도 있고, 몇몇 실시형태에서는 하나보다 많은 열 전극이 주어진 수직 영역(예를 들면, 열)을 점유할 수도 있다는 것이 이해될 것이다.
도 3a에 도시된 예에서, 잘려진 양으로 기울어진 열 세그먼트(320)가 각각의 도체(316)의 제1 및 제2 단부(304 및 306)와 인접한다. 이러한 잘림의 이러한 정도는, 열 전극 매트릭스(300)가 배치될 디스플레이 디바이스의 다양한 특성, 예를 들면, 디스플레이 스택의 사이즈 및/또는 해상도에 따라 변할 수도 있다는 것을 알 수 있을 것이다. 몇몇 실시형태에서, 도체(316)는 음으로 및/또는 양으로 기울어진 열 세그먼트의 엔드포인트에서 또는 이들 사이의 임의의 곳에서 제1 및 제2 단부(304 및 306)를 접합할 수도 있다.
도 3a에서 계속하면, 열 전극(302) 및 열 도체(316)는, 열 세그먼트 중간포인트의 수직 정렬의 결과로서 수직 축(312)에 수직하게 정렬될 수도 있다. 특히, 각각의 열 전극(302)에서의 각각의 열 세그먼트는, 수직 축(312)과 같은 수직 축에 정렬될 수도 있는 중앙 영역을 포함할 수도 있다. 중앙 영역은 열 세그먼트의 중간포인트에 실질적으로 대응할 수도 있다(예를 들면, 동심원적으로 배열될 수도 있다). 몇몇 실시형태에서, 열 전극(302)에서의 각각의 열 세그먼트의 중간포인트는 수직 축(312)에 대해 정렬될 수도 있다. 도 3a는 실질적으로 원 형상을 갖는 중앙 영역(336)을 포함하는 예시적인 열 세그먼트(334)를 도시한다. 이 예에서, 중앙 영역(336)은, 열 세그먼트(334)의 미들 포인트(middle point)를 특징으로 하는 제1 중간포인트(338)에 대응하며, 그 제1 중간포인트(338)를 중심으로 한다. 중간포인트 수직 축(340)은 이 특정 열 전극(302)에서의 각각의 열 세그먼트의 중앙 영역 및 중간포인트의 수직 정렬을 예시한다. 중간포인트 수직 축(340)은 수직 축(312)의 전치된(transposed) 사례이다는 것, 및 주어진 열 도체 및 열 전극에 대한 열 세그먼트는 제1 중간포인트(338) 이외의 것을 포함하는 중앙 영역(336) 내의 다른 포인트에 관해 정렬될 수도 있다는 것이 인식될 것이다. 대안적으로, 중앙 영역(336) 밖의 열 세그먼트를 따른 포인트는 중간포인트 수직 축(340)에 대해 정렬될 수도 있다.
각각의 열 전극(302)은 복수의 열 연결 구조체 또는 점퍼(342)를 더 포함한다. 열 점퍼(342)는, 주어진 열 전극(302)에서의 인접한 열 도체(316)(예를 들면, 열 도체의 인접 쌍)를 전기적으로 브리징하도록(bridge) 그리고 열 도체의 구조체 내에 결함이 존재하더라도 충분한 정확도 및 속도로 터치 감응을 용이하게 하도록 구성된다.
열 전극 매트릭스(300)의 제조 동안, 특히, 재료 퇴적 또는 제거 프로세스에서 금속의 얇은 층이 패턴화되는 프로세스에서, 복수의 불연속 결함이 전극의 구조체 및 그들의 구성 도체에서 나타날 수도 있다. 포토에칭 프로세스에서, 예를 들면, 노광 동안 포토레지스트의 특정 쉐도잉으로부터 핀홀 결함이 유래할 수도 있다. 핀홀 결함은, 전류가 주행할 수도 있는 연속 경로가 더 이상 존재하지 않도록, 도체의 구조체에 불연속적 단절을 생성하는 갭이다. 도 3a는, 열 전극 매트릭스(300)의 좌측에 있는 열 전극(302)의 좌측의 열 도체(316)의 음으로 기울어진 열 세그먼트(322)의 중앙 영역에 나타내어진 핀홀 결함(344)의 예를 도시한다. 전류가 결함(344)을 가로질러 그 대응하는 열 도체 부분을 통해 흐를 수 없지만, 전류는 위쪽의 또는 아래쪽의 인접한 열 점퍼(342)를 통해 경로를 정하는(routing) 것에 의해 결함을 비켜가거나 바이패스할 수도 있다. 이렇게 하여, 복수의 결함을 갖는 전극 매트릭스에 의해 공간적으로 충분한 터치 감응이 제공될 수도 있다.
열 도체(316)와 유사하게, 열 점퍼(342)는 제1 열 점퍼 엔드포인트(346)와 제2 열 점퍼 엔드포인트(348) 사이에서 연장되는 열 점퍼 지그재그 구조체를 포함한다. 제1 열 점퍼 엔드포인트(346)는 (예를 들면, 좌측 열 도체(316)에서) 인접한 양으로 기울어진 열 세그먼트(320)의 각각의 제1 중간포인트(338)에 전기적으로 접합되고, 제2 열 점퍼 엔드포인트(348)는 (예를 들면, 우측 열 도체(316)에서) 인접한 양으로 기울어진 열 세그먼트(320)의 각각의 제1 중간포인트(338)에 마찬가지로 전기적으로 접합된다. 제1 및 제2 열 점퍼 엔드포인트(346 및 348)는, 예를 들면, 수평 축(313)을 따라 수평으로 정렬될 수도 있다. 그러나, 열 점퍼가 음으로 기울어진 열 세그먼트, 음으로 기울어진 그리고 양으로 기울어진 열 세그먼트 쌍을 전기적으로 브리징하는 구성, 및 제1 및 제2 열 점퍼 엔드포인트가 수평 축을 따라 정렬되지 않는 구성과 같은 다른 구성도 가능하다. 또한, 몇몇 실시형태에서, 열 점퍼(342)는 제1 중간포인트(338) 이외의 열 세그먼트의 영역 - 예를 들면, 중앙 영역(336) 내의 그러나 제1 중간포인트에서 떨어진 영역을 접합할 수도 있다.
열 점퍼(342)는, 열 점퍼 중간포인트(352)를 포함하는 열 점퍼 중앙 영역(350)을 더 포함한다. 열 점퍼 중앙 영역(350)은 열 점퍼 중간포인트(352)에 실질적으로 대응할 수도 있는데(예를 들면, 동심원적으로 배열될 수도 있는데), 열 점퍼 중간포인트(352)는 제1 및 제2 열 점퍼 엔드포인트(346 및 348)와 수평으로 정렬될 수도 있다. 엔드포인트(346 및 348), 및 중간포인트(352)는 수평 축(313)을 따라 총괄적으로 정렬될 수도 있다.
이 실시형태에서, 제1 및 제2 열 점퍼 엔드포인트(346 및 348) 사이에서 연장되는 열 점퍼 지그재그 구조체는, 상기에서 설명된 열 도체 지그재그 구조체와 유사하게, 수평 축(예를 들면, 수평 축(313))에 관해 양의 각과 음의 각으로 교대로 기울어지는 세 개의 열 점퍼 세그먼트를 포함한다. 특히, 각각의 열 점퍼(342)는 열 점퍼 중간 세그먼트(354)를 포함하는데, 열 점퍼 중앙 영역(350) 및 열 점퍼 중간포인트(352)는 열 점퍼 중간 세그먼트(354)에 대응한다. 중간 세그먼트(354)는 좌측의 제1 열 점퍼 단부 세그먼트(356) 및 우측의 제2 열 점퍼 단부 세그먼트(358)에 의해 둘러싸이며 이들 제1 열 점퍼 단부 세그먼트(356) 및 제2 열 점퍼 단부 세그먼트(358)에 접합된다. 단부 세그먼트(356 및 358) 각각은 열 점퍼 원단(column jumper distal end; 360)을 포함하는데, 각각의 열 점퍼 원단(360)은, 각각, 제1 및 제2 열 점퍼 엔드포인트(346 및 348)를 포함하고, 열 점퍼(342)는, 제1 및 제2 열 점퍼 엔드포인트(346 및 348)에서, 열 도체(316)의 인접 부분에 연결된다.
열 점퍼(342)의 포함이 불연속 결함의 존재시 충분한 터치 감응을 용이하게 할 수도 있지만, 불연속 결함의 존재는 열 전극 매트릭스(300) 아래에 배치되는 디스플레이 스택에서의 수평으로 정렬된 픽셀을 차단할 수도 있고, 상기에서 설명된 바와 같이 아티팩트를 생성하게 된다. 다른 방식으로 말하자면, 열 점퍼(342)의 포함은 열 전극 매트릭스(300)의 면적 실질률을 증가시킨다. 픽셀 차단을 감소시키고 차단 아티팩트의 인지가능성을 최소화하기 위해, 열 점퍼 지그재그 구조체는 그 아래의 픽셀을 기준으로 비스듬하게 배치될 수도 있다. 도 3a에 도시된 실시형태에서, 제1 열 점퍼 단부 세그먼트(356), 열 점퍼 중간 세그먼트(354), 제2 열 점퍼 단부 세그먼트(358)는 수평을 기준으로 양으로 그리고 음으로 비스듬한 각도로 교대로 배열된다. 이러한 각도는, 가장 좌측의 열 전극(302)에서의 특정 열 점퍼(342)에 대해 도시된다; 제1 열 점퍼 단부 세그먼트(356)는 수평 축(364)과 양의 행 각도(positive row angle; 362)를 형성하고, 열 점퍼 중간 세그먼트(354)는 수평 축(364)과 음의 행 각도(negative row angle; 366)를 형성하고, 제2 열 점퍼 단부 세그먼트(358)는 수평 축(364)과 양의 행 각도(362)를 형성한다. 수평 축(364)은, 예를 들면, 수평 축(313)의 전치일 수도 있다. 제1 및 제2 열 점퍼 단부 세그먼트(356 및 358)가 수평 축(364)과 상이한 각도를 형성하는 다른 실시형태도 가능하다는 것이 인식될 것이다.
비제한적인 예로서, 양의 행 각도(362)는 25°일 수도 있고, 음의 행 각도(366)는 -25°(대안적으로는 335°)일 수도 있고, 한편 제1 열 점퍼 단부 세그먼트(356), 열 점퍼 중간 세그먼트(354), 및 제2 열 점퍼 단부 세그먼트(358)의 피치는, 수평 축(365)을 따라 측정했을 때, 각각, 0.8 mm, 1.6 mm, 및 0.8 mm일 수도 있다. 그러나, 이러한 각도 및 피치는 본 개시의 범위를 벗어나지 않으면서 조정될 수도 있고, 열 전극이 위치될 터치 감응 디스플레이 디바이스의, 디스플레이 및 터치 감응 해상도를 포함하지만 이들에 제한되지는 않는, 소망되는 다양한 특성에 기초하여 선택될 수도 있다. 열 점퍼(342)의 각각의 세그먼트가, 디스플레이 스택 및 열 전극 매트릭스(300)의 표면에 실질적으로 수직인 방향에서 봤을 때, 수평 축(313)을 기준으로 그리고 디스플레이 스택의 픽셀을 기준으로 비스듬하게 위치될 수도 있기 때문에, 열 점퍼에 의한 픽셀 차단으로부터 유래하는 아티팩트의 인지가능성이 감소될 수도 있다. 이렇게 하여, 터치 감응은, 전극 매트릭스에서의 전기적 불연속성 결함의 존재시에도, 전극 매트릭스 아래에 위치되는 디스플레이 스택에 의해 디스플레이되는 이미지의 품질을 유의하게(significantly) 감소시키지 않고도 그리고 유저 경험의 품질을 감소시키지 않고도, 충분히 수행될 수도 있다.
열 점퍼 세그먼트를 기저의 픽셀과 그들의 수평 및 수직 축을 기준으로 비스듬한 각도로 배치하는 것이, 점퍼 세그먼트에 의한 픽셀의 차단으로부터 유래하는 아티팩트의 인지가능성을 감소시킬 수도 있지만, 몇몇 아티팩트는 소정의 시나리오에서 몇몇 유저에 의해 어느 정도 인지가능하게 남아 있을 수도 있다. 예를 들면, 열 점퍼 근처에서의 다양하게 색을 띠는 라인 및 무아레 패턴의 출현을 비스듬하게 위치된 열 점퍼가 실질적으로 인지불가능하게 만들 수도 있지만, 차단된 픽셀로부터 유저로 송신되는 광의 양이 감소되기 때문에, 열 점퍼에 의해 수직으로 차단되는 기저의 픽셀이 주변의 차단되지 않은 픽셀보다 더 어둡게 보일 수 있다. 유저는 차단된 픽셀과 주변의 차단되지 않은 픽셀 사이의 밝기에서의 인지가능한 차이로 인해 전극 매트릭스의 존재를 인식할 수 있게 될 수도 있다. 도 3b는 복수의 전기적으로 절연된 열간 의사 점퍼(inter-column pseudo jumper; 370)를 포함하는 열 전극 매트릭스(300)의 실시형태를 도시하는데, 열간 의사 점퍼(370)는, 차단된 픽셀과 차단되지 않은 픽셀 사이의 광 출력에서의 차이를 감소시키기 위해 사용될 수도 있고, 결국에는 전극 매트릭스 및 그 구성 구조체의 인지가능성을 감소시키게 된다.
묘사된 실시형태에서, 열간 의사 점퍼(370)는 열 점퍼(342)의 구조체와 실질적으로 유사한 구조체를 구비하지만, 열간 의사 점퍼(370)의 구조체는 비대칭 방식으로 변경될 수도 있다는 것이 인식될 것이다. 특히, 열간 의사 점퍼(370)는, 제1 열간 점퍼 엔드포인트(372)와 제2 열간 점퍼 엔드포인트(374) 사이에서 연장되는 열간 지그재그 구조체를 포함한다. 의사 점퍼는, 그들 전체 길이에 걸쳐 비도전성이도록 구성되고 - 예를 들면, 의사 점퍼는 하나 이상의 도전성 재료를 이루어질 수도 있지만 그러나 그럼에도 불구하고, 하기에서 추가로 상세히 설명되는 바와 같이 그들의 구조로 인해, 단부에서 단부까지 비전도성일 수도 있다. 의사 점퍼는 또한, 열 전극 매트릭스(300)의 터치 감응 기능성에 영향을 끼치지 않으면서, 아티팩트와 점퍼(342)의 인지가능성을 감소시키도록 구성된다.
제1 열간 점퍼 엔드포인트(372)는 (예를 들면, 좌측 열 도체(316)에서) 인접한 양으로 기울어진 열 세그먼트(320)의 각각의 제1 중간포인트(338)에 접합되고, 제2 열간 점퍼 엔드포인트(374)는 (예를 들면, 우측 열 도체(316)에서) 인접한 양으로 기울어진 열 세그먼트(320)의 각각의 제1 중간포인트(338)에 마찬가지로 접합된다. 제1 및 제2 열간 점퍼 엔드포인트(372 및 374)는, 예를 들면, 수평 축(313)을 따라 수평으로 정렬될 수도 있고, 열간 의사 점퍼(370)가 위치되는 동일한 수평 영역(예를 들면, 행)을 실질적으로 점유하는 대응하는 열 점퍼(342)의 제1 및 제2 열 점퍼 엔드포인트(346 및 348)와 수평으로 또한 정렬될 수도 있다. 이러한 경우에서, 열 점퍼(342) 및 열간 의사 점퍼(370)는, 차단된 픽셀과 차단되지 않은 픽셀 사이의 밝기에서의 차이를 감소시키기 위해 따라서 이러한 차이의 인지가능성을 감소시키기 위해 수평 축을 따라 실질적으로 정렬될 수도 있다. 그러나, 제1 및 제2 열간 점퍼 엔드포인트(372 및 374)가, 특히 열 점퍼(342)가 그들의 엔드포인트에서 음으로 기울어진 열 세그먼트에 또한 접합되는 실시형태에서, 양으로 기울어진 열 세그먼트(320)를 따른 다른 포인트에 접합되는 또는 음으로 기울어진 열 세그먼트(322)를 따른 포인트(예를 들면, 중간포인트)에 접합되는 구성과 같은 다른 구성도 가능하다.
열간 의사 점퍼(370)는 열간 점퍼 중간포인트(378)를 포함하는 열간 점퍼 중앙 영역(376)을 더 포함한다. 열간 점퍼 중앙 영역(376)은 열간 점퍼 중간포인트(378)에 실질적으로 대응하는데(예를 들면, 동심원적으로 배열되는데), 열간 점퍼 중간포인트(378)는 제1 및 제2 열간 점퍼 엔드포인트(372 및 374)와, 그리고 대응하는 열 점퍼 중간포인트(352)와 수평으로 정렬될 수도 있다. 엔드포인트(372 및 374), 및 중간포인트(378)는, 예를 들면, 수평 축(313)을 따라 총괄적으로 정렬될 수도 있다.
이 실시형태에서, 제1 및 제2 열 점퍼 엔드포인트(346 및 348) 사이에서 연장되는 열간 점퍼 지그재그 구조체는, 상기에서 설명된 열 점퍼 지그재그 구조체와 유사하게, 수평 축(예를 들면, 수평 축(313))에 관해 양의 각과 음의 각으로 교대로 기울어지는 세 개의 열간 점퍼 세그먼트를 포함한다. 특히, 각각의 열간 의사 점퍼(370)는 열간 점퍼 중간 세그먼트(380)를 포함하는데, 열간 점퍼 중앙 영역(376)과 열간 점퍼 중간포인트(378)는 열간 점퍼 중간 세그먼트(380)에 대응한다. 중간 세그먼트(380)는 좌측의 제1 열간 점퍼 단부 세그먼트(382), 및 우측의 제2 열간 점퍼 단부 세그먼트(384)에 의해 둘러싸이며 이들 제1 열간 점퍼 단부 세그먼트(382) 및 제2 열간 점퍼 단부 세그먼트(384)에 접합된다. 단부 세그먼트(382 및 384) 각각은 열 점퍼 원단(386)을 포함하는데, 각각의 열 점퍼 원단(386)은, 각각, 제1 및 제2 열간 점퍼 엔드포인트(372 및 374)를 포함하고, 열간 의사 점퍼(370)는, 제1 및 제2 열간 점퍼 엔드포인트(372 및 374)에서, 열 도체(316)의 인접 부분에 연결된다.
열 점퍼(342)와 마찬가지로, 제1 열간 단부 세그먼트(382), 열간 점퍼 중간 세그먼트(380), 및 제2 열간 단부 세그먼트(384)는 수평을 기준으로 양으로 그리고 음으로 비스듬한 각도로 교대로 배열된다. 이러한 각도는, 중앙 열 전극(302)과 가장 우측의 열 전극(302) 사이에 끼인 열간 영역에서의 특정한 열간 의사 점퍼(370)에 대해 도시된다; 제1 열간 점퍼 단부 세그먼트(382)는 수평 축(390)과 양의 행 각도(388)를 형성하고, 열간 점퍼 중간 세그먼트(380)는 수평 축(390)과 음의 행 각도(392)를 형성하고, 제2 열간 단부 세그먼트(384)는 수평 축(390)과 양의 행 각도(388)를 형성한다. 수평 축(390)은, 예를 들면, 수평 축(313)의 전치일 수도 있다. 제1 및 제2 열 점퍼 단부 세그먼트(382 및 384)가 수평 축(390)과 상이한 각도를 형성하는 다른 실시형태도 가능하다는 것이 인식될 것이다.
비제한적인 예로서, 양의 행 각도(388)는 25°일 수도 있고, 음의 행 각도(392)는 -25°(대안적으로는 335°)일 수도 있고, 한편 제1 열간 점퍼 단부 세그먼트(382), 열간 점퍼 중간 세그먼트(380), 및 제2 열간 점퍼 단부 세그먼트(384)의 피치는, 수평 축(365)을 따라 측정했을 때, 각각, 0.8 mm, 1.6 mm, 및 0.8 mm일 수도 있고, 열 점퍼(342)의 각각의 각도 및 피치에 각각 대응한다. 그러나, 이러한 각도 및 피치는 본 개시의 범위를 벗어나지 않으면서 조정될 수도 있고, 열 전극이 위치될 터치 감응 디스플레이 디바이스의, 디스플레이 및 터치 감응 해상도를 포함하지만 이들에 제한되지는 않는, 소망되는 다양한 특성에 기초하여 선택될 수도 있다. 또한, 열간 의사 점퍼(370)의 각도 및/또는 피치는, 몇몇 실시형태에서, 열 점퍼(342)의 것과 비교하여 변할 수도 있다.
도 3b는 또한, 열간 의사 점퍼(370)가 인접한 도전성 구조체(예를 들면, 열 점퍼(342), 도체(316))로부터 어떻게 전기적으로 절연되고, 열간 의사 점퍼(370)의 구조체를 관통하여(예를 들면, 단부에서 단부) 열간 의사 점퍼(370)가 접합되는 구조체로 전류의 경로를 정하지 않도록 또는 다르게는 열간 의사 점퍼(370)가 접합되는 구조체로 전류를 송신하지 않도록 어떻게 구성되는지를 도시한다. 특히, 열간 의사 점퍼(370)를 인접한 도체(316) 중 하나 또는 둘 다로부터 전기적으로 절연시키며, 전기적으로 절연시키지 않으면 전류가 흐를 수도 있는 연속 경로를 차단하며, 또한 의사 점퍼를 전기적으로 비전도성으로 만드는 하나 이상의 불연속부(394)(특정한 열간 의사 점퍼(370)에 대해 도시됨)는 제조 프로세스 동안 적용될 수도 있다. 따라서, 몇몇 실시형태에서, 하나 이상의 전기적으로 도전성인 재료로 구성되지만, 열간 의사 점퍼(370)는 전류를 하나의 도체(316)로부터 다른 것으로 송신할 수 없고, 열 전극 매트릭스(300)의 구조체와 그 터치 감응 기능성을 유지한다. 그러나, 열간 의사 점퍼(370)가 인접한 열 전극(302) 사이의 영역에 위치되고, 그리고 묘사된 실시형태에서는, 동일한 수평 영역(예를 들면, 행)을 점유하는 열 점퍼와 수평으로 정렬되므로, 열 점퍼와 열간 점퍼의 행은 실질적으로 연속한 것으로 보일 수도 있다. 점퍼가 광학적으로 해상되지 않을 수도 있지만, 그들의 인지가능성은, 차단된 픽셀과 차단되지 않은 픽셀 사이의 광 출력에서의 차이가 덜 뚜렷하게 만들어질 때 감소될 수도 있다.
도 3b는 또한, 열간 의사 점퍼(370)에 대한 불연속부(394)의 적용의 일 실시형태를 도시한다. 이 예시된 방식에서는, 열간 의사 점퍼(370)의 구조체와 그들의 구성 단부 및 중간 세그먼트 전체에 걸쳐 복수의(예를 들면, 아홉 개의) 불연속부(394)가 대략 균등하게 이격되어 있고, 열간 점퍼를 대략 동등한 길이의 여덟 개의 세그먼트로 나누고 그들의 전체 길이(예를 들면, 단부 세그먼트와 중간 세그먼트의 길이의 합)를 따라 의사 점퍼에 구멍을 내고 있다. 그러나, 다른 방식이 사용될 수도 있다. 통상적으로, 열간 의사 점퍼(370)는 전기적으로 도전성인 재료로 만들어지며, 불연속부는, 열간 점퍼의 열에서 열까지의 전체 길이에 걸쳐 전류가 도통하는 것을 방지하는, 전기적으로 도전성인 재료에서의 갭이다. 도 3c는, 열간 의사 점퍼(370)의 구조체에 두 개의 불연속부(394)가 적용된 복수의 열간 의사 점퍼(370)를 포함하는 열 전극 매트릭스(300)의 한 실시형태를 도시한다. 특히, 불연속부(394)는, 열간 점퍼 중간 세그먼트(380)가 제1 및 제2 열간 단부 세그먼트(382 및 384)와 접하게 되는 굴곡 포인트(396)에 배치되어, 중간 세그먼트를 주변 단부 세그먼트와 분리한다. 도 3d는, 열간 의사 점퍼(370)의 구조체에 단일의 불연속부(394)가 적용된 복수의 열간 의사 점퍼(370)를 포함하는 열 전극 매트릭스(300)의 또 다른 실시형태를 도시한다. 특히, 불연속부(394)는, 열간 점퍼 중앙 영역(376)과 열간 점퍼 중간포인트(378)에 실질적으로 대응하는 영역에 배치되어 있다. 이 실시형태에서, 각각의 열간 의사 점퍼(370)는 동등한 길이의 두 개의 별개의 열간 점퍼 세그먼트로 분할된다. 도 3e는, 열간 의사 점퍼(370)의 구조체에 두 개의 불연속부(394)가 적용된 복수의 열간 의사 점퍼(370)를 포함하는 열 전극 매트릭스(300)의 여전히 다른 실시형태를 도시한다. 불연속부(394)는, 구체적으로는, 제1 열간 점퍼 엔드포인트(372)와 제2 열간 점퍼 엔드포인트(374)에 실질적으로 대응하는 영역에 배치되어 있다. 이 실시형태에서, 제1 및 제2 열간 점퍼 단부 세그먼트(382 및 384)는 잘려지고, 인접한 열 도체(316)로부터 그들의 원단에서 분리되어 있다. 마지막으로, 도 3f는, 열간 의사 점퍼(300)의 구조체에 단일의 불연속부(394)가 적용된 복수의 열간 의사 점퍼(370)를 포함하는 열 전극 매트릭스(300)의 다른 실시형태를 도시한다. 구체적으로는, 불연속부(394)는 제2 열간 점퍼 엔드포인트(374)에 실질적으로 대응하는 영역에 배치되어 있고, 제2 열간 점퍼 단부 세그먼트(384)를 잘라서, 단부 세그먼트(384)를 그 원단에서 인접한 열 도체(316)와 분리시키고 있다.
의사 점퍼(370)의 포함을 통해, 열 전극 매트릭스(300), 특히 그 점퍼(342)에서의 인지가능성은 감소될 수 있다. 상기에서 설명된 바와 같이, 열 내부의 영역(intra-column region)(예를 들면, 열 전극(302) 내의 그리고 열 도체(316) 사이의 영역)을 통해 유저에게 전파하는 광은, 이러한 열간 영역에 배열된 점퍼(342)에 의한 광의 차단에 기인하여 감소된 강도(intensity)를 갖는 것으로 보일 수도 있다. 이러한 차단의 인지가능성은, 열 내부의 영역을 둘러싸는 갭(303)에서의 역으로 더 높은 광 출력에 의해 악화되는데, 이러한 갭이 점퍼 또는 다른 구조체에 의해 차단되지 않기 때문이다. 의사 점퍼(370)를 포함하는 것에 의해, 의사 점퍼/점퍼 픽셀 차단에 기인하는 감소된 광 출력은 열 전극 매트릭스(300)에 의해 점유되는 2차원 영역 전체에 걸쳐 공간적으로 균일하게 만들어질 수도 있다. 그러므로, 더 어두운 차단된 영역의 인지가능성은, 이러한 아티팩트의 인지가능성이 광 세기의 대비 영역(contrasting region)을 갖는 전극 매트릭스에 의존할 수도 있기 때문에, 감소되거나 심지어 제거될 수도 있다. 또한, 상기에서 설명된 다른 아티팩트의 인지가능성, 예컨대 다양하게 색을 띠는 라인 세그먼트 및 무아레 패턴은, 수평 및 수직 픽셀 축을 기준으로 하는 비스듬한 각도에서의 의사 점퍼(370)의 배치로 인해 감소될 수도 있다. 의사 점퍼(370)가 그들의 세그먼트화된 구조체로 인해 전극 매트릭스의 터치 감응 기능성을 향상시키지는 않지만, 역으로, 의사 점퍼는 전극 매트릭스와 간섭하지 않고 그것의 터치 감응 능력을 감소시키지 않을 수도 있다.
상기 묘사된 실시형태, 및 특히 열간 점퍼에서의 불연속부의 묘사된 변형예는 본질적으로 예시이며 본 개시의 범위를 제한하도록 의도되지는 않는다는 것이 인식될 것이다. 기술분야에서 통상의 지식을 가진 자는, 의사 점퍼 및 불연속부의 진형(formation) 및 배치에서의 다른 변형예를 알 수 있을 것이다. 하나의 비제한적인 예로서, 의사 점퍼(370)는 절연된 구조체로서 별개의 층에 위치될 수도 있지만, 전극 매트릭스를 수직 방향에서 유저가 봤을 때 아티팩트 인지가능성이 감소되도록, 대응하는 점퍼(342)와 일렬로(in-line) 위치될 수도 있다.
비제한적인 예로서, 열 전극(302)은 수평 축(313)을 따라 4 내지 8 mm 사이의 피치로 서로 이격될 수도 있고, 열 도체(316)는 수평 축을 따라 2 내지 5 mm 사이의 피치로 서로 이격될 수도 있고, 그리고 열 세그먼트(예를 들면, 세그먼트(320 및 322))는 수직 축(312)을 기준으로 50° 내지 70°와 -50° 내지 (-70°) 사이의 각도로 교대로 위치될 수도 있다. 열 점퍼(342)는 수직 축(312)을 따라 2 내지 4 mm 사이의 피치로 서로 이격될 수도 있고, 수평 축(313)을 기준으로 15° 내지 25°와 -15° 내지 (-25°) 사이의 각도로 교대로 위치되는 열 점퍼 세그먼트(예를 들면, 세그먼트(356))를 포함할 수도 있다.
이제 도 4를 참조하면, 행 전극 매트릭스(400)의 예가 도시된다. 매트릭스(400)는, 열 전극 매트릭스(300)가 형성되는 층에 따라 도 2의 전극층(210 또는 212)에 배치될 수도 있고, 상기에서 설명된 바와 같이 별개의 와이어의 배치, 재료 퇴적, 또는 재료 제거를 통해 형성될 수도 있다.
묘사된 예에서, 복수의 추가적인 행 전극과 함께, 행 전극 매트릭스(400)를 형성할 수도 있는 세 개의 행 전극(402)이 도시된다. 인접한 행 전극(402)은 갭(403)에 의해 분리된다. 행 전극 매트릭스(400)의 중앙에 위치되는 행 전극(402)은, 예를 들면, 제1 단부(404) 및 제2(406)를 포함하고, 이들 사이에서 전극의 구조체가 연장한다. 제1 및 제2 단부(404 및 406) 각각은, 행 전극(402)을 형성하는 도전성 세그먼트를 전기적으로 접합하고, 그로 인해, 대응하는 열 전극(302)과 협력하여 터치 입력을 감응하도록 구성되는 연속적인 도전성의 전극을 생성하게 되는 단자 패드(예를 들면, 단자 패드(408))와 같은 연결 구조체에 대응한다. 행 전극 매트릭스(400)에서의 각각의 그리고 모든 행 전극(402)은, 대응하는 열 전극(302)과 협력하여 터치 입력을 감응할 수도 있고, 따라서 터치 센서(예를 들면, 터치 센서(208))에서의 모든 열 및 행 전극은, 도 5를 참조로 하기에서 추가로 상세히 설명되는 바와 같이, 터치 입력을 감응하도록 구성되는 커패시터를 형성한다. 각각의 행 전극(402)의 하부 단자 패드(예를 들면, 단자 패드(408))는, 행 전극(402)의 각각으로 고유의 전압을 공급하도록 구성되는 각각의 구동 회로(411)에 전기적으로 커플링될 수도 있고, 도 5를 참조로 하기에서 추가로 상세히 설명되는 바와 같이 열 및 행 전극 사이의 정전용량에서의 변화의 검출을 용이하게 한다. 대안적으로, 하부 단자 패드는 하기에서 추가로 상세히 또한 설명되는 검출 회로에 연결될 수도 있다.
행 전극(402)의 제1 및 제2 단부(404 및 406)는 제1 단부로부터 제2 단부로 연장하는 중앙 수평 축(410)을 따라 형성된다. 수평 축(410)은 도 3a의 수평 축(313)일 수도 있고, 디스플레이 스택에서의 행 전극 매트릭스(400) 및 그 대응하는 층 아래에 위치되는 복수의 픽셀의 수평 축에 대응할 수도 있다. 예를 들면, 도 2의 디스플레이 스택(214)에 배치되는 복수의 픽셀은, 송신 전극층(212)에 위치되는 행 전극(402)의 수평 축(410)에 대해 (예를 들면, 5° 내에서) 실질적으로 정렬될 수도 있는데, 송신 전극층은 디스플레이 스택(214) 위에 수직으로 위치된다. 여덟 개의 픽셀(412)은, 비제한적인 예로서, 그들의 수평 치수(예를 들면, 폭)를 따라 수평 축(410)에 대해 정렬되어 도시된다. 픽셀(412)은, 픽셀이 수평으로 그리고 수직으로 정렬된 그리드를 형성하도록, 그리고, 디스플레이의 평면에 실질적으로 수직인 방향에서(예를 들면, 도 4a의 지면 안으로 연장하는 방향을 따라) 봤을 때, 복수의 추가적인 픽셀과 함께, 기저의 디스플레이를 형성하도록, 수직 축(413)에 대해 또한 정렬된다. 수직 축(413)은, 예를 들면, 도 3a의 수직 축(312)일 수도 있다. 수평 축(410) 및 수직 축(413)은, 상대적인 배치를 용이하게 할 수도 있고 고정된 기준 포인트(예를 들면, 지구 상의 한 포인트)를 기준으로 정의되지 않을 수도 있다는 것이 이해될 것이다.
각각의 행 전극(402)은, 각각의 행 전극의 수평 길이를 형성하며 좌측 및 우측의 단자 패드(예를 들면, 단자 패드(408))와 같은 연결 구조체 및 다른 도전성 전극 구조체에 의해 접합되어 연속적인 도전성 행 전극을 형성하는 한 쌍의 이격된 행 도체(414)를 포함한다. 행 도체(414) 각각은, 행 지그재그 구조체 부분(416)에 의해 부분적으로 표현된, 제1 단부(404)로부터 제2 단부(406)로 연장하는 행 지그재그 구조체를 포함한다. 이 예에서, 각각의 행 도체는 동일한 지그재그 구조체를 포함하지만, 하나보다 많은 지그재그 구조체가 행 전극 또는 행 전극 매트릭스에서 사용되는 대안적인 실시형태가 가능하며, 비대칭 배치를 포함한다. 전체 열 지그재그 구조체는 수평 축(410)을 따라 연장하며 수평 축에 걸쳐 앞뒤로 왕복하며, 양으로 그리고 음으로 기울어진 선형의 도체 세그먼트를 교대로 포함한다. 참고로, 행 도체(414)에서, 지그재그 구조체는 그들이 지면의 상부를 향해 위쪽으로 기울어질 때 양으로 전환하고, 그들이 지면의 하부를 향해 아래쪽으로 복귀할 때 음으로 전환한다. 예를 들면, 행 지그재그 구조체 부분(416)은, 수평적으로 왼쪽에 위치되며 오른쪽 엔드포인트에서 양으로 기울어진 행 세그먼트(420)의 왼쪽 엔드포인트에 접합되는 음으로 기울어진 행 세그먼트(418)를 교대로 포함한다. 따라서, 전체 행 지그재그 구조체는, 각각의 왼쪽 및 오른쪽 엔드포인트에서 양으로 기울어진 선형의 행 세그먼트에 접합되는 음으로 기울어진 선형의 행 세그먼트를 교대로 포함한다.
음으로 기울어진 행 세그먼트(418) 및 양으로 기울어진 행 세그먼트(420)는 수평을 기준으로 비스듬한 각도로 위치될 수도 있다. 이러한 비스듬한 각도의 예는, 수평 축(410)과 같은 수평 축을 기준으로 형성되는, 음의 행 각도(422) 및 양의 행 각도(424)에 의해 표현된다. 음으로 기울어진 행 세그먼트(예를 들면, 세그먼트(418))는 수평 축(410)을 기준으로 음의 행 각도(422)로 위치될 수도 있고, 한편, 양으로 기울어진 행 세그먼트(예를 들면, 세그먼트(420))는 수평 축을 기준으로 양의 행 각도(424)로 위치될 수도 있다. 비제한적인 예로서, 각도(422 및 424)는 0°와 +/- 45° 사이에 있을 수도 있고, 행 전극이 LCD 디스플레이 스택 위에 수직으로 배치되는 실시형태의 경우 특히 +/- 15°와 +/- 35° 사이에 있을 수도 있다. 몇몇 실시형태에서, 음과 양의 행 각도(422 및 424)는 동일하고 서로의 덧셈의 역원일 수도 있다 - 예를 들면, 양의 행 각도(422)의 각도(θ)는, 행 전극(402)에서의 음으로 기울어진 행 세그먼트(예를 들면, 세그먼트(418))가 행 전극에서의 양으로 기울어진 열 세그먼트(예를 들면, 세그먼트(420))의 수직 축(예를 들면, 수직 축(413))에 관한 거울상이 되도록, 음의 열 각도(424)의 각도(-θ)와 동일하게 될 수도 있다.
음으로 그리고 양으로 기울어진 행 세그먼트가 수직 축(410)을 기준으로 비스듬한 각도로 위치될 수도 있기 때문에, 행 세그먼트는 디스플레이 스택(214)에서의 픽셀 및 디스플레이 스택의 평면(예를 들면, 표면)에 실질적으로 수직한 관찰 방향에서 봤을 때 행 세그먼트의 수평 치수가 연장하는(예를 들면, 수직 축(410)을 따라 연장하는 폭) 방향을 기준으로 비스듬하게 위치될 수도 있다. 그러므로, 수평 축(410)을 기준으로 하는 비스듬한 각도에서의 행 세그먼트의 배치는, 픽셀 차단을 감소시키고 상기에서 설명된 아티팩트(예를 들면, 다양하게 색을 띠는 라인 세그먼트, 무아레 패턴 등등)의 존재 및 가시성을 최소화할 수도 있다.
행 전극(402)에서의 각각의 행 도체(414)는, 디스플레이 픽셀 피치에 비해 작은 폭(예를 들면, 행 전극 세그먼트에 실질적으로 수직인 방향을 따라 측정됨)을 가질 수도 있다. 레드 픽셀과 그린 픽셀에 의해 분리되는, 인접한 블루 픽셀의 중간포인트로부터 연장하는 픽셀 피치(426)가 예시적인 예로서 도시된다. 비제한적인 예로서, 행 도체(414)의 폭은, 열 도체(316)에서와 같이, 각각의 실시형태에서 픽셀 피치(426)의 3%, 2%, 또는 1.5% 미만일 수도 있다. 또한, 행 도체(414)는, 행 도체(414)가 배치되는 층에 수직인 방향에서(예를 들면, 수신 전극층(210)의 표면으로부터 수직하게) 측정되었을 때, 행 도체의 폭 이하의 두께를 가질 수도 있다. 예를 들면, 이 두께는 각각의 실시형태에서, 행 도체의 40% 또는 20%일 수도 있다.
각각의 행 세그먼트(예를 들면, 세그먼트(418 및 420))의 길이는 동일할 수도 있고, 비제한적인 예로서, 수직 축(413)을 따라 측정되었을 때 1.6 mm일 수도 있다. 또한, 각각의 전극(402)에서의 도체(414)는, 예를 들면, 3 mm일 수도 있는 공통 행 도체 피치(428)만큼 분리될 수도 있다. 픽셀 피치(426)와 유사하게, 행 도체 피치(428)는 인접한 도체(414) 상의 대응하는 포인트 사이의 수직 축(413)을 따른 수직 간격일 수도 있다. 각각의 행 전극(402)도 또한, 비제한적인 예로서 6 mm일 수도 있는 공통 행 전극 피치(430)만큼 분리될 수도 있다. 행 전극 피치는 인접한 전극(402) 상의 대응하는 포인트 사이의 수직 축(413)을 따른 수직 간격일 수도 있다.
행 세그먼트 각도, 행 세그먼트 길이, 및 행 폭 및 두께를 포함해서, 상기에서 설명된 치수는 비제한적인 예로서 제공되며 소망의 열 전극 밀도에 기초하여 선택되고 행 전극 매트릭스가 위치하게 될 디스플레이 스택의 특성(예를 들면, 해상도)에 적합된다는 것이 인식될 것이다. 이러한 파라미터는 본 개시의 범위를 벗어나지 않으면서 변경될 수도 있다. 예를 들면, 행 도체 및 각각의 행 도체에서의 행 세그먼트의 수는 관련 디스플레이 스택의 해상도 및 사이즈에 따라 변할 수도 있다. 또한, 부분적으로 직사각형의 형상을 지그재그 구조체를 앞뒤로 왕복시키는 것에 의해 증강시킨 행 전극(402)이 도시되지만, 이러한 직사각형의 프로파일은 본 개시의 범위를 벗어나지 않으면서 변경될 수도 있다. 행 도체(414)의 쌍을 포함하는 행 전극(402)이 도시되지만, 행 전극은 세 개 이상의 행 도체를 포함할 수도 있고, 몇몇 실시형태에서는 하나보다 많은 행 전극이 주어진 수평 영역(예를 들면, 행)을 점유할 수도 있다는 것이 이해될 것이다.
도 4a에 도시된 예에서, 잘려진 양으로 기울어진 행 세그먼트(420)가 각각의 도체(414)의 제1 및 제2 단부(404 및 406)와 인접한다. 이러한 잘림의 이러한 정도는, 행 전극 매트릭스(400)가 배치될 디스플레이 디바이스의 다양한 특성, 예를 들면, 디스플레이 스택의 사이즈 및/또는 해상도에 따라 변할 수도 있다는 것을 알 수 있을 것이다. 몇몇 실시형태에서, 도체(414)는 음으로 및/또는 양으로 기울어진 행 세그먼트의 엔드포인트에서 제1 및 제2 단부(404 및 406)를 접합할 수도 있다.
도 4a에서 계속하면, 행 전극(402) 및 행 도체(414)는, 행 세그먼트 중간포인트의 수평 정렬의 결과로서 수평 축(410)에 수직하게 정렬될 수도 있다. 특히, 각각의 행 전극(402)에서의 각각의 행 세그먼트는, 수평 축(410)과 같은 수평 축에 정렬될 수도 있는 중앙 영역을 포함할 수도 있다. 중앙 영역은 행 세그먼트의 중간포인트에 실질적으로 대응할 수도 있다(예를 들면, 동심원적으로 배열될 수도 있다). 몇몇 실시형태에서, 행 전극(402)에서의 각각의 행 세그먼트의 중간포인트는 수평 축(410)에 대해 정렬될 수도 있다. 도 4a는 실질적으로 원 형상을 갖는 중앙 영역(434)을 포함하는 예시적인 열 세그먼트(432)를 도시한다. 이 예에서, 중앙 영역(434)은, 열 세그먼트(432)의 미들 포인트를 특징으로 하는 제1 중간포인트(436)에 대응하며, 그 제1 중간포인트(436)를 중심으로 한다. 중간포인트 수직 축(438)은 이 특정 열 전극(402)에서의 각각의 행 세그먼트의 중앙 영역 및 중간포인트의 수평 정렬을 예시한다. 중간포인트 수평 축(438)은 수평 축(410)의 전치된(transposed) 사례이다는 것, 및 주어진 행 도체 및 행 전극에 대한 행 세그먼트는 제1 중간포인트(436) 이외의 것을 포함하는 중앙 영역(434) 내의 다른 포인트에 관해 정렬될 수도 있다는 것이 인식될 것이다. 대안적으로, 중앙 영역(434) 밖의 행 세그먼트를 따른 포인트는 중간포인트 수직 축(438)에 대해 정렬될 수도 있다.
각각의 행 전극(402)은 복수의 행 연결 구조체 또는 점퍼(440)를 더 포함한다. 행 점퍼(440)는, 주어진 행 전극(402)에서의 인접한 행 도체(414)(예를 들면, 행 전극의 인접 쌍)를 전기적으로 브리징하도록 그리고 행 도체의 구조체 내에 결함이 존재하더라도 충분한 정확도 및 속도로 터치 감응을 용이하게 하도록 구성된다. 이러한 결함의 일 예는 상기에서 설명된 핀홀 불연속 결함이다. 도 4a는, 행 전극 매트릭스(400)의 하부 영역에 있는 행 전극(402)의 상측의 행 도체(414)의 음으로 기울어진 행 세그먼트(418)의 중앙 영역에 나타내어진 예시적인 핀홀 결함(442)을 도시한다. 전류가 결함(442)을 가로질러 그 대응하는 행 도체 부분을 통해 흐를 수 없지만, 전류는 좌측 및 우측의 인접한 행 점퍼(440)를 통해 경로를 정하는 것에 의해 결함을 비켜가거나 바이패스할 수도 있다. 이렇게 하여, 복수의 결함을 갖는 전극 매트릭스에 의해 공간적으로 충분한 터치 감응이 제공될 수도 있다.
행 도체(414)와 유사하게, 행 점퍼(440)는 제1 열 점퍼 엔드포인트(444)와 제2 열 점퍼 엔드포인트(446) 사이에서 연장되는 행 점퍼 지그재그 구조체를 포함한다. 제1 행 점퍼 엔드포인트(444)는 (예를 들면, 상부 행 도체(414)에서) 인접한 양으로 기울어진 행 세그먼트(420)의 각각의 제1 중간포인트(436)에 전기적으로 접합되고, 제2 행 점퍼 엔드포인트(446)는 (예를 들면, 하부 행 도체(414)에서) 인접한 양으로 기울어진 행 세그먼트(420)의 각각의 제1 중간포인트(436)에 마찬가지로 전기적으로 접합된다. 제1 및 제2 열 점퍼 엔드포인트(444 및 446)는, 예를 들면, 수직 축(413)을 따라 수직으로 정렬될 수도 있다. 그러나, 행 점퍼가 음으로 기울어진 열 세그먼트, 음으로 기울어진 그리고 양으로 기울어진 행 세그먼트 쌍을 전기적으로 브리징하는 구성, 및 제1 및 제2 행 점퍼 엔드포인트가 수직 축을 따라 정렬되지 않는 구성과 같은 다른 구성도 가능하다. 또한, 몇몇 실시형태에서, 행 점퍼(440)는 제1 중간포인트(436) 이외의 행 세그먼트의 영역 - 예를 들면, 중앙 영역(434) 내의 그러나 제1 중간포인트에서 떨어진 영역을 접합할 수도 있다.
행 점퍼(440)는, 행 점퍼 중간포인트(450)를 포함하는 행 점퍼 중앙 영역(448)을 더 포함한다. 행 점퍼 중앙 영역(448)은 행 점퍼 중간포인트(450)에 실질적으로 대응할 수도 있는데(예를 들면, 동심원적으로 배열될 수도 있는데), 행 점퍼 중간포인트(450)는 제1 및 제2 행 점퍼 엔드포인트(444 및 446)와 수직으로 정렬될 수도 있다. 엔드포인트(444 및 446), 및 중간포인트(450)는 수직 축(413)을 따라 총괄적으로 정렬될 수도 있다.
이 실시형태에서, 제1 및 제2 행 점퍼 엔드포인트(444 및 446) 사이에서 연장되는 행 점퍼 지그재그 구조체는, 상기에서 설명된 행 도체 지그재그 구조체와 유사하게, 수직 축(예를 들면, 수직 축(413))에 관해 양의 각도와 음의 각도로 교대로 기울어지는 세 개의 행 점퍼 세그먼트를 포함한다. 특히, 각각의 행 점퍼(440)는 행 점퍼 중간 세그먼트(452)를 포함하는데, 행 점퍼 중앙 영역(448)과 행 점퍼 중간포인트(450)는 행 점퍼 중간 세그먼트(452)에 대응한다. 중간 세그먼트(452)는 상측의 제1 행 점퍼 단부 세그먼트(454) 및 하측의 제2 행 점퍼 단부 세그먼트(456)에 의해 둘러싸이며 이들 제1 행 점퍼 단부 세그먼트(454) 및 제2 행 점퍼 단부 세그먼트(456)에 접합된다. 단부 세그먼트(454 및 456) 각각은 행 점퍼 원단(458)을 포함하는데, 행 점퍼 원단(458)의 각각은, 각각, 제1 및 제2 행 점퍼 엔드포인트(444 및 446)를 포함하고, 행 점퍼(440)는, 제1 및 제2 행 점퍼 엔드포인트(444 및 446)에서, 행 도체(414)의 인접 부분에 연결된다.
행 점퍼(440)의 포함이 불연속 결함의 존재시 충분한 터치 감응을 용이하게 할 수도 있지만, 불연속 결함의 존재는 행 전극 매트릭스(400) 아래에 배치되는 디스플레이 스택에서의 수직으로 정렬된 픽셀을 차단할 수도 있고, 상기에서 설명된 바와 같이 아티팩트를 생성하게 된다. 픽셀 차단을 감소시키고 차단 아티팩트의 인지가능성을 최소화하기 위해, 열 점퍼 지그재그 구조체는 그 아래의 픽셀을 기준으로 비스듬하게 배치될 수도 있다. 도 4a에 도시된 실시형태에서, 제1 행 점퍼 단부 세그먼트(454), 행 점퍼 미들 세그먼트(452), 및 제2 행 점퍼 단부 세그먼트(456)는 수직을 기준으로 음으로 그리고 양 비스듬한 각도로 교대로 배열된다. 이러한 각도는, 상부 행 전극(402)에서의 특정 행 점퍼(440)에 대해 도시된다; 제1 행 점퍼 단부 세그먼트(454)는 수직 축(462)과 음의 열 각도(460)를 형성하고, 행 점퍼 미들 세그먼트(452)는 수직 축(462)과 양의 열 각도(464)를 형성하고, 제2 행 점퍼 단부 세그먼트(456)는 수직 축(462)과 음의 열 각도(460)를 형성한다. 수직 축(462)은, 예를 들면, 수직 축(413)의 전치일 수도 있다. 제1 및 제2 행 점퍼 단부 세그먼트(454 및 456)가 수평 축(462)과 상이한 각도를 형성하는 다른 실시형태도 가능하다는 것이 인식될 것이다.
비제한적인 예로서, 양의 행 각도(460)는 30°일 수도 있고, 음의 행 각도(464)는 -30°(대안적으로는 120°)일 수도 있고, 한편 제1 행 점퍼 단부 세그먼트(454), 행 점퍼 미들 세그먼트(452), 및 제2 행 점퍼 단부 세그먼트(456)의 피치는, 수직 축(413)을 따라 측정했을 때, 각각, 0.75 mm, 1.5 mm, 및 0.75 mm일 수도 있다. 그러나, 이러한 각도 및 피치는 본 개시의 범위를 벗어나지 않으면서 조정될 수도 있고, 열 전극이 위치될 터치 감응 디스플레이 디바이스의, 디스플레이 및 터치 감응 해상도를 포함하지만 이들에 제한되지는 않는, 소망되는 다양한 특성에 기초하여 선택될 수도 있다. 행 점퍼(440)의 각각의 세그먼트가, 디스플레이 스택 및 행 전극 매트릭스(400)의 표면에 실질적으로 수직인 방향에서 봤을 때, 수직 축(413)을 기준으로 그리고 디스플레이 스택의 픽셀을 기준으로 비스듬하게 위치될 수도 있기 때문에, 열 점퍼에 의한 픽셀 차단으로부터 유래하는 아티팩트의 인지가능성이 감소될 수도 있다. 이렇게 하여, 터치 감응은, 전극 매트릭스에서의 전기적 불연속성 결함의 존재시에도, 전극 매트릭스 아래에 위치되는 디스플레이 스택에 의해 디스플레이되는 이미지의 품질을 유의하게(significantly) 감소시키지 않고도 그리고 유저 경험의 품질을 감소시키지 않고도, 충분히 수행될 수도 있다.
행 점퍼 세그먼트를 기저의 픽셀과 그들의 수평 및 수직 축을 기준으로 비스듬한 각도로 배치하는 것이, 점퍼 세그먼트에 의한 픽셀의 차단으로부터 유래하는 아티팩트의 인지가능성을 감소시킬 수도 있지만, 몇몇 아티팩트는 소정의 시나리오에서 몇몇 유저에 의해 어느 정도 인지가능하게 남아 있을 수도 있다. 상기에서 설명된 바와 같이, 열 점퍼 근처에서의 다양하게 색을 띠는 라인 및 무아레 패턴의 출현을 비스듬하게 위치된 열 점퍼가 실질적으로 인지불가능하게 만들 수도 있지만, 차단된 픽셀로부터 유저로 송신되는 광의 양이 감소되기 때문에, 행 점퍼에 의해 수직으로 차단되는 기저의 픽셀이 주변의 차단되지 않은 픽셀보다 더 어둡게 보일 수 있다. 도 4b는 복수의 절연된 행간 의사 점퍼(inter-column pseudo jumper; 470)를 포함하는 행 전극 매트릭스(400)의 실시형태를 도시하는데, 행간 의사 점퍼(470)는, 차단된 픽셀과 차단되지 않은 픽셀 사이의 광 출력에서의 차이를 감소시키기 위해 사용될 수도 있고, 결국에는 전극 매트릭스 및 그 구성 구조체의 인지가능성을 감소시키게 된다.
묘사된 실시형태에서, 행간 의사 점퍼(470)는 행 점퍼(440)의 구조체와 실질적으로 유사한 구조체를 구비하지만, 행간 의사 점퍼(470)의 구조체는 비대칭 방식으로 변경될 수도 있다는 것이 인식될 것이다. 특히, 행간 의사 점퍼(470)는, 제1 행간 점퍼 엔드포인트(472)와 제2 행간 점퍼 엔드포인트(474) 사이에서 연장되는 행간 지그재그 구조체를 포함한다. 의사 점퍼는, 그들 전체 길이에 걸쳐(단부에서 단부까지) 비도전성이도록 구성되고, 그 결과 엔드포인트(472, 472)는 의사 점퍼에 의해 도전적으로(conductively) 연결되지 않는다. 몇몇 경우에서, 의사 점퍼를 형성하기 위해 도전성 재료가 사용될 수도 있고, 따라서 의사 점퍼의 개개의 절연된 부분은 도전성일 수도 있지만; 그러나, 점퍼는 전체적으로 그들 각각의 엔드포인트 사이에서 도전성 경로를 형성하지 않는다. 다른 실시형태에서, 의사 점퍼는 불투명한 비도전성 재료로 형성될 수도 있다.
제1 행간 점퍼 엔드포인트(472)는 (예를 들면, 상부 행 도체(414)에서) 인접한 양으로 기울어진 행 세그먼트(420)의 각각의 제1 중간포인트(436)에 접합되고, 제2 행간 점퍼 엔드포인트(474)는 (예를 들면, 하부 행 도체(414)에서) 인접한 양으로 기울어진 행 세그먼트(420)의 각각의 제1 중간포인트(436)에 마찬가지로 전기적으로 접합된다. 제1 및 제2 행간 점퍼 엔드포인트(472 및 474)는, 예를 들면, 수직 축(413)을 따라 수직으로 정렬될 수도 있고, 행간 의사 점퍼(470)가 위치되는 동일한 수직 영역(예를 들면, 열)을 실질적으로 점유하는 대응하는 행 점퍼(440)의 제1 및 제2 열 행 엔드포인트(444 및 446)와 수직으로 또한 정렬될 수도 있다. 이러한 경우에서, 행 점퍼(440) 및 행간 의사 점퍼(470)는, 차단된 픽셀과 차단되지 않은 픽셀 사이의 밝기에서의 차이를 감소시키기 위해 따라서 이러한 차이의 인지가능성을 감소시키기 위해 수직 축을 따라 실질적으로 정렬될 수도 있다. 그러나, 제1 및 제2 행간 점퍼 엔드포인트(472 및 474)가, 특히 행 점퍼(440)가 그들의 엔드포인트에서 음으로 기울어진 행 세그먼트에 또한 접합되는 실시형태에서, 양으로 기울어진 열 세그먼트(420)를 따른 다른 포인트에 접합되는 또는 음으로 기울어진 열 세그먼트(418)를 따른 포인트(예를 들면, 중간포인트)에 접합되는 구성과 같은 다른 구성도 가능하다.
행간 의사 점퍼(470)는 행간 점퍼 중간포인트(478)를 포함하는 행간 점퍼 중앙 영역(476)을 더 포함한다. 행간 점퍼 중앙 영역(476)은 행간 점퍼 중간포인트(478)에 실질적으로 대응하는데(예를 들면, 동심원적으로 배열되는데), 행간 점퍼 중간포인트(478)는 제1 및 제2 행간 점퍼 엔드포인트(472 및 474)와, 그리고 대응하는 행 점퍼 중간포인트(450)와 수직으로 정렬될 수도 있다. 엔드포인트(472 및 474), 및 중간포인트(478)는, 예를 들면, 수직 축(413)을 따라 총괄적으로 정렬될 수도 있다.
이 실시형태에서, 제1 및 제2 행간 점퍼 엔드포인트(472 및 474) 사이에서 연장되는 행간 점퍼 지그재그 구조체는, 상기에서 설명된 행 점퍼 지그재그 구조체 및 열간 점퍼 지그재그 구조체(실질적으로 90° 회전됨)와 유사하게, 수직 축(예를 들면, 수직 축(413))에 관해 음의 각도와 양의 각도로 교대로 기울어지는 세 개의 행간 점퍼 세그먼트를 포함한다. 특히, 각각의 행간 의사 점퍼(470)는 행간 점퍼 중간 세그먼트(480)를 포함하는데, 행간 점퍼 중앙 영역(476)과 행간 점퍼 중간포인트(478)는 행간 점퍼 중간 세그먼트(480)에 대응한다. 중간 세그먼트(480)는 상측의 제1 행간 점퍼 단부 세그먼트(482), 및 하측의 제2 행간 점퍼 단부 세그먼트(484)에 의해 둘러싸이며 이들 제1 행간 점퍼 단부 세그먼트(482) 및 제2 행간 점퍼 단부 세그먼트(484)에 접합된다. 단부 세그먼트(482 및 484) 각각은 행 점퍼 원단(486)을 포함하는데, 각각의 행 점퍼 원단(486)은, 각각, 제1 및 제2 행간 점퍼 엔드포인트(472 및 474)를 포함하고, 행간 의사 점퍼(470)는, 제1 및 제2 행간 점퍼 엔드포인트(472 및 474)에서, 행 도체(414)의 인접 부분에 연결된다.
행 점퍼(440)와 마찬가지로, 제1 행간 단부 세그먼트(482), 행간 점퍼 중간 세그먼트(480), 및 제2 행간 단부 세그먼트(484)는 수직 축(예를 들면, 수직 축(413))을 기준으로 음으로 그리고 양으로 비스듬한 각도로 교대로 배열된다. 이러한 각도는, 중앙 행 전극(402)과 상부 행 전극(402) 사이에 끼인 행간 영역에서의 특정한 행간 의사 점퍼(470)에 대해 도시된다; 제1 행간 점퍼 단부 세그먼트(482)는 수직 축(490)과 음의 열 각도(488)를 형성하고, 행간 점퍼 중간 세그먼트(480)는 수직 축(490)과 양의 열 각도(492)를 형성하고, 제2 행간 단부 세그먼트(484)는 수직 축(490)과 음의 열 각도(488)를 형성한다. 수직 축(490)은, 예를 들면, 수직 축(413)의 전치일 수도 있다. 제1 및 제2 행 점퍼 단부 세그먼트(482 및 484)가 수직 축(490)과 상이한 각도를 형성하는 다른 실시형태도 가능하다는 것이 인식될 것이다.
비제한적인 예로서, 음의 열 각도(488)는 30°일 수도 있고, 양의 행 각도(492)는 -30°(대안적으로, 120°)일 수도 있고, 한편 제1 행간 점퍼 단부 세그먼트(482), 행간 점퍼 중간 세그먼트(480), 및 제2 행간 점퍼 단부 세그먼트(484)의 피치는, 수직 축(490)을 따라 측정했을 때, 각각, 0.75 mm, 1.5 mm, 및 0.75 mm일 수도 있고, 행 점퍼(440)의 각각의 각도 및 피치에 대응한다. 그러나, 이러한 각도 및 피치는 본 개시의 범위를 벗어나지 않으면서 조정될 수도 있고, 행 전극이 위치될 터치 감응 디스플레이 디바이스의, 디스플레이 및 터치 감응 해상도를 포함하지만 이들에 제한되지는 않는, 소망되는 다양한 특성에 기초하여 선택될 수도 있다. 또한, 행간 의사 점퍼(470)의 각도 및/또는 피치는, 몇몇 실시형태에서, 행 점퍼(440)의 것과 비교하여 변할 수도 있다.
도 3b 내지 도 3f를 참조로 상기에서 설명된 열간 의사 점퍼(370)에서와 같이, 행간 의사 점퍼(470)는 인접한 도전성 구조체(예를 들면, 행 점퍼(440), 도체(414))로부터 전기적으로 절연되며, 열간 의사 점퍼(370)의 구조체 또는 열간 의사 점퍼(370)가 접하게 되는 구조체 전체를 통해 전류를 송신하지 않도록 구성된다. 갭(394)과 같은 불연속부는, 불연속부가 적용되지 않으면 연속적인 도전성 경로가 되는 도전성 경로를 차단하고, 점퍼를 절연시키고, 의사 점퍼를 전기적으로 비도전성으로 만들기 위해, 행간 의사 점퍼(470)에 적용될 수도 있다. 열간 의사 점퍼(370)에서와 같이, 행간 의사 점퍼(470)는 인접한 행 전극(402) 사이의 영역에 위치되고, 그리고, 묘사된 실시형태에서는, 동일한 수직 영역(예를 들면, 열)을 점유하는 행 점퍼와 수직으로 정렬되고, 행 점퍼와 행간 점퍼의 열은 실질적으로 연속한 것으로 보일 수도 있다. 점퍼가 광학적으로 해상되지 않을 수도 있지만, 그들의 인지가능성은, 차단된 픽셀과 차단되지 않은 픽셀 사이의 광 출력에서의 차이가 덜 뚜렷하게 만들어질 때 감소될 수도 있다.
행간 의사 점퍼(470)에 불연속부가 적용되는 하나의 방식이 도 4b에 도시된다; 여기서, 불연속부(394)는 의사 점퍼의 전체 길이(예를 들면, 단부 세그먼트와 중간 세그먼트의 길이의 합)를 따라 의사 점퍼에 구멍을 낸다. 그러나, 도 3c 내지 도 3f에 도시된 바와 같이 불연속부가 적용되는 방식을 포함하는 다른 방식도 가능하다. 이들 실시형태에서, 하나 이상의 불연속부는 행간 세그먼트 굴곡 포인트, 행간 세그먼트 중앙 영역 또는 중간포인트, 근접한 행간 단부 세그먼트 엔드포인트 등등에 적용될 수도 있다.
상기 묘사된 실시형태, 및 특히 행간 의사 점퍼에서의 불연속부의 묘사된 변형예는 본질적으로 예시이며 본 개시의 범위를 제한하도록 의도되지는 않는다는 것이 인식될 것이다. 기술분야에서 통상의 지식을 가진 자는, 행간 의사 점퍼에서의 불연속부의 진형 및 배치에서의 다른 변형예를 알 수 있을 것이다. 또한, 몇몇 실시형태에서에서, 행간 의사 점퍼(470)는 절연된 구조체로서 별개의 층에 위치될 수도 있지만, 전극 매트릭스를 수직 방향에서 유저가 봤을 때 아티팩트 인지가능성이 감소되도록, 대응하는 점퍼(440)와 일렬로 위치될 수도 있다.
비제한적인 예로서, 행 전극(402)은 수직 축(312)을 따라 3 내지 7 mm 사이의 피치로 서로 이격될 수도 있고, 행 도체(414)는 수직 축을 따라 1 내지 4 mm 사이의 피치로 서로 이격될 수도 있고, 그리고 선형의 행 세그먼트(예를 들면, 세그먼트(418 및 420))는 수평 축(410)을 기준으로 15° 내지 35°와 -15° 내지 (-35°) 사이의 각도로 교대로 위치될 수도 있다. 행 점퍼(440)는 수평 축(410)을 따라 2 내지 4 mm 사이의 피치로 서로 이격될 수도 있고, 수직 축(413)을 기준으로 50° 내지 75°와 -50° 내지 (-70°) 사이의 각도로 교대로 위치되는 행 점퍼 세그먼트(예를 들면, 세그먼트(454))를 포함할 수도 있다.
이제, 도 5를 참조하면, 터치 입력을 감응하도록 구성된 정전용량 전극 매트릭스(500)의 한 실시형태가 도시된다. 특히, 매트릭스(500)의 평면도가 도시되는데, 행 전극 매트릭스(400) 위에 수직으로 위치되는 열 전극 매트릭스(300)를 포함한다. 열 전극 매트릭스(300)는 터치 센서(208)의 수신 전극층(210)에 형성될 수도 있고, 한편 행 전극 매트릭스(400)는, 예를 들면, 송신 전극층(212)에 형성될 수도 있다. 매트릭스는, 적절한 디스플레이 디바이스(예를 들면, LCD, OLED, AMOLED, 플라즈마 등등)에 포함되는 터치 센서의 일부를 형성할 수도 있다.
매트릭스(500)는, 열 전극 매트릭스(300)의 열 전극(302)이 그라운드에 유지되는 동안 고유한 시변 전압을 이용하여 행 전극 매트릭스(400)의 행 전극(402)의 각각을 각각 구동하도록 구성되는 구동 회로(502)를 포함한다. 각각의 열 전극(302)과 행 전극(402) 사이의 교차 영역에 각각의 커패시터(504)가 형성된다. 유저의 손가락 또는 스타일러스와 같은 다른 디바이스에 의해 인가되는 터치 입력에 응답하여, 적어도 하나의 커패시터(504)의 정전용량은 변할 수도 있다. 이 변화는 열 전극(302)에 커플링되는 하나 이상의 검출 회로(506)에 의해 검출되고 터치 입력을 해석하도록 평가되고, 예를 들면, 수신된 신호에서의 위상 시프트 및/또는 감쇠에 기초하여 터치 입력의 위치를 결정할 수도 있다. 본 개시의 범위를 벗어나지 않으면서, 구동 회로(502)가 열 전극 매트릭스(300)의 열 전극(302)에 대신 연결될 수도 있고 검출 회로(506)는 행 전극 매트릭스(400)의 행 전극(402)에 연결될 수도 있다는 것을 알 수 있을 것이다. 구동 회로(502) 및 검출 회로(506)는 총칭하여 "제어 전자장치"로 칭해질 수도 있다.
도 5는 또한, (도 5의 지면 밖으로 연장하는) 수직 방향(508)에서 봤을 때의 열 전극(302)과 행 전극(402) 사이의 상대적인 배치 및 다양한 교차 포인트를 도시한다. 이 실시형태에서, 열 전극(302)(예를 들면, 열 세그먼트 중간포인트(338))은 수직 축(312)에 대해 (예를 들면, 5° 내에서) 실질적으로 정렬되고, 한편 행 전극(402)(예를 들면, 행 세그먼트 중간포인트(436))은 수평 축(410)에 대해 (예를 들면, 5° 내에서) 실질적으로 정렬된다. 그러나, 수직 축(312) 및 수평 축(410)에 대한 열 전극 및 행 전극(302 및 402)의 정렬은, 전극과 그들 각각의 축 사이에서 특히 열 세그먼트 및 행 세그먼트와 그들 각각의 축 사이에서 각도 편차를 생성하도록 변경될 수 있다는 것이 인식될 것이다. 또한, 이러한 각도 편차는 열 및 행 전극 사이에서 변할 수도 있다 - 예를 들면, 인접한 열 전극은 동일한 수직 축에 대해 상이한 각도로 정렬될 수도 있다. 각각의 열 도체(316)의 지그재그 구조체는 각각의 교차 영역(예를 들면, 교차 영역(510))에서 각각의 행 도체(414)의 지그재그 구조체와 교차한다. 교차 영역은 수직 축(312)과 수평 축(410)의 교차점에 형성된다. 수직 및 수평 축(312 및 410)의 각각의 단일의 인스턴스가 도시되었지만, 각각의 그리고 모든 수직 및 수평 축 사이의 교차점이 각각의 교차 영역(510)을 형성하도록, 수직 축은 열 전극 매트릭스(300)의 각각의 그리고 모든 열 전극(302)과 관련될 수도 있다는 것 및 수평 축은 행 전극 매트릭스(400)의 각각의 그리고 모든 행 전극(402)과 관련될 수도 있다는 것이 인식될 것이다. 특히 이 실시형태에서, 각각의 음으로 기울어진 열 세그먼트(322)의 제1 중간포인트(338)는, 수직 방향(508)에서 봤을 때 각각의 음으로 기울어진 행 세그먼트(418)의 제2 중간포인트(436)와 실질적으로 중첩한다(예를 들면, 시각적으로 교차한다). 이러한 중첩에 의해 형성되는 교차는, 열 전극(302) 및 행 전극(402)을 참조로 위에서 설명된 비스듬한 교차에서와 같이 비스듬한 각도에 있을 수도 있다. 그러나, 몇몇 실시형태에서는, 열 및 행 세그먼트의 다른 영역이 중첩할 수도 있다. 예를 들면, 열 세그먼트의 중간포인트는, 행 세그먼트의 엔드포인트 중 하나에 더 가까운 행 세그먼트의 영역을 중첩할 수도 있다.
도 5는, 열 점퍼(342)가 행 도체(414)의 인접한 쌍 사이에서, 또는 인접한 행 전극(402) 사이에서 어떻게 수직으로 배치될 수도 있는지를 도시한다. 마찬가지로, 행 점퍼(440)는 열 도체(316)의 인접한 쌍 사이에서, 또는 인접한 열 전극(302) 사이에서 수평으로 배치될 수도 있다. 또한, 각각의 열 점퍼 중간포인트(352)는, 매트릭스(500)에서의 자신의 위치에 따라, 행 점퍼 중간포인트(450) 또는 행간 점퍼 중간포인트(478)와 교차한다. 마찬가지로, 행 점퍼 중간포인트(450)는, 매트릭스(500)에서의 자신의 위치에 따라, 열 점퍼 중간포인트(352) 또는 열간 점퍼 중간포인트(478)와 교차한다. 열 점퍼, 또는 열간 점퍼와 행 점퍼, 또는 행간 점퍼 간의 그들의 중간포인트에서의 교차는, 상기에서 설명된 바와 같이 비스듬한 각도에 있을 수도 있다(예를 들면, 90°+/- 10°).
각각의 열 점퍼(342), 열간 의사 점퍼(370), 행 점퍼(440), 및 행간 의사 점퍼(470)는 3중(three-way) 교차에서 주변 전극 구조체와, 또한 비스듬한 각도에서, 교차할 수도 있다. 예를 들면, 도 5는 3중 열 교차 영역(512)을 도시하는데, 여기에서는, 열간 의사 점퍼(370)가 좌측에서(열 세그먼트 중간포인트(338)와 제1 열간 점퍼 엔드포인트(372)에서) 양으로 기울어진 열 세그먼트(320)와 교차하고, 중간포인트(378 및 478)에서 행간 의사 점퍼(470)와 교차하고, 우측에서(열 세그먼트 중간포인트(338)와 제2 열간 점퍼 엔드포인트(374)에서) 제2 양으로 기울어진 열 세그먼트(320)와 교차한다. 이러한 교차는 하나 이상의 비스듬한 각도(예를 들면, 90°+/- 10°)에 있을 수도 있다. 열 점퍼(342), 열 점퍼(342), 및 행간 의사 점퍼(470)에 대해 유사한 3중 교차가 또한 적용된다. 행 교차 영역(514)은, 행간 의사 점퍼(470)가 양으로 기울어진 행 세그먼트 및 열 점퍼 중간 세그먼트와 함께 3중 교차에 참여하는 영역을 나타낸다.
다양한 타입의 대칭적 열 및 행 점퍼를 나타내는 전극 매트릭스(500)의 실시형태에서, 열 및 행 점퍼는 다양한 종류의 대칭성을 또한 나타낼 수도 있다. 예를 들면 도 5에 도시된 바와 같이, 각각의 열 점퍼(342)의 경우, 제1 및 제2 열 점퍼 단부 세그먼트(356 및 358), 및 열 점퍼 중간 세그먼트(354)는, 인접한 행 도체(414)의 각각의 수직으로 정렬된 부분의 수평 축(410)에 관한 거울상이다. 각각의 열간 의사 점퍼(370)의 경우, 대응하는 제1, 제2, 및 중간 세그먼트는 또한, 인접한 행 도체(414)의 각각의 수직으로 정렬된 부분의 수평 거울상이다. 마찬가지로, 각각의 행 점퍼(440)의 경우, 제1 및 제2 행 점퍼 단부 세그먼트(454 및 456), 및 행 점퍼 미들 세그먼트(452)는, 인접한 열 도체(316)의 각각의 수평으로 정렬된 부분의 수직 축(312)에 관한 거울상이다. 각각의 행간 의사 점퍼(470)의 경우, 대응하는 제1, 제2, 및 중간 세그먼트는 또한, 인접한 열 도체(316)의 각각의 수평으로 정렬된 부분의 수직 거울상이다.
도 5에서 묘사되는 예시적인 실시형태에서 세 개의 열 및 행 전극(302 및 402)이 도시되지만, 이들 전극은 복수의 추가적인 열 및 행 전극과 함께 정전용량 터치 감응 전극 매트릭스를 형성할 수도 있다는 것이 인식될 것이다. 이러한 수는 구현예에 따라 변할 것이고 다양한 소망의 특성, 예컨대 정전용량 전극 매트릭스가 위치될 디스플레이의 터치 해상도 및 터치 감응 해상도에 기초하여 선택될 수도 있다.
도 5에서 알 수 있는 바와 같이, 점퍼와 그들의 의사 점퍼 대응부는 소정의 대칭성(예를 들면, 점퍼(342)와 의사 점퍼(370), 및 점퍼(440)와 의사 점퍼(470))을 나타낸다. 예를 들면, 의사 점퍼는, 그들의 점퍼 대응부와 실질적으로 유사한 사이즈 및/또는 형상을 가질 수도 있다(예를 들면, 5% 이내). 점퍼 및 의사 점퍼는 동일한 공간적 밀도를 가질 수도 있다 - 예를 들면, 전극 매트릭스(500)의 단위 면적당의 점퍼 및 의사 점퍼의 수는 동일할 수도 있다. 또한, 의사 점퍼는 인접한 전극의 대응하는 점퍼와 일렬로 위치될 수도 있다. 예를 들면, 의사 점퍼(370)는 인접한 열 전극(300)의 대응하는 점퍼(342)와 열 전극 매트릭스(300)에서 수평으로 일렬로 위치된다.
상기에서 개시된 실시형태는 묘사된 것 이외의 다른 정전용량 터치 센서 - 예를 들면, 열로부터 행으로의 정전용량을 측정하지 않는 정전용량 터치 센서 - 에 적용될 수도 있다는 것이 또한 인식될 것이다.
예1
하나의 비제한적인 예시적 실시형태에서, 전극 매트릭스는 행 전극 필름으로 적층되는 열 전극 필름을 포함한다. 두 개의 전극 필름은 50 ㎛ 두께의 광학적으로 투명한 아크릴계 감압성 접착 필름에 의해 서로 결합된다.
각각의 전극 필름은, 광학적 반사를 최소로 하도록 화학적으로 처리된 대략 1.5 ㎛ 두께의 구리층으로 코팅되고, 그 다음 열 또는 행 전극의 어레이를 형성하도록 포토에칭된 100 ㎛ 두께의 광학적으로 투명한 이축 연신(biaxially-oriented) 폴리(에틸렌 테레프탈레이트) 필름을 포함한다. 대안적으로, 광학적 반사를 감소시키기 위해, 코팅이 퇴적될 수도 있다.
이 예에서, 열 전극 필름은 실질적으로 직사각형이며, 2000×1180 mm의 사이즈이다. 그것은 열 전극의 300×1 어레이를 포함하며, 전체가 1920×1092 mm의 직사각형 감응 영역을 점유한다. 각각의 열 전극은 대략 4.2×1092 mm의 직사각형 영역을 점유한다. 열 전극은 X (예를 들면, 수평) 방향을 따라 6.4 mm의 피치로 이격되고, 각각은 감응 영역의 전체 Y(예를 들면, 수직) 치수에 걸친다.
이 예에서, 행 전극 필름은 직사각형이며, 2000×1118 mm의 사이즈이다. 그것은 행 전극의 1×182 어레이를 포함하며, 전체가 1920×1092 mm의 직사각형 감응 영역을 점유한다. 각각의 행 전극은 대략 1092×4.2의 직사각형 영역을 점유한다. 행 전극은 Y 방향을 따라 6 mm의 피치로 이격되고, 각각은 감응 영역의 전체 X 치수에 걸친다.
각각의 열 전극은, 10 ㎛의 공칭 폭을 갖는 지그재그형의 구리 열 도체의 사다리형 네트워크로 구성된다. 두 개의 동일하고 평행하며 길이가 긴 지그재그형의 열 도체는 각각, 수평을 기준으로 60°와 -60°(수직을 기준으로 30° 및 -30°)의 각도로 교대로 위치되는, 동일한 길이의 728 개의 선형 열 세그먼트로 구성되고; 각각의 선형 열 세그먼트는 Y 방향을 따라 1.5 mm 연장한다. 두 개의 길이가 긴 열 도체는 열 피치를 가지며, X축을 따라 3.2 mm 떨어져 이격된다. 두 개의 길이가 긴 지그재그형 열 도체는 363 개의 동일한 길이가 짧은 지그재그형 열 점퍼에 의해 서로 연결된다. 길이가 짧은 지그재그형 열 점퍼는 Y 방향을 따라 3 mm 피치만큼 분리된다. 각각의 길이가 짧은 지그재그형 열 점퍼는, 수평을 기준으로 각각 25°, -25°, 및 25°의 각도로 위치되며 X 방향을 따라 각각 0.8 mm, 1.6 mm, 및 0.8 mm 연장하는 3 개의 선형의 열 점퍼 세그먼트로 구성된다. 길이가 짧은 지그재그형 열 점퍼는 각각의 -60°의 열 세그먼트의 중간포인트에서 길이가 긴 지그재그형 열 도체에 연결되고, 그 결과 이들은 3중 교차에서 최소의 빗각으로 만나게 된다.
각각의 행 전극은, 10 ㎛의 공칭 폭을 갖는 지그재그형의 구리 행 도체의 사다리형 네트워크로 구성된다. 두 개의 동일하고 평행하고 길이가 긴 지그재그형의 행 도체는 각각, 수평을 기준으로 25°와 -25°의 각도로 교대로 위치되는, 동일한 길이의 1200 개의 선형 행 세그먼트로 구성되고; 각각의 선형 행 세그먼트는 X 방향을 따라 1.6 mm 연장한다. 두 개의 길이가 긴 지그재그형의 행 도체는 3 mm의 행 도체 피치로 Y 축을 따라 떨어져 이격된다. 두 개의 길이가 긴 지그재그형 행 도체는 599 개의 동일한 길이가 짧은 지그재그형 행 점퍼에 의해 서로 연결된다. 길이가 짧은 지그재그형 행 점퍼는 X 방향을 따라 3.2 mm 피치로 정렬된다. 각각의 길이가 짧은 지그재그형 행 점퍼는, 수평을 기준으로 각각 60°, -60°, 및 60°(수직을 기준으로 30°, -30°, 및 30°)의 각도로 위치되며 Y 방향을 따라 각각 0.75 mm, 1.5 mm, 및 0.75 mm 연장하는 3 개의 선형의 행 점퍼 세그먼트로 구성된다. 길이가 짧은 지그재그형 행 점퍼는 각각의 -25°의 선형의 행 세그먼트의 중간포인트에서 길이가 긴 지그재그형 행 도체에 연결되고, 그 결과 이들은 3중 교차에서 최소의 빗각으로 만나게 된다.
전기적으로 절연된 열간 점퍼는, 열 전극 사이의 영역을 점유하여, 열 전극 내의 길이가 짧은 지그재그형 열 점퍼에 의해 야기되는 차단과 대략 동등한 디스플레이 픽셀의 차단을 제공한다. 열간 구조체는 6.4 mm(X 방향)×3 mm(Y 방향) 피치로 엘리먼트의 299×363 어레이에 정렬된다. 각각의 열간 점퍼는, 그것이 100 ㎛ 갭에 의해 대략 동일한 길이의 8 개의 라인 세그먼트로 분할되는 점을 제외하면, 짧은 길이의 지그재그형 열 점퍼와 유사하다. 어떠한 세그먼트도 어떠한 열 전극에, 또는 어떠한 다른 세그먼트에 전기적으로 연결되지 않는다.
전기적으로 절연된 행간 점퍼는, 행 전극 사이의 영역을 점유하여, 행 전극 내의 길이가 짧은 지그재그형 행 점퍼에 의해 야기되는 차단과 대략 동등한 디스플레이 픽셀의 차단을 제공한다. 행간 구조체는 3.2 mm(X 방향)×6 mm(Y 방향) 피치로 엘리먼트의 599×181 어레이에 정렬된다. 각각의 행간 점퍼는, 그것이 100 ㎛ 갭에 의해 대략 동일한 길이의 8 개의 라인 세그먼트로 분할되는 점을 제외하면, 짧은 길이의 지그재그형 행 점퍼와 유사하다. 어떠한 세그먼트도 어떠한 행 전극에, 또는 어떠한 다른 세그먼트에 전기적으로 연결되지 않는다.
조립된 전극 매트릭스에서, Z 방향을 따라 봤을 때, 열 전극 필름의 감응 영역은 공칭적으로 행 전극 필름의 감응 영역과 일치한다. 열 도체의 60°의 라인 세그먼트의 중간포인트는 행 도체의 -25°의 라인 세그먼트의 중간포인트와 공칭적으로 일치하고, 그 결과 행 전극의 선형 행 세그먼트와 교차하는 모든 열 전극의 선형 열 세그먼트는 최소 빗각을 이루게 된다.
상기의 예시적인 실시형태는 예시적인 목적을 위해 제공되며 어떤 식으로든 제한하는 것이도록 의도된 것은 아니다는 것이 인식될 것이다. 물리적 파라미터 및 치수는 본 개시의 범위를 벗어나지 않으면서 조정될 수도 있다. 추가적인 비제한적인 예로서, 열 전극은 X 방향을 따라 4 내지 8 mm 사이의 피치에서 서로 이격될 수도 있고, 각각의 열 전극에서의 열 도체는 X 방향을 따라 2 내지 5 mm 사이의 피치에서 서로 이격될 수도 있고, 그리고 선형의 열 세그먼트는 Y 방향을 기준으로 50°내지 70°와 -50° 내지 (-70°) 사이의 각도로 교대로 위치될 수도 있다. 열 점퍼는 Y 방향을 따라 2 내지 4 mm 사이의 피치만큼 서로 이격될 수도 있고, X 방향을 기준으로 15° 내지 25°와 -15° 내지(-25°) 사이의 각도로 교대로 위치되는 세그먼트를 포함할 수도 있다. 다른 비제한적인 예로서, 행 전극은 Y 방향을 따라 3 내지 7 mm 사이의 피치에서 서로 이격될 수도 있고, 각각의 행 전극에서의 행 도체는 Y 방향을 따라 1 내지 4 mm 사이의 피치에서 서로 이격될 수도 있고, 그리고 선형의 행 세그먼트는 X 방향을 기준으로 15° 내지 35°와 -15° 내지 (-35°) 사이의 각도로 교대로 위치될 수도 있다. 행 점퍼는 X 방향을 따라 2 내지 4 mm 사이의 피치만큼 서로 이격될 수도 있고, Y 방향을 기준으로 50° 내지 70°와 -50° 내지 (-70°) 사이의 각도로 교대로 위치되는 세그먼트를 포함할 수도 있다.
몇몇 실시형태에서, 본원에서 설명된 방법 및 프로세스는 하나 이상의 컴퓨팅 디바이스의 컴퓨팅 시스템에 결부될 수도 있다. 특히, 이러한 방법 및 프로세스는, 컴퓨터 애플리케이션 프로그램 또는 서비스, 애플리케이션 프로그래밍 인터페이스(application-programming interface; API), 라이브러리, 및/또는 다른 컴퓨터 프로그램 제품으로서 구현될 수도 있다.
도 6은 본 발명의 일 실시형태에 따른 예시적인 이미지 소스(S)를 예시한다. 상기에서 논의된 바와 같이, 이미지 소스(S)는 외부 컴퓨팅 디바이스, 예컨대 서버, 랩탑 컴퓨팅 디바이스, 셋탑 박스, 게임 콘솔, 데스크탑 컴퓨터, 태블릿 컴퓨팅 디바이스, 모바일 전화, 또는 다른 적절한 컴퓨팅 디바이스일 수도 있다. 대안적으로, 이미지 소스(S)는 디스플레이 디바이스(100) 내에 통합될 수도 있다.
이미지 소스(S)는 프로세서, 휘발성 메모리, 및 불휘발성 메모리, 예컨대 소프트웨어 프로그램을 불휘발성 방식으로 저장하도록 구성되는 대용량 스토리지를 포함한다. 저장된 프로그램은 휘발성 메모리의 일부를 사용하여 프로세서에 의해 실행된다. 프로그램에 대한 입력은 다양한 유저 입력 디바이스를 통해 수신될 수도 있는데, 디스플레이 디바이스(100)의 디스플레이(108)와 통합되는 터치 센서(208)를 포함한다. 입력은 프로그램에 의해 프로세싱될 수도 있고, 적절한 그래픽 출력은 유저에 대한 디스플레이를 위해 디스플레이 인터페이스를 통해 디스플레이 디바이스(100)로 전송될 수도 있다.
프로세서, 휘발성 메모리, 및 불휘발성 메모리는, 예를 들면, 별개의 컴포넌트로 형성될 수도 있거나, 또는 시스템온칩으로 통합될 수도 있다. 또한, 프로세서는 중앙 프로세싱 유닛, 다중 코어 프로세서, ASIC, 시스템온칩, 또는 다른 타입의 프로세서일 수도 있다. 몇몇 실시형태에서, 프로세서, 휘발성 메모리 및 불휘발성 메모리의 양태는, 예를 들면, 필드 프로그래머블 게이트 어레이(field-programmable gate array; FPGA), 프로그램 고유의 집적 회로(program-specific integrated circuit; PASIC)/주문형 반도체(application-specific integrated circuit; ASIC), 시스템온칩(system-on-a-chip; SOC) 시스템, 및 복합 프로그래머블 로직 디바이스(complex programmable logic device; CPLD)와 같은 디바이스 안으로 통합될 수도 있다.
로컬 에어리어 네트워크 및 인터넷과 같은 와이드 에어리어 네트워크를 통해, 서버와 같은 다른 컴퓨팅 디바이스와 통신하기 위해, 통신 인터페이스가 또한 제공될 수도 있다.
불휘발성 메모리는 착탈식 매체 및/또는 내장형 디바이스를 포함할 수도 있다. 예를 들면, 불휘발성 메모리는, 다른 것들 중에서도, 광학 메모리 디바이스(예를 들면, CD, DVD, HD-DVD, 블루레이 디스크 등등), 반도체 메모리 디바이스(예를 들면, FLASH, EPROM, EEPROM 등등) 및/또는 자기 메모리 디바이스(예를 들면, 하드디스크 드라이브, 플로피디스크 드라이브, 테이프 드라이브, MRAM 등등)를 포함할 수도 있다.
착탈식 컴퓨터 판독가능 저장 매체(computer readable storage media; CRSM)가 제공될 수도 있는데, 착탈식 컴퓨터 판독가능 저장 매체는 본원에서 설명된 방법 및 프로세스를 구현하도록 실행가능한 데이터 및/또는 명령을 저장하기 위해 사용될 수도 있다. 착탈식 컴퓨터 판독가능 저장 매체는, 다른 것들 중에서도, CD, DVD, HD-DVD, 블루레이 디스크, EEPROM, 및/또는 플로피 디스크의 형태를 취할 수도 있다.
불휘발성 메모리 및 CRSM이, 이미지 소스의 전력 차단시에도, 일정 시간 동안 명령을 저장하도록 구성되는 물리적 디바이스이지만, 몇몇 실시형태에서, 본원에서 설명되는 명령의 양태는, 예시된 통신 버스와 같은 컴퓨터 판독가능 통신 매체에 의해, 적어도 유한한 지속기간 동안 물리적 디바이스에 의해 유지되지 않는 순수 신호(예를 들면, 전자기 신호, 광학 신호 등등)에 의한 일시적 형태로, 전파될 수도 있다.
용어 "프로그램"은, 하나 이상의 특정 기능을 수행하도록 구현되는 시스템의 소프트웨어 펌웨어 등등을 설명하기 위해 사용될 수도 있다. 몇몇 경우에서, 이러한 프로그램은, 휘발성 메모리를 사용하여, 프로세서가 불휘발성 메모리에 의해 유지되는 명령을 실행하는 것을 통해 인스턴스화될 수도 있다. 동일한 애플리케이션, 서비스, 코드 블록, 오브젝트, 라이브러리, 루틴, API, 함수 등등으로부터 상이한 프로그램이 인스턴스화될 수도 있다는 것이 이해되어야 한다. 마찬가지로, 동일한 프로그램은, 상이한 애플리케이션, 서비스, 코드 블록, 오브젝트, 라이브러리, 루틴, API, 함수 등등에 의해 인스턴스화될 수도 있다는 것이 이해되어야 한다. 용어 "프로그램"은, 실행 파일, 데이터 파일, 라이브러리, 드라이버, 스크립트, 데이터베이스 레코드 등등의 개개의 것 또는 그룹을 포괄하도록 의도된다.
본원에서 설명된 구성 및/또는 방식은 본질적으로 예시적인 것이다는 것, 및 다양한 변형예가 가능하기 때문에, 이들 특정 실시형태 또는 예는 제한적인 의미로 간주되어선 안된다는 것이 이해되어야 한다. 상기에서 설명된 실시형태 및 도면에서 예시된 실시형태는 다양하고 상이한 디바이스의 예로서 기능한다. 본 개시의 주제는, 본원에서 개시되는 다양한 구성, 피쳐, 기능, 및/또는 특성뿐만 아니라 이들의 임의의 그리고 모든 등가물의 모든 신규의 그리고 자명하지 않은 조합 및 부조합을 포함한다.

Claims (20)

  1. 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스(electrode matrix)에 있어서,
    복수의 열(column) 도체를 포함하는 열 전극 어레이 - 각각의 열 도체는 상기 열 도체의 중앙 종축(longitudinal axis)을 따라 형성되는 제1 단부 및 제2 단부를 구비하고, 상기 열 도체는 상기 제1 단부와 제2 단부 사이에서 연장되는 열 지그재그 구조체를 더 포함하고, 상기 열 지그재그 구조체는 상기 종축에 걸쳐 앞뒤로 왕복하고(oscillate back and forth), 상기 복수의 열 도체는 상기 중앙 종축에 실질적으로 정렬됨(aligned) - ;
    복수의 행(row) 도체를 포함하는 행 전극 어레이 - 각각의 행 도체는 상기 행 도체의 중앙 횡축(lateral axis)을 따라 형성되는 제1 단부 및 제2 단부를 구비하고, 상기 행 도체는 상기 제1 단부와 제2 단부 사이에서 연장되는 행 지그재그 구조체를 더 포함하고, 상기 행 지그재그 구조체는 상기 횡축에 걸쳐 앞뒤로 왕복하고, 상기 복수의 행 도체는 상기 중앙 횡축에 실질적으로 정렬됨 - ;
    각각의 열 전극에 대하여, 상기 열 전극의 열 도체의 인접 쌍을 전기적으로 브릿징(bridging)하는 2개 이상의 열 점퍼 - 상기 2개 이상의 열 점퍼는 열 점퍼 지그재그 구조체를 구비함 - ;
    각각의 행 전극에 대하여, 상기 행 전극의 행 도체의 인접 쌍을 전기적으로 브릿징하는 2개 이상의 행 점퍼 - 상기 2개 이상의 행 점퍼는 행 점퍼 지그재그 구조체를 구비함 - ; 및
    인접한 열 전극 사이 및 인접한 행 전극 사이에 배치되는 복수의 의사 점퍼(pseudo jumper) - 상기 복수의 의사 점퍼는 전체 길이에 걸쳐 비도전성이 되도록 구성됨 -
    를 포함하고,
    상기 복수의 열 도체 각각의 지그재그 구조체는, 각각의 열 도체의 종축과 각각의 행 도체의 횡축의 교차점에서 형성되는 각각의 교차 영역에서, 상기 복수의 행 도체 각각의 지그재그 구조체와 교차하는 것인, 전극 매트릭스.
  2. 제1항에 있어서,
    상기 열 지그재그 구조체 및 상기 행 지그재그 구조체는 선형의 도체 세그먼트들을 포함하고, 상기 선형의 도체 세그먼트들 각각은 상기 횡축 및 상기 종축 중 하나 또는 둘 다에 대하여 하나 이상의 각도에서 형성되고, 상기 횡축 및 상기 종축은, 상기 디스플레이의 평면에 실질적으로 수직인 방향에서 봤을 때, 기저의(underlying) 디스플레이를 형성하는 복수의 픽셀에 대응하는, 전극 매트릭스.
  3. 제1항에 있어서,
    상기 열 지그재그 구조체는 제1 중간포인트를 포함하는 열 중앙 영역을 각각 구비하는 복수의 열 세그먼트를 포함하고, 상기 열 중앙 영역 각각은 상기 종축에 실질적으로 정렬되며;
    상기 행 지그재그 구조체는 제2 중간포인트를 포함하는 행 중앙 영역을 각각 구비하는 복수의 행 세그먼트를 포함하고, 상기 행 중앙 영역 각각은 상기 횡축에 실질적으로 정렬되는, 전극 매트릭스.
  4. 제3항에 있어서,
    상기 복수의 열 세그먼트는, 상기 제1 중간포인트를 각각 구비하는, 양으로 기울어진(positively angled) 열 세그먼트 및 음으로 기울어진(negatively angled) 열 세그먼트를 교대로 포함하고, 상기 열 세그먼트는 상기 종축에 대하여 기울어지고,
    상기 복수의 행 세그먼트는, 상기 제2 중간포인트를 각각 구비하는, 양으로 기울어진 행 세그먼트 및 음으로 기울어진 행 세그먼트를 교대로 포함하고, 상기 행 세그먼트는 상기 횡축에 대하여 기울어지고,
    상기 음으로 기울어진 열 세그먼트의 제1 중간포인트는 상기 음으로 기울어진 행 세그먼트의 제2 중간포인트와 실질적으로 중첩되는, 전극 매트릭스.
  5. 제4항에 있어서,
    상기 양으로 기울어진 열 세그먼트의 길이는 상기 음으로 기울어진 열 세그먼트의 길이와 동등하고,
    상기 양으로 기울어진 행 세그먼트의 길이는 상기 음으로 기울어진 행 세그먼트의 길이와 동등하고,
    상기 양으로 기울어진 열 세그먼트의 각도는 상기 음으로 기울어진 열 세그먼트의 각도의 덧셈의 역원(additive inverse)이고,
    상기 양으로 기울어진 행 세그먼트의 각도는 상기 음으로 기울어진 행 세그먼트의 각도의 덧셈의 역원인 것인, 전극 매트릭스.
  6. 제1항에 있어서,
    각각의 행 전극에 대하여, 상기 2개 이상의 행 점퍼는 상기 행 전극의 행 도체에 걸쳐 종방향으로 연장되고,
    각각의 열 전극에 대하여, 상기 2개 이상의 열 점퍼는 상기 열 전극의 열 도체에 걸쳐 횡방향으로 연장되는 것인, 전극 매트릭스.
  7. 제6항에 있어서,
    상기 열 지그재그 구조체는, 제1 중간포인트를 각각 구비하는, 양으로 기울어진 열 세그먼트 및 음으로 기울어진 열 세그먼트를 교대로 포함하고,
    상기 행 지그재그 구조체는, 제2 중간포인트를 각각 구비하는, 양으로 기울어진 행 세그먼트 및 음으로 기울어진 행 세그먼트를 교대로 포함하고,
    각각의 열 점퍼는 제1 열 점퍼 엔드포인트 및 제2 열 점퍼 엔드포인트를 포함하고, 상기 제1 열 점퍼 엔드포인트 및 상기 제2 열 점퍼 엔드포인트 각각은 상기 음으로 기울어진 열 세그먼트의 각각의 제1 중간포인트에 전기적으로 연결되고,
    각각의 행 점퍼는 제1 행 점퍼 엔드포인트 및 제2 행 점퍼 엔드포인트를 포함하고, 상기 제1 행 점퍼 엔드포인트 및 상기 제2 행 점퍼 엔드포인트 각각은 상기 양으로 기울어진 행 세그먼트의 각각의 제2 중간포인트에 전기적으로 연결되는, 전극 매트릭스.
  8. 제7항에 있어서,
    각각의 열 점퍼는 열 점퍼 중간포인트를 포함하고,
    각각의 행 점퍼는 행 점퍼 중간포인트를 포함하고,
    상기 열 점퍼 중간포인트는 상기 행 점퍼 중간포인트와 비스듬히(at an angle) 중첩되는 것인, 전극 매트릭스.
  9. 제8항에 있어서,
    상기 열 점퍼 중간포인트는, 제1 열 점퍼 단부 세그먼트 및 제2 열 점퍼 단부 세그먼트에 의해 둘러싸이는 열 점퍼 중간 세그먼트에 대응하고, 상기 제1 열 점퍼 단부 세그먼트 및 상기 제2 열 점퍼 단부 세그먼트 각각은 원단(distal end)을 구비하고, 상기 제1 열 점퍼 단부 세그먼트 및 상기 제2 열 점퍼 단부 세그먼트의 원단은, 각각, 상기 제1 열 점퍼 엔드포인트 및 상기 제2 열 점퍼 엔드포인트를 포함하고,
    상기 행 점퍼 중간포인트는 제1 행 점퍼 단부 세그먼트 및 제2 행 점퍼 단부 세그먼트에 의해 둘러싸이는 행 점퍼 중간 세그먼트에 대응하고, 상기 제1 행 점퍼 단부 세그먼트 및 상기 제2 행 점퍼 단부 세그먼트는 원단을 구비하고, 상기 제1 행 점퍼 단부 세그먼트 및 상기 제2 행 점퍼 단부 세그먼트의 원단은, 각각, 상기 제1 행 점퍼 엔드포인트 및 상기 제2 행 점퍼 엔드포인트를 포함하는, 전극 매트릭스.
  10. 제9항에 있어서,
    상기 제1 열 점퍼 단부 세그먼트와 상기 제2 열 점퍼 단부 세그먼트, 및 상기 열 점퍼 중간 세그먼트는 인접한 행 도체들의 각각의 종방향으로 정렬된 부분의 상기 횡축에 관한 거울상(reflection)이고,
    상기 제1 행 점퍼 단부 세그먼트와 상기 제2 행 점퍼 단부 세그먼트, 및 상기 행 점퍼 중간 세그먼트는, 인접한 열 도체들의 각각의 횡방향으로 정렬된 부분의 상기 종축에 관한 거울상인, 전극 매트릭스.
  11. 터치 감응 디스플레이 디바이스에 있어서,
    횡축에 대하여 실질적으로 정렬되는 복수의 픽셀 행 및 종축에 대하여 실질적으로 정렬되는 복수의 픽셀 열을 포함하는 디스플레이 그리드;
    각각 상기 종축을 따라 실질적으로 연장되고, 열 도체 거리만큼 이격되는 복수의 열 도체를 포함하는 열 전극 어레이 - 각각의 열 도체는 복수의 양으로 기울어진 열 세그먼트와 음으로 기울어진 열 세그먼트 쌍을 교대로 포함하고, 각각의 양으로 기울어진 열 세그먼트와 음으로 기울어진 열 세그먼트는 열 세그먼트 중간포인트를 구비하고 상기 종축에 대하여 기울어짐 - ;
    각각 상기 횡축을 따라 실질적으로 연장되고, 행 도체 거리만큼 이격되는 복수의 행 도체를 포함하는 행 전극 어레이 - 각각의 행 도체는 복수의 양으로 기울어진 행 세그먼트와 음으로 기울어진 행 세그먼트 쌍을 교대로 포함하고, 각각의 양으로 기울어진 행 세그먼트와 음으로 기울어진 행 세그먼트는 행 세그먼트 중간포인트를 구비하고 상기 횡축에 대하여 기울어짐 - ; 및
    각각의 열 전극에 대하여, 상기 열 전극의 열 도체를 전기적으로 브릿징하는 2개 이상의 열 점퍼 - 상기 2개 이상의 열 점퍼는 열 점퍼 지그재그 구조체를 구비함 - ;
    각각의 행 전극에 대하여, 상기 행 전극의 행 도체를 전기적으로 브릿징하는 2개 이상의 행 점퍼 - 상기 2개 이상의 행 점퍼는 행 점퍼 지그재그 구조체를 구비함 - ; 및
    인접한 열 전극 사이 및 인접한 행 전극 사이에 배치되는 복수의 의사 점퍼
    를 포함하고,
    각각의 음으로 기울어진 열 세그먼트의 열 세그먼트 중간포인트는 상기 디스플레이 그리드의 평면에 실질적으로 수직인 관찰 방향(viewing direction)으로부터 각각의 음으로 기울어진 행 세그먼트의 행 세그먼트 중간포인트와 시각적으로 교차하는 것인, 터치 감응 디스플레이 디바이스.
  12. 제11항에 있어서,
    각각의 열 전극에 대하여, 상기 2개 이상의 열 점퍼는 상기 열 전극의 열 도체들에 걸쳐 횡방향으로 연장되고,
    각각의 행 전극에 대하여, 상기 2개 이상의 행 점퍼는 상기 행 전극의 행 도체들에 걸쳐 종방향으로 연장되는 것인, 터치 감응 디스플레이 디바이스.
  13. 제12항에 있어서,
    각각의 열 전극에 대하여, 상기 2개 이상의 열 점퍼는 열 도체 세그먼트 중간포인트의 쌍에서 실질적으로 상기 열 전극의 열 도체를 전기적으로 브릿징하고,
    각각의 행 전극에 대하여, 상기 2개 이상의 행 점퍼는 행 도체 세그먼트 중간포인트의 쌍에서 실질적으로 상기 행 전극의 행 도체를 전기적으로 브릿징하는 것인, 터치 감응 디스플레이 디바이스.
  14. 제12항에 있어서,
    각각의 열 점퍼는 상기 디스플레이 그리드의 평면으로부터 비스듬히 대응 행 점퍼와 시각적으로 교차하는 것인, 터치 감응 디스플레이 디바이스.
  15. 제14항에 있어서,
    상기 교차는 열 점퍼 중간포인트 및 행 점퍼 중간포인트에서 발생하는 것인, 터치 감응 디스플레이 디바이스.
  16. 제15항에 있어서,
    상기 열 점퍼 중간포인트 및 상기 행 점퍼 중간포인트는 각각 상기 종축 및 상기 횡축에 대하여 정렬되는 것인, 터치 감응 디스플레이 디바이스.
  17. 제11항에 있어서,
    상기 양으로 기울어진 열 도체 세그먼트의 길이는 상기 음으로 기울어진 열 도체 세그먼트의 길이와 동등하고,
    상기 양으로 기울어진 행 도체 세그먼트의 길이는 상기 음으로 기울어진 행 도체 세그먼트의 길이와 동등하고,
    상기 양으로 기울어진 열 도체 세그먼트의 각도는 상기 음으로 기울어진 열 도체 세그먼트의 각도의 덧셈의 역원이고,
    상기 양으로 기울어진 행 도체 세그먼트의 각도는 상기 음으로 기울어진 행 도체 세그먼트의 각도의 덧셈의 역원인 것인, 터치 감응 디스플레이 디바이스.
  18. 제11항에 있어서,
    상기 열 도체 세그먼트 중간포인트 및 상기 행 도체 세그먼트 중간포인트는 각각 상기 종축 및 상기 횡축에 대하여 정렬되는 것인, 터치 감응 디스플레이 디바이스.
  19. 제11항에 있어서,
    각각의 음으로 기울어진 열 세그먼트의 열 세그먼트 중간포인트는 각각의 음으로 기울어진 행 세그먼트의 행 세그먼트 중간포인트와 실질적으로 시각적으로 교차하는 것인, 터치 감응 디스플레이 디바이스.
  20. 정전용량 터치 감응 센서를 구비한 디스플레이 디바이스에 있어서,
    횡축에 대하여 실질적으로 정렬되는 복수의 픽셀 행 및 종축에 대하여 실질적으로 정렬되는 복수의 픽셀 열을 포함하는 디스플레이 그리드;
    각각 상기 종축을 따라 실질적으로 연장되고, 열 도체 거리만큼 이격된 복수의 열 도체를 포함하는 열 전극 어레이 - 각각의 열 도체는 복수의 양으로 기울어진 열 도체 세그먼트와 음으로 기울어진 열 도체 세그먼트 쌍을 교대로 포함하고, 각각의 양으로 기울어진 열 도체 세그먼트와 음으로 기울어진 열 도체 세그먼트는 열 도체 세그먼트 중간포인트를 구비하고 상기 종축에 대하여 기울어짐 - ;
    각각 상기 횡축을 따라 실질적으로 연장되고, 행 도체 거리만큼 이격된 복수의 행 도체를 포함하는 행 전극 어레이 - 각각의 행 도체는 복수의 양으로 기울어진 행 도체 세그먼트와 음으로 기울어진 행 도체 세그먼트 쌍을 교대로 포함하고, 각각의 양으로 기울어진 행 도체 세그먼트와 음으로 기울어진 행 도체 세그먼트는 행 세그먼트 중간포인트를 구비하고 상기 횡축에 대하여 기울어짐 - ;
    각각의 열 전극에 대하여, 상기 열 전극의 열 도체를 전기적으로 브릿징하는 2개 이상의 열 점퍼 - 상기 2개 이상의 열 점퍼는 열 점퍼 지그재그 구조체를 구비함 - ;
    각각의 행 전극에 대하여, 상기 행 전극의 행 도체를 전기적으로 브릿징하는 2개 이상의 행 점퍼 - 상기 2개 이상의 행 점퍼는 행 점퍼 지그재그 구조체를 구비함 - ; 및
    인접한 열 전극 사이 및 인접한 행 전극 사이에 배치되는 복수의 의사 점퍼
    를 포함하고,
    상기 열 점퍼는 하나 이상의 각도로 각각의 열 도체와 교차하고,
    상기 행 점퍼는 상기 하나 이상의 각도로 각각의 행 도체와 교차하고,
    상가 열 점퍼의 서브셋은 상기 하나 이상의 각도로 상기 행 점퍼의 서브셋과 시각적으로 교차하고,
    각각의 음으로 기울어진 열 세그먼트의 열 세그먼트 중간포인트는 상기 디스플레이 그리드의 평면에 실질적으로 수직인 관찰 방향으로부터 각각의 음으로 기울어진 행 세그먼트의 행 세그먼트 중간포인트와 시각적으로 교차하는 것인, 터치 감응 디스플레이 디바이스.
KR1020167002045A 2013-06-24 2014-06-20 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스 KR102265351B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/925,770 2013-06-24
US13/925,770 US9377646B2 (en) 2013-06-24 2013-06-24 Capacitive touch sensor having oblique electrode matrix
PCT/US2014/043300 WO2014209766A1 (en) 2013-06-24 2014-06-20 Electrode matrix for a capacitive touch sensing display device

Publications (2)

Publication Number Publication Date
KR20160022925A KR20160022925A (ko) 2016-03-02
KR102265351B1 true KR102265351B1 (ko) 2021-06-14

Family

ID=51210772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167002045A KR102265351B1 (ko) 2013-06-24 2014-06-20 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스

Country Status (6)

Country Link
US (1) US9377646B2 (ko)
EP (1) EP3014403A1 (ko)
KR (1) KR102265351B1 (ko)
CN (1) CN105393198B (ko)
TW (1) TWI625663B (ko)
WO (1) WO2014209766A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9639221B2 (en) * 2014-09-25 2017-05-02 Eastman Kodak Company Method of designing a conductive pattern with reduced channel break visibility
JP2016126731A (ja) * 2015-01-08 2016-07-11 凸版印刷株式会社 タッチセンサ用電極、タッチパネル、および、表示装置
JP2016126730A (ja) * 2015-01-08 2016-07-11 凸版印刷株式会社 タッチセンサ用電極、タッチパネル、および、表示装置
CN105988613B (zh) * 2015-02-05 2019-06-18 鸿富锦精密工业(深圳)有限公司 触控感应电极层及显示装置
TWI585661B (zh) * 2015-02-05 2017-06-01 鴻海精密工業股份有限公司 觸控感應電極層及顯示裝置
KR102456050B1 (ko) * 2015-09-16 2022-10-20 삼성디스플레이 주식회사 터치 패널
CN105425443A (zh) * 2015-12-04 2016-03-23 江西沃格光电股份有限公司 具有高阻膜的内嵌式触摸屏及显示装置
US20180067578A1 (en) * 2016-09-02 2018-03-08 Innolux Corporation Display apparatus with touch detection function
US10507385B2 (en) 2017-01-25 2019-12-17 Kieran S. Lyden Game controller
KR20190015876A (ko) * 2017-08-07 2019-02-15 삼성전자주식회사 모아레 저감용 디스플레이 장치 및 그 구동방법
US10845902B2 (en) * 2018-03-30 2020-11-24 Sharp Kabushiki Kaisha Touch sensor for display
CN108803945B (zh) * 2018-09-05 2024-04-12 京东方科技集团股份有限公司 一种触摸屏及显示设备
WO2023026062A1 (en) * 2021-08-27 2023-03-02 Ronald Peter Binstead Element arrangement and associated method of manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239650A1 (en) * 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
US20100060602A1 (en) * 2008-09-05 2010-03-11 Mitsubishi Electric Corporation Touch screen, touch panel and display device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006081B2 (en) 2000-10-20 2006-02-28 Elo Touchsystems, Inc. Acoustic touch sensor with laminated substrate
US7009663B2 (en) 2003-12-17 2006-03-07 Planar Systems, Inc. Integrated optical light sensitive active matrix liquid crystal display
US7165323B2 (en) 2003-07-03 2007-01-23 Donnelly Corporation Method of manufacturing a touch screen
US7339579B2 (en) 2003-12-15 2008-03-04 3M Innovative Properties Company Wiring harness and touch sensor incorporating same
US7567240B2 (en) 2005-05-31 2009-07-28 3M Innovative Properties Company Detection of and compensation for stray capacitance in capacitive touch sensors
GB2428306B (en) 2005-07-08 2007-09-26 Harald Philipp Two-dimensional capacitive position sensor
JP2010097070A (ja) 2008-10-17 2010-04-30 Nitto Denko Corp フラットパネルディスプレイ用透明粘着シート及びフラットパネルディスプレイ
US9244568B2 (en) 2008-11-15 2016-01-26 Atmel Corporation Touch screen sensor
US20100214247A1 (en) 2009-02-20 2010-08-26 Acrosense Technology Co., Ltd. Capacitive Touch Panel
US20100218100A1 (en) 2009-02-25 2010-08-26 HNTB Holdings, Ltd. Presentation system
WO2010099132A2 (en) * 2009-02-26 2010-09-02 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
US8278571B2 (en) 2009-04-03 2012-10-02 Pixart Imaging Inc. Capacitive touchscreen or touchpad for finger and active stylus
CN101907922B (zh) 2009-06-04 2015-02-04 新励科技(深圳)有限公司 一种触感触控系统
US8310457B2 (en) 2009-06-30 2012-11-13 Research In Motion Limited Portable electronic device including tactile touch-sensitive input device and method of protecting same
US8599150B2 (en) * 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
KR101040881B1 (ko) 2010-04-12 2011-06-16 삼성모바일디스플레이주식회사 터치 스크린 패널
US8766931B2 (en) 2010-07-16 2014-07-01 Perceptive Pixel Inc. Capacitive touch sensor having code-divided and time-divided transmit waveforms
KR101560069B1 (ko) 2010-08-27 2015-10-26 유아이씨오, 인크. 동적 커패시턴스 제어 및 개선된 터치-감지를 갖는 용량성 터치 스크린
JP5514674B2 (ja) 2010-08-31 2014-06-04 富士フイルム株式会社 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
US9252768B2 (en) * 2010-09-13 2016-02-02 Atmel Corporation Position-sensing panel
KR101704536B1 (ko) 2010-10-08 2017-02-09 삼성전자주식회사 슬림형 터치 패널 및 이를 포함하는 휴대 단말기
US9007332B2 (en) 2011-03-22 2015-04-14 Atmel Corporation Position sensing panel
US8797285B2 (en) 2011-04-18 2014-08-05 Atmel Corporation Panel
US8780074B2 (en) 2011-07-06 2014-07-15 Sharp Kabushiki Kaisha Dual-function transducer for a touch panel
US9501179B2 (en) 2011-08-04 2016-11-22 Atmel Corporation Touch sensor for curved or flexible surfaces
KR20130027747A (ko) * 2011-09-08 2013-03-18 삼성전기주식회사 터치패널
KR101665210B1 (ko) 2011-09-13 2016-10-11 군제 가부시키가이샤 터치 패널
JP5506758B2 (ja) 2011-10-03 2014-05-28 三菱電機株式会社 タッチスクリーン、タッチパネル及びそれを備える表示装置
DE102011115851B4 (de) * 2011-10-13 2018-08-09 Polyic Gmbh & Co. Kg Kapazitives Sensorelement
JP5734828B2 (ja) 2011-12-07 2015-06-17 株式会社タッチパネル研究所 タッチパネル用構造材料及びタッチパネル構造体
US9360971B2 (en) 2012-02-10 2016-06-07 3M Innovative Properties Company Mesh patterns for touch sensor electrodes
US8773393B2 (en) 2012-02-28 2014-07-08 Eastman Kodak Company Touch screen with dummy micro-wires

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239650A1 (en) * 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
US20100060602A1 (en) * 2008-09-05 2010-03-11 Mitsubishi Electric Corporation Touch screen, touch panel and display device

Also Published As

Publication number Publication date
TW201502938A (zh) 2015-01-16
CN105393198A (zh) 2016-03-09
US20140375902A1 (en) 2014-12-25
KR20160022925A (ko) 2016-03-02
US9377646B2 (en) 2016-06-28
EP3014403A1 (en) 2016-05-04
CN105393198B (zh) 2019-01-29
TWI625663B (zh) 2018-06-01
WO2014209766A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
KR102265351B1 (ko) 정전용량 터치 감응 디스플레이 디바이스를 위한 전극 매트릭스
KR102265353B1 (ko) 의사 점퍼를 가지는 정전용량 터치 센서
KR102405198B1 (ko) 감소된 모아레 패턴들을 갖는 터치 디스플레이 시스템
JP6312855B2 (ja) 導通電極、導電性フィルム、及びこれを備えるタッチパネルセンサ、並びに、タッチパネルセンサ
KR102189012B1 (ko) 터치 센서용 전극, 터치 패널 및 표시 장치
US20160085339A1 (en) Touch panel substrate and electronic apparatus
CN108780373A (zh) 具有周期性电极的菱形网格电极矩阵
JP6559552B2 (ja) 導電性フィルム、タッチパネル、および、表示装置
TW201312432A (zh) 電容式觸碰感測器面板、包含其之電容式觸碰感測器系統及資訊輸入輸出元件
JP2018081485A (ja) タッチセンサ用電極、タッチパネル、および、表示装置
JP6391978B2 (ja) タッチセンサ用電極、タッチパネル、および、表示装置
KR20150026576A (ko) 터치 감지 전극 및 이를 구비하는 터치 스크린 패널
JP7159857B2 (ja) タッチセンサ用電極、タッチパネル、および、表示装置
JP2016200943A (ja) 表示装置
JP2014074839A (ja) 表示装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant