KR102133181B1 - 인버터 제어장치 - Google Patents

인버터 제어장치 Download PDF

Info

Publication number
KR102133181B1
KR102133181B1 KR1020180053451A KR20180053451A KR102133181B1 KR 102133181 B1 KR102133181 B1 KR 102133181B1 KR 1020180053451 A KR1020180053451 A KR 1020180053451A KR 20180053451 A KR20180053451 A KR 20180053451A KR 102133181 B1 KR102133181 B1 KR 102133181B1
Authority
KR
South Korea
Prior art keywords
frequency
rotor
voltage
current
magnetic flux
Prior art date
Application number
KR1020180053451A
Other languages
English (en)
Other versions
KR20190129186A (ko
Inventor
최승철
이학준
Original Assignee
엘에스일렉트릭(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭(주) filed Critical 엘에스일렉트릭(주)
Priority to KR1020180053451A priority Critical patent/KR102133181B1/ko
Publication of KR20190129186A publication Critical patent/KR20190129186A/ko
Application granted granted Critical
Publication of KR102133181B1 publication Critical patent/KR102133181B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

인버터 제어장치가 개시된다. 본 발명의 제어장치는, 전압/주파수(V/f) 운전을 기반으로, 지령주파수로부터 지령전압을 출력하고, 상기 지령전압에 해당하는 펄스폭변조(PWM) 전압을 인버터로 출력하는 지령전압 발생부와, 상기 인버터를 구동하는 전동기의 상전류와 상기 지령전압을 이용하여 슬립주파수를 결정하는 슬립주파수 결정부를 포함하고, 상기 슬립주파수 결정부는, 상기 전동기의 상전류를 정지좌표계의 dq축 전류로 변환하는 제1변환부; 상기 지령전압을 정지좌표계의 dq축 전압으로 변환하는 제2변환부; 상기 dq축 전류, 상기 dq축 전압 및 회전자 지령자속으로부터 필터에 의한 위상왜곡을 상쇄하는 회전자 자속을 추정하는 제1추정부; 상기 회전자 자속으로부터 회전자 자속의 위상각을 추정하는 제2추정부; 상기 전동기의 상전류를 상기 위상각을 이용하여 회전좌표계의 토크분 전류 및 자속분 전류로 변환하는 제3변환부; 및 상기 토크분 전류, 상기 자속분 전류 및 회전자 시정수를 이용하여 추정 슬립주파수를 출력하는 제3추정부를 포함한다.

Description

인버터 제어장치{APPARATUS FOR CONTROLLING INVERTER}
본 발명은 인버터 제어장치에 대한 것이다.
일반적으로, 인버터는 상용 교류전원을 입력으로 하여 이를 직류전원으로 변환한 후, 다시 전동기에 적합한 교류전원으로 변환하여 전동기에 공급하는 전력변환장치로써, 교류전압의 크기와 주파수를 제어할 수 있으므로 가변속(variable speed) 운전이 요구되는 시스템에 널리 사용되고 있다.
이러한 인버터는 전력용 반도체를 기반으로 하는 것으로서, 적용분야에 따라 다양한 구성(topology)이 가능하고, 구성방식에 따라 출력전압의 크기와 레벨수 및 전압합성방식 등이 달라진다. 산업용 인버터로써는 주로 3상 하프 브릿지 인버터가 많이 사용되고 있다. 3상 하프 브릿지 인버터는 3개의 단상 하프 브릿지 인버터가 병렬연결된 구조이고, 각각의 하프 브릿지는 극(pole), 암(arm) 또는 레그(leg)라 불리는 인버터를 구성하는 기본회로이다.
산업계에서 많이 사용되는 유도전동기는 전압/주파수(V/f) 운전으로 주파수제어가 가능하므로, 정격속도 이하의 운전영역에서 빠른 동특성이 요구되지 않는 팬, 펌프, 블러워와 같은 분야에 주로 사용되고 있다.
그러나, 부하가 가변하는 어플리케이션에 따라 슬립주파수가 발생하므로, 일정속도 운전이 불가능하다. 특히, 컨베이어와 같이 일정한 속도운전이 요구되는 분야에서는 실제 운전속도가 지령속도와 일치하도록 적절하게 슬립주파수를 보상하여야 한다. 즉, 전압/주파수 운전에서, 슬립주파수 발생으로 인한 속도오차를 개선하여, 부하에 관계없이 일정한 속도의 운전이 가능하게 하는 인버터 제어가 요구된다.
도 1은 일반적인 인버터 제어 시스템을 나타내는 구성도이다.
인버터 제어부(300)는 지령전압 발생부(310)와 슬립주파수 결정부(320)를 포함하며, 인버터(100)에 3상 PWM 전압을 출력한다. 인버터(100)는 3상 PWM 전압에 의해 전동기(200)로 3상 출력전압을 제공한다.
지령전압 발생부(310)는 지령주파수 ωref을 입력받아, 전압/주파수(V/f) 운전을 기반으로 지령주파수 ωref에 해당하는 인버터(100)의 지령전압을 생성한다. 이때 지령전압 발생부(310)는 출력전압과 주파수의 비가 일정하도록 지령전압을 생성한다. 슬립주파수 결정부(320)는 속도오차에 해당하는 슬립주파수를 결정하고, 인버터 제어부(300)는 슬립주파수를 지령주파수에 가산하여 속도오차를 감소시킨다.
도 2는 지령전압 발생부(310)의 상세 구성도이다.
전압결정부(311)가 운전주파수 ωV/f로부터 출력전압의 크기 Vv/f를 결정하고, 적분기(312)와 삼각함수 적용부(313)를 통해 출력전압의 위상 θv/f를 결정하여, 곱셈부(314)에 의해 3상 교류 정현파인 지령전압 Vas_ref, Vbs_ref, Vcs_ref를 출력되고, 이로부터 PWM 출력부(315)에 의해 지령전압에 해당하는 3상 PWM 전압으로 합성된다.
도 3은 주파수-전압관계를 설명하기 위한 예시도이다. 인버터 출력주파수에 비례하여 출력전압이 증가하며, 전압결정부(311)는 이와 같은 관계에 따라 운전주파수 ωV/f로부터 출력전압의 크기 Vv/f를 결정하게 된다. 인버터(100)의 초기기동시 인버터의 운전주파수 ωV/f는 0부터 시작하므로 작은 전압을 출력하며, 주파수가 증가함에 따라 주파수에 비례하는 크기의 전압을 출력한다. 출력주파수가 목표주파수 ωref에 도달하면 더이상 주파수는 증가되지 않고 정속도 운전을 하게 된다.
도 4는 도 1의 인버터(100)의 상세 구성도이다.
직류전압 제공부(110)로부터 제공되는 직류전압을 이용하여 인버터부(120)는 3상의 교류 출력전압을 출력하며, 3상부하인 전동기(200)에 전력을 공급한다. 3상의 출력전압은 인버터부(120)의 3상 스위치의 온/오프 상태에 따라 결정된다.
각 상의 레그에는 2개의 스위치가 직렬연결되며, 각 상은 서로 독립적으로 동작하여 출력전압이 발생된다. 각 상의 출력전압은 서로 120도의 위상차를 가지도록 제어된다.
직류전압 제공부(110)는 캐패시터 또는 배터리로 구성되며, 일정한 전압을 유지한다. 인버터부(120)의 스위치는 직류전압을 교류전압으로 변환하는 장치이다.
인버터 제어부(300)는 지령주파수와 동일한 속도로 전동기(200)가 회전하도록 인버터부(120)의 스위칭 상태를 결정한다.
도 5는 도 1의 슬립주파수 결정부(320)의 상세 구성도이다.
제1좌표변환부(321)는 3상 abc축 전류 Ias, Ibs, Ics를 정지좌표계 dq축 전류 Idss, Iqss로 변환하고, 제2좌표변환부(322)는 정지좌표계 dq축 전류 Idss, Iqss를 회전좌표계 전류 Idse, Iqse로 변환한다. 이를 수학식으로 나타내면 다음과 같다.
Figure 112018045803621-pat00001
Figure 112018045803621-pat00002
Figure 112018045803621-pat00003
Figure 112018045803621-pat00004
인버터 출력전압의 크기 VV/f와 유효전류 Iqse의 곱이 곱셈부(323)에 의해 결정되어, 출력전력 결정부(324)가 극수(P)를 고려하여 출력전력을 결정한다. 계산부(325)는 계산된 출력전력을 운전주파수 ωV/f로 나누어 출력토크 Tload를 결정하고, 정격 슬립주파수와 정격토크의 비를 적용하여(326), 저대역 필터링을 통해(327) 슬립주파수를 결정한다.
이때 유효전류 Iqse를 결정하기 위해 사용되는 위상각은 운전주파수에 대한 지령위상각 θv/f이다.
위에서 설명한 전압/주파수 제어는 산업계에서 많이 이용되는 전동기 구동방법으로서, 속도제어가 가능하고 구현이 쉬운 장점이 있다. 그러나, 부하가 큰 운전조건에서는 슬립주파수의 증가로 인하여 사용자가 입력한 속도와 다르게 전동기가 회전하게 되어 속도정확도가 낮아지는 문제점이 있다.
이를 보완하기 위해, 인버터 제어부(300)는 슬립주파수를 적절히 보상하여 인버터의 운전주파수를 증가시킨다. 위에서 설명한 바와 같이, 종래의 슬립주파수 보상은, 인버터의 출력전력과 토크를 계산하고, 슬립주파수와 토크비를 통해 슬립주파수를 추정하는 것이다.
그러나, 출력토크 계산에서 인버터(100)의 운전주파수와 실제 전동기(200)의 회전주파수를 근사화하여 토크를 계산하게 되는데, 저속 운전영역에서는 인버터(100)의 운전주파수와 전동기(200)의 회전주파수간 오차가 상대적으로 크고, 전동기(200)의 손실의 영향이 크므로, 정확한 출력전력, 토크 및 슬립주파수 계산이 어려운 문제점이 있다.
본 발명이 해결하고자 하는 기술적 과제는, 저속 운전영역에서 회전자 자속을 직접 추정하고, 이로부터 자속분 전류 및 토크분 전류를 계산하여 이를 통해 슬립주파수를 추정함으로써, 정확하게 전동기의 속도를 제어하는, 인버터 제어장치를 제공하는 것이다.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일실시예의 인버터 제어장치는, 전압/주파수(V/f) 운전을 기반으로, 지령주파수로부터 지령전압을 출력하고, 상기 지령전압에 해당하는 펄스폭변조(PWM) 전압을 인버터로 출력하는 지령전압 발생부; 및 상기 인버터를 구동하는 전동기의 상전류와 상기 지령전압을 이용하여 슬립주파수를 결정하는 슬립주파수 결정부를 포함하고, 상기 슬립주파수 결정부는, 상기 전동기의 상전류를 정지좌표계의 dq축 전류로 변환하는 제1변환부; 상기 지령전압을 정지좌표계의 dq축 전압으로 변환하는 제2변환부; 상기 dq축 전류, 상기 dq축 전압 및 회전자 지령자속으로부터 필터에 의한 위상왜곡을 상쇄하는 회전자 자속을 추정하는 제1추정부; 상기 회전자 자속으로부터 회전자 자속의 위상각을 추정하는 제2추정부; 상기 전동기의 상전류를 상기 위상각을 이용하여 회전좌표계의 토크분 전류 및 자속분 전류로 변환하는 제3변환부; 및 상기 토크분 전류, 상기 자속분 전류 및 회전자 시정수를 이용하여 추정 슬립주파수를 출력하는 제3추정부를 포함할 수 있다.
본 발명의 일실시예에서, 상기 제1추정부는, 다음 수학식에 의해 회전자 자속을 추정할 수 있다.
Figure 112018045803621-pat00005
여기서, λdqrs_est는 추정된 회전자 자속이고, F(s)는 고역통과필터로서
Figure 112018045803621-pat00006
이며, λdqrs_VM은 유도전동기 회전자 자속으로
Figure 112018045803621-pat00007
이고, λdqrs_ref는 지령자속으로
Figure 112018045803621-pat00008
,
Figure 112018045803621-pat00009
일 수 있다. 이때, λrated는 정격자속이고, θest는 상기 위상각일 수 있다. 또, α는 상기 고역통과필터에 의해 왜곡된 위상일 수 있다.
본 발명의 일실시예에서, 상기 제2추정부는, 정지좌표계 회전자 자속을 회전좌표계 회전자 자속으로 변환하는 제4변환부; 상기 회전좌표계 회전자 자속의 q축 성분이 0이 되도록 제어하여 회전자 자속의 주파수를 출력하는 비례적분 제어기; 및 회전자 자속의 주파수를 적분하여 위상각을 출력하는 적분기를 포함할 수 있다.
본 발명의 일실시예에서, 상기 제2추정부는, 상기 추정 슬립주파수를 저역통과하여 보상 슬립주파수를 출력하는 저역통과필터를 더 포함할 수 있다.'
본 발명의 일실시예에서, 상기 적분기는, 상기 회전자 자속의 주파수와 상기 보상 슬립주파수의 합을 적분할 수 있다.
본 발명의 일실시예에서, 상기 제4변환부는, 상기 위상각을 좌표변환에 이용할 수 있다.
본 발명의 일실시예에서, 상기 제3추정부는, 다음 식에 의해 추정 슬립주파수를 추정할 수 있다.
Figure 112018045803621-pat00010
이때 Itorque는 토크분 전류이고, Iflux는 자속분 전류이고, Tr은 회전자 시정수일 수 있다.
본 발명의 일실시예에서, 상기 지령전압 발생부는, 상기 지령주파수와 상기 보상 슬립주파수의 합에 해당하는 운전주파수로부터 지령전압을 출력할 수 있다.
상기와 같은 본 발명은, 회전자 자속과 위상각을 추정하고, 추정된 회전자 자속의 위상각을 기반으로 슬립주파수를 보상하여, 부하에 관계없이 일정한 속도로 인버터가 운전하도록 제어하게 하는 효과가 있다.
본 발명에 의하면, 인버터의 저속 운전영역에서 인버터의 운전주파수와 전동기간 회전주파수의 오차가 상대적으로 큰 영역에서도 정확하게 슬립주파수를 보상함으로써, 부하에 관계없이 일정한 속도로 운전하도록 제어하게 하는 효과가 있다.
도 1은 일반적인 인버터 제어 시스템을 나타내는 구성도이다.
도 2는 지령전압 발생부의 상세 구성도이다.
도 3은 주파수-전압관계를 설명하기 위한 예시도이다.
도 4는 도 1의 인버터의 상세 구성도이다.
도 5는 도 1의 슬립주파수 결정부의 상세 구성도이다.
도 6은 본 발명의 일실시예의 인버터 시스템을 설명하기 위한 개략 구성도이다.
도 7은 본 발명의 일실시예에서 슬립주파수 결정부의 구성도이다.
도 8은 도 7의 각 구성의 상세 회로구성도이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하에서는, 도 6 및 도 7을 참조하여 본 발명의 일실시예에 따른 인버터 제어장치를 설명하기로 한다.
도 6은 본 발명의 일실시예의 인버터 시스템을 설명하기 위한 개략 구성도이다.
도면에 도시된 바와 같이, 본 발명의 일실시예의 시스템은, 인버터(1)를 제어하는 인버터 제어부(3)와, 인버터(1)로부터 출력되는 교류전압에 의해 구동되는 전동기(2)로 구성될 수 있다.
인버터 제어부(3)는, 지령전압 발생부(10) 및 슬립주파수 결정부(20)를 포함할 수 있다. 본 발명의 일실시예의 인버터 제어부(3)는, 도 1의 시스템과 달리, 전동기(2)의 고정자 전압과 전류를 사용하여 직접 회전자 자속을 추정하고 위상각을 계산할 수 있다.
지령전압 발생부(10)는 지령주파수 ωref와 보상 슬립주파수 ωslip_comp의 합에 해당하는 주파수를 운전주파수로 입력받아, 전압/주파수(V/f) 운전을 기반으로 운전주파수에 해당하는 인버터(1)의 지령전압을 생성할 수 있다. 이때 지령전압 발생부(10)는 출력전압과 주파수의 비가 일정하도록 지령전압을 생성할 수 있다.
지령전압 발생부(10)의 세부 구성은 도 2에서 설명한 바와 같다.
즉, 운전주파수로부터, 도 3의 주파수-전압관계에 따라 출력전압의 크기 Vv/f가 결정되고, 적분 및 삼각함수 적용을 통해 출력전압의 위상 θv/f이 결정될 수 있으며, 곱셈부에 의해 3상 교류 정현파인 지령전압 Vas_ref, Vbs_ref, Vcs_ref를 출력되고, 이로부터 지령전압에 해당하는 3상 PWM 전압 Vabc_PWM으로 합성될 수 있다.
슬립주파수 결정부(20)는 전동기(2)의 상전류와 지령전압 발생부(10)에서 출력되는 지령전압 Vabc_ref를 사용하여 슬립주파수를 결정할 수 있다. 도시되지는 않았으나, 전동기(2)의 상전류 측정을 위해 전류센서가 이용될 수 있을 것이다.
본 발명의 슬립주파수 결정부(20)는 지령전압 Vabc_ref와 전동기 전류 Iabcn으로부터 회전자 자속 λdqr_est과 위상각 θest을 추정하고, 전류와 슬립주파수의 관계로부터 슬립주파수를 보상할 수 있다.
도 7은 본 발명의 일실시예에서 슬립주파수 결정부(20)의 구성도이고, 도 8은 도 7의 각 구성의 상세 회로구성도이다.
도면에 도시된 바와 같이, 본 발명의 일실시예의 슬립주파수 결정부(20)는, 제1좌표변환부(21), 제2좌표변환부(22), 제3좌표변환부(23), 회전자 자속추정부(24), 회전자 자속각 추정부(25) 및 슬립주파수 출력부(26)를 포함할 수 있다.
제1좌표변환부(21)는 3상 abc축 고정자 전류를 정지좌표계 dq축 전류로 변환할 수 있다. 제2좌표변환부(22)는 3상 abc축 고정자 전압을 정지좌표계 dq축 전압으로 변환할 수 있다. 좌표변환된 전압 Vdqss과 전류 Idqss는 회전자 자속추정부(24)로 입력되고, 이로부터 정지좌표계 회전자 자속 λdqrs_est가 추정될 수 있다.
회전자 자속은 다음 식에 의해 추정될 수 있다.
Figure 112018045803621-pat00011
Figure 112018045803621-pat00012
Figure 112018045803621-pat00013
이때 λrated는 정격자속이고, θest는 회전자 자속의 위상각(자속각)이다.
수학식 2에서, Kp와 Ki는 비례적분 제어기 이득이고, λdqrs_ref는 지령자속으로 수학식 3과 같다. 위 수학식 2에서 첫번째 항은 2차 고역통과필터와 유도전동기 회전자 자속 λdqrs_VM의 곱이고, 두번째 항은 2차 저역통과필터와 지령자속의 곱이다. 본 발명의 일실시예에서, 각 필터의 차단주파수는 비례적분 제어기의 이득으로 선정될 수 있다.
비례적분 제어기는 오차신호를 적분하여 제어신호를 만들어내는 적분제어를 비례제어와 병렬로 연결하여 사용하는 제어방식으로서,
Figure 112018045803621-pat00014
가 비례적분 제어기의 전달함수이다. 본 발명이 속하는 기술분야에서 비례적분 제어기의 구성은 이미 널리 알려진 바와 같으므로, 그 상세한 구성의 설명은 생략하기로 한다.
또, 수학식 2에서, λdqrs_VM은 유도전동기 회전자 자속으로서, 아래 수학식과 같다.
Figure 112018045803621-pat00015
위 수학식 4의 회전자 자속식은 유도전동기의 전압 방정식으로부터 계산된 식으로, 고속에서 회전자 추정이 용이한 반면, 저속영역에서 전압 또는 전류정보의 옵셋(offset)에 의한 적분기(
Figure 112018045803621-pat00016
)의 발산으로 인해 자속의 추정이 어렵다. 이를 위해, 본 발명의 일실시예의 회전자 자속추정부(24)는, 수학식 2와 같이 고역통과필터를 사용하여 회전자 자속을 추정하고, 회전자 지령자속을 저역통과필터를 통해 보완함으로써 개선할 수 있다.
그러나, 필터사용에 따라 추정자속에 위상왜곡이 발생하므로 정확한 위상각 추정이 어려워진다. 위상각 정보는 시스템 성능에 영향을 미치는 요소이므로, 추정자속의 정확한 위상각 정보는 필수적이다.
위상왜곡의 원인은 아래 수학식을 통해 확인할 수 있다.
Figure 112018045803621-pat00017
Figure 112018045803621-pat00018
위 수학식 5는 수학식 2를 재구성한 것으로서, F(s)는 2차 고역통과필터를 나타낸다. 수학식 5에서 알 수 있듯이, 전압방정식을 통해 추정된 자속과 지령자속간 오차가 있는 경우, F(s)의 영향이 크고, 위상왜곡도 야기될 수 있다. 따라서, F(s)에 의한 위상왜곡을 상쇄하기 위해, 아래 수학식을 통해 위상을 보상할 수 있다.
Figure 112018045803621-pat00019
Figure 112018045803621-pat00020
Figure 112018045803621-pat00021
Figure 112018045803621-pat00022
이때 ωe는 동기주파수이고, 도 7의 경우 ωe_est이다. 그리고 α는 필터에 의해 왜곡된 위상이다.
수학식 6은 수학식 5에 위상보상을 적용한 것으로서, 본 발명의 일실시예의 회전자 자속추정부(24)의 출력에 해당하는 것이다. 수학식 6을 통해 알 수 있듯이, 왜곡된 위상만큼 반대방향으로 위상을 보상하게 됨을 알 수 있다.
회전자 자속추정부(24)의 T(θ)는 정지좌표계 변수를 회전좌표계 변수로 변환하며, 다음 식으로 정의할 수 있다.
Figure 112018045803621-pat00023
Figure 112018045803621-pat00024
여기서, Xds와 Xqs는 정지좌표계 변수이고, Xde와 Xqe는 회전좌표계 변수이며, θ는 위상을 나타낸다.
제3좌표변환부(23)는 정지좌표계 변수를 회전좌표계 변수로 변환할 수 있다. 이때, 회전자 자속각 추정부(25)에 의해 추정된 회전자 자속의 위상각을 좌표변환에 이용할 수 있으며, 유효전류가 아닌 토크분 전류 Itorque와 자속분 전류 Iflux를 출력할 수 있다.
슬립주파수 출력부(26)는 토크분 전류와 자속분 전류 및 회전자 시정수 Tr를 통해 아래와 같이 슬립주파수를 출력할 수 있다.
Figure 112018045803621-pat00025
이와 같이 출력된 슬립주파수(추정 슬립주파수)는 회전자 자속각 추정부(25)의 저역통과필터(LPF)를 거쳐 보상 슬립주파수 ωslip_comp으로 출력될 수 있다. 이러한 보상 슬립주파수는 속도오차에 해당하며, 본 발명의 일실시예의 인버터 제어부(3)는 보상 슬립주파수를 지령주파수에 가산하여 운전주파수를 결정함으로써, 부하에 관계없이 일정한 속도제어가 가능하다.
또한, 회전자 자속각 추정부(25)는 회전자 자속추정부(24)에 의해 추정된 회전자 자속 λdqr_est으로부터 회전자 자속각 θest를 추정할 수 있다.
회전자 자속각 추정부(25)는 위상동기회로(phase locked loop. PLL) 형식으로 구성될 수 있다. PLL은 입력신호와 출력신호에서 피드백된 신호와의 위상차를 이용하여 출력신호를 제어하는 시스템으로서, 입력된 신호에 맞추어 출력신호의 주파수를 조절하는 것을 말한다.
회전자 자속각 추정부(25)는 정지좌표계 회전자 자속을 회전좌표계 회전자 자속으로 변환할 수 있다(T(θest)).
또한, 회전자 자속각 추정부(25)는 비례적분 제어기(
Figure 112018045803621-pat00026
)를 사용하여, 회전자 자속각 기준의 dq축 동기좌표계에서 회전자 자속의 q축 성분 λqre_est이 0이 되도록 제어할 수 있으며, 비례적분 제어기의 출력과 보상 슬립주파수를 합산하여 회전자 자속의 주파수 ωe_est를 결정하고, 이를 적분하여 회전자 자속의 위상각 θest를 추정할 수 있을 것이다.
본 발명의 일실시예에 의하면, 회전자 자속과 위상각을 추정하고, 추정된 회전자 자속의 위상각을 기반으로 슬립주파수를 보상하여, 부하에 관계없이 일정한 속도로 운전하도록 제어할 수 있다.
본 발명의 일실시예에 의하면, 인버터의 저속 운전영역에서 인버터(1)의 운전주파수와 전동기(2)간 회전주파수의 오차가 상대적으로 큰 영역에서도, 정확하게 슬립주파수를 보상함으로써, 부하에 관계없이 일정한 속도로 운전하도록 제어할 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.
1: 인버터 2: 전동기
3: 인버터 제어부 10: 지령전압 발생부
20: 슬립주파수 결정부

Claims (8)

  1. 전압/주파수(V/f) 운전을 기반으로, 지령주파수로부터 지령전압을 출력하고, 상기 지령전압에 해당하는 펄스폭변조(PWM) 전압을 인버터로 출력하는 지령전압 발생부; 및
    상기 인버터를 구동하는 전동기의 상전류와 상기 지령전압을 이용하여 슬립주파수를 결정하는 슬립주파수 결정부를 포함하고, 상기 슬립주파수 결정부는,
    상기 전동기의 상전류를 정지좌표계의 dq축 전류로 변환하는 제1변환부;
    상기 지령전압을 정지좌표계의 dq축 전압으로 변환하는 제2변환부;
    상기 dq축 전류, 상기 dq축 전압 및 회전자 지령자속으로부터 필터에 의한 위상왜곡을 상쇄하는 회전자 자속을 추정하는 제1추정부;
    상기 회전자 자속으로부터 회전자 자속의 위상각을 추정하는 제2추정부;
    상기 전동기의 상전류를 상기 위상각을 이용하여 회전좌표계의 토크분 전류 및 자속분 전류로 변환하는 제3변환부; 및
    상기 토크분 전류, 상기 자속분 전류 및 회전자 시정수를 이용하여 추정 슬립주파수를 출력하는 제3추정부를 포함하는 인버터 제어장치.
  2. 제1항에 있어서, 상기 제1추정부는, 다음 수학식에 의해 회전자 자속을 추정하는 인버터 제어장치.
    Figure 112018045803621-pat00027

    (여기서, λdqrs_est는 추정된 회전자 자속이고, F(s)는 고역통과필터로서
    Figure 112018045803621-pat00028
    이며, λdqrs_VM은 유도전동기 회전자 자속으로
    Figure 112018045803621-pat00029
    이고, λdqrs_ref는 지령자속으로
    Figure 112018045803621-pat00030
    ,
    Figure 112018045803621-pat00031
    임. 이때, λrated는 정격자속이고, θest는 상기 위상각임. 또, α는 상기 고역통과필터에 의해 왜곡된 위상임)
  3. 제1항에 있어서, 상기 제2추정부는,
    정지좌표계 회전자 자속을 회전좌표계 회전자 자속으로 변환하는 제4변환부;
    상기 회전좌표계 회전자 자속의 q축 성분이 0이 되도록 제어하여 회전자 자속의 주파수를 출력하는 비례적분 제어기; 및
    회전자 자속의 주파수를 적분하여 위상각을 출력하는 적분기를 포함하는 인버터 제어장치.
  4. 제3항에 있어서, 상기 제2추정부는,
    상기 추정 슬립주파수를 저역통과하여 보상 슬립주파수를 출력하는 저역통과필터를 더 포함하는 인버터 제어장치.
  5. 제4항에 있어서, 상기 적분기는,
    상기 회전자 자속의 주파수와 상기 보상 슬립주파수의 합을 적분하는 인버터 제어장치.
  6. 제3항에 있어서, 상기 제4변환부는,
    상기 위상각을 좌표변환에 이용하는 인버터 제어장치.
  7. 제1항에 있어서, 상기 제3추정부는, 다음 식에 의해 추정 슬립주파수를 추정하는 인버터 제어장치.
    Figure 112018045803621-pat00032

    (이때 Itorque는 토크분 전류이고, Iflux는 자속분 전류이고, Tr은 회전자 시정수임)
  8. 제4항에 있어서, 상기 지령전압 발생부는,
    상기 지령주파수와 상기 보상 슬립주파수의 합에 해당하는 운전주파수로부터 지령전압을 출력하는 인버터 제어장치.
KR1020180053451A 2018-05-10 2018-05-10 인버터 제어장치 KR102133181B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180053451A KR102133181B1 (ko) 2018-05-10 2018-05-10 인버터 제어장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180053451A KR102133181B1 (ko) 2018-05-10 2018-05-10 인버터 제어장치

Publications (2)

Publication Number Publication Date
KR20190129186A KR20190129186A (ko) 2019-11-20
KR102133181B1 true KR102133181B1 (ko) 2020-07-13

Family

ID=68729221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180053451A KR102133181B1 (ko) 2018-05-10 2018-05-10 인버터 제어장치

Country Status (1)

Country Link
KR (1) KR102133181B1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253576A (ja) * 1993-03-03 1994-09-09 Matsushita Electric Ind Co Ltd 電動機制御装置
KR100256315B1 (ko) * 1997-07-25 2000-05-15 구자홍 유도전동기의슬립주파수형벡터제어장치
KR100421612B1 (ko) * 2001-05-09 2004-03-09 엘지산전 주식회사 유도 전동기의 벡터 제어 장치
KR100845110B1 (ko) * 2006-12-29 2008-07-09 엘에스산전 주식회사 센서리스 인버터의 관성 모멘트 추정방법
KR101073688B1 (ko) * 2010-01-25 2011-10-14 강원대학교산학협력단 유도 전동기의 회전자 속도 추정 장치

Also Published As

Publication number Publication date
KR20190129186A (ko) 2019-11-20

Similar Documents

Publication Publication Date Title
US6650081B2 (en) Synchronous motor driving system
KR102285041B1 (ko) 인버터 제어 장치 및 모터 구동 시스템
KR101046802B1 (ko) 교류 회전기의 제어 장치 및 이 제어 장치를 사용한 교류회전기의 전기적 정수 측정 방법
JP3843391B2 (ja) 同期電動機駆動装置
US20170264227A1 (en) Inverter control device and motor drive system
JP7270391B2 (ja) 電力変換装置の制御装置および電動機駆動システム
JPH11299297A (ja) 永久磁石同期電動機の制御装置
EP2690775A2 (en) Drive system for alternating current motors and electric motorized vehicles
JP2002136197A (ja) センサレスベクトル制御装置およびその方法
JP6914787B2 (ja) モータ制御用集積回路
JP2013150498A (ja) 同期電動機の制御装置及び制御方法
KR102133181B1 (ko) 인버터 제어장치
KR102255250B1 (ko) 인버터 제어장치
JP7251424B2 (ja) インバータ装置及びインバータ装置の制御方法
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
KR100459470B1 (ko) 유도전동기에서 고주파 주입을이용한 속도 센서리스 벡터 제어기
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
Korlinchak et al. Discrete time integration of observers with continuous feedback based on Tustin's method with variable prewarping
KR102255276B1 (ko) 인버터 제어장치
JP7226211B2 (ja) インバータ装置及びインバータ装置の制御方法
JP7272909B2 (ja) 電力変換装置及び電力変換方法
JP2006271198A (ja) 同期電動機駆動装置
JP3124019B2 (ja) 誘導電動機の制御装置
JP2020178508A (ja) インバータ装置及びインバータ装置の制御方法
JP5710034B1 (ja) 電動機の駆動装置および駆動方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant