KR102067712B1 - 열전 모듈 및 그 제조 방법 - Google Patents

열전 모듈 및 그 제조 방법 Download PDF

Info

Publication number
KR102067712B1
KR102067712B1 KR1020150186505A KR20150186505A KR102067712B1 KR 102067712 B1 KR102067712 B1 KR 102067712B1 KR 1020150186505 A KR1020150186505 A KR 1020150186505A KR 20150186505 A KR20150186505 A KR 20150186505A KR 102067712 B1 KR102067712 B1 KR 102067712B1
Authority
KR
South Korea
Prior art keywords
layer
diffusion barrier
thermoelectric
thermal expansion
thermoelectric element
Prior art date
Application number
KR1020150186505A
Other languages
English (en)
Other versions
KR20170076358A (ko
Inventor
이재기
김동식
박예록
박철희
이대기
이승협
최현우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150186505A priority Critical patent/KR102067712B1/ko
Publication of KR20170076358A publication Critical patent/KR20170076358A/ko
Application granted granted Critical
Publication of KR102067712B1 publication Critical patent/KR102067712B1/ko

Links

Images

Classifications

    • H01L35/04
    • H01L35/12
    • H01L35/32
    • H01L35/34

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

열전 소자와 전극 사이에 개선된 접합 기술이 적용되어 열전 성능이 우수하고 접합성이 향상된 열전 모듈 및 그 제조 방법을 제공한다. 본 발명에 따른 열전 모듈은, 열전 반도체로 구성된 복수의 열전 소자; 전기 전도성 재질로 구성되어 상기 열전 소자 사이에 연결된 전극; 상기 열전 소자와 상기 전극 사이에 개재되어 상기 열전 소자와 상기 전극 사이를 접합시키는 접합층(bonding layer); 상기 접합층과 열전 소자 사이에 형성된 확산방지층(diffusion barrier layer)을 포함하며, 상기 확산방지층은 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층(engineering layer)의 다층막 구조이다.

Description

열전 모듈 및 그 제조 방법{Thermoelectric module and method for fabricating the same}
본 발명은 열전 기술에 관한 것으로서, 특히 열전 소자와 전극 사이에 개선된 접합 기술이 적용된 열전 모듈과 그러한 열전 모듈을 제조하는 방법에 관한 것이다.
고체 상태인 재료의 양단에 온도차가 있으면 열 의존성을 갖는 캐리어(전자 혹은 홀)도 그 양단에서 농도 차이가 발생하고 이것은 열기전력이라는 전기적인 현상, 즉 열전 현상으로 나타난다. 이와 같이 열전 현상은 온도의 차이와 전기 전압 사이의 가역적이고도 직접적인 에너지 변환을 의미한다. 이러한 열전 현상은 전기적 에너지를 생산하는 열전 발전과, 반대로 전기 공급에 의해 양단의 온도차를 유발하는 열전 냉각/가열로 구분할 수 있다.
열전 현상을 보이는 열전 재료, 즉 열전 반도체는 발전과 냉각 과정에서 오염 물질의 배출이 없어 친환경적이고 지속가능한 장점이 있어서 많은 연구가 이루어지고 있다. 더욱이, 소각로나 각종 산업 설비에서 발생하는 폐열이나 태양열, 지열, 하천수열과 같은 자연열에서 직접 전력을 생산해낼 수 있으므로, 신재생 에너지 관련 분야 등에서 열전 재료에 대한 관심은 더욱 높아지고 있다.
열전 모듈은, 홀이 이동하여 열에너지를 이동시키는 p형 열전 소자(thermoelectric element : TE)와 전자가 이동하여 열에너지를 이동시키는 n형 열전 소자로 이루어진 p-n 열전 소자 1쌍이 기본 단위가 될 수 있다. 또한, 이러한 열전 모듈은 p형 열전 소자와 n형 열전 소자 사이를 연결하는 전극을 구비할 수 있다.
종래 열전 모듈의 경우, 전극과 열전 소자 사이를 접합하기 위해, 솔더링(soldering) 방식이 많이 이용되고 있다. 특히, 종래에는, Sn계 솔더 페이스트를 이용하여 전극과 열전 소자 사이 접합층을 형성하는 경우가 많다.
그런데, 이와 같은 솔더 페이스트는, 녹는점이 낮아 높은 온도 조건에서 열전 모듈을 구동하는 데에 한계가 있다. 예를 들어, 열전 소자와 전극 사이에 접합을 위해 Sn계 솔더 페이스트가 이용된 열전 모듈의 경우, 200℃ 이상의 온도에서 구동되기 어렵다. 또한, 종래 솔더 페이스트의 경우, 열 전도도(thermal conductivity)가 낮고, 전기 저항률(electrical resistivity) 및 열팽창 계수(Coefficient of Thermal Expansion; CTE)가 높으며, 잔여물(residue)이 남는다는 등의 여러 문제가 있다. 따라서, 접합층 물질 및 접합 방식 개선에 관한 연구가 해당 분야에서 활발히 진행되고 있다.
그런 한편, 접합층 물질이 열전 소자 쪽으로 확산하거나 열전 소자 물질이 접합층 쪽으로 확산하여 열전 소자의 성능 변화를 일으키지 않도록 확산방지층(diffusion barrier)을 더 형성하는 방법도 제안되어 있다. 특히 고온에서 구동하는 열전 모듈의 경우에는 접합층과 열전 소자 간 물질의 확산이 더욱 문제가 되므로 확산방지층이 해당 분야에서는 핵심적인 요소기술이다. 그런데, 종래에는 확산방지층과 열전 소자 사이에 접합력이 낮고 고온 작동시 발생하는 열팽창 계수 차이로 인해 높은 응력(stress)이 발생하는 문제가 있으며, 이는 모듈 고장(failure)의 원인이 된다. 따라서, 열전 소자와 확산방지층 사이의 열팽창 계수 차이, 낮은 접합력 개선, 전기적 저항 증가 등이 해당 분야에서 해결해야 할 과제이다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열전 소자와 전극 사이에 개선된 접합 기술이 적용되어 열전 성능이 우수하고 접합성이 향상된 열전 모듈 및 그 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 열전 모듈은, 열전 반도체로 구성된 복수의 열전 소자; 전기 전도성 재질로 구성되어 상기 열전 소자 사이에 연결된 전극; 상기 열전 소자와 상기 전극 사이에 개재되어 상기 열전 소자와 상기 전극 사이를 접합시키는 접합층(bonding layer); 상기 접합층과 열전 소자 사이에 형성된 확산방지층(diffusion barrier layer)을 포함하며, 상기 확산방지층은 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층(engineering layer)의 다층막 구조이다.
본 발명에 있어서, 상기 확산방지물질층과 상기 열팽창 계수 엔지니어링층은 서로 번갈아 두 층 이상 포함되어 있을 수 있다.
상기 확산방지물질층의 열팽창 계수는 7.9 x 10-6/K 이하일 수 있다.
상기 확산방지물질층은 Mo, Ni, Ti, Ta, Zr, Hf, Y, CrN, TiN, WTi, TiCN, TiAlN 및 MoTiON 중 적어도 어느 하나일 수 있다.
상기 열팽창 계수 엔지니어링층의 열팽창 계수는 8 x 10-6/K 이상일 수 있다.
상기 열팽창 계수 엔지니어링층은 Ag, Au, Pd, Cu, Al, Ti 및 Ni 중 적어도 어느 하나일 수 있다.
상기 확산방지층과 상기 열전 소자 사이에 접착력 개선을 위한 것으로 Ti, Cr, Ni, Pt 및 NiCr 중 적어도 어느 하나를 포함하는 제1 접착층(adhesion layer)을 더 포함할 수 있다.
상기 접합층과 확산방지층 사이에 접착력 개선을 위한 것으로 Au 및 Ag 중 적어도 어느 하나를 포함하는 제2 접착층을 더 포함할 수 있다.
상기 확산방지층의 두께는 10nm ~ 0.5mm일 수 있다.
상기 제1 접착층 또는 제2 접착층의 두께는 10nm ~ 0.5mm일 수 있다.
본 발명에 따른 열전 모듈 제조 방법은, 열전 반도체로 구성된 복수의 열전 소자 및 전기 전도성 재질로 구성된 전극을 준비하는 단계; 상기 열전 소자에 확산방지층을 형성하는 단계; 및 상기 확산방지층이 형성된 열전 소자와 상기 전극 사이를 접합시키는 접합층을 형성하는 단계를 포함하고, 상기 확산방지층은 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층의 다층막 구조로 형성한다.
본 발명에 의하면, 열전 소자에 다층막 구조의 확산방지층을 형성하고, 선택적으로, 확산방지층과 열전 소자 사이 및/또는 확산방지층과 접합층 사이에 접착층을 형성한다. 열처리와 같은 후 공정을 통해 접합력을 더욱 개선할 수도 있다.
다층막 구조의 확산방지층은 확산방지물질층과 그보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층을 포함한다. 접착층과 열전 소자 간 물질 확산을 방지하는 확산방지물질층의 열팽창 계수는 열전 소자보다 낮은 것이 일반적이다. 본 발명에서는 그러한 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층을 더 도입하여 확산방지층을 구성함으로써 이를 포함하는 확산방지층 전체의 열팽창 계수가 열전 소자의 열팽창 계수에 근접하도록 한다. 이러한 다층 구조의 확산방지층은 열전 소자와의 열팽창 계수 차이를 극복하므로 고온에서 사용하여도 응력 발생이 적다.
또한, 본 발명에서는 선택적으로 추가적인 접착층을 형성함으로써 확산방지층과 열전 소자 사이 및/또는 확산방지층과 접합층 사이의 접합력을 개선한다.
이를 통해 본 발명은, 기존 열전 모듈 확산방지층 형성 기술과 차별화하여 고온 신뢰성, 재현성 있는 열전 모듈 제작 기술을 제시할 수 있다.
본 발명에 의하면, 높은 온도 조건, 이를테면 200℃ 이상의 온도 조건에서도, 접합층이 안정적으로 유지될 수 있다. 따라서, 이러한 높은 온도 조건에서도 열전 모듈이 원활하게 구동될 수 있다.
그러므로, 본 발명에 의하면, 열전 발전 장치에 적용 시, 향상된 발전 성능을 얻을 수 있다.
또한, 본 발명에 의하면, 열전 소자와 전극 사이에의 접합층이 높은 결합력으로 잘 유지가 되며 열 전도도가 높고 전기 저항률이 낮아 열전 모듈의 열전 성능이 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 열전 모듈을 개략적으로 나타내는 도면이다.
도 2는 도 1의 A 부분에 대한 확대도이다.
도 3은 도 2의 B 부분의 구성의 일례를 확대하여 나타낸 도면이다.
도 4는 본 발명의 다른 실시예에 따른 열전 모듈의 일부 구성을 개략적으로 나타내는 도면이다.
도 5는 본 발명의 또 다른 실시예에 따른 열전 모듈의 일부 구성을 개략적으로 나타내는 도면이다.
도 6은 본 발명의 또 다른 실시예에 따른 열전 모듈로서 제1 접착층/확산방지층/제2 접착층을 모두 포함하는 경우를 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 열전 모듈 제조 방법을 개략적으로 나타내는 흐름도이다.
도 8은 본 발명의 실험예에 따른 열전 모듈에서 열전 소자에 제1 접착층과 다층구조의 확산방지층을 형성한 경우의 단면 모식도이다.
도 9는 도 8의 실험예에 따라 제조한 열전 모듈에서 제1 접착층과 확산방지층을 관찰한 TEM(transmission electron microscope) 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 열전 모듈을 개략적으로 나타내는 도면이고, 도 2는 도 1의 A 부분에 대한 확대도이다. 또한, 도 3은 도 2의 B 부분의 구성의 일례를 확대하여 나타낸 도면이다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 열전 모듈은, 열전 소자(100), 전극(200), 접합층(300) 및 확산방지층(400)을 포함하고, 기판(500)을 더 포함할 수 있다.
열전 소자(100)는, 하나의 열전 모듈에 둘 이상 포함될 수 있다. 그리고, 이러한 열전 소자(100)는, 열전 재료, 즉 열전 반도체로 이루어질 수 있다.
열전 소자(100)는, n형 열전 소자(110)와 p형 열전 소자(120)를 구비할 수 있다. 여기서, n형 열전 소자(110)는 n형 열전 반도체 재료로 구성될 수 있고, p형 열전 소자(120)는 p형 열전 반도체 재료로 구성될 수 있다. n형 열전 반도체는 홀이 이동하여 열 에너지를 이동시킬 수 있고, p형 열전 반도체는 전자가 이동하여 열 에너지를 이동시킬 수 있다.
열전 소자(100)는, n형 열전 소자(110)와 p형 열전 소자(120)가 쌍을 이루어 하나의 기본 단위를 구성할 수 있다. 그리고, n형 열전 소자(110) 및/또는 p형 열전 소자(120)는 둘 이상 구비됨으로써, 다수의 쌍을 이룰 수 있다. 또한, 이러한 n형 열전 소자(110)와 p형 열전 소자(120)는 교호적으로 배열됨으로써 다수의 n형 열전 소자(110)-p형 열전 소자(120) 쌍을 형성할 수 있다.
n형 열전 소자(110) 및 p형 열전 소자(120)는, 열전 레그 등으로 지칭될 수 있는데, 본 발명의 출원 시점에 공지된 다양한 열전 소자(100)가 본 발명의 열전 소자(100)로서 채용될 수 있다. 예를 들어, 열전 소자(100)는, BiTe계, 스쿠테루다이트(skutterudite)계, Si계 및 SiGe계 등 다양한 열전 재료로 구성될 수 있다. 이와 같은 재료로 구성된 열전 소자(100)에 대해서는, 널리 알려져 있으므로, 이에 대한 보다 상세한 설명을 생략한다. 그리고, 이러한 열전 소자(100)는 잉곳을 절단한 것, 분말을 성형하여 소결한 것, 슬러리 도포 후 막으로 성막한 것, 혹은 증착법에 의한 것 등 다양한 예를 이용할 수 있음을 알 수 있을 것이다.
전극(200)은, 전기 전도성 재질, 특히 금속 재질로 구성될 수 있다. 이를테면, 전극(200)은 Cu, Al, Ni, Au, Ti 등의 재질로 구성될 수 있다. 그리고, 전극(200)은, 열전 소자(100) 사이, 보다 구체적으로는 p형 열전 소자(120)와 n형 열전 소자(110) 사이에 연결될 수 있다. 예를 들어, 전극(200)은, 일단이 p형 열전 소자(120)에 결합되고, 타단이 n형 열전 소자(110)에 결합될 수 있다. 따라서, n형 열전 소자(110) 및 p형 열전 소자(120)는, 전극(200)에 의해 서로 전기적으로 연결될 수 있다.
특히, 본 발명에 따른 열전 모듈에는, 도 1에 도시된 바와 같이, 다수의 n형 열전 소자(110) 및 다수의 p형 열전 소자(120)가 구비될 수 있다. 그리고, 전극(200)은, 열전 소자(100)의 양단에 각각 결합될 수 있다. 따라서, 전극(200)은, 본 발명에 따른 열전 모듈에 다수 구비될 수 있다.
전극(200)은, 각 열전 소자(100)의 단부에 부착될 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 일부 전극(200)은, 하면이 n형 열전 소자(110)의 상단 및 p형 열전 소자(120)의 상단에 부착될 수 있다. 또한, 다른 전극(200)은, 상면이 n형 열전 소자(110)의 하단 및 p형 열전 소자(120)의 하단에 부착될 수 있다. 이때, 전극(200)을 통한 n형 열전 소자(110)와 p형 열전 소자(120)의 전기적 연결 방식은, 직렬로 연결될 수 있다. 예를 들어, 하나의 n형 열전 소자(110)의 상단과 하단에 각각 연결된 전극(200)은, 서로 다른 p형 열전 소자(120)에 연결될 수 있다.
한편, 각 전극(200)은, 1개의 n형 열전 소자(110)와 1개의 p형 열전 소자(120)만이 결합되도록 구성될 수 있으나, 본 발명이 반드시 이러한 실시예로 한정되는 것은 아니다. 예를 들어, 1개의 전극(200)에 다수의 n형 열전 소자(110) 및/또는 다수의 p형 열전 소자(120)가 결합될 수 있다.
접합층(300)은, 열전 소자(100)와 전극(200) 사이에 개재되어 열전 소자(100)와 전극(200) 사이를 접합시킬 수 있다. 이러한 접합층(300)은, 모든 열전 소자(100)와 전극(200) 사이의 계면에 구비되거나 일부 열전 소자(100)와 전극(200) 사이의 계면에 구비될 수 있다.
특히, 본 발명에 따른 열전 모듈에 있어서, 접합층(300)은 종래의 솔더 페이스트 대신에 Ag 페이스트를 이용하여 형성한 것일 수 있다. 그밖에 접합층(300)으로서 사용될 수 있는 물질이나 형성 방법은 공지의 기술을 적용하여도 된다.
기판(500)은, 전기 절연성 재질로 구성될 수 있다. 예를 들어, 기판(500)은, 알루미나 등의 세라믹 재질로 구성될 수 있다. 다만, 본 발명이 이러한 기판(500)의 특정 재질로 한정되는 것은 아니다. 예를 들어, 상기 기판(500)은, 사파이어, 실리콘, 석영 등 다양한 재질로 구성될 수 있다.
기판(500)은, 열전 모듈의 외부에 배치되어 전극(200)과 같은 열전 모듈의 여러 구성요소를 외부와 전기적으로 절연시킬 수 있고, 외부의 물리적 또는 화학적 요소로부터 열전 모듈을 보호할 수 있다. 또한, 기판(500)은, 전극(200) 등이 장착되도록 함으로써, 열전 모듈의 기본적인 형태를 유지하도록 할 수 있다. 예를 들어, 기판(500)은, 도 1에 도시된 바와 같이, 열전 소자(100)의 상부에 결합된 전극(200)의 상부 및 열전 소자(100)의 하부에 결합된 전극(200)의 하부에 모두 구비될 수 있다. 이러한 구성에 있어서, 전극(200)은 다양한 방식으로 기판(500)의 표면에 구비될 수 있다. 이를테면, 전극(200)은, 포토리소그래피, 증착, 리프트 오프와 같은 다양한 방식으로 기판(500)의 표면에 형성될 수 있다. 또는, 전극(200)은 접착제 등을 통해 기판(500)에 구비될 수도 있다. 기판(500)과 전극(200)이 일체화된 DBC 기판과 같은 것을 이용하여도 좋다.
본 발명에 따른 열전 모듈은, 확산방지층(diffusion barrier layer)(400)이 종래에 비하여 특히 개선된 것이다.
확산방지층(400)은, 열전 소자(100)와 접합층(300) 사이에 개재된다. 그리고, 이러한 확산방지층(400)은, 열전 소자(100)와 접합층(300) 사이에서 상호 간에 원소가 확산되는 것을 방지할 수 있다. 예를 들어, 확산방지층(400)은, 열전 소자(100)에 함유된 원소가 접합층(300) 측으로 이동하는 것을 방지할 수 있다. 또한, 확산방지층(400)은, 접합층(300)에 함유된 원소, 특히 Ag 원소가 열전 소자(100) 측으로 이동하는 것을 방지할 수 있다.
확산방지층(400)은 도 3에 상세히 도시한 바와 같이, 확산방지물질층(510a, 510b)과 열팽창 계수 엔지니어링층(420a, 420b)의 다층막 구조이다.
본 실시예에서 확산방지물질층(510a, 510b)과 열팽창 계수 엔지니어링층(420a, 420b)은 서로 번갈아 두 층씩 포함되어 있는 것을 예로 들었는데, 더 나아가 확산방지물질층과 열팽창 계수 엔지니어링층은 서로 번갈아 두 층 이상 포함될 수 있다.
여기서, 확산방지물질층(510a, 510b)의 열팽창 계수는 7.9 x 10-6/K 이하일 수 있다. 이러한 확산방지물질층(510a, 510b)은 Mo, Ni, Ti, Ta, Zr, Hf, Y, CrN, TiN, WTi, TiCN, TiAlN 및 MoTiON 중 적어도 어느 하나일 수 있다. 이러한 물질들은 접합층(300)에 함유된 원소가 열전 소자(100) 측으로 이동하는 것을 특히 방지할 수 있다.
열팽창 계수 엔지니어링층(420a, 420b)은 확산방지물질층(510a, 510b)보다 열팽창 계수가 높은 것이다. 이러한 열팽창 계수 엔지니어링층(420a, 420b)의 열팽창 계수는 8 x 10-6/K 이상일 수 있다. 이와 같은 열팽창 계수 엔지니어링층(420a, 420b)은 Ag, Au, Pd, Cu, Al, Ti 및 Ni 중 적어도 어느 하나일 수 있다.
이 때, 두 층 이상의 확산방지물질층(510a, 510b) 각각은 서로 같은 종류일 수도 있고 다른 종류일 수도 있다. 마찬가지로, 두 층 이상의 열팽창 계수 엔지니어링층(420a, 420b) 각각은 서로 같은 종류일 수도 있고 다른 종류일 수도 있다. 다시 말해, 다층의 확산방지물질층과 다층의 열팽창 계수 엔지니어링층을 포함하는 확산방지층(400)은 규칙적인 반복 구조(서로 같은 종류인 경우) 또는 불규칙 반복 구조(서로 다른 종류인 경우)일 수 있다.
확산방지층(400)의 두께는 10nm ~ 0.5mm일 수 있다. 10nm보다 작은 두께는 전극(200)과 열전 소자(100) 간 물질 확산을 방지하는 데에 충분하지 않을 수 있다. 0.5mm보다 큰 두께는 열전 소자(100)와 전극(200) 사이의 전체 접합 구조의 두께를 크게 하고 열전 모듈의 부피를 증가시키는 것이므로 바람직하지 않다. 확산방지층(400)은 제조된 열전 소자(100)에 대해 스퍼터링이나 증발법과 같은 증착법으로 형성할 수 있다. 전해 도금이나 무전해 도금으로 형성할 수도 있다. 확산방지물질층과 열팽창 계수 엔지니어링층을 번갈아 가며 형성하여 확산방지층(400)을 형성할 수 있다.
열전 소자(100)를 분말 성형하여 제조하는 경우라면 열전 소자를 위한 분말 성형체 위에 위에 언급한 것과 같은 방법으로 확산방지층(400) 물질을 형성한 후 그 결과물을 핫프레스 혹은 SPS(Spark Plasma Sintering)를 포함하는 고온가압 접합 성형하여 열전 소자(100)와 확산방지층(400)을 일체화시킬 수도 있다.
도 4는, 본 발명의 다른 실시예에 따른 열전 모듈의 일부 구성을 개략적으로 나타내는 도면이다.
도 4를 참조하면, 본 발명에 따른 열전 모듈은, 확산방지층(400)과 열전 소자(100) 사이에 제1 접착층(adhesion layer, 430)을 더 포함할 수 있다. 제1 접착층(430)은 확산방지층(400)과 열전 소자(100) 접착력 개선을 위한 것으로, Ti, Cr, Ni, Pt, MoTi 및 NiCr 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 제1 접착층(430)은, 열전 소자(100)의 하단부에 Ti, Cr, Ni, Pt, MoTi 및 NiCr 중 적어도 어느 하나를 코팅하고 금속화(metallization)시킴으로써 형성될 수 있다. 예를 들어, 제1 접착층(430)은 열전 소자(100)에 대해 스퍼터링이나 증발법과 같은 증착법으로 형성할 수 있다. 전해 도금이나 무전해 도금으로 형성할 수도 있다. 그런 다음에 확산방지층(400)을 위에 언급한 것과 같은 방법으로 형성할 수 있다. 열전 소자(100)를 분말 성형하여 제조하는 경우 열전 소자를 위한 분말 성형체 위에 제1 접착층(430) 물질과 확산방지층(400) 물질을 차례로 형성한 후 그 결과물을 고온가압 접합 성형하여 열전 소자(100)와 제1 접착층(430)과 확산방지층(400)을 일체화시킬 수도 있다. 제1 접착층(430) 두께는 10nm ~ 0.5mm일 수 있다. 10nm보다 작은 두께는 열전 소자(100)와 확산방지층(400) 간 접합력을 확보하는 데에 충분하지 않을 수 있다. 0.5mm보다 큰 두께는 열전 소자(100)와 전극(200) 사이의 전체 접합 구조의 두께를 크게 하고 열전 모듈의 부피를 증가시키는 것이므로 바람직하지 않다.
한편, 도 4에는 열전 소자(100)의 하단부에 제1 접착층(430)이 구비된 구성이 도시되어 있으나, 열전 소자(100)의 상단부에서도 확산방지층(400)과의 사이에 제1 접착층(430)이 구비될 수 있음은 물론이다.
이처럼, 제1 접착층(430)이 포함된 구성에 의하면, 열전 성능을 저하시키지 않으면서도, 열전 소자(100)와 확산방지층(400) 사이의 부착력을 더욱 강화시킬 수 있다.
또한 바람직하게는, 본 발명에 따른 열전 모듈은, 제2 접착층을 더 포함할 수 있다.
도 5는, 본 발명의 또 다른 실시예에 따른 열전 모듈의 일부 구성을 개략적으로 나타내는 도면이다.
도 5를 참조하면, 본 발명에 따른 열전 모듈은, 접합층(300)과 확산방지층(400) 사이에, 제2 접착층(440)을 더 포함할 수 있다.
제2 접착층(440)은 접합층(300)과 확산방지층(400) 사이에 접착력 개선을 위한 것으로 Au 및 Ag 중 적어도 어느 하나를 포함할 수 있다. 제2 접착층(440) 두께는 10nm ~ 0.5mm일 수 있다. 10nm보다 작은 두께는 접합층(300)과 확산방지층(400) 간 접합력을 확보하는 데에 충분하지 않을 수 있다. 0.5mm보다 큰 두께는 열전 소자(100)와 전극(200) 사이의 전체 접합 구조의 두께를 크게 하고 열전 모듈의 부피를 증가시키는 것이므로 바람직하지 않다.
제2 접착층(440)은, 열전 소자(100)에 확산방지층(400)을 형성한 다음에 Au 및 Ag 중 적어도 어느 하나를 코팅하고 금속화시킴으로써 형성될 수 있다. 예를 들어, 제2 접착층(440)은 확산방지층(400)에 대해 스퍼터링이나 증발법과 같은 증착법으로 형성할 수 있다. 전해 도금이나 무전해 도금으로 형성할 수도 있다. 열전 소자(100)를 분말 성형하여 제조하는 경우라면 열전 소자를 위한 분말 성형체 위에 확산방지층(400) 물질과 제2 접착층(440) 물질을 차례로 형성한 후 그 결과물을 고온가압 접합 성형하여 열전 소자(100)와 확산방지층(400)과 제2 접착층(440)을 일체화시킬 수도 있다.
다른 예로, 전극(200) 위에 접합층(300)을 구성하고 그 위에 제2 접착층(440)을 형성한 후 확산방지층(400)이 형성된 열전 소자(100)를 여기에 결합시킴으로써 열전 모듈 내에 제2 접착층(440)이 포함되도록 할 수도 있다.
한편, 도 5에는 열전 소자(100)의 하단부에 제2 접착층(440)이 구비된 구성이 도시되어 있으나, 열전 소자(100)의 상단부에서도 확산방지층(400)과 접합층(300) 사이에 제2 접착층(440)이 구비될 수 있음은 물론이다.
이처럼, 제2 접착층(440)이 포함된 구성에 의하면, 열전 성능을 저하시키지 않으면서도, 확산방지층(400)과 접합층(300) 사이의 부착력을 더욱 강화시킬 수 있다.
가장 바람직하게는, 위에 설명한 제1 접착층(430)/확산방지층(400)/제2 접착층(440)이 열전 모듈에 포함될 수 있다. 도 6은 이러한 경우의 분해 사시도이다.
도 6을 참조하면, 열전 소자(100)의 상부에 상측 방향으로 제1 접착층(430)/확산방지층(400)/제2 접착층(440)이 순차 형성되어 있으며 열전 소자(100)의 하부에 하측 방향으로 제1 접착층(430)/확산방지층(400)/제2 접착층(440)이 순차 형성되어 있다. 열전 소자(100)를 기준으로 상부와 하부의 층들은 대칭구조를 가질 수 있다.
본 발명에 따른 열전 모듈은, 열전 기술을 응용하는 여러 장치에 적용될 수 있다. 특히, 본 발명에 따른 열전 모듈은, 열전 발전 장치에 적용될 수 있다. 즉, 본 발명에 따른 열전 발전 장치는, 본 발명에 따른 열전 모듈을 포함할 수 있다.
도 7은 본 발명의 일 실시예에 따른 열전 모듈 제조 방법을 개략적으로 나타내는 흐름도이다.
도 7에 도시된 바와 같이, 본 발명에 따른 열전 모듈 제조 방법은, 열전 소자(100) 및 전극(200) 준비 단계(S110), 확산방지층 형성 단계 (S120) 및 접합층 형성 단계(S130)를 포함할 수 있다.
열전 소자 및 전극 준비 단계(S110)는, 열전 모듈을 구성하는 각 구성요소를 준비하는 단계이다. 특히, 상기 S110 단계는, 열전 소자(100)와 전극(200)을 준비할 수 있다. 예를 들어, 상기 S110 단계는, 열전 소자(100)를 준비하기 위해 잉곳 형태로 제조된 열전 재료를 일정 크기로 절단할 수 있다. 아니면 소결전 분말 성형체 제조일 수 있다. 더욱이, 상기 S110 단계는, n형 열전 소자(110)와 p형 열전 소자(120)를 준비할 수 있다. 또한, 상기 S110 단계는, 전기 전도성 재질로 구성된 판 형태로 전극(200)을 준비할 수 있다. 예를 들어, 상기 S110 단계는, 전극(200)으로서 다수의 구리판을 준비할 수 있다. 아니면 기판(500)에 전극(200)이 형성되어 있는 DBC 기판을 준비할 수 있다.
상기 확산방지층 형성 단계 (S120)는, 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층을 번갈아 적어도 1회씩 형성함으로써 다층막 구조를 형성하는 식으로 수행된다. 특히, 상기 S120 단계는 확산방지물질층(510a, 510b)과 열팽창 계수 엔지니어링층(420a, 420b)을 서로 번갈아 두 층씩 형성하여 확산방지층(400)을 형성하는 단계일 수 있다. 확산방지층(400)을 형성하는 구체적인 방법은 앞서 언급한 바와 같이 증착, 도금, 핫프레스와 SPS를 포함하는 고온가압 접합 성형 중 어느 하나일 수 있다. 필요하다면 확산방지층(400)을 열처리하는 단계를 더 포함할 수 있다. 이러한 열처리 단계는 압력 인가를 수반할 수 있다. 열처리 단계는 증착 이후에 별도로 수행하는 것일 수도 있고 핫프레스나 SPS와 같은 고온가압 접합 성형 중에 수행될 수도 있다. 아니면 이후 설명하는 접합층 형성 단계(S130)에서 수행될 수도 있다.
상기 접합층 형성 단계(S130)는 예를 들면, 전극(200) 위에 Ag 페이스트 배치 후 열전 소자(100)의 확산방지층(400)을 그 위에 두고 소결하는 단계로 이루어질 수 있다.
이 단계는, 다양한 방식으로 수행될 수 있다. 예를 들어, 열전 소자(100)의 확산방지층(400) 상단부에 Ag 페이스트를 스크린 인쇄(screen printing) 방식으로 도포하고, 그 상부에 전극(200)을 안착시키는 형태로 수행될 수 있다. 다만, Ag 페이스트의 도포는, 스크린 인쇄 이외에도, 디스펜싱(dispensing)이나 드롭핑(dropping)과 같은 다른 다양한 방식으로 수행될 수 있다. 또한, Ag 페이스트의 개재는, 전극(200)의 상부에 Ag 페이스트를 도포하고, 그 상부에 확산방지층(400)이 형성된 열전 소자(100)를 안착시키는 형태로 수행될 수도 있다. 접합 소결은 예컨대 300℃ 이하의 온도 조건에서 수행될 수 있다. 예를 들어, 상기 S130 단계는 200℃ 내지 250℃의 온도에서 수행될 수 있다. 특히, 상기 S130 단계는 230℃ 내지 250℃의 온도에서 수행될 수 있다. 이러한 소결 온도 조건의 경우, 종전의 Sn계 솔더층의 공정 온도나 다른 소결 온도 공정보다 낮은 온도라고 할 수 있다.
또한, 상기 S130 단계는, 0.1MPa 내지 200MPa의 압력 조건에서 수행될 수 있다. 특히, 상기 S130 단계는, 10MPa 내지 20MPa의 압력 조건 하에서 수행될 수 있다.
상기 S130 단계는, 소정 시간, 이를테면 2분 내지 3분 동안 수행될 수 있다.
또한 바람직하게는, 본 발명에 따른 열전 모듈 제조 방법은, 앞서 언급한 바와 같이 열전 소자(100)와 확산방지층(400) 사이 및/또는 확산방지층(400)과 접합층(300) 사이에 접착층(430 또는 440)을 형성하는 단계를 더 포함할 수 있다. 각 접착층(430 또는 440)을 형성하는 방법은 전술한 바와 같이 증착, 도금, 및 고온가압 접합 성형 중 어느 하나일 수 있다. 필요하다면 접착층(430 또는 440)을 열처리하는 단계를 더 포함할 수 있다. 이러한 열처리 단계는 압력 인가를 수반할 수 있다. 열처리 단계는 증착 이후에 별도로 수행하는 것일 수도 있고 핫프레스나 SPS와 같은 고온가압 접합 성형 중에 수행될 수도 있다. 아니면 위에 설명한 접합층 형성 단계(S130)에서 수행될 수도 있다.
제1 접착층(430)을 형성하는 단계는 상기 S110 단계 이후, 상기 S120 단계 이전에 수행될 수 있다. 제2 접착층(440)을 형성하는 단계는 상기 S120 단계 이후, 상기 S130 단계 이전에 수행될 수 있다. 제1 접착층(430)/ 확산방지층(400)/ 제2 접착층(440)을 형성한 후 접합층(300)을 형성하기 전에 고온에서 일축 가압 등의 방법으로 에이징(aging)을 하여 금속간 화합물을 형성함으로써 접합력을 증대시키는 공정을 가져도 좋다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실험예를 들어 상세하게 설명하기로 한다.
실험예
도 8은 본 발명의 실험예에 따른 열전 모듈에서 열전 소자에 제1 접착층과 다층구조의 확산방지층을 형성한 경우의 단면 모식도이다.
실험예에서는 도 8에서와 같이 열전 소자에 제1 접착층, 확산방지물질층/열팽창 계수(CTE) 엔지니어링층/확산방지물질층/CTE 엔지니어링층 구조의 확산방지층을 형성하였다.
도 9는 도 8의 실험예에 따라 제조한 열전 모듈에서 제1 접착층과 확산방지층을 관찰한 TEM 사진이다. 실험예 1로서 제1 접착층, 확산방지물질층/CTE 엔지니어링층/확산방지물질층/CTE 엔지니어링층으로서 Ti/Mo/Ag/Mo/Ag를 형성한 경우이다. 열전 소자는 스쿠테루다이트(SKD)로 구성하였다.
확산방지물질층/CTE 엔지니어링층/확산방지물질층/CTE 엔지니어링층 구조의 확산방지층에 대하여 물질 종류는 그대로 하고 두께를 달리 하여 열팽창 계수 전산모사도 실시하였다.
실험예 2는 확산방지물질층/CTE 엔지니어링층/확산방지물질층/CTE 엔지니어링층이 Mo(100nm)/Ag(100nm)/Mo(100nm)/Ag(100nm)인 경우이고, 실험예 3은 확산방지물질층/CTE 엔지니어링층/확산방지물질층/CTE 엔지니어링층이 Mo(60nm)/Ag(140nm)/Mo(60nm)/Ag(140nm)인 경우이며, 실험예 4는 확산방지물질층/CTE 엔지니어링층/확산방지물질층/CTE 엔지니어링층이 Mo(20nm)/Ag(180nm)/Mo(20nm)/Ag(180nm)인 경우이다.
다음 표 1은 실험예 2 내지 4에서 300℃와 500℃에서 각 온도별 치수 변화를 측정한 결과를 정리한 것이다(단위 : ㎛).
Figure 112015127053750-pat00001
전체 확산방지층의 두께는 400nm로 동일하나 실험예 2에서 4로 갈수록 확산방지물질층의 두께는 작아지고 CTE 엔지니어링층의 두께는 커진다. 표 1을 참조하면 실험예 2에서 4로 갈수록 동일 온도에서 치수가 더 크게 늘어나며, 다시 말해 열팽창 계수가 증가한다. 그리고, 그 증가 경향은 더 높은 온도에서 더 뚜렷하다. 이와 같이 확산방지층 안에 CTE 엔지니어링층을 도입하고 그 두께를 조절하면 전체 확산방지층의 열팽창 계수를 디자인할 수 있음을 알 수 있다. 확산방지물질층과 CTE 엔지니어링층의 구성 물질, 두께 비율, 적층 수 등을 조절하면 열전 소자와 접합층 사이에서 열팽창 계수의 큰 차이 없이 확산방지층을 형성할 수 있으며, 이에 따라 고온에서도 안정적인 접합 구조를 유지할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
100: 열전 소자 110: n형 열전 소자
120: p형 열전 소자 200: 전극
300: 접합층 400: 확산방지층
410a, 410b:확산방지물질층 420a, 420b:열팽창 계수 엔지니어링층
430: 제1 접착층 440: 제2 접착층
500: 기판

Claims (25)

  1. 열전 반도체로 구성된 복수의 열전 소자;
    전기 전도성 재질로 구성되어 상기 열전 소자 사이에 연결된 전극;
    상기 열전 소자와 상기 전극 사이에 개재되어 상기 열전 소자와 상기 전극 사이를 접합시키는 접합층(bonding layer);
    상기 접합층과 열전 소자 사이에 형성되고 두께가 10nm ~ 0.5mm인 확산방지층(diffusion barrier layer)을 포함하며,
    상기 확산방지층은 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층의 다층막 구조이며, 상기 확산방지물질층과 상기 열팽창 계수 엔지니어링층은 서로 번갈아 두 층 이상 포함되어 있는 것을 특징으로 하는 열전 모듈.
  2. 삭제
  3. 제1항에 있어서, 상기 확산방지물질층의 열팽창 계수는 7.9 x 10-6/K 이하인 것을 특징으로 하는 열전 모듈.
  4. 제1항에 있어서, 상기 확산방지물질층은 Mo, Ni, Ti, Ta, Zr, Hf, Y, CrN, TiN, WTi, TiCN, TiAlN 및 MoTiON 중 적어도 어느 하나인 것을 특징으로 하는 열전 모듈.
  5. 제1항에 있어서, 상기 열팽창 계수 엔지니어링층의 열팽창 계수는 8 x 10-6/K 이상인 것을 특징으로 하는 열전 모듈.
  6. 제1항에 있어서, 상기 열팽창 계수 엔지니어링층은 Ag, Au, Pd, Cu, Al, Ti 및 Ni 중 적어도 어느 하나인 것을 특징으로 하는 열전 모듈.
  7. 제1항에 있어서, 상기 확산방지층과 상기 열전 소자 사이에 접착력 개선을 위한 것으로 Ti, Cr, Ni, Pt, MoTi 및 NiCr 중 적어도 어느 하나를 포함하는 제1 접착층(adhesion layer)을 더 포함하는 것을 특징으로 하는 열전 모듈.
  8. 제1항에 있어서, 상기 접합층과 확산방지층 사이에 접착력 개선을 위한 것으로 Au 및 Ag 중 적어도 어느 하나를 포함하는 제2 접착층을 더 포함하는 것을 특징으로 하는 열전 모듈.
  9. 삭제
  10. 제7항 또는 제8항에 있어서, 상기 제1 접착층 또는 제2 접착층의 두께는 10nm ~ 0.5mm인 것을 특징으로 하는 열전 모듈.
  11. 열전 반도체로 구성된 복수의 열전 소자 및 전기 전도성 재질로 구성된 전극을 준비하는 단계;
    상기 열전 소자에 두께가 10nm ~ 0.5mm인 확산방지층을 형성하는 단계; 및
    상기 확산방지층이 형성된 열전 소자와 상기 전극 사이를 접합시키는 접합층을 형성하는 단계를 포함하고,
    상기 확산방지층은 확산방지물질층과 상기 확산방지물질층보다 열팽창 계수가 높은 열팽창 계수 엔지니어링층의 다층막 구조이며,상기 확산방지물질층과 상기 열팽창 계수 엔지니어링층은 서로 번갈아 두 층 이상 포함되어 있게 형성하는 것을 특징으로 하는 열전 모듈 제조 방법.
  12. 삭제
  13. 제11항에 있어서, 상기 확산방지물질층의 열팽창 계수는 7.9 x 10-6/K 이하인 것을 특징으로 하는 열전 모듈 제조 방법.
  14. 제11항에 있어서, 상기 확산방지물질층은 Mo, Ni, Ti, Ta, Zr, Hf, Y, CrN, TiN, WTi, TiCN, TiAlN 및 MoTiON 중 적어도 어느 하나인 것을 특징으로 하는 열전 모듈 제조 방법.
  15. 제11항에 있어서, 상기 열팽창 계수 엔지니어링층의 열팽창 계수는 8 x 10-6/K 이상인 것을 특징으로 하는 열전 모듈 제조 방법.
  16. 제11항에 있어서, 상기 열팽창 계수 엔지니어링층은 Ag, Au, Pd, Cu, Al, Ti 및 Ni 중 적어도 어느 하나인 것을 특징으로 하는 열전 모듈 제조 방법.
  17. 제11항에 있어서, 상기 확산방지층과 상기 열전 소자 사이에 접착력 개선을 위한 것으로 Ti, Cr, Ni, Pt, MoTi 및 NiCr 중 적어도 어느 하나를 포함하는 제1 접착층을 더 포함하는 것을 특징으로 하는 열전 모듈 제조 방법.
  18. 제11항에 있어서, 상기 접합층과 확산방지층 사이에 접착력 개선을 위한 것으로 Au 및 Ag 중 적어도 어느 하나를 포함하는 제2 접착층을 더 포함하는 것을 특징으로 하는 열전 모듈 제조 방법.
  19. 삭제
  20. 제17항 또는 제18항에 있어서, 상기 제1 접착층 또는 제2 접착층의 두께는 10nm ~ 0.5mm인 것을 특징으로 하는 열전 모듈 제조 방법.
  21. 제17항 또는 제18항에 있어서, 상기 제1 접착층 또는 제2 접착층 및 상기 확산방지층은 증착, 도금, 및 고온가압 접합 성형 중 어느 하나의 방법으로 형성하는 것을 특징으로 하는 열전 모듈 제조 방법.
  22. 제17항 또는 제18항에 있어서, 상기 제1 접착층 또는 제2 접착층 및 상기 확산방지층을 열처리하는 단계를 더 포함하는 것을 특징으로 하는 열전 모듈 제조 방법.
  23. 제22항에 있어서, 상기 열처리시 압력을 인가하는 것을 특징으로 하는 열전 모듈 제조 방법.
  24. 제22항에 있어서, 상기 열처리는 상기 제1 접착층 또는 제2 접착층 및 상기 확산방지층을 증착이나 도금한 후 실시하는 것을 특징으로 하는 열전 모듈 제조 방법.
  25. 제22항에 있어서, 상기 열처리는 상기 제1 접착층 또는 제2 접착층 및 상기 확산방지층을 고온가압 접합 성형하면서 실시하는 것을 특징으로 하는 열전 모듈 제조 방법.
KR1020150186505A 2015-12-24 2015-12-24 열전 모듈 및 그 제조 방법 KR102067712B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150186505A KR102067712B1 (ko) 2015-12-24 2015-12-24 열전 모듈 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150186505A KR102067712B1 (ko) 2015-12-24 2015-12-24 열전 모듈 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20170076358A KR20170076358A (ko) 2017-07-04
KR102067712B1 true KR102067712B1 (ko) 2020-01-17

Family

ID=59356944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150186505A KR102067712B1 (ko) 2015-12-24 2015-12-24 열전 모듈 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR102067712B1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120273B1 (ko) * 2017-08-18 2020-06-08 주식회사 엘지화학 열전 모듈 및 열전 발전장치
KR102459953B1 (ko) * 2018-03-22 2022-10-27 엘지이노텍 주식회사 열전 레그 및 이를 포함하는 열전소자
KR102107960B1 (ko) * 2018-04-16 2020-05-07 한국전력공사 열전발전모듈용 전극소재 및 그 제조방법
KR102434260B1 (ko) 2018-06-26 2022-08-19 엘지이노텍 주식회사 열전소자
KR102311803B1 (ko) 2018-11-12 2021-10-08 한국전기연구원 열전소재의 확산방지층 및 이의 제조방법
KR102598016B1 (ko) * 2018-12-07 2023-11-02 주식회사 엘지화학 열전 소자 및 그 제조 방법
KR102626845B1 (ko) * 2019-09-10 2024-01-17 주식회사 엘지화학 열전 모듈 및 그 제조 방법
US11825745B2 (en) 2020-05-08 2023-11-21 Micropower Global Limited Thermoelectric element and method of making the same
US11903314B2 (en) 2020-07-17 2024-02-13 Micropower Global Limited Thermoelectric element comprising a contact structure and method of making the contact structure
KR102363224B1 (ko) * 2020-07-29 2022-02-16 엘티메탈 주식회사 다층 확산방지층을 포함하는 열전 소재 및 이를 구비하는 열전 소자
KR102531839B1 (ko) * 2020-11-02 2023-05-16 엘티메탈 주식회사 다층 확산방지층을 포함하는 열전 소재 및 이를 구비하는 열전 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094995B1 (ko) * 2012-10-08 2020-03-31 삼성전자주식회사 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법

Also Published As

Publication number Publication date
KR20170076358A (ko) 2017-07-04

Similar Documents

Publication Publication Date Title
KR102067712B1 (ko) 열전 모듈 및 그 제조 방법
EP2377175B1 (en) Method for fabricating thermoelectric device
US9012760B2 (en) Thermoelectric device, electrode materials and method for fabricating thereof
KR102049011B1 (ko) 열전 모듈 및 그 제조 방법
JP5212937B2 (ja) 熱電変換素子、当該熱電変換素子を備えた熱電モジュール及び熱電変換素子の製造方法
US8501518B2 (en) Method of manufacturing thermoelectric conversion element and thermoelectric conversion element
US20110083712A1 (en) Thermoelectric Module
JP2010034508A (ja) 熱電変換モジュールおよびその製造方法
KR20150021367A (ko) 열전모듈 및 이를 포함하는 열전환장치
JP2012124469A (ja) 熱電素子及び熱電モジュール
KR20170102300A (ko) 벌크 테트라헤드라이트 재료를 위한 전기적 및 열적 접촉부 및 그 제조 방법
CN206698489U (zh) 多层基板
US11380832B2 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
KR101888113B1 (ko) 열전 변환 장치의 제조 방법
KR101680422B1 (ko) 써멀비아전극을 구비한 열전모듈 및 그 제조방법
Ang et al. Development of Cu2Se/Ag2 (S, Se)-Based Monolithic Thermoelectric Generators for Low-Grade Waste Heat Energy Harvesting
KR102144070B1 (ko) ITO 중간층을 포함하는 스커테루다이트 열전소재용 Ti 메탈라이징 구조과 그 형성 방법 및 ITO 중간층을 포함하여 Ti 메탈라이징된 스커테루다이트 열전소재와 그 제조 방법
CN115606322A (zh) 陶瓷电路基板的制造方法
CN208111483U (zh) 一种具有自适应连接层的热电器件
KR102355281B1 (ko) 열전 소자
KR20220010937A (ko) 열전소자
JP4882855B2 (ja) 熱電変換モジュールとその製造方法
KR102626845B1 (ko) 열전 모듈 및 그 제조 방법
JP2015141952A (ja) 半導体パワーモジュール
KR102340798B1 (ko) 열전 소자 및 이를 포함하는 열전 모듈

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant