KR102057930B1 - 크로매틱 미러, 크로매틱 패널 및 그 응용장치 - Google Patents

크로매틱 미러, 크로매틱 패널 및 그 응용장치 Download PDF

Info

Publication number
KR102057930B1
KR102057930B1 KR1020167034810A KR20167034810A KR102057930B1 KR 102057930 B1 KR102057930 B1 KR 102057930B1 KR 1020167034810 A KR1020167034810 A KR 1020167034810A KR 20167034810 A KR20167034810 A KR 20167034810A KR 102057930 B1 KR102057930 B1 KR 102057930B1
Authority
KR
South Korea
Prior art keywords
mirror
light
chromatic
layer
illuminator
Prior art date
Application number
KR1020167034810A
Other languages
English (en)
Other versions
KR20170008262A (ko
Inventor
트라파니 파올로 디
Original Assignee
코에룩스 에스알엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코에룩스 에스알엘 filed Critical 코에룩스 에스알엘
Publication of KR20170008262A publication Critical patent/KR20170008262A/ko
Application granted granted Critical
Publication of KR102057930B1 publication Critical patent/KR102057930B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • E04F13/145Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass with an outer layer of glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

크로매틱 구성부품은 이 크로매틱 구성부품이, 본 발명의 제1 관점 따르면, 거울면과 이 거울면 앞쪽의 확산층으로 구성되며, 상기 확산층은 충돌광의 단-파장 성분들을 충돌광의 장-파장 성분들에 대하여 우선적으로 산란시키며; 본 발명의 다른 관점에 따르면, 크로매틱 구성부품은 접착성 투명 폴리머 필름을 끼워 배치시키는 2개 이하의 시트로 구성되며, 여기서 상기 접착성 투명 폴리머 필름은 층상의-유리 패널을 통과하는 광의 단-파장 성분들을 상기 광의 장-파장 성분들에 대하여 우선적으로 산란시키는 확산층을 형성하는 여러 가지 애플리케이션에서의 사용을 용히하게 하는 것으로 개시된다.

Description

크로매틱 미러, 크로매틱 패널 및 그 응용장치{CHROMATIC MIRROR, CHROMATIC PANEL AND APPLICATIONS THEREOF}
본 발명은 크로매틱 미러 및 크로매틱 패널에 관한 것이다.
크로매틱 성분(chromatic components)은 많은 응용장치들에서 이용된다. 예를 들어, 크로매틱 렌즈에서, 크로매틱 특성은 주로 교란적인 인공물이다. 그러나, 어떠한 경우에는, 크로매틱 특성은 각각의 성분의 원하는 특성이 된다. 예를 들어, WO 2009/156347 A1호에서는, 예를 들어, 실내 룸의 내부를 포함하는 환경이 조명(illumination)이 덜 인공적이고 더 자연적으로 보이는, 즉 외부 환경으로부터 빛이 들어오는 것 같은 조명에 유사한 보다 쾌적한 상황으로 되도록 실내 룸을 조명하기 위하여, 광대역 인공 광원과 크로매틱 디퓨저(chromatic diffuser)를 조합하여 사용하는 조명장치가 개시되어 있다. 상기 WO 2009/156347 A1호에 기재된 크로매틱 디퓨저는 태양광이 지구로 조사될 때 발생하는 레일리 산란 과정을 모방하고 있다.
그러나, 상기 WO 2009/156347 A1호에 기재된 것과 같이 적어도 어떤 응용 개념들(concepts)을 실현하는 것을 가까운 장래에 용이하게 하는 다른 크로매틱 성분들을 가지는 것이 바람직할 것이다. 예를 들어, 사용시에, 전술한 크로매틱 디퓨저는 실내 환경을 하늘과 태양의 조명 처럼 보이게 만들 수 있다. 그러나, 이러한 목적을 위하여, 예를 들어, 조명이 천장에 배치된다면, 광원은, 가천정(false ceiling) 위에서 예를 들어 수 ㎥ 의 커다란 자유 체적을 이용할 수 있는 것을 요구하는, 디퓨저 너머에 위치되어야 한다. 기계적 저항성, 방화 재료 등과 관련하여, 디퓨저가 제조되는 재질에서 추가적인 제한이 발생될 수 있다.
따라서, 본 발명의 목적은 크로매틱 구성부품(chromatic component)을 사용하는 시스템 및 개념들의 보다 용이한 구현을 가능하게 하는 크로매틱 구성부품을 제공하는 것이다.
본 발명의 목적은 첨부되는 독립 청구항들의 발명의 주제에 의해 달성된다.
본 발명은 크로매틱 구성부품은, 본 발명의 제1 관점에 따르면, 크로매틱 구성부품이 여러 가지 애플리케이션들에 이용되는 것을 용이하게 할 수 있는 아이디어에 기반하고 있다. 본 발명의 제1 관점에 따른 크로매틱 구성부품은 거울면(mirroring surface)과 이 거울면 앞쪽의 확산층(diffusing layer)로 구성되며, 상기 확산층은 충돌광의 단-파장 성분들을 충돌광의 장-파장 성분들에 대하여 우선적으로 산란시키며; 본 발명의 다른 관점에 따르면, 크로매틱 구성부품은 접착성 투명 폴리머 필름을 끼워 배치시키는 2개의 유리 시트, 예를 들어, 플로트 유리 또는 강화 유리 시트들을 포함하는 층상의-유리 패널로 구성되며, 여기서 상기 접착성 투명 폴리머 필름은 상기 층상의-유리 패널을 통과하는 광의 단-파장 성분들을 상기 층상의-유리 패널을 통과하는 광의 장-파장 성분들에 대하여 우선적으로 산란시키는 확산층을 형성한다.
제1 관점에 따르면, 기초를 이루는 아이디어는 확산층에 의해 달성되는 크로매틱 특성과 거울면에 의해 얻어지는 반사 성질의 조합을 이끌어 낸다; 많은 애플리케애션들에서, 크로매틱 구성부품을 조사(illuminating)하는 광과 크로매틱 구성부품을 수용하는 물체(object)는 동일한 쪽에 위치되는 것이 더 용이하다. 예를 들어, 상기 물체는 룸(room)이 될 수 있으며 크로매틱 구성부품, 즉 크로매틱 미러를 조사하는 조명기(illuminator)는 외부가 아니고 동일한 룸 내에 배치되는 것이 더 용이하다. 반면에, 예를 들어, 거울면 바로 앞쪽에 확산층을 배치하는 것은 크로매틱 구성부품의 원하는 크로매틱 특성을 변화시킨다: 그리고, 크로매틱 미러에 의해 일정하게 반사된 광은 단지 그 스텍트럼이 확산층의 파장의-선택적인 산란 특성에 의해 영향을 받지만 초기의 입체각 휘도 파일을 유지하며, 그리고, 확산층을 두번 통과하는, 즉 미러면에 충돌할 때 한번, 그리고 미러면으로부터 방향을 돌릴 때 한번 확산층을 통과하는 충돌광 부분은 그 충돌광은 일정하게 반사되는 광선들에 비하여 확산되거나 또는 범위가 넓혀지기 때문에 거울면을 사이에 배치함에도 불구하고 그 휘도 파일을 유지한다. 또한, 거울면을 사이에 배치하는 것은 확산층의 두께의 실질상의 증가를 가져온다. 유리하게, 이것은 본 명세서의 도입부에 기술된 크로매틱 디퓨저의 크기에 관하여 두께 방향에서의 크로매틱 미러의 크기를 감소시키는데 도움이 된다.
본 발명의 제2 관점에 따르면, 크로매틱 구성부품의 사용을 용이하게 하는 목적이 층상의-유리 패널을 형성하는 2개의 유리 시트 사이에 확산층을 배치함으로써 달성되며, 여기서 상기 확산층은 2개의 유리 시트를 서로 고정하는 접착성 투명 폴리머 필름의 역할을 수행한다. 이러한 구성에 의해, 상기 확산층은 확산층의 크로매틱 및 광학 특성을 변화시킬 수 있는 자외선, 먼지, 습기 등과 같은 대기 인자들에 대하여 보호되며, 패널은 내화성, 내충격성, 내스크래치성 등과 같은 건축물 요구조건을 충족시키기 위하여 충분히 강하며, 이렇게 구성된 크로매틱 패널은 크로매틱 구성부품위에 거울층(mirroring layer)을 추가로 디포짓함으로써 크로매틱 미러를 형성하는 것으로 용도가 확대될 수 있다.
크로매틱 구성부품을 이용하는 유리한 구현들 및 시스템들이 종속청구항들의 발명의 주제이다.
본 발명의 유리한 실시예들이 첨부되는 도면들을 참조하여 기술된다.
도 1은 본 발명의 일 실시예에 따른 크로매틱 미러의 개략적인 3차원도이다.
도 2는 본 발명의 일 실시예에 따른 크로매틱 미러를 사용하는 조명을 위한 개념 및 시스템에 대한 실례(example)을 나타내는 도면이다.
도 3은 빌딩의 룸을 조명하기 위한 조명용 개념/시스템을 이용할 때의 크로매틱 미러의 가능한 배열을 나타내는 도면이다.
도 4는 오목한 크로매틱 미러가 사용되는 도 2의 실시예의 변형예의 개략도이다.
도 5a는 다른 실시예에 따른 조명용 개념 또는 시스템에서의 장방형 또는 원통형의 오목한 형상의 크로매틱 미러의 사용 상태를 나타내는 3차원도이다.
도 5b는 도 5a의 조명기(illuminator)의 각이진 휘도 프로파일(luminance profile)을 개략적으로 도시한 도면이다.
도 5c는 미러의 방향으로부터 도 5a의 조명기를 직접 바라볼 때의 도 5a의 조명기의 외관을 개략적으로 도시한 도면이다.
도 5d는 미러에 의한 반사를 통하여 도 5a의 조명기를 축선상의 위치로부터 바라볼 때의 도 5a의 조명기의 외관을 개략적으로 도시한 도면이다.
도 6a는 도 5의 조명기를 3차원 부분도로 도시한 것으로서, 본 발명의 일 실시예에 따른 조명기의 광원과 CPC 반사기(reflector)를 나타내는 도면이다.
도 6b는 도 5의 조명기를 3차원 부분도로 도시한 것으로서, 본 발명의 다른 실시예에 관한 광 집중기를 나타내는 도면이다.
도 7은 크로매틱 미러와 조명기 쌍의 연장 방향이 곡률져서 원평 평면 배열로 되는 것을 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따라 블러링 층(blurring layer)을 추가로 구비하는 크로매틱 미러의 개략 3차원도이다.
도 9는 확산층에서의 측방향의 물리적 및/또는 광학 두께 변화가 블러링 효과(blurring effect)를 얻기 위하여 사용된 본 발명의 다른 실시예에 따른 크로매틱 미러의 개략도이다.
도 10은 본 발명의 일 실시예에 따른 크로매틱 미러의 하류에 투명층(84)을 사용하는 조명 시스템의 개략 3차원도이다.
도 11은 본 발명의 일 실시예에 따라, 차단된 영역이 차단된 영역내의 어떤 관심 영역을 조사(illuminate)하기 위하여 사용된 일정하게 반사된 빛을 방문자들이 직접 바라보지 못하게 하는 건축물 또는 빌딩의 일 부분을 도시하는 3차원도이다.
도 12는 확산 특성을 가진 확산층을 제공하기 위하여 광산란 중심들이 분산 배치되는, 본 발명의 일 실시예에 따른 크로매틱 미러의 개략 3차원도이다.
도 13은 본 발명의 일 실시예에 따라 각각 확산층(diffusing layer)과 거울면(mirroring surface)의 태스크를 충족시키는 코팅 또는 필름을 지지하기 위한 지지 부재로서 투명 패널 또는 가요성 있는 폴리머 필름을 사용하는, 본 발명의 일 실시예에 따른 크로매틱 미러의 3차원도이다.
도 14는 각각 거울면과 확산층을 형성하는 코팅 또는 필름이 투명 패널 또는 가요성 있는 폴리머 필름과 동일한 측면에 배열되는, 도 13과는 다른 크로매틱 미러의 3차원도이다.
도 15는 2개의 플로트 유리 시트(float glass sheets)로 구성되는 층상의-유리 패널(stratified-glass panel)을 사용하는 크로매틱 미러의 다른 실시예의 3차원도이다.
도 16은 2개의 플로트 유리 시트 사이의 접착성 투명 폴리머 필름이 확산층의 태스크를 수행하는, 도 15와는 다른 실시예에 따른 크로매틱 미러의 3차원도이다.
도 17은 다른 실시예에 따라 알루미늄 금속 호일을 사용하는 크로매틱 미러의 3차원도이다.
도 18은 도 17의 크로매틱 미러를 제 자리에 유지시키기 위한 프레임을 사용하는 크로매틱 미러의 3차원도이다.
도 19는 외부 광을 반사시켜 건물 정면(building facade)을 "은폐(hiding)"시킬 수 있도록 건물 정면에 본 발명의 임의의 실시예에 따라 크로매틱 미러를 부분적으로 제공한 것을 나타내는 도면이다.
도 20은 본 발명의 일 실시예에 따라 층상의-유리에 기반하여 제조된 크로매틱 패널의 3차원도이다.
이하에서, 본 발명의 실시예들이 도면들을 참조하여 설명된다. 이 실시예들의 기초를 이루는 개념들의 이해를 용이하게 하기 위하여, 먼저, 크로매틱 미러의 일반적인 실시예가 도 1을 참조하여 설명되며, 그 다음에 그러한 크로매틱 미러를 이용하는 다른 실시예들 및 시스템들이 설명며, 뒤이어 그러한 크로매틱 미러가 적용돠거나 취급될 수 있는 형태의 각각의 제품들을 만들어 내는 그러한 크로매틱 미러를 생산하기 위한 실례들이 설명된다. 그 다음에, 다른 크로매틱 구성부품, 즉 크로매틱 패널이 그것을 이용할 수 있는 애플리케이션들 및 시스템들과 함께 설명된다.
도 1은 본 발명의 일 실시예에 따른 크로매틱 미러를 도시한다. 이 크로매틱 미러는 도면부호 "10"로 지시되며, 거울면(12) 및 그 거울면(12)의 앞쪽의 확산층(14)을 포함한다. 미러(10)의 거울측이 향하는 방향이 도면부호 "15"로 지시된다.
도 1은 크로매틱 미러를 개략적으로 나타내는 것으로만 취급되는 것이며, 따라서 도 1이 크로매틱 미러를 평면 패널 형상으로 도시하고 있더라도, 거울면(12)는, 예를 들어, 도 1에 도시된 평면 구성 대신에 예를 들어 오목한 형상과 같은 비-평면 방식으로 형성될 수 있다는 것을 주목해야 한다. 유사하게, 도 1은 워크 피스(work piece) 또는 층(16)이 층(14)의 측방향 원주를 너머 측방향으로 연장하는, 확산층(14)을 마주하는, 평평한 워크 피스 또는 층(16)을 메인 측으로 거울면(12)을 도시하고 있지만, 이러한 개념은 단지 예시의 목적으로 선택된 것이며 도 1의 실시예를 제한하는 것으로 해석되는 것은 아니다. 이러한 점은 도 1에 도시된 두께에 대하여도 동일하게 적용된다. 또한, 후술하는 실시예들에 도시되는 바와 같이, 거울면(12)은, 예를 들어, 코팅들 또는 필름들 또는 패널들에 의해 형성될 수 있으며, 층들(14, 16)은 도 2에 도시된 바와 같이 서로 직접 접촉할 수 있으며, 하나 이상의 층들이 상기 층들(14, 16) 사이에 배치될 수 있다. 예를 들어, 거울면(12)은 워크 피스 또는 층(16)에 코팅 또는 필름에 의해 형성될 수 있으며, 확산층(14)은 직접 또는 하나 이상의 추가의 층들을 통하여 거울면(16) 위에 디포짓되는 필름 또는 코팅이 될 수 있다. 이러한 경우에도, 크로매틱 미러(10)는 도 1에 도시된 바와 같이 다중-층 구성부품으로 형성될 수 있거나 또는 워크 피스 또는 층(16)은 거울면(12)이 그 외부면에 형성되는 아주 큰 구조체 또는 물체로 형성될 수 있다. 아래에서 개요가 설명되는 실시예들로부터 명확하게 알 수 있는 바와 같이, 크로매틱 미러(10)는 강성 또는 신장성 또는 가요성이 있게 이루어질 수 있다. 크로매틱 미러(10)의 어떠한 구성부품은, 반사부재(16), 거울면(12)을 형성하며 확산층(14)을 마주하는 측, 확산층(14) 또는 거울면(12)과 확산층(14) 사이에 배치되거나 확산층(14)의 다른측, 즉 거울면(12)으로부터 떨어져서 마주하는 확산층(14)의 메인측(18)에 배치되는 다른 층과 같은, 지지부재로서 기능할 수 있다. 이러한 지지부재는 크로매틱 미러(10)에 강성(stiffness), 신장성(tensibility)또는 가요성(flexibility) 을 부여할 수 있다. 거울면(12)이 실제로 어떠한 형상을 가지도라도, 확산층(14)은 거울면(12)의 형상에 실질적으로 일치하는 층이며, 아래에서 기술하는 바와 같이, 거울면(12)의 측방향 연장부에 걸쳐 실질적으로 일정한 두께를 가질 수 있다.
지금은 크로매틱 미러(10)의 구현 및 실현의 가능성에 대한 어떠한 특정의 설명은 뒤로 미뤄질 것이며, 이하에서는 그 전면에 확산층(14)을 가지는 거울면(12)의 조합 작용 및 기능에 대하여 기술할 것이다.
확산층(14)은 충돌광(20)의 단-파장 성분들을 충돌광(20)의 장-파장의 성분들에 대하여 우선적으로 산란시키도록 구성된다. 다른 방법으로 말하면, 확산층(14)은 충돌광(20)의 장-파장 성분들을 충돌광(20)의 단-파장 성분들에 비교한 이상의 더 높은 확률에서 산란시키지 않고 통과시킨다. 즉, 확산층(14)은 충돌광(20)에 대한 산란 횡단면을 가지며, 이 산란 횡단면은 가시광선 스펙트럼 내에서 장파장으로부터 단파장으로 증가한다. 이 증가는 단조로운 증가일 수 있다. 산란된 광이 전파되는 방식은, 예를 들어, 실질적으로 등방성(isotropic), 즉, 모든 방향에 대하여 균등한 강도, 또는 산란된 광의 방향에 대한 산란된 광의 강도의 약한 의존성, 즉 산란된 광이 확산되는 특징을 나타낸다. 결국, 이것은 확산층(14) 내에서 리드하는 광통로의 섹션(22) 내에서 확산층(14)과 어떠한 산란 상호작용 없이 거울면(12)에서 일정하게 반사되는 충돌광의 부분(도 1에서 도면부호 "24"로 지시됨)은 가시영역 내에 놓이는 스펙트럼 부분의 질량 중심이 장파장쪽으로 시프트되는 점에서 충돌광(20)의 스펙트럼과는 다른 스펙트럼을 가진다. 크로매틱 미러(10)에 의해 일정하게 반사되는 광(24) 이외에, 충돌광(20)의 다른 부분은 확산층(14)에 의해 전술한 산란의 대상이 되며, 확산 방식, 즉 방향 "15"가 지시하는 반구를 향하여 지시하는 모든 방향들을 따라 실질적으로 일정한 휘도, 또는 정반사 방향 주위에서 적어도 30°, 바람직하기로는 45°, 가장 바람직하기로는 60°HWHM 애퍼처의 콘내에서 팩터 3 이상 변화하지 않는 최소한의 휘도에 이르게 하는 방식으로 확산층(14)을 떠난다. 전술한 난반사광(diffusely reflected light)의 스펙트럼에 관한 한, 동일한 사항이 전술한 산란 횡단면을 가지는 인바운드 충돌광(20)의 스펙트럼의 분광 가중치에 실질적으로 대응하며, 또는 다른 조건에서, 산란된 확산광의 스펙트럼은 인바운드 충돌광(20)과 일정한 반사광(24) 사이의 차이에 실질적으로 대응한다.
크로매틱 미러(10)의 전술한 작용의 결과로서, 도 1에서 도면부호 "24"로 지시된 방향과 같은 소정의 방향에서의 조사의 결과로 미러(10)에 의해 방출되는 광은 1)반사각(specular angle)으로 미러(10)에 충돌하며 미러(10)에 의해 일정하게 반사되는 광(20)과 2)광이 어떤 방향으로부터 미러(10)에 충돌하여 돌발적으로 방향 "24"를 향하여 산란되는 산란 과정들에 의해 발생되는 확산광 - 즉, 미러(10)에 충돌하는 모든 광은 그 광이 미러(10)에 충돌하는 방향에 관계없이 확산광에 기여한다 - 의 중첩 또는 총합이라는 것을 주목해야 한다.
도 1을 참조하여 기술된 바와 같은 크로매틱 미러는, 예를 들어, 크로매틱 미러(10) 및 크로매틱 미러(10)를 조사하기 위한 조명기(26)의 조합을 포함하는 실시예에 따른 시스템을 나타내는 도 2에 도시된 틀(framework) 내부에 사용될 수 있다. 이 조명기(26)는 예를 들어 백색 광원이다. 도 2에 따른 조명기(26)는 미러(10)에 광을 방출하거나 쏟는다. 도 2에서, 조명기(26)에 의해 방출된 광의 광추(light cone)는 미러(10)의 연장부를 완전히 커버하고 실질적으로 매칭되도록 예시적으로 도시되었다. 즉, 미러(10)가 그 안에서 연장하는 평면에서의 광추(28)의 단면의 면적은, 예를 들어, 미러(10)의 면적의 3배보다 작을 수 있다. 또한, 조명기(26)는 미러(10)를 비스듬히 조사한다. 즉, 미러는 평평한 형상으로 예시적으로 도시되며, 미러(10)의 평면에 대한 조명기(26)의 투사는, 예를 들어, 미러(10)의 면적의 제곱근의 50% 이상 만큼 미러(10)의 중앙에 대하여 오프셋된다.
이러한 배치 구성에 관하여, 도 2는 미러(10)를 조명기(26)에 대하여 반사각으로 바라볼 때 얻어지는 상태를 도시하고 있다. 이 때문에, 도 2는 눈 또는 카메라(30)가 미러(10)에 대하여 조명기(26)에 관한 반사각으로 배치되는 것으로 도시하고 있다. 카메라/눈(30)(예를 들어, 이미지 센서 또는 망막)을 나타내는 그림이 도 2의 "32"에 도시된다: 미러(10)의 윤곽은 가시적이며, 즉 "34"이며, 그리고 미러(10)의 윤곽을 둘러싸는 벽의 부분들(26)이 보이며, 이것은 예시적으로 미러(10)를 둘러싸며 광추(28)에 의해 비춰지는 것으로 상정된다. 미러(10) 내에서, 스폿(38)은 조명기(26)에 의해 방출된 광의 일정한 반사광부로부터 발생하며 조명기(26)의 백색광에 비교하여 보다 따뜻한 광(낮은 CCT)을 가지는 것을 나타내는 것이다. 스폿(38)은 스폿(38)의 CCT에 비교하여(그리고 조명기(26) 광의 CCT에 비교하여) 보다 높은 CCT(상관 색온도: Correlated Color Temperature)인 균일한 영역의 광(40)에 둘러싸인다. 둘러싸는 광(40)은 주로 확산층(14) 내에서의 산란에 의해 발생된 확산광으로부터 생겨나며, 이러한 확산 산란의 의존성은 광(38)에 대한 CCT에서의 증가의 주된 원인이 된다. 둘러싸는 영역(40)의 광은, 예를 들어, 푸르스름하다. 그러나, 그것은 조명기(26)에 의해 출력되고 미러(14)에 의해 일정하게 반사되는 광에 비교하여 어떤 다른 각도로 미러(10)에 충돌하는 광에 의해 중첩된다. 그러한 광은, 예를 들어, 조명기(26)를 지나는 통로들을 따라 이동하는 다른 광을 가지는 룸내의 다른 물체로부터 생겨날 수 있다. 도 2는, 예를 들어, 조명기(26) 가까이에 배치되는 물체(42)가 이러한 물체(42)의 가상이미지(virtual image)이 카메라(30)에 의해 보일 수 있도록 배치된 것을 나타낸다. 도 2에 도시된 바와 같이, 이 물체(42)는, 예를 들어, 조명기(26)에 의해 직접 조명되지는 않는다. 그러나, 도 2에는 도시되지 않은 다른 벽 등과 같은 다른 물체들에서의 광 반사로 인하여, 물체(42)는 광을 미러(10)에 충돌시킬 수 있다. 후자의 광은 조명기(26)에 의한 조명에 응답하는 확산층(14)에 의해 발생하는 확산광의 균일성을 흩뜨릴 수 있다. 그러나, 바람직하기로는, 물체(42)가 관찰자(30)에게 보이지 않거나 또는 적어도 관찰자의 주의력이 이러한 물체에 미치지 않도록, 확산광은 물체(42)로부터의 일정한 반사광을 제압한다. 예를 들어, 관찰자(30)는 관찰자의 눈으로 표시하였으며, 미러(10) 내에서 보이는 하늘의 태양 같은 장면으로 인하여 관찰자는 눈이 무한지점을 바라보는 것으로 설정하는 것으로 상정한다. 이러한 경우에, 확산광과의 중첩(overlay)으로 인하여, 관찰자는 물체(42)가 보이지 않으며 마치 관찰자가 깊은 인상을 경험한 상태로 관찰자가 태양형 스폿(38) 주위의 푸르스름한 광(40)이 보이는 창문을 바라보는 것과 같은 인상을 유지할 수 있다. 흥미롭게도, 조명기(26)도 관찰자(30)와 동일한 룸내에 존재한다.
위에서 기술한 것을 요약하면, 도 2는 도 1에 따른 크로매틱 미러(10)가 조명용 시스템을 형성하도록 크로매틱 미러(10)를 조사하기 위한 조명기(26) 또는 광원(2)과 조합될 수 있는 것을 도시한다. 이 시스템(10)은, 예들 들어, 도 3에 예시적으로 도시된 바와 같이 룸(48)의 벽 또는 천장(46)에 고정될 수 있다. 도 2에 관하여 기술한 바와 같이, 조명기(26)는 동일한 룸 또는 그 룸의 벽, 천정(46) 또는 바닥에 배치될 수 있다.
조명기(26)에 관한 한, 조명기(26)는 미러(10)를 조사하기 위하여 미러(10)를 향하여 배향되는 광추(28)를 형성하도록 조명기(26)에서 확산적으로 발생되는 광을 집중하도록 광 집중기를 포함할 수 있다는 것이 주목되어야 한다. 예를 들어, 직사각형 또는 타원형의 미러의 형상과 매칭되는 광 스폿을 형성하는 것을 달성하는 것뿐 아니라, 예를 들어, 복합 포물선형 집중기들(CPCs), 광빔 균질화기(파리눈, 탠덤 어레이 등)의 사용에 따라 조명기(26)에 의해 미러(10)를 균일하게 조명하는 것을 달성하기 위하여 어떠한 구성들이 채택될 수 있다.
비록 상기에서는 아직 언급하지 않았을지라도, 확산층(14)이 광을 흡수하지 않거나 또는 실질적으로 흡수하지 않도록 확산층(14)이 바람직하게 구성될 수 있다는 것이 주목되어야 한다. 이 경우에, 조명기(26)에 의해 생성되는 모든 광은 조명을 위하여 보존된다. 또한, 미리 언급하지는 않았을지라도, 확산층이 광을 레일리로 또는 적어도 레일리형 방식으로 산란시키는 산란 횡단면에서의 파장 의존성을 가질 수 있다. 이 경우에, 전술한 태양-하늘-외관 효과는 하늘이 레일리 방식으로 광을 지배적으로 산란시키는 것과 같이 증가된다. 그러나, 도 2에서의 "42"와 같은, 조명기(26) 이외의 미러(1) 인근의 물체로부터 발생하는 하늘-형 지역(40)의 가장자리들에 의해 관찰자의 눈이 덜 끌리도록, 태양-하늘-외관은 조명기(26)에 대하여 반사각으로 미러(10)를 바라보는 관찰자가 무한한 깊은 인상을 얻을 수 있는 더 개연성을 더 높일 수 있다.
즉, 어떠한 반사 각도로 미러를 바라볼 때, 관찰자(30)는, 미러(10)에 의해 형성된 창문(window)을 통하여 하늘(40)에 둘러싸인 태양(38)을 동시에 바라보면서, 마치 미러(10)에 의해 형성된 창문을 통하여 하늘(40)을 바라보는 것과 같이 느낌을 얻을 수 있다. 어떠한 비-반사 각도로 미러를 바라볼 때는, 관찰자는, 미러(10)에 의해 형성된 창문을 통하여 태양을 바라보지 않고, 마치 미러(10)에 의해 형성된 창문을 통하여 하늘을 바라보는 것과 같은 느낌을 얻을 수 있도록 관찰자에게는 광(40)만 보인다는 것이 주목되어야 한다.
바람직하기로는, 거울면(12)과 확산층(14)의 결합 작용은 450㎚의 충돌 청색광에 대하여 10%보다 큰, 바람직하기로는 20%보다 큰, 더 바람직하기로는 30%보다 큰 반사 헤이즈(haze in reflection)를 생성한다. "반사 헤이즈(haze in reflection)"이란 확산층(14)에 의한 산란에 의해 발생되는 충돌광, 즉 산란된 확산광의 윤곽부를 나타낸다. 다른 조건에서, 거울면(12)과 확산층(14)의 결합 작용은 결합 작용이 450㎚의 충돌 청색광에 대한 것보다 650㎚의 충돌 적색광에 대하여 적어도 2배 낮은 반사 헤이즈를 생성하도록 설정될 수 있다. 전술한 바와 같이, 이것은 확산층(14)의 산란 횡단면에 대한 스펙트럼의 종속성 때문이다.
도 2에 대한 실시예에서, 조명기(26)의 가상이미지을 무한지점에서 보는 관찰자에 대하여 발생되는 전술한 무한의 깊은 인상이 실제는 조명기(26)가 미러(10)에 대하여 유한 거리에 배치되는 사실에 의해 방해를 받는다. 예를 들어, 눈의 양안 수렴, 조명기(26)의 시차(parallax), 및 예를 들어 조명기(26)의 구조적 상세에 대한 관찰자 눈의 순응과 같은 광학적 역할들(optical cues)이 관찰자가 무한의 깊은 인상을 상정하는 것을 흐트러뜨릴 수 있다. 이러한 문제를 완화시키기 위하여, 도 4는, 앞에서 기술하였던 실시예들과는 달리, 미러(10)의 거울면이 오목한 포물선 형상을 가지는 것과 같이 오목하게 형성될 수 있는 것을 도시한다. 특히, 도 4는 도 2의 실시예를 이와 관련하여 수정한 것으로서, 크로매틱 미러(10)에 의해 일정하게 반사되는 조명기(26)로부터 나오는 광이 평행하게 되며, 일정하게 반사된 부분에 관한 한 광추(28)가 평행한 광 스트림(50) 또는 낮은-확산 광 스트림(50)으로 되도록, 조명기(26)가 예를 들어 크로매틱 미러(10)의 초점에 배치되는 조명용 시스템이 되는 것을 나타낸다. 미러(10)에 대한 조명기(26)의 경사도는 유지되며, 예를 들어, 크로매틱 미러(10)가 꼭지점을 포함하지 않는 회전형 포물면부와 같은 회전형 포물면의 비축(off-axis) 섹션으로 형성되며, 광원(26)을 초점에 또는 초점에 근접하게 위치시킬 수 있다. 그러나, 어떠한 애플리케이션들에서는, 축상 배치(on-axis layout)가 이용될 수 있다.
도 4에 관하여 위에서 설명한 방식으로 미러(10)의 거울면을 형성하면, 관찰자가 미러(10), 조명기(26)를 통하여 미러(10) 방향을 바라보는 것, 즉 태양(38) 및 하늘(40)을 보는 것은 전술한 무한의 깊은 느낌을 얻게 되며 마치 관찰자가 낮은 CCT의 밝은 물체(38), 예를 들어, 하늘과 같은 대기(40)에 의해 둘러싸인 무한 지점에 있는 태양을 본 것과 같이 느끼게 된다. 이것은, 순응 역할뿐 아니라 양안 역할이 하늘-태양-외관에 맞춰지고 단지 무한의 깊은 인상을 흐트러뜨릴 가능성이 주위의 하늘 영역(40)을 가지는 관찰자의 시계안으로 상이 비춰지는 물체의 가장자리들로부터 생겨나도록, 미러(10)를 통하여 보이는 조명기(26)의 가상이미지가 무한 지점에서 실제로 되기 때문이다.
크로매틱 미러(10)는 충분히 넓게 만들어지는 것이 바람직할 수 있다. 예를 들어, 거울면은 그 초점 거리가 거울면(12)의 면적의 제곱근보다 작거나 또는 거울면의 면적의 제곱근보다 1.5배 이상 더 작은 초점 거리를 가지도록 구성될 수 있다.
한편, 하기에서 기술되는 실시예로부터 명확한 바와 같이, 도 4의 오목형상의 미러는 회전 대칭, 즉 회전 대칭면을 가지고 있다, 즉 모든 이동 방향들에 대하여 동일한 초점 길이를 가지고 있다. 미러(10)는 포물선형 오목 원통형 미러와 같이 형성되거나 또는 일 측방향 또는 병진운동 방향(이하, 'y 방향'이라 람)을 따라 다른 오목 형상을 가질수 있으며. 다른 직교하는 측방향 또는 병진운동 방향(이하, 'x 방향'이라 함)을 따라 평평하거나 또는 평면인, 즉 무한의 초점 거리를 가질 수 있다.
하기에서 명확하게 되는 바와 같이, 원통형 미러가 x 방향에 수직인 평면에서만 조명기(26)의 광선들을 콜리메이팅(collimating)할 수 있다는 사실에도 불구하고, 관찰자로부터 무한의 거리에서 조명기를 인식하는 것을 보증하는 해결책이 존재한다.
그러한 구성이 도 5a에 도시되었다. 도 5a는 x 방향에 수직이 평면, 즉 zy-평면에 대하여 투영되며 x-축을 따라 직선형으로 형성되거나 직선인 평면에서 오목한 또는 포물선 형상을 가지는 거울면(12)을 구비한 미러(12)를 도시하고 있다. 다른 조건에서는, 상기 원통형-거울면은 x 방향을 따르는 zy 평면에 놓이는 오목하거나 포물선형인 커브를 변환함으로써 얻어진다. 따라서, 미러(10)는 x 축에 평행하게 연장하는 초점 라인을 가지는 오목한 원통형 미러로서 도시된다. 직선형 조명기(26)는 거의 완전하게 미러(10)를 조사하기 위하여 미러(10)의 초점 라인에서 x-축에 평행하게 배치된다. 단적으로 말하면, 도 5는, 예를 들어, 조명기(26)의 일정한 반사광부에 의해 직사되는 룸이 도 5에 도시된 바와 같이 직사각형 형상과 같은 장방형 형상을 가지는 도 4의 시스템의 변형례를 나타낸다. zy-평면에 관한 한, 도 5a의 환경은 도 4에 관하여 설명한 환경과 완전히 동일하다: 조명기(26)에 의해 방출되는 광은 확산되지만, 광의 일정한 반사된 부분이 적어도 조명기(26)로부터 미러(10)에 충돌하는 것에 관한 한 직진하는 광 방향을 따라 미러(10)에 의해 평행하게 된다.
특히, 기초 광학으로부터, 일정하게 반사되는 광부의 휘도각 프로파일 LR 은, 각도
Figure 112016121789492-pct00001
에 종속하는 한, 하기의 식을 충족할 수 있다.
Figure 112016121789492-pct00002
여기서,
ㆍ Wy 는 y축을 따르는 조명기(26)의 폭이며,
ㆍf는 zy 평면에서의 미러 곡률에 대한 미러(10)의 초점 거리이며,
Figure 112016121789492-pct00003
는 직진 방향 i, θ, z 에 대한 zy 평면에서의 방향의 각도이며,
ㆍq는 이상적인 시스템에서 값 d=1을 가지는 품질지수(quality factor)이며, 여기서 바람직하기로는 1≤d≤3을 충족하고, 더 바람직하기로는 1≤d≤2를 충족하고, 보다 바람직하기로는 1≤d≤1.5를 충족한다.
그리고, 상기 식은 휘도
Figure 112016121789492-pct00004
이 최대 휘도값의 10%보다 큰 경우에, 임의의 위치 x,y 및 xz 평면에서의 임의의 각도 방향
Figure 112016121789492-pct00005
에 대하여 유효하다. 요약하면, 상기 식은 조명용 시스템이 램버시안 에미터의 폭 Wy 에 대하여 광학적 한계로부터 바람직하기로는 3, 더 바람직하기로는 2, 보다 바람직하기로는 1.5 떨어진 정밀도를 가지고 yz 평면의 광을 콜리메이팅하도록 배열되는 것을 의미한다.
그러나, 상황은 xz 평면에서는 다르다. xz 평면에서는, 조명기(26)에 의해 방출되고 미러(10)에 의해 일정하게 반사되는 광은 조명기(26)로부터 나오는 확산(divergence)을 유지한다. 따라서, 도 5a에 도시된 바와 같이, 조명기(26)는 특히 1)xz 평면에서 상당히 낮은 확산을 나타내도록 구성된다. 특히, z 축에 대한 zx 평면에서의 방향 각도가
Figure 112016121789492-pct00006
로 주어지면, 조명기는 반사된 휘도
Figure 112016121789492-pct00007
와 직교 방향에서 매칭하는 폭을 가진 휘도각 프로파일
Figure 112016121789492-pct00008
을 생성하도록 구성된다. 상기 휘도각 프로파일의 FWHM을 참조하면, 개념은 다음 식으로 된다:
Figure 112016121789492-pct00009
여기서, 상기 식은 휘도
Figure 112016121789492-pct00010
이 최대 휘도값의 10%보다 큰 경우에, 임의의 위치 y,z 및 yz 평면에서의 임의의 각도 방향
Figure 112016121789492-pct00011
에 대하여 유효하다. 이러한 결과를 얻기 위하여, xz 평면에서의 조명기 확산은 조명기 폭 Wy , 미러의 초점 거리 f, 품질지수 q의 실제 값들에 따라 맞춰져야 한다. 그 밖에, x 좌표에 종속하는 한, 즉, x 축을 따르는 임의의 쌍의 다른 지점들에 대한
Figure 112016121789492-pct00012
에서, 휘도 프로파일은 2) 실질적으로 독립적, 즉 균일해야 한다.
그러나, 균일도는 관찰자의 눈의 각도 분해능에 대응하는 입도(granularity), 즉 예를 들어 10㎟의 2개의 다른 지역 내에서 x에 걸친 휘도의 적분값에 에 충족될 수 있다. 이것이 어떻게 달성될 수 있는지가 도 6a 및 도 6b를 참조하여 후술된다. 그러나, 먼저, 원통형 미러(10)에 맞추기 위하여 도 5a의 조명기(26)의 휘도 프로파일에 관한 특별한 기술 사상이 보다 상세히 설명되고, 다음에 도 5a의 시스템에 의해 발생된 조명의 기능 및 외관이 설명될 것이다.
직선형 조명기(26)는 그 휘도 프로파일
Figure 112016121789492-pct00013
에 의해 특징지어지며, 여기서 휘도는 단위 입체각(ASTM, E 284-09a, Standard Terminology of Appearance)당, 주어진 방향으로부터 보여지는 표면의 단위 투영 면적당, 주어진 방향으로의 표면으로부터 방출하는 빔의 광속(luminous flux)로서 정의되며, 여기서
Figure 112016121789492-pct00014
는 각각 zx 평면 및 zy 평면에서 측정된 방향 각도이다. 이와 관련하여, 직선형 조명기(26)는 x 좌표에 실질적으로 종속되지 않는, 즉 x 방향을 따라 균일하며, 휘도가 일반적으로
Figure 112016121789492-pct00015
에 약하게 종속하며
Figure 112016121789492-pct00016
에 대한 종속성에 관하여 좁은 피크를 나타내는 점에서 각도상 종속성에 관하여 전형적으로 등방성이 아닌(어떤 예외적인 경우에 등방성이 될 수 있다) 휘도를 가지도록 구성된다. 예를 들어, 상기 휘도각 프로파일은, 도 5b에 개략적으로 도시된 바와 같이,
Figure 112016121789492-pct00017
에 대한 종속성에 관하여 60°보다 큰, 바람직하기로는 90°보다 큰, 보다 바람직하기로는 120°보다 큰 FWHM(반치전폭: full with at half maximum)을 가지며,
Figure 112016121789492-pct00018
에 대한 종속성에 관하여 45°보다 작은, 바람직하기로는 30°보다 작은, 보다 바람직하기로는 15°보다 작은 FWHM을 가진다.
관찰자는 조명기(26)를 직접 바라보는 것(즉, 도 5a에서 미러 아래쪽의 바라보는 지점으로부터 바라보는 것)으로, 간단히 상정한다. 즉, 관찰자는 직선형 조명기(26)의 전방에서 조명기로부터 소정의 거리, 예를 들어 방향
Figure 112016121789492-pct00019
로부터 직선형 조명기(26)의 중심점을 직접 바라볼 때 1m의 거리에 위치된다. 이러한 환경에서, 관찰자는, 직선형 조명기기 x 방향에서 상당히 긴 것(예를 들어, 수 m)으로 가정할 때, y 방향에서 조명기의 폭 각도(angular width)에 의해 제한되며(예를 들어, 주어진 1m의 거리에 대하여 폭이 ~ 5㎝의 경우에
Figure 112016121789492-pct00020
), x 방향에서 휘도각 프로파일
Figure 112016121789492-pct00021
의 FWHM에 의해 제한되는(즉,
Figure 112016121789492-pct00022
) 개구각 (angular aperture)
Figure 112016121789492-pct00023
의 조건에서 밝은 스폿을 볼 것이다. 다른 조건에서, 광원이 켜질 때 그 광원을 직접 바라보는 관찰자는, 전형적인 관찰 거리의 경우에, x 방향에서 강하게 늘어진 빛을 비추는 영역 또는 빛나는 스폿을 인식할 수 있다. 예를 들어, 관찰자가 각도
Figure 112016121789492-pct00024
또는 그 미만의 조건에서 광원이 비춰지는 영역을 인식할 수 있다. 직선형 조명기(26)의 외관 및 관찰자가 광원을 직접 바라보는 것에 의해 보여지는 빛을 비추는 영역(flashed area)이 도 5c에 주어진다. 이하에서는, 빛을 비추는 영역만이 광원을 바라보는 관찰자에 의해 인식되도록 직선형 조명기가 구성되는 것으로 가정한다.
도 5d는 직선형 조명기(26)의 외관 및 원통형 포물선형 크로매틱 미러(10)의 반사에 의해 상기 조명기(26)를 바라보는 관찰자, 즉 일정하게 반사되는 광빔 내에 위치한 관찰자에 의해 보여지는 조명기의 비춰진 영역을 도시하고 있다. 직선형 조명기(26)가 포물선형 미러(10)의 초점 선에 배치되므로, 직선형 조명기의 상(image)은 y 방향을 따라 확대될 수 있다. 특히, 도 5c도를 참조하여 기술한 바와 같이, 관찰자가 비춰진 영역을 바라보는 조건인 폭 각도
Figure 112016121789492-pct00025
는 더 이상 관찰자와 광원 사이의 거리에 종속하지 않지만, 폭 각도
Figure 112016121789492-pct00026
는 y 방향에서의 광원의 폭과 포물선형 미러의 초점 거리에 종속한다. 예를 들어, 이상적인 조건에서, 초점 거리 ~ 30㎝는 ~ 5㎝ 폭의 직선형 조명기의 경우에,
Figure 112016121789492-pct00027
의 조건에서 관찰자가 빛을 비추는 영역을 인식하게 한다. 이에 비하여, 미러는 zx 평면에서 무한한 초점 거리를 가지므로
Figure 112016121789492-pct00028
에 이르기 때문에, 관찰자가 직각투영 zx 평면에서 비춰진 영역을 인식하는 폭 각도는 원통형 포물선형 크로매틱 미러(10)의 존재에 의해 변경되지 않는다. 이것은, 관찰자와 광원 사이의 임의의 거리에 대하여 y 방향에서의 광원 폭과 광원 휘도 프로파일이 주어진 경우에, 실질적으로 등방성 또는 광원의 빛을 비추는 영역의 적어도 비-신장(not-elongated) 외관의 조건, 즉
Figure 112016121789492-pct00029
의 조건은 포물선형 미러 초점 길이를 적절히 선택함으로써 맞춰질 수 있다. 따라서, 본 발명은 x 방향에서 임의로 커다란 길이를 가질 수 있는 조명 장치를 가지는 y 및 x 방향을 따라 폭이 동일한 태양 이미지의 외관을 만들어내는 것을 가능하게 한다.
원통형 포물선형 크로매틱 미러(10)의 반사에 의해 직선형 조명기(26)를 바라보는 관찰자는 빛을 비추는 영역 또는 광원, 즉 빛을 비추는 스폿을 가상의 무한 거리에서 인식할 것이라는 점을 주목해야 한다. 실제로, yz 평면에서의 광선 분포에 대한 인식에 관한 한, 광원이 자동적으로 초점 위치에 있다는 사실은 무한 지점에서 광원의 가상 위치를 인식하는 것을 확실하게 한다. 직각투영 xz 평면에서의 광선 분포에 대한 인식에 관한 한, 관찰자가 빛을 비추는 영역을 무한 지점에서 인식하는 것이 본 발명의 발명자에 의해 주목되었다. 이것은 휘도 광원 프로파일의 선택에 의해 실현되며, 특히 상기 휘도가 x 좌표에 종속되지 않는단 사실, 즉 x 방향을 따라 균일하다는 사실에 의해 실현된다. 그 결과, 관찰자의 눈의 역할들, 예를 들어, 양안 시차, 운동 시차 및 순응 시차는 관찰자가 조명기가 배치되어 있는 물리적이 평면에서 자기 눈을 집중하거나 또는 순응하도록 유도하기 위한 어떠한 지지를 찾는 작용 - 이러한 작용은 직각투영 평면에서 인식되는 것과 같이 빛을 비추는 영역의 가상이미지에 의해 지지되는 눈을 무한의 지점으로의 수렴/순응과 상충된다 - 을 수행하지못한다. 또한, 크로매틱 포물선형 미러(10)에 의해 산란된 광, 예를 들어, 레일리 방식으로 산란된 광의 기여에 의해 발생되는, 균일하고, 푸르고, 밝게 빛나는 광 배경의 존재는 소위 "지역 인식(areal perspective)" 역할, 즉, 관찰차로부너 떨어진 물께의 거리가 푸르스름한 헤이즈(bluish haze)의 증가와 함께 증가하는 것을 인식하는 눈의 역할 - 이러한 푸르스름한 헤이즈는 통상 물체와 관찰자 사이에 들어 있는 공기의 양에 기인하는 것으로, 물체와 관찰자의 거리에 비례한다 - 로 인하여 관찰자가 자기의 시야를 무한 지점으로 설정하도록 유도하는데에 기여한다.
요약하면, 전술한 모든 인자들 - 즉, yz 평면에서 초점맞추는 능력, 조명기의 이방성 휘도각 프로파일(anisotropic angular luminance profile), x 방향에서의 상기 휘도각 프로파일의 균질도, 크로매틱 미러(10)가 원통형 포물선형 형상을 가지며 직선형 조명기(26)가 미러 초점 선에 배치되는 사실, 및 마지막으로 충돌광의 단파장을 산란시키는 크로매틱 미러(10)의 능력 - 은 동시에 무한의 거리에 있는 푸른 하늘 및 밝은 태양 스폿의 외관을 생성하는데에 기여하며, 여기서 x 방향을 따라 생성된 하늘 창의 크기는, 하늘 생성의 크기가 어느 정도의 초점 길이보다 커질 수 없는 회전형 대칭 미러들과는 달리, 임으로 크게 만들어질 수 있다.
따라서, 도 5a의 시스템은, 예를 들어, 룸의 천장에 설치될 수 있으며, 이에 의해 바닥의 직사각형 영역(52)을 조명기(26)에 의해 발생된 광의 일정하게 반사된 낮은-확산의 직사광부분에 의해 조사하게 되며, 또한 룸의 다른 부분들은 미러(10)의 확산층내에서 산란에 의해 야기된 확산광에 의해 조사된다. 도 4에 관하여 기술한 바와 같이, 룸을 직사할 수 있는, 즉 미러(10)로 향하지 않은 광은, 선택적으로, 미러(10)로 향하지 않는 조명기(26)의 어떠한 광을 차단하도록, 즉 아래방향으로 향하게 하여 룸을 직사하지 않도록, 미러(10)에 대하여 조명기(26)의 다른 쪽에 배열된 오목한 형상의 원통과 같은 광 차단기 또는 광 집중기(도 5a에서 도면부호 "54"로 개략적으로 지시됨)에 의해 차단될 수 있다.
도 5a는 전술한 효과를 확실하게 하는 배치를 도시하고 있다. 카메라 또는 관찰자의 눈(30)이 개략적으로 도시되었으며,도 5a는 관찰자가 미러(10)를 바라볼 때, 조명기(26)의 일정하게 반사된 광이 관찰자의 눈(30)에 직접 부딪히지만, 관찰자의 눈(30)은 zx 평면으로부터 비축되는, 즉 눈이 바닥 영역(52)을 직조사하는 미러(10)의 투사 아래에 위치하지만 조명기(26)의 바닥 영역(52)으로의 투사로부터 일부분 비축되는 방식으로 도 5a의 조명 시스템의 외관을 도시하고 있다. 즉, 밝은 디스크(38)는 x, y 좌표, 즉 관찰자의 눈(30)을 따라 직사광 방향에 대하여 수직인 평면을 창문 프레임을 통하여 볼 때 마치 태양이 창문에 대하여 이동하는 것과 같은 속도로 이동한다. 즉, 관찰자는, 예를 들어, 바닥 영역(62) 내에 서서, 미러(10)와 조명기(26)가 있는 천장을 향하여 위쪽으로 바라볼 것이다. 미러(10)의 형상이 장방형이므로, 관찰자는 장방형의 푸르스름한, 즉 더 높은 CCT의 배경광 부분(40)을 볼 것이며, 배경광 부분(40) 내에는 신장된 방향을 따라 광 차단기(54)의 뒷면이 파선(56)에 의해 표시된 것과 같이 보인다. 그러나, 관찰자는 자기 바로 윗쪽(광 직사 방향에서, z 축에 평행, 즉 각도
Figure 112016121789492-pct00030
Figure 112016121789492-pct00031
는 0 임 )에서 낮은 확산의 일정한 반사광으로부터 발생하는 밝고, 낮은 CCT의 스폿(38)을 바라보며, 전술한 바와 같이 x-축을 따르는 낮은 확산은 특정한 디자인의 조명기(26)으로부터 생겨나고, y-축을 따르는 낮은 확산은 오목한 포물선 형상의 미러(10)로부터 생겨난다.
요약하면, 도 5a에서, 조명기(26)와 크로매틱 미러(10)는 미러(10)가 신장된 축 x를 따라 신장되는 방식으로 형성되며, 여기서 미러(10)는 신장된 축 x에 수직인 평면에서 오목하게 형성되며, 조명기(26)는 확산되는, 즉 조명기(26)를 바라볼 때 미러(10)의 폭 각도 만큼 큰 또는 그 보다 큰 FWHM을 가지는 것과 같은 넓은 휘도 프로파일을 가지며, 휘도 프로파일이 제1 각도
Figure 112016121789492-pct00032
에 종속하는 한, 휘도 프로파일이 x에 종속하는 만큼 균일하고 실질적으로 콜리메이트되며, 즉
Figure 112016121789492-pct00033
에 관계되는 FWHM의 3배 보다 작은 FWHM을 가지는 것과 같이 좁으며, 휘도 프로파일이
Figure 112016121789492-pct00034
에 종속하는 한,
Figure 112016121789492-pct00035
에 관계되는 FWHM은
Figure 112016121789492-pct00036
에서
Figure 112016121789492-pct00037
의 범위일 수 있으며, 여기서 a, b는, 예를 들어, 바람직하기로는 a=0.5, b=6이고, 더 바람직하기로는 a=0.7, b=3이고, 보다 바람직하기로는 a=0.8, b=1.5이다.
도 6a 및 도 6b는 도 5의 조명기(26)의 구성의 실례를 나타낸다. 도 6a는 신장 방향, 즉 x-축을 따르는 조명기(26) 부분을 나타낸다. 특히, 도 6a의 조명기(26)는 이방성(anisotropic) 에미터들(58)과 CPC 반사기들(60)의 커플들의 직선형 어레이를 포함하며, 각각의 이방성 에미터(58)는, 예를 들어, 직사각형 백색광 LED와 같은 LED를 포함하며, 각각의 CPC 반사기(60)는, 예를 들어, 직사각형 CPC(복합 포물선형 집중기: Compound Parabolic Concentrator) 반사기는 각 커플의 LED의 하류에 배치되어 그 LED와 광학적으로 결합, 즉 LED 방출면과 매칭되는 입력 애퍼처를 가진다. 각각의 CPC 반사기(60)는 서로 마주하는 2개의 제1 포물선형 반사면(62)을 포함하며, 상기 반사면(62)은 xz 평면에서 LED 확산을 감소시키기 위하여, 예를 들어 확산을 10°또는 그 미만으로 감소시키기 위하여 설계된 곡률을 가진다. 각각의 CPC 반사기(60)는 서로 마주하는 2개의 제2 포물선형 반사면(64)을 선택적으로 더 포함할 수 있으며, 상기 반사면(64)은 yz 평면에서 LED 확산을 감소시키기 위하여, 예를 들어 확산을 90°로 감소시키기 위하여 설계된 곡률을 가진다.
따라서, 도 6a에 따르면, 조명기(26)는 x 축을 따라 일렬로 배열되며, 예를 들어 이방성으로 광을 미러(10)를 향하여 방출하는 개별 에미터들(58)의 1차원 어레이로 구성되는 신장된 직선형 광원(58)을 포함한다. 각각의 에미터(58)의 하류에는, x 축에 수직인 에미터의 확산을 감소시키는 CPC 반사기(60)가 배열된다. 각각의 CPC 반사기(60)는 에미터(58)를 향하며 에미터(58)로부터 나오는 광을 수신하기 위한 입력 애퍼처 및 상기 입력 애퍼처를 통하여 에미터(58)로부터 수신되는 광을 방출하여 내부 반사면(62, 64)에 의해 각각의 CPC 반사기(60)내에서 안내하여 각각의 미러(10) 부분을 조사하기 위한 출력 애퍼처를 포함한다. 바람직하기로는, 모든 CPC 반사기(60)의 출력 애퍼처는 미러(10)를 마주하는 CPC 반사기(60)의 연속적인 면을 형성하도록 서로 이음매가 없이 붙어있다.
각각의 CPC 반사기(60)는 입력 애퍼처로부터 출력 애퍼처를 향하여 연속적으로 넓어지는 단면을 가진다. x 축에 평행하게 넓어지는 것은 포물선형 또는 유사한 광 집중 확대(light concentrating widening)에 대응한다. 특히, 각각의 CPC 반사기(60)는 4개의 내부 반사면(62, 64)을 포함할 수 있다: 2개의 반사면(64)은 x-축 에 평행하게 연장하고 서로 마주하며, 대향하여 배열되며 서로 마주하는 2개의 반사면(62)은 x-축에 수직인 평면에서 완전한 평면 연장부에 대하여 출력 애퍼처로부터 입력 애퍼처를 향하여는 방향에서 포물면 형상으로 서로를 향하여 굽혀지며, 이에 의해, 예를 들어, 반사면들(62)의 오목 또는 포물선형 형상으로 인하여, 각각의 CPC 반사기(60)는 xz 평면에서 광의 확산성을 전술한 바와 같은 미러(10)에 의해 zy 평면에서 달성되는 낮은 확산(low divergence)에 꼭 맞는 낮은 확산으로 떨어뜨려 감소시키게 된다. 반사면들(64)의 오목하거나 또는 포물선형 곡률은 또는 이와 균등한 것이 존재하는 것은 단지 선택적이다, 즉 이러한 것들은 제외될 수 있다.
도 6b는, 예를 들어, 상기 제2 포물선형 반사면들(64)이 평면 반사기들에 의해 대체된 경우를 보여준다. 이 경우에, xz 평면에서의 확산은 에미터들(58)의 본래 확산을 유지한다.
어떤 실시예에서는, 각각의 에미터(58)는, 예를 들어 xz 평면에서의 확산을 감소시키기 위하여 원통형 렌즈와 같은 돔형 렌즈가 장착되는 LED를 포함한다. 어떤 실시예들에서는, 각각의 에미터(58)는 LED 및 CPC 대신의 내부 전반사(TIR: Total Internal-Reflector)렌즈 또는 TIR렌즈와 CPC의 조합을 포함한다.
다른 실시예에서는, x 방향에서의 직선형 조명기(26)의 균질도를 향상시키기 위하여, 빔 균질화기가 에미터들(58) 어레이의 하류에 배치된다. 예를 들어, 빔 균질화기는, 각각 xz 평면 및 yz 평면에서의 원하는 광원 확산을 생성하도록 구성되는, 파리눈 마이크로 렌즈(fly-eye micro lens) 및 탠덤 어레이(tandem array)를 포함한다.
직선형 조명기에 대하여 기술된 배치의 일부는, 요구에 따라, 원형의 디스크 대신에, 관찰자가 크로매틱 미러(10)에 의해 반사된 광원의 상을 바라볼 때 직사각형(또는 정사각형) 디스크(38)로 인식하도록 직사각형 확산각을 발생시킬 수 있다는 것이 주목되어야 한다. 이에 관하여, 도 6b에서의 배치는 적어도 xz 평면에서 광원 각도 프로파일에서의 날카로운 컷-오프(cut-off)를 발생시키지 않기 때문에, 도 6b에서의 배치는 도 6a에서의 배치보다 더 잘 수행할 수 있다.
어떤 실시예에서, 크로매틱 미러에 의해 반사된 광의 둥근 대칭 확산각의 발생에 관한 향상이 크로매틱 미러위에 낮은-각도의 백색광 확산층 - 이것은 광원의 저역-밴드 통과 필터로 작용하여, 광원의 상을 포함하는 임의의 상을 환하게 빛나게 한다 - 을 구현함으로써 얻어지며, 도 8 및 도 9에 관하여 추가로 윤곽선으로 도시되는 이러한 가능성을 가지고 원형의 대칭 기능에 의해 그것을 휘감으로써 달성된다.
따라서, 도 5 내지 도 6b는, 도 4의 개념, 즉 조명용 시스템이 조명기(26) 및 크로매틱 미러(10)가 신장축 x를 따라 신장된(elongated) 방식으로 형성되는 시스템으로 되도록 수정될 수 있는 것을 나타내며, 여기서 조명기(26)는 방사 특성, 즉 신장축 x에 수직하며 신장축 x에 평행하게 콜리메이트되는 확산인 휘도 프로파일을 가진다.
신장축 x는 도 5, 도 6a 및 도 6b에 도시된 바와 같이 반드시 곧은 직선에 대응하지는 않는다는 것이 주목되어야 한다. 오히려, 신장축 x는, 예를 들어, z-축에 수직인 평면에서 굽혀질 수 있다. 예를 들어, 도 5의 전체 구성은 원형의 형상으로 되도록, 상부에서 보았을 때, 굽혀질 수 있으며, 이에 의해 미러(10)의 거울면(12)은 수평면을 따라 컷팅되는 도넛츠의 형상을 취하며 조명기(26)는 미러(10)에 의해 형성된 원형 초점 선을 따라 배열된다. 그러나, 이러한 설명은 평면에서 볼 때 도넛츠의 원형 연장부의 접선방향을 형성하는 x-축을 과 그 반경 방향에 대응하는 y-축으로 대체하여 동일하게 유지될 수 있으며, 그러한 평면도가 도 7에 도시되어 있다.
전술한 바와 같이, 미러(10)의 거울면(12)을 오목한 형상 또는 포물선 형상으로 형성하는 개념은 미러(10)에 의해 일정하게 반사되어 후방으로 방출되는 직사광의 확산을 낮춤으로써 관찰자의 눈 안에 있는 연관된 무한의 깊은 인상과 함께 태양-하늘-외관을 얻는 안정성을 증가시키는데 도움을 준다. 그러나, 전술한 바와 같이, 이러한 오목/포물선 형상의 개념을 이용하는 것과 관계없이, 관찰자가 일정하게 반사되는 직직 광 부분을 직접 바라볼 때 관찰자의 주의를 끌 수 있는 양상이 계속 존재하므로, 이에 의해 관찰자가 무한의 깊은 인상을 경험하는 것을 방해하게 된다. 예를 들어, 도 2에서의 물체(42)와 같은 물체들의 모든 가장자리들은, 그 상이 미러(10)에서의 반사를 통하여 관찰자 눈의 시야내에 있으며, 이것은 하늘-유사 배경 부분(40)에서 공간적인 휘도 변화도(spatial luminance gradients)를 초래하며, 관찰자의 눈이 특히 그러게 불칙하게 되기 쉬우므로, 아래의 실시예들은 그와 같은 방해를 피하는 대책을 제공하는 것을 찾은 것이다.
제1 가능성이 도 8에 관하여 기술된다. 도 8은, 도 1의 구성요소들에 더하여, 추가의 층(76)을 포함하는 미러(10)를 도시하고 있는데, 이 추가의 층(76)은, 확산층(14)와 비교할 때, 가시스펙트럼 영역에서 충돌광(20)에 대하여 파장에 관하여 실질적으로 균일한 상호 작용 단면을 보여주지만, 인바운드 충돌광 선에 의해 일어나는 각각의 상호 작용은 단지 상호 작용 전후에 광선의 비교적 작은 전파 방향의 변화에 이르게 하도록 설계된다. 따라서, 도 8의 실시예는 일정하게 반사되는 광(24)은 실질적으로 도 1의 경우와 동일한 스펙트럼을 가지지만, 그 에너지의 일부는 도 8에서 점선 원(78)에 의해 예시적으로 지시된 바와 같이 반사각 방향 둘레에서 스미어-아웃(smear-out)된다.
도 8이 다른 실시예에 따라 확산층(14) 측에 배열되는 층(18)을 도시하고 있을지라도, 층(18)은, 예를 들어, 확산층(14)과 거울면(12) 사이에 배치될 수 있다. 하기에서 더 기술되는 바와 같이, 미러(10)를 구현하고 제작하기 위한 가능성 있는 구현예를 기재할 때, 공간적으로 종속하는 스캐터링 단면을 가지는 능력을 구비한 확산층(14)을 제공하고 일정하게 반사된 광선들을 스미어-아웃시키는 특성을 구비한 블러링층(blurring layer)(76)을 제공할 가능성은 확산층(14)에 대하여 250㎚보다 평균 크기가 작은 제1 분포의 광-산란 중심점들과, 예를 들어, 상기 제1 분포(first dispersion)를 형성하는 광-산란 중심점들의 평균 크기보다 정확히 5배가 되거나 그 이상 크며, 바람직하기로는 10배가 되거나 그 이상 크며, 더 바람직하기로는 15배가 되거나 그 이상 크며, 보다 바람직하기로는 50배가 되거나 그 이상 큰 평균 크기의 제2 분포(second dispersion)의 광-산란 중심점들을 사용하는 것이다. 어떤 실시예에서는, 상기 층(76)을 위한 제2 분포를 형성하는 광-산란 중심점들의 크기는 1 미크론(micron)보다 크며, 바람직하기로는 2 미크론보다 크며, 더 바람직하기로는 3 미크론보다 크며, 보다 바람직하기로는 10 미크론보다 크도록 설계될 것이다. 층(18)와 층(76)은 모두 분포용 매트랙스로서 투명 폴리머층(transparent polymer layer)을 사용할 수 있다. 이와 관련하여, 제1 분포와 제2 분포 모두 동일한 매트릭스층, 예를 들어, 투명 폴리머층내에 제공될 수 있으며, 이에 따라 층(76)에 관하여 기술한 전술한 블러링 특성이, 다른 실시예에 따라, 층(14) 자체에 의해 포함될 수 있다, 즉 층(14) 자체는 확산 산란으로 이끄는 파장-종속 스캐터링 단면에 더하여 이러한 특성을 가질 수 있다.
도 2 내지 도 7에 도시된 실시예들에 도 8의 미러를 사용할 때, 그 효과는 관찰자의 눈(30)에서 결과로 나타나는 인식된 장면, 즉 상(image)가 흐리하게 되는 것이다, 즉 관찰자가 무한의 깊은 인상을 경험하는 것을 방해할 수 있는, 전술한 상의 하늘-유사 지역(40)에서의 가파른 밝기의 변화도가 효과적으로 감소되도록 상이 효과적으로 로-패스(low-pass) 필터되는 것이다. 예를 들면, 제2 분포를 형성하는 광 산란-중심점들의 크기와 크로매틱 미러(10)의 단위 표면당 상기 산란-중심점들의 갯수는 블러링 각이 약 30°, 바람직하기로는 20°, 더 바람직하기로는 10°, 보다 바람직하기로는 3°그리고 충돌광선들의 적어도 50%, 70&, 또는 90%가 특정 블러링 각(blurring angle) 내에서 일탈을 경험하는 관점에서 블러링 효능이 > 50%, 바람직하기로는 > 70%, 더 바람직하기로는 > 90%가 얻어지도록 구성된다.
전술한 블러링 효과를 달성하는 다른 가능성이 도 9에 관하여 기술된다. 도 9에 따르면, 도 1의 미러는 확산층(14)이 측방향으로 변하는 물리적 및/또는 광학적 두께를 포함하는 점에서 변경되었다. 상기 두께 변화의 효과는 리트랙션(retraction) 및/또는 회절(diffraction)의 효과로 인하여 충돌광선들의 효과적인 벤딩(bending)을 제공할 수 있는 산란-중심점들을 제공하는 점에 있다. 생성되는 일탈각, 즉 블러링 각의 크기에 관하여는, 이것이 횡방향 크기 및 두께 조절의 깊이의 함수로서 연산될 수 있는지에 관한 엘리먼트리 스캐터링 이론(elementary scattering theory)로 공지되어 있다(직관적으로: 크기가 작고 두께가 크면 더 큰 일탈각을 생성한다). 상기 두께 조절은 평평한 프로파일들, 즉 확산층(14)의 광학적 두께에서 조절되지 않은 부분들을 최소화하고 거의 그 존재를 제거하도록 용이하게 구성될 수 있기 때문에, 블러링 효율에 관한 한, 두께 조절에 기반한 본 접근은 제2 분보의 산란-중심점들의 이용에 기반한 종래의 접근보다 훨씬 용이하게 커다란 계산치(figures)를 얻는 것을 가능하게 한다. 그러나, 두께-조절 접근이 블러링 필터 생산을 위한 산업 레벨에서 통상적으로 사용되고 있음에도 불구하고, 그 기술을 적용하는 비용은 제2 분포에 기반하는 종래의 경우에 비하여 보다 더 높을 수 있다. 그러므로, 본 발명의 기술분야에서의 통상의 기술자에게 알려진 방식에서, 두께 조절의 프로파일은 블러링 각이 약 30°, 바람직하기로는 20°, 더 바람직하기로는 10°, 보다 바람직하기로는 3°그리고 블러링 효능이 > 50%, 바람직하기로는 > 70%, 더 바람직하기로는 > 90%, 보다 바람직하기로는 97% 이상을 얻도록 구성될 수 있다. 예를 들어, 두께 조절은 10 ~ 200, 바람직하기로는 20 ~ 1000, 더 바람직하기로는 40 ~ 500의 모듈레이션(modulation)/㎜의 범위의 평균 공간 주파수(spatial frequency) 및 0.05 ~ 2, 바람직하기로는 0.1 ~ 1의 범위의 두께 조절에서의 깊이와 횡방향 크기의 비율을 가질 수 있다. 그러나, 조절 깊이 및 공간 주파수에 관한 다른 실례들이 또한 가능하며, 상기에서 인용된 값들은 블러링-필터 기술에 현재 사용되는 가장 빈번한 수치들의 예시일 뿐이다.
도 9에 개략적으로 도시한 바와 같은, 두께 조절이 충돌광선의 벤딩을 생성하는 메커니즘은, 두께 변화의 횡방향 폭이 10 마이크론을 초과할 때 지배적이 되는, 리트랙션의 효과에 전형적으로 제한이 된다. 그러나, 회절 효과는 전술한 바와 같이 활용될 수 있다. 광학적 두께의 변화로 인하여, 입사광(20)은 확산층(14)을 들어오고 나갈 때 차이가 있는 작은 변화들(80, 82)을 경험하며, 이것은 일정하게 반사되는 광 부분(24)에 대하여도 해당된다. 여기서, 상기 일정하게 반사되는 광 부분(24)은 덜 중요한 확산되어 산란되는 광 부분일 뿐 아니라 확산층(14)에서 제1 분포와 산란-상호작용을 하지 않는다. 거기에 비하여. 완전히 균등하게 두꺼운 층(14)의 경우에, 들어오고 나가는 층(14)에서의 방향 변화는 서로 보상하며, 이에 따라 일정하게 반사된 광 통로가 입사광(20)의 광 통로에 대하여 반사각이 될 것이다. 그러나, 거울면(12)으로부터 떨어져서 마주하는 확산층(14)의 변화하는 경사로 인하여, 방향 변화들(80, 82)는 서로 보상하지 않는다. 오히려, 광선(20)이 확산층(14)에 충돌하는 정확한 위치에 따라, 일정하게 반사되고 산란되지 않는 광이 층(14)을 떠나는 방향은 도 1에 도시된 바와 같이 확산층(14)이 평평한 경우에 발생하는 반사각 방향을 약간 벗어나거나 또는 단지 우연하게 상기 반사각 방향과 동일하게 된다. 따라서, 도 9에 존재하는 변하는 두께는 도 8에 대하여 기술한 블러링 효과를 발생시키며, 이에 따라 무한의 깊은 인상에 대하여 방해하는 문제를 완화시키도록 유사하게 이용될 수 있다.
도 8 및 도 9에 관하여 전술한 블러링 효과를 찾는 다른 추가의 유리한 점들이 있다는 것이 주목되어야 한다. 본 발명의 목적은 다음과 같다.
1) 낮은 각도 넓은 산란을 사용하는 물체(42)와 같은 물체들의 물체 외곽선들(object contours)을 숨기는 것.
상기 1)의 목적에 더하여 아래의 추가의 유리한 점들이 있다. 예를 들어,
2) 보다 균일한 내부의 스폿(38)의 외형,
3) 전술한 바와 같이, 원형의 외관으로부터의 일탈이 덜 보일 수 있도록 스폿(38)의 윤곽선을 매끄럽게 하는 것,
4) 태양형 디스크(38)의 외관이 확대되고 이에 따라 그것의 환한 빛이 감소되는 것,
5) 예를 들어, 거울면의 오목한 형상의 결함이 보완됨으로 인하여, (예를 들어, 도 5의 "52"와 비교하여) 빛이 조사된 룸의 빛이 직사된 부분의 조명의 불균질성.
특히, 측방향 변화는 바깥쪽 방향에서 층(14)을 가로지는 광이 낮은-확산각을 경험하도록 이루질 수 있으며, 이에 따라 안쪽 방향에서 층(14)을 가로질러 거울면(12)에 의해 반사되어 바깥쪽 방향에서 다시 층(14)을 가로지르는 650㎚의 적색 광선들이, 공간적으로 균일한 입사 가능성, 즉 등방성 조사라고 가정하면, 정반사(specular reflection) 방향으로부터 0.1°~ 15°범위의 각도 편차, 바람직하기로는 0.1°~ 10°범위의 각도 편차, 더 바람직하기로는 0.1°~ 5°범위의 각도 편차, 보다 바람직하기로는 0.1°~ 1.5°범위의 각도 편차를 겪을 가능성을 적어도 50%, 바람직하기로는 70%, 더 바람직하기로는 90%를 가지게 된다.
또한, 단적으로 말하면, 변하는 두께 층의 물리적 및/또는 광학적 두께 변화는 크로매틱 미러(10)가 최종적으로 일정한 반사, 즉 제1 나노입자 분포만 포함하는 평평한 확산층(14)의 경우에 대하여 50%보다 작은, 바람직하기로는 30%보다 작은, 더 바람직하기로는 10%보다 작은, 보다 바람직하기로는 3%보다 작은 반사각에서의 반사를 가지도록 구성될 수 있다.
또한, 도 9의 기재의 대안으로, 확산층(14) 대신에, 투명하고 물리적 및/또는 광학적 두께에서 변화를 가지는 다른 층이 층(14)에 더하여 제공될 수 있다는 것이 주목되어야 한다. 따라서, 도 8에서의 층(76)이 확산층(14)에 부가되는 것과 같이, 그러한 두께가 변하는 투면한 층이 확산층(14) 측에 배치될 수 있다.
방해 개연성의 감소를 달성할 수 있는 다른 가능성이 도 10에 관하여 아래에서 제시된다. 도 10은 단지 도 5의 변형례를 단지 예시적으로 나타내는 것이지만, 도 10에 관하여 설명된 반투명층은 조명기와 미러(10)의 조합의 다른 시스템들의 임의의 것과 조합하여 사용될 수 있다. 본 발명의 문맥에서, "반투명층"은 아래와 같은 것을 지칭하는 것이다.
(i) 예를 들어, 충돌광의 부분을 방해하지 않고 전송하며, 바람직하기로는 5% ~ 50%의 범위, 더 바람직하기로는 10% ~ 40%의 범위, 보다 바람직하기로는 15 ~ 30%의 범위의 일정한 투과율을 가지는 것.
(ii) 임의의 방향들에 걸쳐 나머지 광들을 등방성으로 우선적으로 산란시키거나 또는 산란된 광의 30% 이상, 바람직하게는 50%, 더 바람직하게는 70%가 충돌광의 방향으로부터 5°이상, 바람직하기로는 10°이상, 더 바람직하기로는 15°이상 벗어나는 것을 적어도 보장하는 방식으로 산란시키는 것.
또한, 어떤 실시예들에서는, 전방으로 우선적으로 산란이 발생하는 것이 유리하며, 예를 들어 반투명층은 전방 산란 효율과 후방 산란 효율 사이의 비율이 >1.1, 바람직하기로는 >1.5, 더 바람직하기로는 >2, 보다 바람직하기로는 >5를 나타내는 것이 바람직하다.
도 10은 미러(10)의 하류, 즉 관찰자의 눈이 위치할 것으로 기대되는 곳에서 일정하게 반사된 광에 의해 비춰지는 영역(52) 사이에 배치되는 반투명층을 도시한다. 다시 말해, 반투명층(84)는 한편으로는 관찰자와 다른 한편으로는 미러(10)의 사이에 배채되어 유지된다. 반투명층은 직물 천막으로 이루어질 수 있다. 조명기(26)와 함께 미러(10)가 룸의 천장에 배치되는 경우에, 반투명층(84)은 조명기(26)의 아래에 매달릴 수 있다. 룸 내에서의 미러(10)와 조명기(26)의 위치로부터 독립하여, 반투명층(84)의 효과는, 예를 들어, 스크린을 생성하는 효과와 같이, 창문의 전방에 있는 천막의 전형적인 효과로 될 수 있으며, 그 효과는 아래와 같다:
(i) 밝게 빛나고 선명하게 형성된 따뜻한 광의 스폿을 천막으로 투사하며, 확산광에 의해 룸을 조사하는, 태양의 따뜻한 직사광에 의해 조사되는 것,
(ii) 특히 투사된 따뜻한 태양 스폿의 둘레에서 푸르스름한 색채를 천막에 생성하며, 태양 및 하늘로부터의 광의 아름다운 결합 작용으로 용이하게 인식하게 하는, 하늘로부터의 푸르스름하고 확산된 광에 의해 조사되는 것.
어떤 실시예에서는, 반투명층(84)의 반투명도는 층(84)을 가로지르는 완전히 투명한 부분들과 그렇지 않은, 즉 층을 가로지르려는 광을 일탈시키는 다른 부분들로 분할되도록 하기 위한 반투명 층(84)의 특성을 미립자 방식(fine granular manner)으로 기술한다. 예를 들어, 층(84)에는 개구부가 있으며, 층(84)의 재질이 백색 직물의 경우에는 백색광 디퓨저로서 작용한다. 어떤 실시예에서는, 반투명 디퓨저가 가정용 직물 천막인 경우와 같이, 반투명 디퓨저는 착색되거나 또는 부분적으로 착색될 수 있다. 다른 실시예들에서는, 반투명 디퓨저가 미적 조형 효과를 나타내는 목적에 맞춰지는 경우와 같이, 반투명 디퓨저는 하나의 지점으로부터 다른 지점까지 변하는 일정한 투과율을 가질 수 있다. 모든 실시예들에서, 반투명 디퓨저가 제로가 아닌(non-zero) 일정한 투과율을 가진다는 사실은 관찰자가 반투명 디퓨저를 너머에서 광원의 빛을 비추는 부분을 인식할 가능성을 항상 가지고 있으며, 관찰자와 광 발생기의 실제/가상 이미지 사이의 설정된 거리에 따라, 반투명 디퓨저가 없는 경우에 대하여 앞에서 설명한 동일한 이유 및 동일한 메커니즘에 의해, 관찰자는 반투명 디퓨저를 너머의 무한의 깊은 공간의 존재에 대한 인식을 얻을 수 있다.
어떤 실시예에서는, 반투명층(84)는 다음의 효과를 제공할 수 있다: 직사광 부분(52) 내에서 미러(10)를 바라보는 관찰자는 반사광 발생기의 모든 상세한 부분들, 또는 좀 더 적절하게는 반사된 룸의 모든 상세한 부분들을 보지 못하게 되는데, 이것은 무한의 깊은 인식을 느끼는 것을 망쳐 버릴 수 있다. 실제로, 관찰자의 시각적인 주의력은 반투명층, 예를 들어 천막 위의 밝게 빛나는 스폿 및 동일한 디퓨저 위의 따뜻하고 푸르스름한 광에 의해 더 끌릴 수 있다. 즉, 관찰자의 주의력은 부자연스런 효과를 야기하는 미러안으로의 룸 반사에 의해 끌려지는 것 대신에, 관찰자로부터 유한한 거리에서 자연스럽게 생겨나는 효과에 의해 끌려진다. 그결과, 관찰자는 무한의 깊은 인상을 느끼는 것을 덜 방해 받게 될 수 있다.
전술한 실시예들에 따른 크로매틱 미러(10)를 실현하고 제가하기 위한 어떤 실시예들을 기술하기 전에, 도 2 ~ 도 7 및 도 10에 관하여 기술된 조명용 시스템들의 크로매틱 미러들에 의해 일정하게 반사되는 광이 동일 방향으로 배향된 광빔의 어레이를 형성하도록, 도 2 ~ 도 7 및 도 10의 시스템들이 이러한 시스템들의 어레이의 형태로 사용될 수 있다는 것이 주목되어야 한다. 예를 들어, 도 5의 조명 시스템은, 예를 들어, 단지 룸의 천장의 일부의 대신에 룸의 천장 전체를 커버하기 위하여 나란히 배치될 수 있다.
그밖에, 전술한 모든 조명 시스템들은 벽, 천장 등과 같은 선택적인 빌딩 엘리먼트들과 함께 건축 객체(architectural object), 즉 집 등과 같은 빌딩을 형성하며, 전술한 실시예들의 유리한 점들을 가져온다는 것이 주목되어야 한다.
또한, 이와 관련하여, 오목하거나 포물선형의 거울면을 사용하는 실시예들에 의해 제공되는 유리한 점들은 반드시 사용되어야 하는 것은 아니라는 것이 주목되어야 한다. 어떤 실시예들에서는, 예를 들어, 다수의 조명 장치들의 사용으로 관찰자로 하여금 동시에, 즉 단일의 관찰 위치로부터 인식하게 하는 경우뿐 아니라, 관찰자가 불가피하게 광발생기가 유한의 거리에 있는 것으로 인식할 정도로 광 발생기가 크로매틱 미러에 가까이 배치되는 경우에는,하나 이상의 발생기, 즉 하나 이상의 태양이 존재하는 것으로 인식할 수 있다. 이러한 경우에도, 미러(10)로부터의 일정한 반사광에 의해 형성된 직사 광빔을 사람들이 직접 바라보는 것을 방지하도록, 건축상의 대책들(architectural measures)이 취해질 수 있다. 도 11은 건축 객체에 대한 그러한 실례를 도시하고 있다. 도 11은 건축 객체의 룸의 2개의 벽(86a, 86b)을 도시하며, 여기서 미러(10)는 예시적으로 벽(86a)에 매달려 있는 것으로 도시하였다. 미러(10)는 조명기(26)에 의해 조사되며, 조명기(26)는, 예를 들어, 룸의 천장에 매달릴 수 있다. 미러(10)에 의해 일정하게 반사되는 직사광(direct light)은 룸의 소정의 영역을 비추는 것으로 예시적으로 도시하였으며, 설명의 목적으로, 조각품이 배치되는 것으로 도시하였다. 사람이 우연히 미러(10)를 통하여 조명기(26)를 직접 바라보는 것을 방지하기 위하여, 직사광에 의해 직접 비춰지는 영역(88)은 차단 영역안으로 들어가려는 방문자들에 대하여 차단되는, 차단 영역(blocked area) 내에 포함되는 것으로 도시되었다. 도 11에서, 차단 영역은 직사광에 의해 비춰진 영역(88)을 둘러싸는 펜스(90)에 의해 예시적으로 형성된다. 따라서, 펜스(90)에 의해 형성된 차단 영역 외부의 어떠한 방문자 또는 관찰자(92)도 미러(10)를 통하여 조명기(26)를 직접 바라보는 것이 방지되지만, 장면을 조사하는 하늘-유사 확산광 및 태양형 직사광을 바라볼 뿐이고, 이에 따라, 미러(10)가 하늘을 볼 수 있는 창문으로 되는 경우에는, 이러한 모든 효과가 태양을 직접 바라보지 않고도 인식되는 것으로 느낄 수 있다. 특히, 이러한 세팅은 광 발생기 또는 빛을 비추는 영역의 인식가능한 형상에 대한 제한을 완화하기 위하여 이용될 수 있으며, 이 경우에 광 발생기 또는 빛을 비추는 영역의 형상은 어떠한 형상으로도 이루어질 수 있다.
동일한 크로매틱 미러 및 개념과 시스템들을 유리한 방식으로 이용하는 어떤 실시예들에 대한 전술한 기재에 이어서, 그러한 크로매틱 미러를 구현하고 제작하는 특정 실례들이 이하에서 기술된다.
전술한 바와 같이, 확산층(14)은 코팅 또는 필름으로 될 수 있으며, 예를 들어, 확산층은 거울면(12) 위에 디포짓(deposited)되는, 바람직하기로는 <0.2㎜, 더 바람직하기로는 <0.1㎜, 보다 바람직하기로는 <0.05㎜, 어떤 실시예들에서는 <0.01㎜의 두께를 가진다. 도 12는 광-산란 중심점들, 즉 그 안에 매립되며 250㎚보다 작은 평균 크기의 나노입자들의 분포를 가지는 투명 폴리머층으로 확산층(14)를 형성하여 파장 종속적인 산란 단면이 확산층(14)에 구비될 수 있는 것을 도시하고 있다. 광-산란 중심점들 또는 나노입자들은 도면부호 "94"로 지시된다. 도 12는 또한 확산층(14)의 투명층이, 선택적으로, 예를 들어 확산층 안에 매립되며 5 미크론보다 큰 평균 크기의 다른 광-산란 중심점들(96)의 제2 분포을 가질 수 있다. 제1 분포의 광-산란 중심점들의 평균 크기와 제2 분포의 광-산란 중심점들의 평균 크기 사이의 관계에 대하여 주목해야 하며, 절대 최소 평균 크기들에 대한 추가의 실례들에 대하여 주목해야 한다.
상기 분포의 광-산란 중심점들(94)은 전술한 파장-종속 확산 산란(wavelength-dependent diffuse scattering)을 유발함에 비하여, 제2 분포의 광-산란 중심점들(96)은 도 8과 층(76)에 관하여 기술한 블러링 효과를 유발한다. 도 12는 도 8의 대안으로 설명된 실례이며, 양쪽 특성, 즉 파장-종속 확산 산란 및 낮은 각도 백색광 블러링(low-angle white light blurring)이 동일한 층(14) 안에서 통합된다.
미러(10)를 구성함에 있어서, 분포(94)를 구비하고 분포(96)를 선택적으로 구비하는 투명 폴리머층(14)은 우선 거울면(12)에 적용되는 필름 또는 거울면(12)이 형성되는 필름으로 되도록 제조될 수 있으며; 또는 대안으로 투명 폴리머 재질의 층(14)과 함께 분포(94) 및 선택적인 분포(96)가, 예를 들어, 스프레이, 잉크젯 방식, 필름 스피닝(film spinnig), 딥 코팅(deep coating), 코일 코팅, 금속 증착, 분자선 에피틱셜법, 플라즈마 코팅 등과 같은 방식에 의해 거울면(12) 위에 직접 디포짓된다.
제1 확산 및 제2 확산의 밀도는 크로매틱 미러의 확산반사율(diffuse reflection)이, 예를 들어, 50%보다 크거나, 또는 80%보다 크거나, 또는 90%보다 크도록 선택될 수 있다. 즉, 거의 모든 충돌광이 제2 분포에서의 낮은 각도에서 또는 제1 분포에서의 큰 각도에서 산란될 수 있으며, 무시할 수 있는 정도의 일정한 반사광 부를 떠난다.
도 13은 미러(10)을 실현하는 다른 실시예를 도시한다. 도 13에 따르면, 투명 패널(98)은 거울면(12)을 형성하는 코팅 또는 필름(100)과 확산층(14)을 형성하는 다른 코팅 또는 필름(102) 사이에 배치된다. 코팅 또는 필름들(100, 102)은 도 12에 관하여 기술된 분포들(dispersions)을 포함할 수 있다. 다시 말해, 폴리머, 예를 들어, 아크릴, 폴리카포네이트, 마일라, PVC 등으로 이루어질 수 있는 투명 패널, 패널, 유리, 또는 층상의-유리 패널이 2개의 메인 측(side) 또는 면(facet)을 가지며, 한쪽 면에는 코팅 또는 필름(100)이 배치되고, 다른쪽 면에는 코팅 또는 필름(102)이 디포짓된다.
따라서, 도 13의 경우에, 미러(10)는 강성 또는 가요성 또는 신장성으로 될 수 있으며, 미러(10)에는 투명 패널(98)에 의해 강성/가요성/신장성이 제공된다. 본 발명의 문맥에서 "패널(panel)"이란 용어는 단지 임의의 가능한 두께의 층을 의미하는 것으로 사용되었으므로, 그것은 필름 또는 코팅으로 될 수 있으며 반드시 뻣뻣하게 되는 것은 아니다.
도 14는 도 13의 변형례로서, 도 14의 실시예에 따르면 코팅 또는 필름들(100, 102)이 모두 투명 패널(98)의 동일한 측 또는 면에 배치된다. 예를 들어, 코팅 또는 필름(102)는 코팅 또는 필름(100)과 투명 패널(98)의 사이에 배치되며, 확산층(14)과 마주하는 코팅 또는 필름(100)은 거울면(12)을 형성한다.
흥미롭게도, 도 14의 실시예는 투명 패널(98)로서 플로트 유리 패널(float glass panel)과 같은 것을 사용하는 경우에 유리 패널의 틴(tin) 측을 사용하는 것을 피할 수 있게 한다. 다시 말해, 도 14의 경우에, 투명 패널(98)은 플로트 유리 패널로서 구현되며, 그 경우에, 틴 측은 코팅 또는 필름들(100, 102)으로부터 떨어져서 마주하는 측으로서 사용될 수 있으며, 반면에 플로트 유리 패널(98)의 공기 측은 코팅 또는 필름(102)와 접촉한다. 이러한 구성에 의해, 플로트 유리 패널의 생산을 위하여 사용된 틴으로부터 생겨나는 작용이 필름 또는 코팅(102, 100)에 부정적인 영향을 미치는 것이 방지된다.
설명의 목적으로, 틴 측은 도 14에서 해칭과 도면부호 "104"를 사용하여 도시되었다.
도 15는 도 13의 실시예가 플로트 유리 시트들에 의해 어떻게 구성되며, 이에 의해 필름 또는 코팅(100, 102)가 플로트 유리 시트의 어떠한 틴 측에 디포짓되는지를 나타내는 것이다. 특히, 도 15에 따르면, 크로매틱 미러(10)은 2개의 플로트 유리 시트(104, 106)로 구성되며, 그 사이에 예를 들어 EVA 또는 PVA 필름과 같은 접착성 투명 폴리머 필름(108)을 끼워서 플로트 유리 시트들이 서로 접착되는 층상의-유리 패널을 포함하며, 여기서 서로 마주하며 접착성 폴리머 필름(108)을 통하여 서로 접착되는 2개의 유리 시트(104, 106)의 면들은 플로트 유리 시트들(104, 106)의 유리 틴 측이며, 거울면(12)을 형성하는 코팅 또는 필름(100)은 플로트 유리 시트(104)의 공기 측에 디포짓되며, 반면에 확산층(14)을 형성하는 코팅 또는 필름(102)은 플로트 유리 시트(106)의 공기 측에 디포짓된다. 이러한 구성에 의해, 도 15의 미러(10)는 "안전 유리 패널"로서 작용하여, 충격 저항(예를 들어, 패널이 최종적으로 깨질 때 많은 부분들로 분리되지 않는 성질), 내화성 등과 같은 빌딩의 엘리먼트의 사용시에 부과되는 여러 요구조건들을 충족한다.
다른 실시예가 도 16에 도시된다. 도 16의 실시예는 확산층의 확산 특성이 분리된 필름 또는 코팅(102)으로부터 투명층(108)로 이동되며, 이에 따라 이것이 확산층뿐 아니라 접착성 투명 폴리머 필름으로서 작용하는 점에서 도 15의 실시예가 수정된 것이다. 예를 들어, 접착성 투명 폴리머 필름은 동시에 도 12에 도시된 광-산란 중심점들(96)의 매트릭스로서 작용할 수 있다. 따라서, 도 16의 미러는 플로트 유리 시트들 중 하나(104 또는 106)(도 16의 경우에는 104)의 공기 측에 디포짓하는 것을 요구하는 필름 또는 코팅(100)만을 구비한 2개의 층상의-유리 패널을 제조하는 경우에 생각이 떠오르는 프로세스들에 의해 매우 용이하게 제조될 수 있다.
도 13 내지 도 16의 실시예들의 경우에, 투명 패널 및 유리 시트들은 각각 지지 부재 또는 지지층의 역할을 맡는다. 유리 시트 및 유리 패널의 실례들의 경우에, 동일하게 강성을 가지는 미러(10)를 제공한다.
도 17의 실시예들은 거울면이, 예를 들어, 마이크로 및 나노입자들의 사용을 포함하는 전기영동, 금속 증착, 유기 및/또는 무기 재질 코팅과 같은 몇 가지의 산업 공정에 의해 생산되며, 예를 들어, 지수 불일치(index mismatch)를 제어하여 반사도를 증가시키고 실외 애플리케이션들의 경우에 대기 인자들과 같은 외부 인자들에 대한 미러의 기계적 및 화학적 저항성을 향상시키기 위하여 요즘 사용되는 것들로서, 예를 들어, 매우 높은-반사율(예를 들어, >95% 또는 >98%의 반사율)을 가지는 알루미늄 금속 미러 호일에 의해 형성된다. 어떤 실시예에서는, 확산층(14)은 도 17에서 도면부호 "110"으로 도시된 마무리처리된 알루미늄 미러 호일 위에 디포짓된 코팅 또는 필름(102)에 의해 형성될 수 있다. 대안으로, 확산층(14)은 알루미늄 미러호일 생산을 위하여 적합한 산업 프로세스 중에 디포짓될 수 있다. 이러한 2차 해결방안은 더 복잡하고 비용이 드는 프로세스를 의미하지만, 이는 특히 외부 애플리케이션들의 경우에 크로매틱 미러(10)의 보다 나은 마무리를 가져올 수 있다.
따라서, 양쪽의 경우에, 알루미늄 금속 미러 호일(10)은 코일-코팅 기술에 의한 프로세스 및 코일로 저장되는 경우에 필요한 적절한 가요성을 미러(10)에 제공할 수 있다. 설명을 위하여, 도 17은, 예를 들어, 배달 또는 수송의 편의를 위한 것과 같이, 코일(112)로 말려진(furled) 형태의 미러(10)를 도시한다.
전술한 실시예들의 어느 경우에도, 확산층 또는 확산층을 형성하는 필름 또는 코팅(102)은 전술한 광-산란 중심점들(96)의 분포를 구비한 투명 폴리머층이 될 수 있다. 상기 광-산란 중심점들은, 예를 들어, 유기 나노입자들로 될 수 있으며, 또는 가장 큰 산란 효능을 얻고 산란층(14)에 대한 가장 작은 가능한 두께를 얻을 목적으로 TiO2, ZnO 나노입자들과 같은 무기 나노입자들 - 이것은 유기 매트릭스에 대한 더 큰 지수 불일치의 특징을 가져오고, 250㎚보다 작은 평균직경을 가진다 - 로 될 수 있다. 산업상의 나노입자 공급자들에 의해 수행되는 것과 같이, 상기 무기 나노입자들은 자외선 및/또는 가시광 방사에 의해 진행되는 광촉매작용에 대하여 보호될 수 있다.
다른 실시예에서, 확산층(14)은 나노입자들, 예를 들어, 졸-겔 기반 재질로서 실리카-기반 재질의 유리와 같은 무기물 매트릭스 안으로 분산되는 무기 나노입자들을 포함할 수 있다. 이러한 선택은 커다란 산업 플랜트에서의 사용을 시사하지만, 유리 생산 산업의 경우에 전형적인 것과 같이, 공정 수를 감소시키는 이점이 있으며, 이에 따라 산업 프로세스를 단순화하여 비용을 절감시키며, 유리, 강화 유리, 층상의 유리 및 유리 거울 생산을 위한 표준 산업 프로세스로부터 아주 약간 다른 새로운 프로세스를 만들게 된다.
또한, 도 17은 투명 재질 및 대기 인자에 대한 저항성이 있는 재질로 구성된 보호층(112)이 확산층(14)을 보호할 수 있는 미러(10)에 대한 전술한 모든 실시예들에 대하여 대표적으로 도시하고 있다. 도 17의 경우에, 예를 들어, 확산층(14), 즉 필름 또는 코팅(102)은 알루미늄 금속 미러 호일(110)과 보호층(112)사이에 끼워져 배치된다. 보호층(112)은, 예를 들어, 실리카 마이크로 또는 나노입자들을 포함하는 실리카 졸-겔 필름 또는 필름과 같은 무기물 필름 또는 졸-겔 필름으로 될 수 있다.
도 17에 관하여 전술한 바와 같이, 도 17에 따른 미러(10)는 가요성이 있다. 도 18에 도시된 실시예에 따르면, 미러(10)는 도 17의 실시예에 따른 호일형 가요성을 가지는 바깥쪽 원주를 둘러싸는 프레임(14)에 의해 고정된 위치에 유지된다.
프레임(114)에 의하여, 미러(10)는, 예를 들어, 벽 등에 대하여 고정된 위치에 유지될 수 있다. 어떤 실시예에서는, 알루미늄 호일 지지체에 기초을 두는 크로매틱 미러(10)는 다수의 구멍들, 예를 들어, 1 ~ 100 ㎜, 바람직하기로는 5 ~ 50 ㎜의 크기를 가지는 구멍들을 가지는 구성으로 이루어질 수 있는데, 이는 통풍이 가능한 크로매틱 정면부로서 작용하는 빌딩 외장(building coats)의 구성용으로 크로매틱 미러(10)를 적용하기에 편리하게 된다. 그러나, 통풍이 가능한 정면부 또는 미적인 빌딩 정면부는 반드시 천공부를 요구하는 것은 아니다.
도 13 및 14에 도시된 투명 패널(98)은 투명 가요성 폴리머 필름과 같은 가요성 부재들에 의해 대체될 수 있으며, 이에 따라 결과적으로 얻어지는 미러(resulting mirror)(10)는 신장성을 갖도록 제공되며, 즉, 실외에서 그늘 형성 천막들(shade-making tents)에 사용되는 것으로서 예를 들면 신장 구조체(tensile structure)와 같은 적합한 프레임에 의해 신장되면서 유지될 수 있다. 따라서, 도 13 및 14의 가요성 폴리머 필름(98)를 이용할 때, 결과하는 색체 미러(resulting chromatic mirror)는 상술한 바와 같이, 예를 들면 오목 형상 또는 심지어 포물선 형상과 같은 여러 형상으로 구부러질 수 있는 신장 구조체를 형성한다. 이러한 특징점은, 예를 들면 스포츠 홀(sports holes), SPAs, 엔터테인먼트 파크(entertainment parks)에서 넓은 하늘-유사 천정(sky-like ceiling)을 구성하는 데 이용될 수 있고, 하늘의 시야뿐만 아니라 태양의 시야도 보장된다.
거울 표면을 형성하기 위해 금속성 포일(metal foil)을 이용하는 대신, 대안적으로, 반사 코팅으로 피복된 직물(fabric)이 이용될 수 있다. 이러한 옵션은, 모든 광이 확산되는 맑은 날, 강한 지향성 광 또는 흐린 날의 경우로부터 대기 조건의 변화를 포함하는 것을 결과적으로 의미하는, 조명의 유형과 함께 그리고 특히 조명의 지향성의 유형과 함께 변화하는 외관에 특징이 있는 하늘-태양-유사 직물지를 생성하기 위해 예를 들면 패션 산업에서 이용될 수 있다.
마지막으로, 도 19에는 하나 이상의 색체 미러(10)가 제공된 빌딩 정면부, 여기서 예를 들어 고층 건물(116)의 정면부가 도시되고, 미러들(10)이 제공된 정면부 부분, 즉 부분(118)이 예시적으로 도시된다.
본 출원에 따르면, 빌딩 정면부는, 맑은 날 또는 심지어 부분적으로 흐린 날에 태양으로부터의 광과 같은 일부 지향성 광이 비추게 된 때, 하늘의 부분으로 보이도록 제조될 수 있고, 이에 따라 빌딩의 외관이 실질적으로 변경되며 둘러싼 자연 및 하늘과 심미적인 상호작용을 하게 된다. 비록 임의의 상기 예시적인 미러들(10)이 적어도 부분적으로 (외측을 향하는 거울면을 가진) 정면부를 형성하는데 이용될 수 있고, 도 19에는 부분(118)이 도 18의 유형의 미러들의 배열에 의해 채워지는 경우가 도시된다. 그러나, 이러한 상황은, 미러(10)의 임의의 다른 실시예가 거울 효과(mirroring effect)를 가진 정면부의 부분(18)을 제공하는데 이용되는 것을 배제하는 것으로 해석되지 않는다.
미러(10)를 가진 고층 건물(116)의 부분(118)을 제공하는 효과는 아래와 같이 추가적으로 설명된다. 그러나, 미러(10)의 확산 층의 확산 성질 때문에, 고층 건물(116)을 바라보는 관찰자는 고층 건물(116) 뒤의 하늘이 미러(10)에 의해 덮여진 부분에 보일 수 있는 것으로 느낄 것이다. 이러한 조치에 의해, 고층 건물(116)은 적어도 관심이 있는 부분(118)까지 거의 사라지게 될 수 있으며, 이러한 조치가 예를 들면 심미적인 측면들과 같은 여러 목적들을 위해 이용될 수 있다.
마지막으로, 도 20에는 층상의-유리 패널로서 형성된 색체 패널의 예시가 도시된다. 이것은 코팅 또는 필름(100)이 제외된다는 점에서 도 16과 상이하다. 즉, 도 20에는 도 16에 따른 색체 미러가 결과적으로 되도록 용이하게 팽창가능하며 건축 및 빌딩 환경에서의 이용에 대하여 동일한 이점들을 가진 색체 패널이 도시되고, 이것은, 파장-종속 확산 산란 기능뿐만 아니라 유리 시트들(104, 106)이 서로 부착되는 것을 함께 가정하면, 층(100)을 가진 층상 유리 패널을 형성하기 위해 필요한 추가적인 제조 단계가 없기 때문에, 용이하게 제조될 수 있다. 유리 시트는 플로트 유리 또는 강화 유리로 이루어져 있다. 흥미롭게, 빌딩 내에서, 도 20의 색체 패널은, 입사 광으로서 같은 측의 색체 구성에서 나가는, 관심이 있는 분산 광의 절반까지 전송과 반사 모두에서 이용될 수 있다. 따라서, 예를 들면, 도 20의 색체 패널을 가진 도 3의 측벽에 있는 미러(10)를 대체하며 이웃한 룸(room)으로부터 룸(48)의 좌측으로 색체 패널을 조명할 때, 룸(48) 내에 서있는 관찰자는, 조명기가 이웃한 룸에 위치된 것과는 다르게 도 2에 도시된 것과 유사한 하늘-태양 외관을 얻을 수 있을 것이다. 도 3의 점선에 의해 도시된 이웃한 룸 내에 있는 관찰자는 결과적으로 태양이 없는 하늘을 볼 것이다. 2개의 룸을 포함한 빌딩 내의 색체 구성을 이용하면, 층상 평탄 패널 구조 때문에 전혀 문제가 없을 것이다.
확산층을 구성/제작(construing/fabricating)하는 가능성에 관하여, 상기 실시예 및 특히 도 12에 대한 상기 설명이 참조로서 이루어져 있다.

Claims (42)

  1. 내부 분위기를 하늘 및 태양 조명처럼 보이게 만들기 위한 조명용 시스템에 있어서,
    거울면 및 상기 거울면 전방에 위치되며 충돌광의 청색광과 같은 단-파장 성분들을 충돌광의 적색광과 같은 장-파장 성분들에 대하여 우선적으로 산란시키는 확산층을 포함하는 크로매틱 미러, 및
    충돌광이 상기 확산층을 두번 - 상기 거울면에 충돌할 때 한번, 그리고 상기 거울면으로부터 방향을 돌릴 때 한번 - 통과하도록 상기 크로매틱 미러를 조사하는 백색 광원으로 구성되는 조명기(26)를 포함하고,
    상기 확산층은 그 안에 매립되는 250㎚보다 평균 크기가 작은 제1 분포의 광-산란 중심점들(94)을 가지며, 이에 의해 광을 레일리 또는 레일리형 방식으로 산란시키는 투명 폴리머층(14)을 포함하는, 조명용 시스템.
  2. 제 1 항에 있어서,
    확산층(14)은 거울면(12) 위에 퇴적되는 100㎛보다 얇은 코팅 또는 필름인 조명용 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 크로매틱 미러는 투명 패널(98)을 더 포함하며,
    상기 거울면과 상기 확산층은 100㎛보다 얇은 코팅 또는 필름(100, 102)이며, 상기 거울면과 상기 확산층은 상기 투명 패널의 동일면에 또는 상기 투명 패널의 대향하는 면들에 퇴적되는 조명용 시스템.
  4. 제 1 항 또는 제 2 항에 있어서,
    접착성 투명 폴리머 필름을 사이에 끼워 배치하는 2개의 플로트 유리 시트(104, 106)를 포함하는 층상의-유리 패널(stratified-glass panel)을 포함하며,
    여기서, 상기 접착성 투명 폴리머 필름을 향하는 상기 2개의 유리 시트의 면들은 상기 2개의 유리 시트의 유리 주석(glass tin)측들을 형성하며,
    여기서, 상기 거울면은 상기 2개의 유리 시트 중의 하나의 공기 측 위에 퇴적되는 제1 코팅 또는 필름이며, 상기 확산층은 상기 2개의 유리 시트 중의 다른 하나의 공기 측 위에 퇴적되는 제2 코팅 또는 필름인, 조명용 시스템.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 크로매틱 미러는,
    2개의 유리 시트(104, 106)를 포함하며 2개의 유리 시트(104, 106) 사이에 접착성 투명 폴리머층인 확산층(108) - 접착성 투명 폴리머층은 그 안에 매립되는 250㎚보다 평균 크기가 작은 제1 분포의 광-산란 중심점들을 가짐 - 을 끼워 배치하는 확산 패널을 더 포함하는, 조명용 시스템.
  6. 제 1 항에 있어서,
    거울면은 알루미늄 금속 미러 호일에 의해 형성되며, 확산층은 상기 알루미늄 금속 미러 호일 위에 퇴적되는 100㎛보다 얇은 코팅 또는 필름인, 조명용 시스템.
  7. 제 1 항 또는 제 2 항에 있어서,
    제 1 분포의 광-산란 중심점들(94)은, 그 안에 매립되며 250㎚보다 작은 직경을 가지며 근자외선(near-UV) 및 가시광 방사(visible light radiation) 중 적어도 하나에 의해 진행되는 광촉매작용에 대하여 보호되는 무기물 나노입자들(inorganic nanoparticles)을 포함하는, 조명용 시스템.
  8. 제 6 항에 있어서,
    크로매틱 미러는 외부 대기 인자에 대한 저항성이 있는 투명 재질로 이루어진 보호층을 더 포함하며, 확산층은 알루미늄 금속 미러 호일(110)과 보호층(112) 사이에 끼워 배치되는, 조명용 시스템.
  9. 제 1 항 또는 제 2 항에 있어서,
    거울면(12)은 오목하게 형성되거나, 또는
    거울면(12)은 오목한 포물선 형상(12)인, 조명용 시스템.
  10. 제 9 항에 있어서,
    크로매틱 미러의 하류에 위치된 반투명층(84)을 더 포함하며,
    상기 반투명층(84)은 5% ~ 70%의 범위, 10% ~ 50%의 범위, 또는 20% ~ 40%의 범위의 일정한 투과율을 가지며, 상기 반투명층(84)은 충돌광의 20% 미만을 흡수하도록 구성되며; 또는
    상기 반투명층(84)은 직물 천막으로 구성되는,
    조명용 시스템.
  11. 제 9 항에 있어서,
    크로매틱 미러(10)에 의해 일정하게 반사되는 조명기(26)로부터 나오는 광이 평행하게 되도록, 크로매틱 미러(10)는 오목하게 형성되며 조명기(26)는 상기 크로매틱 미러(10)의 초점 평면에 위치되는, 조명용 시스템.
  12. 제 9 항에 있어서,
    조명기(26) 및 크로매틱 미러(10)는 신장축(x)을 따라 신장된 방식으로 형성되고, 크로매틱 미러는 상기 신장축에 대하여 수직인 평면에 오목하게 형성되며, 그리고
    여기서, 상기 조명기(26)는 각이 지고 공간적인 휘도 프로파일을 가지며, 상기 휘도 프로파일은 휘도 프로파일이 상기 신장축에 수직인 제1 평면에서의 제1 각도에 따라 결정되는 한 넓으며, 이에 따라 상기 제1 평면에서 큰 각도 확산(angular divergence)을 가진 광빔을 유발하며, 휘도 프로파일이 상기 신장축에 평행인 좌표에 따라 결정되는 한 실질적으로 일정하며, 이에 따라 상기 신장축을 따라 공간적으로 균일한 휘도를 유발하며;
    여기서, 상기 조명기(26)는 휘도 프로파일이 상기 제1 평면에 수직이며 조명기의 최대 휘도의 방향을 포함하는 제2 평면에서 제2 각도에 따라 결정되는 한 좁은 피크 특성을 나타내며, 이에 따라 상기 제2 평면에서 실질적으로 콜리메이팅(collimating)되는 광을 유발하는, 조명용 시스템.
  13. 제 9 항에 있어서,
    조명기(26) 및 크로매틱 미러(10)는 신장축(x)을 따라 신장된 방식으로 형성되고, 크로매틱 미러는 상기 신장축에 대하여 수직인 평면에 오목하게 형성되며,
    여기서, 상기 조명기(26)는 일련의 쌍들의 광 에미터(58)와 CPC 반사기(60)를 포함하며, 상기 CPC 반사기(60)는 광 에미터에 의해 방출되는 광을 집중시키도록 구성되며, 제2 평면내에서 에미터에 의해 방출되는 광빔이 각이 지게 발산하는 한, 상기 일련의 쌍들은 신장축을 따라 연속으로 나란히 배열되는, 조명용 시스템.
  14. 제 1 항 또는 제 2 항에 있어서,
    크로매틱 미러에 의해 일정하게 반사된 광은 단지 그 스텍트럼이 확산층의 파장의-선택적인 산란 특성에 의해 영향을 받지만 초기의 입체각 휘도 파일을 유지하며, 그리고, 확산층을 두번 통과하는, 즉 미러면에 충돌할 때 한번, 그리고 미러면으로부터 방향을 돌릴 때 한번 확산층을 통과하는 충돌광 부분은 그 충돌광은 일정하게 반사되는 광선들에 비하여 확산되거나 또는 범위가 넓혀지기 때문에 거울면을 사이에 배치함에도 불구하고 그 휘도 파일을 유지하도록,
    확산층은 거울면 바로 앞쪽에 배치시켜서 크로매틱 구성부품의 원하는 크로매틱 특성을 변화시키지 않게 구성되는, 조명용 시스템.
  15. 제 1 항 또는 제 2 항에 있어서,
    크로매틱 미러는 제1 분포의 광-산란 중심점들의 평균 크기보다 정확히 5배가 되거나 그 이상인 평균 크기의 광-산란 중심점들의 제2 분포를 더 포함하며, 상기 제2 분포는 투명 폴리머층(14) 또는 추가의 투명 폴리머층(76)에 매립되며; 또는
    확산층, 또는 크로매틱 미러(10)의 추가의 투명층의 물리적 두께 및 광학적 두께 중 적어도 하나는 측방으로 변하는, 조명용 시스템.
  16. 제 1 항 또는 제 2 항에 따른 조명용 시스템들을 구비하며,
    상기 조명용 시스템들은, 크로매틱 미러들(10)에 의해 일정하게 반사되는 광이 동일 방향으로 배향된 광빔의 어레이를 형성하도록, 배열되어 구성되는,
    어레이.
  17. 벽, 천장(46) 및 바닥을 가지며, 내부 분위기를 하늘과 태양의 조명 처럼 보이게 만들기 위한 제 1 항 또는 제 2 항에 따른 시스템을 포함하는, 그 안에 태양-하늘-외관을 제공하기 위한 건물의 내부 룸(48).
  18. 제 17 항에 있어서,
    상기 크로매틱 미러는 상기 룸(48)의 벽 또는 천장(46)에 고정되며, 상기 조명기(26)는 상기 룸(48) 내에 또는 상기 룸(48)의 벽, 천장(46) 또는 바닥에 배치되는, 건물의 내부 룸(48).
  19. 제 1 항 또는 제 2 항에 따른 조명용 시스템, 및
    방문자들이 차단 영역(90) 안으로 들어가려는 것을 차단하도록 구성된 차단 영역(90)을 포함하며,
    상기 차단 영역(90)은, 크로매틱 미러를 조사하며 상기 크로매틱 미러에 의해 반사되는 조명기로부터 나오는 광에 의해 비춰지도록 배치되는,
    건축 객체.
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
KR1020167034810A 2014-05-13 2014-05-13 크로매틱 미러, 크로매틱 패널 및 그 응용장치 KR102057930B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/059802 WO2015172821A1 (en) 2014-05-13 2014-05-13 Chromatic mirror, chromatic panel and applications thereof

Publications (2)

Publication Number Publication Date
KR20170008262A KR20170008262A (ko) 2017-01-23
KR102057930B1 true KR102057930B1 (ko) 2019-12-20

Family

ID=50884350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167034810A KR102057930B1 (ko) 2014-05-13 2014-05-13 크로매틱 미러, 크로매틱 패널 및 그 응용장치

Country Status (10)

Country Link
US (2) US10161596B2 (ko)
EP (2) EP3410007B1 (ko)
JP (1) JP6181887B2 (ko)
KR (1) KR102057930B1 (ko)
CN (2) CN109296996B (ko)
CA (1) CA2948551C (ko)
PL (1) PL3143325T3 (ko)
RU (1) RU2673868C2 (ko)
SG (1) SG11201609149QA (ko)
WO (1) WO2015172821A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134733A1 (en) 2015-02-23 2016-09-01 Coelux S.R.L. Illumination system for optically widened perception
JP6426297B2 (ja) 2015-02-23 2018-11-21 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. シート照明システム
CN108139044B (zh) 2015-07-15 2021-06-04 科勒克斯有限责任公司 色彩反射单元
EP3130842B1 (en) 2015-07-15 2019-09-25 CoeLux S.r.l. Sky-dome lighting system
US10663632B2 (en) 2015-07-15 2020-05-26 Coelux S.R.L. Reflective illumination systems for optically widened perception
EP3377813B1 (en) 2015-11-19 2019-08-28 CoeLux S.r.l. Modular sun-sky-imitating lighting system
KR20180084937A (ko) 2015-11-19 2018-07-25 코에룩스 에스알엘 태양-하늘-모방 조명 시스템들을 위한 계층적 패널 구조체
US10711976B2 (en) 2016-11-19 2020-07-14 Coelux S.R.L. Lighting system with appearance affecting optical system
WO2018091150A1 (en) 2016-11-19 2018-05-24 Coelux S.R.L. Tunability in sun-light imitating lighting systems
WO2019064257A1 (en) 2017-09-28 2019-04-04 Coelux S.R.L. OPTICAL DEVICE FOR ENHANCED ILLUMINATION SYSTEM FOR SIMULATING NATURAL LIGHTING IN TWO HALF SPACES
IT201800005634A1 (it) 2018-05-23 2019-11-23 Struttura a film multistrato cromaticamente diffondente per sistemi di illuminazione simulanti cielo-sole
IT201800005680A1 (it) 2018-05-24 2019-11-24 Illuminazione a luce bianca regolabile
JP6994647B2 (ja) * 2018-06-28 2022-02-04 パナソニックIpマネジメント株式会社 照明装置
CN110859159B (zh) * 2019-12-05 2021-09-21 中国水产科学研究院南海水产研究所 一种陆架区海底巡航式分类采样装置及其使用方法
JP2023520173A (ja) 2020-03-17 2023-05-16 シグニファイ ホールディング ビー ヴィ 人工スカイライトデバイス
JP7434023B2 (ja) * 2020-03-30 2024-02-20 日東電工株式会社 複層構造体
US11604404B2 (en) 2021-02-04 2023-03-14 Lonvis Technology (Shenzhen) Co., Ltd. Lamp projecting starry sky and nebula generation method thereof
CN112728465B (zh) * 2021-02-04 2021-10-08 朗唯思科技(深圳)有限公司 一种星空投影灯及其星云生成方法
US11168866B1 (en) 2021-04-28 2021-11-09 Longhorn Intelligent Tech Co., Ltd Rayleigh scatter light
CN116136496B (zh) * 2023-04-04 2023-07-21 中国科学院光电技术研究所 一种基于抛物面反射镜的brdf测量系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255410A (ja) 2002-03-05 2003-09-10 Ricoh Co Ltd 光路切替素子、空間光変調器および画像表示装置
JP2007234342A (ja) 2006-02-28 2007-09-13 Ccs Inc 光照射装置
JP2011526421A (ja) 2008-06-30 2011-10-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のキャップされていない多層ミラー上の沈着を除去する方法、リソグラフィ装置およびデバイス製造方法
JP2013218826A (ja) 2012-04-05 2013-10-24 Sharp Corp 光源装置、面光源装置、表示装置および照明装置
JP2014013712A (ja) 2012-07-05 2014-01-23 Udc Ireland Ltd 有機電界発光素子、面光源、及び照明装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033545A1 (de) * 1990-10-22 1992-04-23 Flachglas Ag Verbundsicherheitsglasscheibe und verfahren zu deren herstellung
KR20010108181A (ko) 1998-12-21 2001-12-07 카디날 아이지 컴퍼니 유리면을 위한 오염 방지 코팅
US6737151B1 (en) 1999-04-22 2004-05-18 E. I. Du Pont De Nemours And Company Glass laminates having improved structural integrity against severe impacts
BE1016540A3 (fr) * 2005-03-10 2007-01-09 Glaverbel Vitrage automobile a diffusion selective.
US20080302461A1 (en) * 2007-06-08 2008-12-11 E. I. Du Pont De Nemours And Company Transparent Colored High Modulus Interlayers and Laminates Therefrom
GB0711695D0 (en) 2007-06-16 2007-07-25 Flynn Sean An infinity display with autostereoscopic capability
CN201198991Y (zh) * 2008-02-04 2009-02-25 华侨大学 一种全阴天光照模拟装置
US8348458B2 (en) 2008-04-03 2013-01-08 Koninklijke Philips Electronics N.V. White light-emitting device
ITMI20081135A1 (it) * 2008-06-24 2009-12-25 Trapani Paolo Di Dispositivo di illuminazione
US8068285B1 (en) 2009-05-19 2011-11-29 Sean Thomas Flynn Infinity display with autostereoscopic capability
IT1399180B1 (it) * 2009-06-12 2013-04-11 Sharp Kk Simulatore solare
JP5497481B2 (ja) * 2010-03-01 2014-05-21 株式会社ナウデータ 擬似太陽光照射装置
CN101818876A (zh) * 2010-04-27 2010-09-01 武汉高博光电科技有限公司 反射式太阳能模拟器
CN101915614B (zh) * 2010-07-26 2012-09-05 武汉大学 三维曲面全漫射太阳光模拟器
IT1402274B1 (it) 2010-07-30 2013-08-28 Beghelli Spa Sistema ottico per la diffusione omogenea della luce emessa da sorgenti luminose
TW201215817A (en) * 2010-10-05 2012-04-16 Advanced Connectek Inc Complementary color light source device
US8573823B2 (en) 2011-08-08 2013-11-05 Quarkstar Llc Solid-state luminaire
CN103355984A (zh) * 2012-04-10 2013-10-23 刘振中 一种具有叫醒功能的床头
US20140071673A1 (en) * 2012-09-11 2014-03-13 Abl Ip Holding Llc Recessed Luminaire
CN104995535B (zh) 2012-10-08 2019-03-08 康宁股份有限公司 用于提供改善的显示器部件的方法和设备
ITTO20120988A1 (it) * 2012-11-14 2014-05-15 Light In Light S R L Sistema di illuminazione artificiale per simulare un'illuminazione naturale

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255410A (ja) 2002-03-05 2003-09-10 Ricoh Co Ltd 光路切替素子、空間光変調器および画像表示装置
JP2007234342A (ja) 2006-02-28 2007-09-13 Ccs Inc 光照射装置
JP2011526421A (ja) 2008-06-30 2011-10-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のキャップされていない多層ミラー上の沈着を除去する方法、リソグラフィ装置およびデバイス製造方法
JP2013218826A (ja) 2012-04-05 2013-10-24 Sharp Corp 光源装置、面光源装置、表示装置および照明装置
JP2014013712A (ja) 2012-07-05 2014-01-23 Udc Ireland Ltd 有機電界発光素子、面光源、及び照明装置

Also Published As

Publication number Publication date
CA2948551A1 (en) 2015-11-19
JP2017518528A (ja) 2017-07-06
CN106662317B (zh) 2018-11-09
US20170146218A1 (en) 2017-05-25
SG11201609149QA (en) 2016-12-29
RU2016148683A (ru) 2018-06-19
KR20170008262A (ko) 2017-01-23
EP3143325A1 (en) 2017-03-22
EP3410007B1 (en) 2020-04-08
PL3143325T3 (pl) 2018-12-31
RU2673868C2 (ru) 2018-11-30
CN109296996A (zh) 2019-02-01
JP6181887B2 (ja) 2017-08-16
US20190178471A1 (en) 2019-06-13
CN109296996B (zh) 2021-01-05
WO2015172821A1 (en) 2015-11-19
CN106662317A (zh) 2017-05-10
RU2016148683A3 (ko) 2018-06-19
US10161596B2 (en) 2018-12-25
EP3143325B1 (en) 2018-07-25
EP3410007A1 (en) 2018-12-05
CA2948551C (en) 2020-07-14

Similar Documents

Publication Publication Date Title
KR102057930B1 (ko) 크로매틱 미러, 크로매틱 패널 및 그 응용장치
CN104913267B (zh) 照明系统
JP6639636B2 (ja) 色反射ユニット
US10088125B2 (en) Illumination system for optically widened perception
EP3130842B1 (en) Sky-dome lighting system
JP6401349B2 (ja) 有色ミラー、照明システム、照明システムのアレイ、建築物、及び部屋
JP2019023736A (ja) 有色パネル、照明システム、及び部屋

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant