KR102009403B1 - 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법 - Google Patents

인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법 Download PDF

Info

Publication number
KR102009403B1
KR102009403B1 KR1020180012444A KR20180012444A KR102009403B1 KR 102009403 B1 KR102009403 B1 KR 102009403B1 KR 1020180012444 A KR1020180012444 A KR 1020180012444A KR 20180012444 A KR20180012444 A KR 20180012444A KR 102009403 B1 KR102009403 B1 KR 102009403B1
Authority
KR
South Korea
Prior art keywords
information
situ
electrochemical cell
ray
controller
Prior art date
Application number
KR1020180012444A
Other languages
English (en)
Other versions
KR20190093017A (ko
Inventor
성영은
박정진
김천중
이종식
박재혁
Original Assignee
서울대학교산학협력단
충남대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 충남대학교산학협력단, 기초과학연구원 filed Critical 서울대학교산학협력단
Priority to KR1020180012444A priority Critical patent/KR102009403B1/ko
Priority to US16/263,495 priority patent/US10876980B2/en
Publication of KR20190093017A publication Critical patent/KR20190093017A/ko
Application granted granted Critical
Publication of KR102009403B1 publication Critical patent/KR102009403B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

인시츄 X선 분석장치는 인시츄 전기화학 셀에 연결되고, 상기 인시츄 전기화학 셀의 전압 및 전류를 조절하거나, 상기 인시츄 전기화학 셀의 전압 정보 및 전류 정보를 기록하도록 구성되는 일정 전위기(potentiostat); 상기 인시츄 전기화학 셀의 X선 회절 정보를 얻도록 구성되는 X선 분석 장치; 및 상기 X선 분석 장치 및 상기 일정 전위기에 연결되어, 상기 X선 분석 장치 및 상기 일정 전위기 각각으로부터 신호를 제공하거나 제공받도록 구성되는 컨트롤러;를 포함한다.

Description

인시츄 X선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법{Analysis apparatus interlocking in-situ X-ray diffraction and potentiostat and analyzing methods using the same}
본 발명의 기술적 사상은 인시츄 X선 회절 분석 장치 및 전위기의 연동을 통한 분석 방법에 관한 것으로서, 더욱 상세하게는, 인시츄 전기화학셀과 관련된 인시츄 X선 회절 분석 장치 및 전기화학 분석 장치의 연동을 이용한 분석 방법에 관한 것이다.
최근 소형 모바일 기기, 전기 자동차 등 다양한 응용 분야에 리튬 이온 전지를 사용하기 위한 요구가 증가함에 따라, 다양한 응용 분야를 위한 다양한 요구 조건에 따라 리튬 이온 전지의 성능을 최적화할 필요성이 대두되고 있다. 특히 대용량을 가지며 저가인 새로운 양극 활물질 후보 물질 및 음극 활물질 후보 물질에 대한 전기화학적 특성 연구가 활발하게 진행되고 있다. 그러나, 새로운 양극 활물질 및 음극 활물질 일부는 충전 및 방전에 따른 상전이 특성과 전기화학적 성능과의 관계가 명확하게 규명된 바 없어 이러한 후보 물질들의 성능 개선 및 상용화가 어려운 문제가 있다.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 충전 및 방전에 따른 전기화학 셀의 상전이 특성을 정밀하게 분석할 수 있는 인시츄 X선 분석 장치를 제공하는 것이다.
본 발명의 기술적 사상이 이루고자 하는 또 다른 기술적 과제는 충전 및 방전시 전압, 전류, 용량, 시간에 따른 재료의 상전이 특성을 정밀하게 분석할 수 있는 인시츄 X선 분석 방법을 제공하는 것이다.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 인시츄 X선 분석 장치는, 인시츄 전기화학 셀에 연결되고, 상기 인시츄 전기화학 셀의 전압, 전류, 시간을 조절하거나, 상기 인시츄 전기화학 셀의 전압, 전류, 저항, 용량, 및 시간 정보를 기록하도록 구성되는 일정 전위기(potentiostat); 상기 인시츄 전기화학 셀의 X선 회절 정보를 얻도록 구성되는 X선 분석 장치; 및 상기 X선 분석 장치 및 상기 일정 전위기에 연결되어, 상기 X선 분석 장치 및 상기 일정 전위기 각각으로부터 신호를 제공하거나 제공받도록 구성되는 컨트롤러;를 포함한다.
예시적인 실시예들에서, 상기 일정 전위기는 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보를 상기 컨트롤러에 제공하도록 구성되고, 상기 컨트롤러는 상기 일정 전위기에 의해 제공되는 상기 정보에 기초한 신호에 응답하여, 상기 X선 분석 장치가 상기 인시츄 전기화학 셀에 X선을 조사하도록 명령 신호를 제공하도록 구성될 수 있다.
예시적인 실시예들에서, 상기 컨트롤러는 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보에 기초하여 각각의 상태에서의 과전압(overpotential) 정보 및 확산도(diffusivity) 정보를 도출하도록 구성되며, 상기 컨트롤러는 상기 과전압 정보 및 상기 확산도 정보에 따라 상기 X선 분석 장치에 명령 신호가 제공되는 지연 시간(delay time)을 결정하도록 구성될 수 있다.
예시적인 실시예들에서, 상기 지연 시간은 각각의 상태에서의 상기 과전압 정보 및 상기 확산도 정보가 임계 과전압 및 임계 확산도보다 낮아질 때까지의 시간으로 결정될 수 있다.
예시적인 실시예들에서, 상기 X선 분석 장치는 투과형 X선 분석 장치일 수 있다.
예시적인 실시예들에서, 상기 인시츄 전기화학셀은, 상기 X선 분석 장치로부터 조사되는 X선이 상기 인시츄 전기화학 셀 내부로 투과될 수 있는 복수의 홀들을 구비하는 셀 케이스, 상기 셀 케이스 내에 구비되는 양극 전극, 상기 셀 케이스 내에 구비되는 음극 전극, 상기 양극 전극 및 상기 음극 전극 사이에 개재되는 분리막, 및 상기 양극 전극, 상기 음극 전극, 및 상기 분리막의 적어도 표면 상에 적셔진 전해액을 포함할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 인시츄 X선 분석 방법은, 인시츄 전기화학 셀에 연결된 일정 전위기에 의해 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보를 얻는 단계; 상기 일정 전위기로부터 상기 인시츄 전기화학 용량, 전압, 전류, 및 시간에 대한 상기 정보를 컨트롤러로 제공하는 단계; 상기 컨트롤러에 의해 용량, 전압, 전류, 및 시간에 대한 상기 정보를 기초로 하여, 상기 인시츄 전기화학 셀의 각각의 상태에서의 과전압(overpotential) 정보 및 확산도(diffusivity) 정보를 도출하는 단계; 상기 컨트롤러에 의해 상기 과전압 정보 및 상기 확산도 정보에 기초하여 지연 시간(delay time)을 결정하는 단계; 상기 지연 시간이 경과한 후에 상기 컨트롤러로부터 상기 컨트롤러에 연결된 X선 분석 장치에 명령 신호를 제공하는 단계; 및 상기 X선 분석 장치가 상기 인시츄 전기화학 셀에 X선을 조사하고 X선 회절 패턴을 얻는 단계;를 포함한다.
예시적인 실시예들에서, 상기 지연 시간은 각각의 상태에서의 상기 과전압 정보 및 상기 확산도 정보가 임계 과전압 및 임계 확산도보다 낮아질 때까지의 시간으로 결정될 수 있다.
예시적인 실시예들에서, 상기 지연 시간은 상기 과전압 정보 및 상기 확산도 정보에 무관하게 일정한 값으로 결정될 수 있다.
예시적인 실시예들에서, 상기 인시츄 전기화학 셀은 LiMnxFe1 - xPO4를 포함하는 양극 활물질을 포함할 수 있다.
본 발명에 따른 인시츄 X선 분석 장치는, 인시츄 전기화학 셀에 연결되어 인시츄 전기화학 셀의 전압 및 전류를 조절하는 일정 전위기와, 인시츄 전기화학 셀의 X선 회절 정보를 얻도록 구성되는 X선 분석 장치와, 일정 전위기 및 X선 분석 장치에 연결되어 각각으로부터 신호를 제공하거나 제공받도록 구성되는 컨트롤러를 포함할 수 있다. 상기 컨트롤러가 전기화학 셀의 각각의 상태에서의 과전압 정보 및 확산도 정보에 따라 지연 시간을 결정하여, 상기 지연 시간이 경과한 후에 X선 분석 장치에 명령 신호를 제공할 수 있다. 따라서, 인시츄 전기화학 셀 내부에서의 리튬 이온 반응 속도를 고려하여 전기화학 셀의 상전이 특성을 정밀하게 분석할 수 있다.
도 1은 예시적인 실시예들에 따른 인시츄 X선 분석 장치의 대표적인 구성을 나타내는 개략도이다.
도 2는 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 나타내는 플로우 차트이다.
도 3은 예시적인 실시예들에 따른 인시츄 X선 분석 방법의 단위 충전 스텝과, 이를 사용하여 얻어진 전압 프로파일 및 X선 회절 패턴의 그래프들을 나타낸다.
도 4는 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 사용하여 얻어진 전압-용량 프로파일 및 X선 회절 패턴의 그래프들을 나타낸다.
도 5는 도 4의 X선 회절 패턴으로부터 얻어진 용량 대 격자 상수 및 용량 대 셀 부피 변화를 나타내는 그래프들이다.
도 6은 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 사용하여 얻어진 오믹 분극, 과전압, 확산도 그래프들을 나타낸다.
도 7은 예시적인 실시예들에 따른 인시츄 X선 분석 방법과 연결된 인시츄 임피던스 측정을 통해 얻어진 임피던스 그래프를 나타낸다.
도 8은 예시적인 실시예들에 따른 인시츄 X선 분석 방법과 연결된 인시츄 임피던스 측정을 통해 얻어진 경사각 및 전하 전달 저항 그래프를 나타낸다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예들에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성 요소들은 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성 요소의 비율은 과장되거나 축소될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "상에" 있다거나 "접하여" 있다고 기재된 경우, 다른 구성 요소에 상에 직접 맞닿아 있거나 또는 연결되어 있을 수 있지만, 중간에 또 다른 구성 요소가 존재할 수 있다고 이해되어야 할 것이다. 반면, 어떤 구성 요소가 다른 구성 요소의 "바로 위에" 있다거나 "직접 접하여" 있다고 기재된 경우에는, 중간에 또 다른 구성 요소가 존재하지 않는 것으로 이해될 수 있다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 예를 들면, "~사이에"와 "직접 ~사이에" 등도 마찬가지로 해석될 수 있다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. "포함한다" 또는 "가진다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하기 위한 것으로, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들이 부가될 수 있는 것으로 해석될 수 있다.
본 발명의 실시예들에서 사용되는 용어들은 다르게 정의되지 않는 한, 해당 기술 분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상세히 설명한다.
도 1은 예시적인 실시예들에 따른 인시츄 X선 분석 장치(1)의 대표적인 구성을 나타내는 개략도이다.
도 1을 참조하면, 인시츄 X선 분석 장치(1)는 일정 전위기(10), X선 분석 장치(20), 및 컨트롤러(30)를 포함할 수 있다.
인시츄 X선 분석 장치(1)는 인시츄 전기화학 셀(40)에 대한 전기화학적 성능을 분석할 수 있는 일정 전위기(10)와, 인시츄 전기화학 셀(40)에 대한 인시츄 X선 회절 정보를 분석할 수 있는 X선 분석 장치(20)를 포함할 수 있다. 컨트롤러(30)는 일정 전위기(10)와 X선 분석 장치(20)에 연결되어 일정 전위기(10)와 X선 분석 장치(20)로부터 정보를 제공받고, 일정 전위기(10)와 X선 분석 장치(20)에 제어 신호를 제공하도록 구성될 수 있다.
일정 전위기(10)는 인시츄 전기화학 셀(40)에 연결되어 인시츄 전기화학 셀(40)의 전압 및 전류를 조절하거나, 인시츄 전기화학 셀(40)의 전압 정보 및 전류 정보를 기록하도록 구성될 수 있다. 일정 전위기(10)는 인시츄 전기화학 셀(40)의 양극 단자 및 음극 단자에 각각 연결되는 입출력 단자(12)를 포함할 수 있다. 예를 들어, 일정 전위기(10)는 인시츄 전기화학 셀(40)의 용량, 전압, 전류 및 시간에 대한 정보를 컨트롤러(30)에 제공할 수 있다.
X선 분석 장치(20)는 인시츄 전기화학 셀(40)에 연결되어 인시츄 전기화학 셀(40)에 X선을 조사하고 인시츄 전기화학 셀(40)로부터 회절 광을 검출하도록 구성될 수 있다. X선 분석 장치(20)는 X선 조사 유닛(22) 및 X선 검출 유닛(24)을 포함할 수 있다. 예를 들어, X선 분석 장치(20)는 컨트롤러(30)에 의해 명령 신호를 제공받을 수 있고, 상기 명령 신호에 응답하여 인시츄 전기화학 셀(40)에 X선을 조사하고 회절 광을 검출하도록 구성될 수 있다. 예시적인 실시예들에 있어서, X선 분석 장치(20)는 투과형 X선 분석 장치일 수 있다. 다른 실시예들에 있어서, X선 분석 장치(20)는 반사형 X선 분석 장치일 수도 있다.
컨트롤러(30)는 일정 전위기(10) 및 X선 분석 장치(20)와 전기적으로 연결될 수 있다. 컨트롤러(30)는 일정 전위기(10)로부터 용량, 전압, 전류 및 시간에 대한 정보를 제공받으며, 이러한 정보에 기초한 신호에 응답하여 X선 분석 장치(20)에 명령 신호를 제공할 수 있다. 예를 들어, 컨트롤러(30)는 일정 전위기(10)로부터 제공받은 용량, 전압, 전류 및 시간에 대한 정보에 의해 각각의 상태에서의 과전압 정보 및 확산도 정보를 도출하도록 구성될 수 있다. 또한, 컨트롤러(30)는 과전압 정보 및 확산도 정보를 기초로 하여 지연 시간을 도출하고, 지연 시간이 경과한 후에 X선 분석 장치(20)에 명령 신호를 제공할 수 있다. 컨트롤러(30)는 인시츄 전기화학 셀(40)의 반응 속도에 따라 지연 시간을 조절함에 따라, 인시츄 전기화학 셀(40)의 준-평형 상태(quasi-equilibrium state)에서 X선 회절 분석을 수행할 수 있게 한다.
인시츄 전기화학 셀(40)은 셀 케이스(42), 양극 전극(43), 음극 전극(44), 분리막(45), 보호 부재(46), 및 전해액(도시 생략)을 포함할 수 있다.
셀 케이스(42)는 상면 및 하면에 적어도 하나의 홀(42H)을 구비할 수 있다. 셀 케이스(42)의 적어도 하나의 홀(42H)을 통해 X선 분석 장치(20)로부터 조사되는 X선이 인시츄 전기화학 셀(40) 내부로 투과될 수 있다. 예시적인 실시예들에 있어서, 셀 케이스(42)는 상면에 복수의 홀들(42H)이 형성된 코인 타입의 금속 케이스를 포함할 수 있다. 그러나, 셀 케이스(42)의 형상 및 재질이 이에 한정되는 것은 아니다. 도 1에 도시된 것과는 달리, 셀 케이스(42)는 상면에 적어도 하나의 홀(42H)이 형성된 직사각형 타입의 금속 케이스를 포함할 수 있다.
예시적인 실시예들에서, 셀 케이스(42)의 복수의 홀들(42H) 상면을 덮는 보호 부재(46)가 형성될 수 있다. 보호 부재(46)는 예를 들어 투명 접착 테이프일 수 있다. 보호 부재(46)는 셀 케이스(42) 외부로 전해액이 누출되는 것을 방지할 수 있다.
양극 전극(43)은 양극 집전체(43C)와 양극 활물질(43M)을 포함할 수 있다. 양극 집전체(43C)는 전도성 물질을 포함할 수 있고, 얇은 전도성 메쉬(mesh) 또는 얇은 전도성 호일일 수 있다. 예를 들어, 양극 활물질(43M)은 알루미늄, 니켈, 구리, 금, 또는 이들의 합금을 포함할 수 있다. 양극 활물질(43M)은 리튬 이온을 가역적으로 삽입/탈리할 수 있는 물질을 포함할 수 있다. 양극 활물질(43M)은 일정 전위기(10) 및 X선 분석 장치(20)에 의해 충전 및 방전에 따른 상전이 특성을 분석하기 요구되는 활물질일 수 있다. 예시적인 실시예들에서, 양극 활물질(43M)은 올리빈(olivine) 구조의 리튬 인산화물계 양극 활물질, 바나듐 산화물계 양극 활물질, 층상 구조의 리튬 금속 산화물들, 스피넬(spinel) 구조의 리튬 망간 산화물계 양극 활물질, 설퍼계 양극 활물질 등을 포함할 수 있다. 예를 들어, 양극 활물질(43M)은 LiFePO4, LiMnxFe1 - xPO4, LiFePO4F, V2O5, LiV2O5, LiMnO2, LiCoO2, LiNixMnyCo1-x-yO2, LiMn2O4, S 등을 포함할 수 있다. 예를 들어, LiMnxFe1 - xPO4를 양극 활물질(43M)로 사용한 인시츄 전기화학 셀(40)에 대하여 인시츄 X선 분석 장치(1)를 통해 전기화학 성능 및 상전이 특성을 분석한 결과를 도 3 내지 도 8을 통해 상세히 설명하도록 한다.
도시되지는 않았지만, 양극 활물질(43M) 내부에는 바인더 또는 도전재가 더 포함될 수 있다. 바인더는 양극 활물질(43M)의 입자들을 서로 부착시키고 양극 활물질(43M)을 양극 집전체(43C)에 부착시키는 역할을 할 수 있다. 도전재는 양극 활물질(43M)에 전기 전도성을 제공할 수 있다.
음극 전극(44)은 음극 집전체(44C)와 음극 활물질(44M)을 포함할 수 있다. 음극 집전체(44C)는 전도성 물질을 포함할 수 있고, 얇은 전도성 메쉬(mesh) 또는 얇은 전도성 호일일 수 있다. 예를 들어, 음극 활물질(44M)은 구리, 니켈, 알루미늄, 금, 또는 이들의 합금을 포함할 수 있다. 음극 활물질(44M)은 리튬 이온을 가역적으로 삽입/탈리할 수 있는 물질을 포함할 수 있다. 음극 활물질(44M)은 일정 전위기(10) 및 X선 분석 장치(20)에 의해 충전 및 방전에 따른 상전이 특성을 분석하기 요구되는 활물질일 수 있다. 예시적인 실시예들에서, 음극 활물질(44M)은 카본계 음극 활물질, 흑연계 음극 활물질, 실리콘계 음극 활물질, 주석계 음극 활물질, 복합재 음극 활물질, 리튬 금속 음극 활물질 등을 포함할 수 있다.
도시되지는 않았지만, 음극 활물질(44M) 내부에는 바인더 또는 도전재가 더 포함될 수 있다. 바인더는 음극 활물질(44M)의 입자들을 서로 부착시키고 음극 활물질(44M)을 음극 집전체(44C)에 부착시키는 역할을 할 수 있다. 도전재는 음극 활물질(44M)에 전기 전도성을 제공할 수 있다.
분리막(45)은 다공성을 가질 수 있고, 단일막 또는 2층 이상의 다중막으로 구성될 수 있다. 분리막(45)은 폴리머 물질을 포함할 수 있고, 예를 들어 폴리에틸렌계, 폴리프로필렌계, 폴리비닐리덴 플루오라이드계, 폴리올레핀계 폴리머 등의 적어도 하나를 포함할 수 있다.
전해액(도시 생략)은 양극 전극(43), 음극 전극(44), 및 분리막(45) 표면에 형성될 수 있고, 예를 들어 양극 전극(43), 음극 전극(44) 및 분리막(45)의 적층 구조가 상기 전해액에 적셔진 후 셀 케이스(42) 내에 배치될 수 있다. 상기 전해액은 비수성 용매(non-aqueous solvent)와 전해질 염을 포함할 수 있다. 상기 비수성 용매는 통상적인 비수성 전해액용 비수성 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 예를 들어 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 또는 비양성자성 용매를 포함할 수 있다. 상기 비수성 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.
본 발명에 따른 인시츄 X선 분석 장치(1)에 따르면, 일정 전위기(10)와 X선 분석 장치(20) 모두와 연결된 컨트롤러(30)에 의해 인시츄 전기화학 셀(40)의 전기화학적 성능과 상전이 특성을 정밀하게 분석할 수 있다.
일반적으로 인시츄 X선 분석 장치는 전기화학셀에 대하여 일정한 시간 간격으로 복수 회 X선 회절 분석을 수행하여, 이러한 분석 데이터를 시간 순으로 정리함에 의해 활물질의 미세구조에 대한 정보를 얻을 수 있다. 그러나, 일정한 시간 간격으로 X선 회절 분석을 수행하는 경우, 반응 속도가 느린 활물질을 포함하는 전기화학 셀에서는 평형 상태에 도달하지 않은 상태에서 X선 회절 분석 데이터가 얻어지므로 활물질의 실제 미세구조가 정밀하게 분석되기 어렵다.
그러나, 본 발명에 따른 인시츄 X선 분석 장치(1)에 따르면, 컨트롤러(30)는 일정 전위기(10)로부터 용량, 전압, 전류 및 시간에 대한 정보를 제공받으며, 이러한 정보에 기초한 신호에 응답하여 과전압 정보 및 확산도 정보를 기초로 하여 지연 시간을 도출하고, 지연 시간이 경과한 후에 X선 분석 장치(20)에 명령 신호를 제공할 수 있다. 따라서, 인시츄 X선 분석 장치(1)는 인시츄 전기화학 셀(40)의 준-평형 상태(quasi-equilibrium state)에서 X선 회절 분석을 수행할 수 있고, 이에 따라 인시츄 전기화학 셀(40)의 결정상, 격자상수, 부피, 등 미세구조 특성 및 상전이 특성을 정밀하게 분석할 수 있다.
도 2는 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 나타내는 플로우 차트이다.
도 2를 참조하면, 인시츄 전기화학 셀(40)에 연결된 일정 전위기(10)에 의해 인시츄 전기화학 셀(40)의 용량, 전압, 전류 및 시간에 대한 정보를 얻을 수 있다(S10 단계).
예시적인 실시예들에서, S10 단계에서 컨트롤러(30)에 미리 입력된 전류 밀도를 사용하여, 일정 전위기(10)를 통해 인시츄 전기화학 셀(40)에 상대적으로 낮은 전류 밀도를 사용한 단위 충전 스텝 또는 단위 방전 스텝이 수행될 수 있다. 예를 들어, LiMnxFe1 - xPO4를 포함하는 양극 활물질(43M)과, 리튬 금속을 포함하는 음극 활물질(44M)을 사용하여 인시츄 전기화학 셀(40)을 준비하고, 상기 단위 충전 스텝 동안 인시츄 전기화학 셀(40)에 0.01 C의 전류 밀도를 사용하여 1 시간 동안 전류를 인가할 수 있다. 여기서, 1 C는 양극 활물질(43M) 전체 질량에 대하여 총 1 시간 동안 일정한 전류 밀도를 사용하여 100% 충전이 완료될 수 있는 전류 밀도를 가리키며, 0.01 C는 양극 활물질(43M) 전체 질량에 대하여 총 100 시간 동안 100% 충전이 완료될 수 있는 전류 밀도를 가리킨다.
이후, 일정 전위기(10)로부터 인시츄 전기화학 셀(40)의 용량, 전압, 전류 및 시간에 대한 정보를 컨트롤러(30)에 제공할 수 있다(S20 단계).
예시적인 실시예들에서, 일정 전위기(10)에 의해 인시츄 전기화학 셀(40)의 용량, 전압, 전류 및 시간에 대한 정보를 얻는 단계(S10)와, 일정 전위기(10)로부터의 용량, 전압, 전류 및 시간에 대한 정보를 컨트롤러(30)에 제공하는 단계(S20 단계)는 실질적으로 동시에 수행될 수 있다.
다른 실시예들에 있어서, 일정 전위기(10)에 의해 인시츄 전기화학 셀(40)의 용량, 전압, 전류 및 시간에 대한 정보를 얻는 단계(S10)가 수행되고, 소정의 제1 전송 지연 시간을 두고 일정 전위기(10)로부터의 용량, 전압, 전류 및 시간에 대한 정보를 컨트롤러(30)에 제공하는 단계(S20 단계)가 순차적으로 수행될 수 있다. 여기서, 제1 전송 지연 시간은 약 0.01 초 내지 약 1 분의 범위일 수 있다. 예를 들어, S10 단계에서, 인시츄 전기화학 셀(40)에 0.01 C의 전류 밀도를 사용하여 일정한 전류를 인가하는 한편 매 0.1초 간격으로 인시츄 전기화학 셀(40)의 전압 정보를 검출하여 기록할 수 있으며, 제1 전송 지연 시간 이후에 인시츄 전기화학 셀(40)의 전압 정보를 컨트롤러(30)로 전달할 수 있다.
이후, 컨트롤러(30)에 의해 용량, 전압, 전류, 및 시간에 대한 상기 정보를 기초로 하여, 인시츄 전기화학 셀(40)의 각각의 상태에서의 과전압(overpotential) 정보 및 확산도(diffusivity) 정보를 도출할 수 있다(S30 단계).
예시적인 실시예들에 있어서, 인시츄 전기화학 셀(40)의 과전압 정보는 컷오프 전압과 개방 전압 사이의 차이로 결정될 수 있다. 예를 들어, 과전압은 양극 전극의 전자 전도도보다 리튬 이온 확산도가 더 낮은 특징에 의해 양극 전극에 가해지는 분극 상태와 관련된 정보일 수 있다.
또한 인시츄 전기화학 셀(40)의 확산도 정보는 아래의 수식 (1), 즉 Weppner 및 Huggins 수식으로부터 결정될 수 있다.
Figure 112018011263400-pat00001
-(1)
수식 (1)에서, V는 화합물의 몰 부피(cm3/mol)이며, τ는 전류 펄스의 기간(초)이며, M 및 m은 LiMnxFe1 - xPO4의 분자량(g/mol) 및 질량(g)일 수 있다. 또한 S는 활물질과 전해액 사이의 계면 면적(cm2)이고, L은 확산 길이(cm)일 수 있다. ΔE τ 및 Δ E s 은 iR drop이 가해진 이후의 전압 변화값이며, 유지 시간이 경과한 이후의 전압 변화값이다.
예시적인 실시예들에서, S30 단계에서, 컨트롤러(30)에 의해 용량, 전압, 전류, 및 시간에 대한 상기 정보를 기초로 하여, 인시츄 전기화학 셀(40)의 각각의 상태에서의 오믹 분극(ohmic polarization) 정보를 또한 도출할 수 있다. 오믹 분극은 각각의 단계 초기에서의 전압의 급격한 변화값과 관련되며, 예를 들어 인시츄 전기화학 셀(40) 내의 iR drop과 관련된 정보일 수 있다.
이후, 컨트롤러(30)에 의해 상기 과전압 정보 및 상기 확산도 정보에 기초하여 지연 시간(delay time)을 결정할 수 있다(S40 단계).
예시적인 실시예들에 있어서, 상기 지연 시간은 각각의 상태에서의 상기 과전압 정보 및 상기 확산도 정보가 임계 과전압 및 임계 확산도보다 낮아질 때까지의 시간으로 결정될 수 있다. 예를 들어, 상기 지연 시간은 상기 과전압이 임계 과전압보다 낮아지는 시간으로 결정될 수 있다. 또는 상기 지연 시간은 상기 확산도 정보가 임계 확산도보다 낮아지는 시간으로 결정될 수 있다.
다른 실시예들에 있어서, 상기 지연 시간은 각각의 상태에서의 상기 과전압 정보 및 상기 확산도 정보와 무관하게 일정한 시간으로 결정될 수 있다.
S40 단계에 따르면, 인시츄 전기화학 셀(40)의 양극 활물질 또는 음극 활물질의 반응 속도에 따라 지연 시간을 달리할 수 있다. 예를 들어, 인시츄 전기화학 셀(40)에서의 과전압이 임계 과전압보다 높은 경우, 지연 시간이 증가될 수 있다. 임계 과전압은 분석의 대상인 양극 활물질 또는 음극 활물질의 종류에 따라 미리 정해진 값일 수 있다.
이후, 상기 지연 시간이 경과한 후에 컨트롤러(30)로부터 컨트롤러(30)에 연결된 X선 분석 장치(20)에 명령 신호를 제공할 수 있다(S50 단계).
이후, X선 분석 장치(20)는 인시츄 전기화학셀(40)에 X선을 조사하여 X선 회절 패턴을 얻을 수 있다(S60 단계). 예시적인 실시예들에서, X선 분석 장치(20)의 X선 조사 유닛(22)으로부터 인시츄 전기화학 셀(40)의 케이스(42)에 구비된 적어도 하나의 홀(42H)을 통해 X선이 조사되고, X선 검출 유닛(24)에 의해 투과된 X선이 검출될 수 있다.
이후, S10 내지 S60 단계를 반복할 수 있다(S70 단계).
예를 들어, S10 내지 S60 단계를 순차적으로 수행하는 것이 단위 충전 스텝 또는 단위 방전 스텝을 구성할 수 있다. 예시적인 실시예들에 따른 인시츄 X선 분석 방법은 총 10회 내지 총 수백회의 단위 충전 스텝 및/또는 총 10회 내지 총 수백회의 단위 방전 스텝을 포함할 수 있다.
전술한 실시예에 따르면, 지연 시간 이후에 X선 회절 패턴을 얻음에 따라, 인시츄 전기화학 셀(40)의 전기화학적 데이터(즉, 용량 또는 전압과 관련된 항목)와 X선 회절 패턴(즉, 미세구조와 관련된 항목) 사이의 사이의 정밀한 매칭 및 분석이 가능할 수 있다.
예를 들어, 상대적으로 반응 속도가 낮은 LiMnxFe1 - xPO4를 포함하는 양극 활물질(43M)을 사용한 인시츄 전기화학 셀(40)의 경우에, 일반적인 충방전 기기를 사용하여 충전 또는 방전을 수행하면서 일정한 시간 간격으로 X선 회절 분석을 수행하는 종래의 방법을 사용하는 경우 정확한 미세 구조 확인이 어려울 수 있다. 특히, LiMnxFe1-xPO4를 포함하는 양극 활물질(43M)은 통상의 양극 활물질에 비하여 충전 및 방전에 따른 과전압이 상대적으로 높을 수 있고, 상기 높은 과전압에 의해 인시츄 전기화학 셀(40)의 외부 양 단자에서 검출되는 외부 전압과 인시츄 전기화학 셀(40) 내에서 양극 활물질(43M) 입자에 실제로 인가되는 내부 전압 사이의 차이가 상당할 수 있다. 이러한 경우에, 종래의 방법을 사용하여 X선 회절 분석을 하는 경우 양극 활물질(43M)의 전압에 따른 미세구조가 명확하게 매칭되기 어려울 수 있다.
반면, 본 발명에 따르면, 각각의 상태에서의 정보를 기초로 하여 컨트롤러(30)가 과전압 정보 및 확산도 정보를 도출하며, 이러한 정보들에 기초하여 지연 시간이 결정되고, 지연 시간이 경과한 이후에 X선 분석 장치에 명령 신호가 제공될 수 있다. 예를 들어, 상기 지연 시간은 과전압 정보가 임계 과전압보다 낮아질 때까지의 시간으로 결정될 수 있고, 예를 들어 상기 지연 시간은 각각의 상태에서 인시츄 전기화학 셀(40)의 외부 전압과 양극 활물질(43M)에 인가되는 내부 전압 사이의 차이가 임계 과전압보다 낮아질 때까지, 즉 인시츄 전기화학 셀(40)의 외부 전압과 양극 활물질(43M)에 인가되는 내부 전압 사이의 차이가 상당히 감소된 값을 가질 때까지의 시간일 수 있다.
상기 지연 시간은 각각의 상태에서(즉, 서로 다른 전압 값에서 또는 각각의 단위 충전 스텝 또는 단위 방전 스텝에서) 서로 다르게 결정될 수 있다. 또는 상기 지연 시간은 각각의 상태에서 동일한 값으로 결정될 수 있다.
도 3은 예시적인 실시예들에 따른 인시츄 X선 분석 방법의 단위 충전 스텝과, 이를 사용하여 얻어진 전압 프로파일 및 X선 회절 패턴의 그래프들을 나타낸다.
도 3을 참조하면, 도 1을 참조로 설명한 인시츄 X선 분석 장치와 도 2를 참조로 설명한 인시츄 X선 분석 방법에 의해 LiMn0 . 8Fe0 . 2PO4을 포함하는 양극 활물질의 충전에 따른 전압 프로파일과 X선 회절 패턴들이 도시된다. 예를 들어, 3V부터 4.4V까지 약 100회의 단위 충전 스텝들이 수행되었고, 1회의 단위 충전 스텝은 제1 일정 전류 인가 단계와 제1 전류 정지 단계를 포함하였다. 제1 일정 전류 인가 단계에서 30분 동안 0.01 C의 일정한 전류 밀도로서 전류가 인가되었고, 제1 전류 정지 단계에서 전류의 인가 없이 30분 동안 유지되었다. 제1 일정 전류 인가 단계와 제1 전류 정지 단계 모두에서 일정한 시간 간격으로 개방 전압이 측정 및 기록되었다. 제1 전류 정지 단계가 완료된 후 X선 분석 단계에서 X선 분석 장치를 통해 X선 분석이 수행되었다.
도 4는 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 사용하여 얻어진 전압-용량 프로파일 및 X선 회절 패턴의 그래프들을 나타낸다. 도 5는 도 4의 X선 회절 패턴으로부터 얻어진 용량 대 격자 상수 및 용량 대 셀 부피 변화를 나타내는 그래프들이다.
도 4 및 도 5를 참조하면, LiMn0 . 8Fe0 . 2PO4을 포함하는 양극 활물질을 사용하여 각각 0.05C의 전류 밀도로 충전 및 방전 동안의 인시츄 X선 분석 방법을 수행하였다.
LiMn0 . 8Fe0 . 2PO4은 사방정계 올리빈(orthorhombic olivine) 결정 구조를 갖는 메조크리스탈로서, 충전 및 방전 단계 동안의 상전이 메커니즘이 명확하게 규명되지 않은 대안적인 양극 활물질이다. 일반적으로 LiMnPO4 양극 활물질은 Mn의 낮은 이온 전도도, 충전 상태와 방전 상태 사이의 이방성 격자 불일치에 의한 상 바운더리 이동도 감소에 의해 낮은 반응 속도를 나타낸다. Mn의 일부 함량을 Fe로 치환한 LiMn0.8Fe0.2PO4 양극 활물질의 경우, 치환된 Fe이 핵생성 향상제로 작용하여 전기화학적 성능이 향상될 수 있다. 그러나, LixMn0 . 8Fe0 . 2PO4의 향상된 전기화학성 성능과 상전이 특성, 및 이를 통한 반응 메커니즘은 여전히 규명될 필요가 있다.
도 4에 도시된 바와 같이, 예시적인 실시예들에 따른 인시츄 X선 분석 장치를 사용할 때 LixMn0 . 8Fe0 . 2PO4은 4.1 V에서 평탄한 전위 프로파일을 나타내며, 이는 Mn2+/Mn3+의 2-상 반응(two-phase reaction) 구간을 의미할 수 있다. 한편 약 3.5 V에서의 상대적으로 경사진 구간은 고용체 반응이 진행됨에 따른 Fe2 +/Fe3 + 반응 영역을 의미할 수 있다.
구체적으로, LiMn0 . 8Fe0 . 2PO4로부터 충전이 시작될 때, 0.8 < x < 1인 영역에서 LiMn0 . 8Fe0 . 2PO4은 β 상을 나타내며, 이러한 영역에서의 X선 회절 그래프에서의 연속적인 피크 시프트 또한 Fe2 +/Fe3 + 영역 내에서의 고용체 거동을 확인할 수 있다. 이러한 영역에서 충전이 계속 진행됨에 따라 Li 이온의 탈리는 a 및 b 축의 연속적인 수축과 c 축의 연속적인 확장을 유발함을 확인할 수 있다. 0.2 < x < 0.8인 영역에서, X선 회절 분석으로부터 새로운 피크, 즉 α 상이 나타나며, 이는 Mn2 +의 산화에 의해 발생하는 2-상 반응 또는 1차 전이(first-order transition)를 가리킬 수 있다. 그 결과, 약 3.5 V에서의 Fe2 +/Fe3 + 반응 영역에서의 고용체 상전이에 뒤따라, 약 4.1 V에서의 Mn2 +/Mn3 +의 2-상 반응 영역이 나타남을 확인할 수 있다. 한편, X선 회절 분석에 따르면, 방전 단계에서 α 상(MnyFe1 - yPO4)으로부터 β 상(LiMnyFe1 -yPO4)으로의 상 전이가 나타남을 확인할 수 있고 LiMn0 . 8Fe0 . 2PO4 양극 활물질은 충전 및 방전 단계를 거쳐 가역적인 구조적 변화가 가능함을 확인할 수 있다.
또한, β 상 과 α 상 사이의 중간 상(LiyMnyFe1 - yPO4)이 존재함을 확인할 수 있다. 이는 Fe 서브격자 상에 Mn이 치환됨에 따라 저온에서 고용체 상이 안정화되기 때문이며, 상태도는 저온에서 두 개의 혼합 간격들(miscibility gaps)을 포함한다. 혼합 간격들 중 하나는 β 상(LiMnyFe1 - yPO4)과 β' 상(LiyMnyFe1 - yPO4) 사이에서, 다른 하나는 β' 상(LiyMnyFe1 - yPO4)과 α 상(MnyFe1 - yPO4) 사이에서 관찰된다. 따라서, 약 3.55V에서 나타나는 평탄한 전위 프로파일은 β 상(LiMnyFe1 - yPO4)과 β' 상(LiyMnyFe1-yPO4)의 공존 영역에 해당하며, 약 4.1 V에서 나타나는 평탄한 전위 프로파일은 β' 상(LiyMnyFe1 - yPO4)과 α 상(MnyFe1 - yPO4)의 공존 영역에 해당한다.
한편, 완전히 방전된 상태에서도 작은 강도로 α 상(MnyFe1 - yPO4)이 관찰되었으며, 이는 Mn3 +로부터 Mn2 +로의 환원이 불완전하기 때문임으로 추측할 수 있다. 즉, Mn2+/Mn3+의 2-상 반응 영역 내에서의 Li+ 탈리의 반응 속도 또는 반응 경로가 Li+ 삽입의 반응 속도 또는 반응 경로와 다르기 때문일 수 있다. 이와 관련된 더욱 상세한 상전이 특성을 도 6 내지 도 8을 참조로 설명하도록 한다.
도 6은 예시적인 실시예들에 따른 인시츄 X선 분석 방법을 사용하여 얻어진 오믹 분극, 과전압, 확산도 그래프들을 나타낸다.
도 6을 참조하면, 오믹 분극이 과전압에 비해 무시할 만한 값을 나타냄에 따라 과전압의 전체적인 경향은 전하 전달 및 리튬 이온 확산 단계에 의존적일 수 있다. 과전압은 충전 초기 또는 방전 초기에 모두 증가하며, β' 상(LiyMnyFe1 - yPO4)의 고용체 반응 영역 내에서 국부적인 최대값을 나타낸다. 이러한 과전압의 국부적 최대값은 Li+ 확산도의 변화에 기인할 수 있다. β' 상(LiyMnyFe1 - yPO4)의 고용체 반응에서, Li+ 확산도는 공공(vacancy) 농도에 의해 영향을 받으며, 형성 및 이동 엔탈피, 빈도 등은 고용체 반응을 갖는 층상 산화물들과 유사하게 국부적 최소값을 나타냈으며, 이는 과전압의 증가를 가져온다. 실제로 과전압의 국부적인 최대값이 Li+ 확산도의 국부적인 최소값에 수반한다는 점이 도 6을 통해 확인될 수 있다. 따라서, 2-상 반응이 진행함에 따라 과전압이 계속 증가하며, 이는 Mn3 +-리치 상의 부분들의 증가로부터 기인하며 이들이 구조의 Jahn-Teller 왜곡을 유발할 수 있다. 이러한 Jahn-Teller 왜곡은 Mn3 +이 Li+ 확산 경로에 더욱 가까워지도록 하며, Li+ 이동을 위한 활성화 배리어의 증가를 유발할 수 있다. 또한 과전압의 경향은 방전 단계에서는 반대로 발생한다. 더욱이, 충전 및 방전 단계에서 2-상 반응 영역에서의 과전압의 경향이 서로 다른 것은, 이들 사이의 서로 다른 반응 경로들이 존재한다는 것을 가리킨다. 충전 단계에서 α 상(MnyFe1 - yPO4)의 형성에 의해 과전압이 증가되는 한편, 방전 단계에서 β' 상(LiyMnyFe1 - yPO4)의 형성에 의해 과전압은 일정하게 유지될 수 있다. 이러한 비대칭은 Li+의 삽입과 탈리 사이의 서로 다른 반응 경로들에 기인한다.
Li+ 확산도 프로파일은 과전압 프로파일과는 대략 반대의 경향을 나타낸다. 1차 상전이 영역에서의 Li+ 확산도는 2차 상전이 영역에서의 확산도보다 1 내지 2 오더 더 낮을 수 있고, β 상(LiMnyFe1 - yPO4)과 β' 상(LiyMnyFe1 - yPO4) 사이의 2-상 영역(x ~ 0.9), 및 뒤따르는 β' 상(LiyMnyFe1 - yPO4) 및 α 상(MnyFe1 - yPO4) 사이의 2-상 영역(x < ~ 0.7) 동안 확산도는 감소하며, 이후 충전 상태의 말기에 점진적으로 증가한다. 이러한 충전 상태 말기의 확산도 증가는 충전 말기(Li~ 0.1Mn0 . 8Fe0 . 2PO4)의 고용체 반응으로부터 기인할 수 있다. 또한 완전히 충전된 상태에서의 Li 확산도 값은 초기 상태의 Li+ 확산도에 비하여 1 오더 이상 더 낮으며, 이는 과전압 증가를 유발하고 탈리에 의한 Jahn-Teller Mn3 +의 발달과 관련성이 높다는 점에 주목한다. 방전 단계 동안에 Li+ 확산도는 충전 동안의 Li+ 확산도와 대략 유사한 경향을 보이나, β' 상(LiyMnyFe1 - yPO4)과 α 상(MnyFe1 - yPO4) 사이의 1차 상전이 영역에서 방전 동안의 Li+ 확산도보다 충전 동안의 Li+ 확산도가 명백히 높은 것으로 확인될 수 있다.
도 7은 예시적인 실시예들에 따른 인시츄 X선 분석 방법과 연결된 인시츄 임피던스 측정을 통해 얻어진 임피던스 그래프를 나타낸다. 도 8은 예시적인 실시예들에 따른 인시츄 X선 분석 방법과 연결된 인시츄 임피던스 측정을 통해 얻어진 경사각 및 전하 전달 저항 그래프를 나타낸다.
구체적으로, Mn3 +의 느린 환원 반응 메커니즘을 분석하기 위하여 도 2를 참조로 설명한 인시츄 X선 분석 방법과 연결된 인시츄 임피던스 측정이 수행되었다. 예를 들어, 도 3을 참조로 설명한 단위 충전 스텝 또는 단위 방전 스텝이 인시츄 임피던스 측정 단계를 더 포함하도록 구성되었다. 구체적으로, 단위 충전 스텝 또는 단위 방전 스텝 동안에, X선 분석 단계 이후에 인시츄 임피던스 측정 단계가 뒤따랐다.
도 7의 (a) 및 (b)를 참조하면, 임피던스 그래프는 고주파수 영역에서 반원 형태의 그래프를 나타내는 전하-전달 저항 영역과 저주파수 영역에서 직선 형태의 그래프를 나타내는 와버그(Warburg) 영역을 보인다. 여기서 전하-전달 저항 영역은 전극/전해액 계면에 기인한 저항에 기인하며, 와버그 영역은 질량 전달의 저항에 기인하는 것으로 알려져 있다. 이 중 와버그 영역은 β' 상(LiyMnyFe1 - yPO4) 및 α 상(MnyFe1-yPO4) 사이의 1차 상전이 영역의 반응 경로를 규명하는 데 역할을 할 수 있다.
도 8을 참조하면, 도 7의 (a) 및 (b)에 도시된 와버그 영역, 즉 선형 영역에서의 경사각이 별도로 도시된다. 예를 들어, 충전 동안의 β' 상(LiyMnyFe1 - yPO4) 및 α 상(MnyFe1 - yPO4) 사이의 1차 상전이 영역에서의 경사각이 방전 동안의 경사각 추세와는 상이하며, 이는 충전 단계와 방전 단계에서 2-상 반응의 반응 경로가 서로 상이함을 의미한다.
리튬화 단계, 즉 방전 단계에서, 경사각은 Mn3 +의 환원 반응 영역 내에서 일정한 상수 값을 나타내며, 이는 β' 상(LiyMnyFe1 - yPO4)이 2-상 반응 동안에 그다지 크게 변화하지 않음을 의미할 수 있다. 다시 말하면, 리튬화된 상은 방전 단계의 초기 단계에서 표면 상에 형성되고, 이후 리튬화된 상의 쉘이 더욱 두꺼워질 수 있다. 이를 기초로 할 때, 리튬화 단계는 코어-쉘 모델을 따르는 것으로 예상할 수 있다. 반면, 탈리튬화 단계, 즉 충전 단계에서, Mn2 + 에서 Mn3 +로의 산화가 발생함에 따라 경사각은 점진적으로 증가하며, 이는 표면 인접부에서 α 상(MnyFe1 - yPO4)의 형성에 의해 β' 상(LiyMnyFe1 - yPO4)의 표면이 연속적으로 변화함을 의미할 수 있고, 이는 도미노 캐스케이드 또는 모자이크 모델에 의해 설명될 수 있다.
충전 단계와 방전 단계의 2-상 반응 메커니즘 차이는 핵생성 향상제의 역할에 의해 설명될 수 있고, 특히 Fe 또는 Co의 물질이 더 낮은 핵생성 배리어와 더욱 많은 핵생성 사이트에 의해 탈리튬화를 가속화하는 것으로 생각될 수 있다. 따라서 LiMn0.8Fe0.2PO4 메조크리스탈에서 Fe2 +의 산화 반응이 Mn2 +의 산화 반응 속도를 더욱 향상시킬 수 있다. 반면, 리튬화 단계에서는 Mn3 +의 환원 반응을 더욱 용이하게 해줄 수 있는 핵생성 향상제가 존재하지 않는다. 그러므로, 이러한 차이에 의해 충전 단계와 방전 단계의 반응 속도가 상이하며 탈리튬화 단계가 리튬화 단계보다 전기화학적 효율이 높음이 확인될 수 있다.
도 3 내지 도 8을 참조로 상세히 설명한 바와 같이, 본 발명에 따른 인시츄 X선 분석 장치 및 인시츄 X선 분석 방법에 의해 올리빈계 LiMn0 . 8Fe0 . 2PO4 메조크리스탈 양극 활물질의 반응 속도 및 상전이 특성이 명확하게 매칭될 수 있으며, 이에 따라 올리빈계 양극 활물질의 성능 개선 및 상용화를 위한 다양한 접근법들이 도출될 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.
1: 인시츄 X선 분석 장치 10: 일정 전위기
20: X선 분석 장치 22: X선 조사 유닛
24: X선 검출 유닛 30: 컨트롤러
40: 인시츄 전기화학 셀 42: 셀 케이스
43: 양극 전극 43C: 양극 집전체
43M: 양극 활물질 44: 음극 전극
44C: 음극 집전체 44M: 음극 활물질
45: 분리막 46: 보호 부재

Claims (10)

  1. 인시츄 전기화학 셀에 연결되고, 상기 인시츄 전기화학 셀의 전압, 전류 및 시간을 조절하거나, 상기 인시츄 전기화학 셀의 전압, 전류, 저항, 용량 및 시간 정보를 기록하도록 구성되는 일정 전위기(potentiostat);
    상기 인시츄 전기화학 셀의 X선 회절 정보를 얻도록 구성되는 X선 분석 장치; 및
    상기 X선 분석 장치 및 상기 일정 전위기에 연결되어, 상기 X선 분석 장치 및 상기 일정 전위기 각각으로부터 신호를 제공하거나 제공받도록 구성되는 컨트롤러;를 포함하고,
    상기 일정 전위기는 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보를 상기 컨트롤러에 제공하도록 구성되고,
    상기 컨트롤러는 상기 일정 전위기에 의해 제공되는 상기 정보에 기초한 신호에 응답하여, 상기 X선 분석 장치가 상기 인시츄 전기화학 셀에 X선을 조사하도록 명령 신호를 제공하도록 구성되며,
    상기 컨트롤러는 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보에 기초하여 각각의 상태에서의 과전압(overpotential) 정보 또는 확산도(diffusivity) 정보를 도출하도록 구성되며,
    상기 컨트롤러는 상기 과전압 정보 또는 상기 확산도 정보에 따라 상기 X선 분석 장치에 명령 신호가 제공되는 지연 시간(delay time)을 결정하도록 구성되는 것을 특징으로 하는 인시츄 X선 분석장치.
  2. 제1항에 있어서,
    상기 과전압 정보는 상기 인시츄 전기화학 셀의 컷오프 전압과 개방 전압 사이의 차이에 기초하여 결정되는 것을 특징으로 하는 인시츄 X선 분석 장치.
  3. 제1항에 있어서,
    상기 지연 시간은 각각의 상태에서의 상기 과전압 정보가 임계 과전압보다 낮아질 때까지의 시간으로 결정되는 것을 특징으로 하는 인시츄 X선 분석 장치.
  4. 제1항에 있어서,
    상기 지연 시간은 각각의 상태에서의 상기 확산도 정보가 임계 확산도보다 낮아질 때까지의 시간으로 결정되는 것을 특징으로 하는 인시츄 X선 분석 장치.
  5. 제1항에 있어서,
    상기 X선 분석 장치는 투과형 X선 분석 장치인 것을 특징으로 하는 인시츄 X선 분석장치.
  6. 제1항에 있어서,
    상기 인시츄 전기화학셀은,
    상기 X선 분석 장치로부터 조사되는 X선이 상기 인시츄 전기화학 셀 내부로 투과될 수 있는 복수의 홀들을 구비하는 셀 케이스,
    상기 셀 케이스 내에 구비되는 양극 전극,
    상기 셀 케이스 내에 구비되는 음극 전극,
    상기 양극 전극 및 상기 음극 전극 사이에 개재되는 분리막, 및
    상기 양극 전극, 상기 음극 전극, 및 상기 분리막의 적어도 표면 상에 적셔진 전해액을 포함하는 것을 특징으로 하는 인시츄 X선 분석장치.
  7. 인시츄 전기화학 셀에 연결된 일정 전위기에 의해 상기 인시츄 전기화학 셀의 용량, 전압, 전류, 및 시간에 대한 정보를 얻는 단계;
    상기 일정 전위기로부터 상기 인시츄 전기화학 용량, 전압, 전류, 및 시간에 대한 상기 정보를 컨트롤러로 제공하는 단계;
    상기 컨트롤러에 의해 용량, 전압, 전류, 및 시간에 대한 상기 정보를 기초로 하여, 상기 인시츄 전기화학 셀의 각각의 상태에서의 과전압(overpotential) 정보 및 확산도(diffusivity) 정보를 도출하는 단계;
    상기 컨트롤러에 의해 상기 과전압 정보 및 상기 확산도 정보에 기초하여 지연 시간(delay time)을 결정하는 단계;
    상기 지연 시간이 경과한 후에 상기 컨트롤러로부터 상기 컨트롤러에 연결된 X선 분석 장치에 명령 신호를 제공하는 단계; 및
    상기 X선 분석 장치가 상기 인시츄 전기화학 셀에 X선을 조사하고 X선 회절 패턴을 얻는 단계;를 포함하는 인시츄 X선 분석 방법.
  8. 제7항에 있어서,
    상기 지연 시간은 각각의 상태에서의 상기 과전압 정보 및 상기 확산도 정보가 임계 과전압 및 임계 확산도보다 낮아질 때까지의 시간으로 결정되는 것을 특징으로 하는 인시츄 X선 분석 방법.
  9. 제7항에 있어서,
    상기 지연 시간은 상기 과전압 정보 및 상기 확산도 정보에 무관하게 일정한 값으로 결정되는 것을 특징으로 하는 인시츄 X선 분석 방법.
  10. 제7항에 있어서,
    상기 인시츄 전기화학 셀은 LiMnxFe1 - xPO4를 포함하는 양극 활물질을 포함하는 것을 특징으로 하는 인시츄 X선 분석 방법.
KR1020180012444A 2018-01-31 2018-01-31 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법 KR102009403B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180012444A KR102009403B1 (ko) 2018-01-31 2018-01-31 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법
US16/263,495 US10876980B2 (en) 2018-01-31 2019-01-31 Analysis apparatus interlocking in-situ x-ray diffraction and potentiostat and analyzing methods using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180012444A KR102009403B1 (ko) 2018-01-31 2018-01-31 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법

Publications (2)

Publication Number Publication Date
KR20190093017A KR20190093017A (ko) 2019-08-08
KR102009403B1 true KR102009403B1 (ko) 2019-08-12

Family

ID=67541476

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180012444A KR102009403B1 (ko) 2018-01-31 2018-01-31 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법

Country Status (2)

Country Link
US (1) US10876980B2 (ko)
KR (1) KR102009403B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430551B1 (ko) * 2020-11-04 2022-08-09 서울대학교산학협력단 펠티어 타입 온도 조절 유닛을 포함하는 인시츄 x선 회절 분석 장치 및 이를 사용한 분석 방법
CN112436204B (zh) * 2020-11-25 2022-04-05 中山大学 一种可原位测试x射线衍射和质谱分析的电池装置与方法
IT202200009386A1 (it) * 2022-05-06 2023-11-06 Univ Degli Studi Di Sassari Cella di polarizzazione e misura per materiali ceramici piezoelettrici

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337068A (ja) * 2000-05-26 2001-12-07 Yuasa Corp 電極反応状態評価用セルおよび電極反応状態評価方法
JP2010531975A (ja) 2007-06-13 2010-09-30 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 金属ナノ粒子電極触媒増幅のための方法及び装置
JP5716828B2 (ja) 2011-08-03 2015-05-13 トヨタ自動車株式会社 二次電池の劣化状態推定装置および劣化状態推定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802604B1 (ko) * 2006-08-03 2008-02-14 전남대학교산학협력단 엑스선 흡수 분광기용 전기화학 인-시추 셀
US9022652B2 (en) * 2012-09-28 2015-05-05 Uchicago Argonne, Llc Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations
US20140270080A1 (en) * 2013-03-15 2014-09-18 Lawrence Livermore National Security, Llc Electrochemical Test Cell For Enabling In-Situ X-Ray Diffraction and Scattering Studies of Scale Formation and Microstructural Changes in Materials with Flow Through Solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337068A (ja) * 2000-05-26 2001-12-07 Yuasa Corp 電極反応状態評価用セルおよび電極反応状態評価方法
JP2010531975A (ja) 2007-06-13 2010-09-30 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 金属ナノ粒子電極触媒増幅のための方法及び装置
JP5716828B2 (ja) 2011-08-03 2015-05-13 トヨタ自動車株式会社 二次電池の劣化状態推定装置および劣化状態推定方法

Also Published As

Publication number Publication date
KR20190093017A (ko) 2019-08-08
US20190250112A1 (en) 2019-08-15
US10876980B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
Dose et al. Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries
Mao et al. Evaluation of gas formation and consumption driven by crossover effect in high-voltage lithium-ion batteries with Ni-rich NMC cathodes
Juarez-Robles et al. Impedance evolution characteristics in lithium-ion batteries
Blyr et al. Self‐discharge of LiMn2 O 4/C Li‐ion cells in their discharged state: understanding by means of three‐electrode measurements
KR101804512B1 (ko) 내부 기준 전극을 지닌 리튬 기술을 기반으로 한 전기화학적 전지, 이의 제조 방법, 및 이의 애노드 및 캐소드의 전압 또는 임피던스를 동시에 모니터링하는 방법
JP5460948B2 (ja) 高速充放電性能を備えたリチウム二次電池
US9755280B2 (en) Secondary battery control device and SOC detection method
Striebel et al. Electrochemical studies of substituted spinel thin films
KR102009403B1 (ko) 인시츄 x선 회절 및 전위기의 연동을 통한 분석 기기 및 이를 이용한 분석 방법
US20120158330A1 (en) Monitoring system for lithium ion secondary battery and monitoring method thereof
EP3043413A1 (en) Secondary battery control device and control method
CN111418107B (zh) 精确分析电池单体中电极的电解液浸渍程度的方法
US10038223B2 (en) Method of charging a lithium-sulphur cell
JP7395327B2 (ja) 二次電池に含まれるリチウムの析出を判定する判定装置及び判定方法
Kosilov et al. Effect of overdischarge (overlithiation) on electrochemical properties of LiMn 2 O 4 samples of different origin
Wu et al. Reactivity and Potential Profile across the Electrochemical LiCoO2–Li3PS4 Interface Probed by Operando X-ray Photoelectron Spectroscopy
Ranque et al. Performance-based materials evaluation for Li batteries through impedance spectroscopy: a critical review
JP6250941B2 (ja) 非水電解質二次電池
Ahn et al. Chemical origins of a fast-charge performance in disordered carbon anodes
KR102149874B1 (ko) 이차전지의 전해액 함침도 측정방법
Duan et al. Degradation Diagnosis of Li (Ni0. 5Mn0. 2Co0. 3) O2/Li Half-cell by Identifying Physical Parameter Evolution Profile Using Impedance Spectra During Cycling
WO2021186781A1 (ja) 容量回復装置、容量回復方法および二次電池システム
KR102430551B1 (ko) 펠티어 타입 온도 조절 유닛을 포함하는 인시츄 x선 회절 분석 장치 및 이를 사용한 분석 방법
US20220140418A1 (en) In-situ x-ray diffraction analysis apparatus including peltier-type temperature control unit and analyzing method using the same
Hudson Block copolymer electrolytes for lithium batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant