KR101878897B1 - High efficiency far infrared ray and anion radiator and producing method thereof - Google Patents

High efficiency far infrared ray and anion radiator and producing method thereof Download PDF

Info

Publication number
KR101878897B1
KR101878897B1 KR1020170029972A KR20170029972A KR101878897B1 KR 101878897 B1 KR101878897 B1 KR 101878897B1 KR 1020170029972 A KR1020170029972 A KR 1020170029972A KR 20170029972 A KR20170029972 A KR 20170029972A KR 101878897 B1 KR101878897 B1 KR 101878897B1
Authority
KR
South Korea
Prior art keywords
weight
parts
mixture
far
infrared ray
Prior art date
Application number
KR1020170029972A
Other languages
Korean (ko)
Inventor
손상호
Original Assignee
손상호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손상호 filed Critical 손상호
Priority to KR1020170029972A priority Critical patent/KR101878897B1/en
Application granted granted Critical
Publication of KR101878897B1 publication Critical patent/KR101878897B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0097Anion- and far-infrared-emitting materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Abstract

The present invention relates to a high efficiency far-infrared rays and anion radiator and a method for manufacturing the same. More particularly, the present invention relates to a high efficiency far-infrared anion radiator and a method for manufacturing the same which effectively provide heat and far-infrared rays to users due to excellent far-infrared radiation quantity and thermal conductivity by manufacturing a far-infrared radiator by mixing expanded graphite having excellent thermal conductivity and a volcanic mineral having excellent far-infrared radiation quantity. The method comprises the step of: manufacturing a first mixture; manufacturing a second mixture; agitating the mixture; forming the mixture into a product; sintering and cooling the product; and polishing the product surface.

Description

고효율 원적외선과 음이온 방사체 및 이의 제조방법{HIGH EFFICIENCY FAR INFRARED RAY AND ANION RADIATOR AND PRODUCING METHOD THEREOF}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency far-infrared ray and an anion radiator,

본 발명은 원적외선 방사체 및 이의 제조방법에 관한 것으로서, 상세하게는 열전도성이 우수한 팽창 흑연과 원적외선 방사량이 우수한 화산 송이를 혼합하여 원적외선 방사체를 제조함으로써 원적외선 방사량이 우수하고, 열전도성이 뛰어나 사용자에게 온열과 원적외선을 효과적으로 제공하도록 하는 고효율 원적외선과 음이온 방사체 및 이의 제조방법에 관한 것이다.More particularly, the present invention relates to a far-infrared ray radiator and a method of manufacturing the same, and more particularly, to a far-infrared ray radiator having excellent thermal conductivity and excellent thermal conductivity by manufacturing a far-infrared ray radiator by mixing expansive graphite having excellent thermal conductivity and a volcanic rock having excellent far- Far infrared ray and an anion radiator and a method of manufacturing the same.

주지된 바와 같이, 일반적으로 원적외선은 3~1000㎛까지의 파장을 총칭하는 것으로서 가시광선보다는 파장이 길고 마이크로파보다는 짧은 파장을 가지며, 공명흡수작용과 방사 및 심달력의 물성을 가지고 있다.As is well known, generally far-infrared rays are collectively referred to as wavelengths ranging from 3 to 1000 탆, and have wavelengths longer than visible rays, shorter wavelengths than microwaves, and have resonance absorption, radiation, and calendar properties.

공명흡수 작용이라 함은 물질에 원적외선을 조사할 때의 방사에너지 진동수와 분자의 진동수가 일치하게 되면 분자는 원적외선 방사에너지를 흡수하여 진동이 더욱 격렬해지는 작용을 말하며, 상기 공명흡수 작용으로 인해 운동에너지의 일부는 활성에너지로 변하여 분자운동이 활성화된다. 또, 방사라 함은 물체에서 방출되는 원적외선이 열로 전달되는 것을 말하며, 심달력이라 함은 조사되는 방사에너지의 파장의 제곱근에 비례하여 침투력이 결정된다는 것으로서 짧은 파장의 원적외선은 긴 파장의 원적외선에 비하여 침투력이 떨어지게 된다.Resonance absorbing action refers to an action in which a molecule absorbs far-infrared radiation energy so that the vibration becomes more vigorous when the radiant energy frequency and the molecular frequency of the molecule coincide with each other when the far-infrared ray is irradiated to the material. A part of the energy is converted into an activation energy and the molecular motion is activated. In addition, the term "radiation" refers to the transmission of far-infrared rays emitted from an object to heat, and the "deep-sea calendar" means that the penetration power is determined in proportion to the square root of the wavelength of the radiant energy to be irradiated. Penetration is reduced.

상기와 같은 원적외선의 특징으로 인하여 원적외선이 신체 깊숙한 곳까지 침투하여 체내의 분자나 원자를 활성화시키게 되고, 이로 인하여 체내의 각종 노폐물을 배출하고 신진대사를 촉진시켜 세포재생과 피로회복 등의 신체건강 리듬을 살려주게 된다.Due to the characteristics of far-infrared rays as described above, far-infrared rays penetrate deep into the body to activate molecules or atoms in the body, thereby discharging various wastes in the body and promoting metabolism, thereby regenerating body health such as cell regeneration and fatigue recovery .

한편, 음이온 방출물질은 전기분극을 갖고 있는 결정으로서, 그 결정의 단위격자의 양전하의 중심과 음전하의 중심이 본래위치에서 약간 벗어나 있어 결정의 양단에 양전극과 음전극이 형성되며, 상기 음전극에서는 양전극으로 향하는 전자가 발생한다.On the other hand, the anion emission material is a crystal having electric polarization, in which the center of the positive charge and the center of the negative charge of the unit lattice of the crystal are slightly shifted from the original position so that a positive electrode and a negative electrode are formed at both ends of the crystal, Electrons are generated.

음전극에서 발생된 전자는 다른 원자와 결합하여 음이온을 형성하며, 상기 음이온은 양전극의 전기력선을 따라 튀어나가 영구적인 전기의 흐름이 되는데, 이 전류는 0.06mA정도의 미세 전류로서 인간의 신체기능 활성화에 가장 적합한 전류이다.The electrons generated from the negative electrode are combined with other atoms to form anions. The anions protrude along the electric force lines of the positive electrodes and become a permanent electric current. This current is a minute current of about 0.06 mA, It is the most suitable current.

전술한 음이온 발생물질이 수분에 닿으면 순간적으로 방전되어 물분자(H2O)를 수소이온(H+)과 수산화이온(OH-)으로 전기분해 하게 되는데, 이때 수소이온(H+)은 음전극에서 방출되는 전자에 의해 수소가스(H2)로 환원되어 증발되고, 따라서 물은 알칼리 이온화되게 된다. 또한 수산화이온(OH-)은 산성화된 인체를 환원시키는 역할을 하며, 물을 약알칼리화 시킴으로서 면역기능(살균능력, 항균능력)을 높이고, 혈액을 정화하며, 자율신경을 자극하여 교감신경의 흥분을 억제하게 된다.When the above-mentioned anion generating material hits moisture, it is instantaneously discharged to electrolyze water molecules (H 2 O) into hydrogen ions (H +) and hydroxide ions (OH -). The water is reduced to hydrogen gas (H2) and evaporated, so that the water is alkaline ionized. In addition, the hydroxide ion (OH-) acts to reduce the acidified human body, and weak alkalization of water enhances the immune function (sterilization ability, antibacterial ability), purifies the blood, stimulates the autonomic nerve, .

상술한 원적외선 방사물질과 음이온 방출물질의 효능으로 인하여 최근 그 특성을 이용하여 일상생활의 건강제품으로 활용하려는 연구가 다양하게 시도되고 있으나, 기존 원적외선 방사체의 경우 점토나 원석 등의 소지를 그대로 활용함에 따라 원적외선 방사율이 낮을 뿐만 아니라 음이온 방출량도 적다는 단점이 있다.Recently, due to the efficacy of the above-mentioned far-infrared radiation material and anion emission material, various studies have been made to utilize the characteristics of the far-infrared radiation material as a health product of everyday life. However, in the case of the existing far-infrared ray emitter, Therefore, there is a disadvantage that not only the far infrared ray emissivity is low but also the amount of anion emission is small.

그러나, 높은 원적외선 방사율을 유지하면서도 산업재로 사용 가능한 물성을 보유한 재료의 개발이 절실한 실정이다.However, it is inevitable to develop materials having properties that can be used as industrial materials while maintaining a high far infrared ray emissivity.

이러한 원적외선 방사체 및 그 제조방법은 대한민국 특허등록공보 제10-0344944호 및 특허공개공보 제10-2014-0110380호에 개시되어 있다.Such a far-infrared ray radiator and its manufacturing method are disclosed in Korean Patent Registration No. 10-0344944 and Patent Publication No. 10-2014-0110380.

상기 대한민국 특허등록공보 제10-0344944호에는 산화규소 50~55중량부, 산화칼륨 2~4중량부, 알루미나 3~7중량부, 보락스 15~25중량, 산화나트륨 10~20중량부 및 산화칼슘 3~7중량을 용기에 넣고 30~60분간 혼합한 다음, 상기 혼합물을 1200~1400℃의 용해로에 투입하여 1~3시간 소성한 후 급냉시키고 분쇄한 다음, 상기 분쇄물에 인광석 1~5중량부 첨가하여 분쇄하는 방법이 개시되어 있다.Korean Patent Registration No. 10-0344944 discloses that 50 to 55 parts by weight of silicon oxide, 2 to 4 parts by weight of potassium oxide, 3 to 7 parts by weight of alumina, 15 to 25 parts by weight of borax, 10 to 20 parts by weight of sodium oxide, 3 to 7 parts by weight of calcium are put into a vessel and mixed for 30 to 60 minutes. Then, the mixture is charged into a melting furnace at 1200 to 1400 DEG C for 1 to 3 hours and then quenched and pulverized. Then, By weight of the above-mentioned pulverized product.

또한, 상기 특허공개공보 제10-2014-0110380호에는 산화규소 100중량부와, 산화규소 100중량부에 대해서, 산화칼륨 4~9중량부, 알루미나 7~15중량부, 보락스 40~60중량부, 산화나트륨 20~30중량부 및 산화칼슘 8~15중량부, 페그마타이트 30~35중량부, 실란 20~40중량부를 용기에 넣고 30~60분간 혼합한 다음, 상기 혼합물을 1300~1500℃의 용해로에 투입하여 1~3시간 소성한 후 급냉시키고 분쇄하는 방법이 개시되어 있다.In addition, in Patent Document 10-2014-0110380, 100 parts by weight of silicon oxide and 4 to 9 parts by weight of potassium oxide, 7 to 15 parts by weight of alumina, 40 to 60 parts by weight of borax, 20 to 30 parts by weight of sodium oxide, 8 to 15 parts by weight of calcium oxide, 30 to 35 parts by weight of pegmatite and 20 to 40 parts by weight of silane are mixed in a vessel for 30 to 60 minutes, And then charged into a melting furnace and fired for 1 to 3 hours, followed by quenching and pulverization.

그러나, 이러한 원적외선 방사체의 경우 높은 방사량의 원적외선과 음이온을 방사할 수 있으면서 산업계에서 요구하는 물성을 유지할 수 있어서 인체에 접하는 다양한 재료로 사용 가능해야 하며, 열전도율이 높은 것이 요구되고 있는 실정이다.However, such a far-infrared ray radiator can radiate a high-radiation far-infrared ray and anion, and can maintain the physical properties required by the industry, so that it can be used as a variety of materials in contact with the human body and a high thermal conductivity is required.

(선행기술 1) 대한민국 특허등록공보 제10-0344944호(Prior art 1) Korean Patent Registration No. 10-0344944 (선행기술 2) 대한민국 특허공개공보 제10-2014-0110380호(Prior Art 2) Korean Patent Laid-Open Publication No. 10-2014-0110380

본 발명은 상기와 같은 요구에 부응하기 위한 것으로, 열전도성이 우수한 팽창 흑연과 원적외선 방사량이 우수한 화산 송이를 혼합하여 원적외선 방사체를 제조함으로써 원적외선 방사량이 우수하고, 열전도성이 뛰어나 사용자에게 온열과 원적외선을 효과적으로 제공하도록 하는 고효율 원적외선과 음이온 방사체 및 이의 제조방법을 제공하는데 그 목적이 있다.The present invention relates to a method of manufacturing a far infrared ray radiator by mixing expansive graphite excellent in thermal conductivity and a volcanic rock having excellent far infrared ray radiation amount to produce a far infrared ray radiation amount and excellent thermal conductivity, And an object of the present invention is to provide a highly efficient far-infrared ray and anion radiator and a method of manufacturing the same.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,According to an aspect of the present invention,

산화규소 100중량부와, 산화규소 100중량부에 대해서, 산화칼륨 4~9중량부, 알루미나 7~15중량부, 보락스 40~60중량부, 산화나트륨 20~30중량부 및 산화칼슘 8~15중량부를 30~60분간 혼합한 다음, 상기 혼합물을 1300~1500℃의 용해로에 투입하여 1~3시간 소성한 후 급냉시켜 일정 입도로 분쇄하는 1차 혼합물 제조 공정과; 급냉된 1차 혼합물 100중량부에 대하여 일정 입도의 팽창 흑연 분말 10~20 중량부와, 일정 입도의 화산 송이 분말을 10~20중량부를 혼합하는 2차 혼합물 제조 공정과; 2차 혼합물 80~90중량%와 바인더 10~20중량%를 혼합하여 이루어진 배합물을 2~4시간 교반하는 교반 공정과; 교반이 완료된 상기 2차 혼합물을 금형에 주입하고, 10~50㎏/㎠의 압력으로 5~10초간 가하여 제품을 성형하는 성형 공정과; 상기 바인더를 제거하고, 강도를 강화시키도록 성형물을 소결로에 투입하고, 1500~1700℃로 12~24시간 동안 소결한 후 냉각하는 소결 공정과; 소결 냉각이 완료된 상기 성형물의 표면을 연마하고, 이물질을 제거하는 표면 연마 공정; 및 표면 연마가 완료된 성형물의 표면을 마감재로 코팅하는 코팅 공정으로 이루어지는 것을 특징으로 한다.100 parts by weight of silicon oxide and 4 to 9 parts by weight of potassium oxide, 7 to 15 parts by weight of alumina, 40 to 60 parts by weight of borax, 20 to 30 parts by weight of sodium oxide, 15 to 30 parts by weight for 30 to 60 minutes, adding the mixture to a melting furnace at 1300 to 1500 DEG C for 1 to 3 hours, quenching and pulverizing the mixture at a predetermined particle size; 10 to 20 parts by weight of expanded graphite powder having a predetermined particle size and 10 to 20 parts by weight of a volcanic clay powder having a predetermined particle size are mixed with 100 parts by weight of the quenched primary mixture; A stirring step of stirring the mixture consisting of 80 to 90% by weight of the secondary mixture and 10 to 20% by weight of the binder for 2 to 4 hours; Injecting the secondary mixture, which has been stirred, into a mold and applying the mixture at a pressure of 10 to 50 kg / cm < 2 > for 5 to 10 seconds to mold the product; A sintering step of putting the formed product into a sintering furnace to remove the binder and strengthening the sintered body, sintering the sintered body at 1500 to 1700 ° C for 12 to 24 hours, and then cooling the sintered body; A surface grinding step of grinding the surface of the molded article after sintering and cooling and removing foreign matter; And a coating process for coating the surface of the molded product after surface polishing with a finishing material.

여기에서, 상기 바인더는 폴리에틸렌, 폴리프로필렌, 에틸렌 비닐 아세테이트, 폴리스티렌, 폴리아세탈, 폴리메칠메타크릴레이트 중에서 선택된 1종 이상을 포함한다.Here, the binder includes at least one selected from the group consisting of polyethylene, polypropylene, ethylene vinyl acetate, polystyrene, polyacetal, and polymethyl methacrylate.

여기에서 또한, 상기 1차 혼합물 제조 공정에서 일정 입도는 150~250메쉬의 입도로 분쇄된다.Here, in the primary mixture manufacturing process, the predetermined particle size is pulverized to a particle size of 150 to 250 mesh.

여기에서 또, 상기 2차 혼합물 제조 공정에서 일정 입도는 150~250메쉬의 입도이다.Here, the particle size of the secondary mixture is 150 ~ 250 mesh.

여기에서 또, 상기 마감재는 테프론이다.Here again, the finish is Teflon.

본 발명의 다른 특징은,According to another aspect of the present invention,

상기의 고효율 원적외선과 음이온 방사체의 제조방법에 의해 제조된 원적외선 방사체인 것을 특징으로 한다.And is a far-infrared ray radiator manufactured by the above-described high-efficiency far-infrared ray and an anion radiator manufacturing method.

상기와 같이 구성되는 본 발명인 고효율 원적외선과 음이온 방사체 및 이의 제조방법에 따르면, 열전도성이 우수한 팽창 흑연과 원적외선 방사량이 우수한 화산 송이를 혼합하여 원적외선 방사체를 제조함으로써 원적외선 방사량이 우수하고, 열전도성이 뛰어나 사용자에게 온열과 원적외선을 효과적으로 제공할 수 있다.According to the high-efficiency far-infrared ray and anion radiator of the present invention having the above-described structure and the method of manufacturing the same, the far-infrared ray radiator can be manufactured by mixing the expanded graphite excellent in thermal conductivity and the volcanic rock having excellent far- It is possible to effectively provide the user with heat and far-infrared rays.

또한, 본 발명은 바인더를 혼합물에 혼합한 후 금형에서 가압하여 성형물을 제조함으로써 제조 공정을 단순화시켜 제조 비용을 줄일 수 있다.In addition, the present invention can reduce the manufacturing cost by simplifying the manufacturing process by mixing the binder into the mixture and pressurizing it in a mold to produce a molded product.

도 1은 본 발명에 따른 고효율 원적외선과 음이온 방사체의 제조방법을 설명하기 위한 공정도이다.FIG. 1 is a process diagram for explaining a method of manufacturing a high-efficiency far-infrared ray and an anion radiator according to the present invention.

이하, 본 발명에 따른 고효율 원적외선과 음이온 방사체의 제조방법을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a high-efficiency far infrared ray and an anion emitter manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings.

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions of the present invention, and these may be changed according to the intention of the user, the operator, or the like. Therefore, the definition should be based on the contents throughout this specification.

도 1은 본 발명에 따른 고효율 원적외선과 음이온 방사체의 제조방법을 설명하기 위한 공정도이다.FIG. 1 is a process diagram for explaining a method of manufacturing a high-efficiency far-infrared ray and an anion radiator according to the present invention.

도 1을 참조하면, 본 발명에 따른 고효율 원적외선과 음이온 방사체의 제조방법은 1차 혼합물 제조 공정(S10)과, 2차 혼합물 제조 공정(S20)과, 교반 공정(S30)과, 성형 공정(S40)과, 소결 공정(S50)과, 표면 연마 공정(S60) 및 코팅 공정(S70)으로 이루어진다.Referring to FIG. 1, a high-efficiency far infrared ray and an anion radiator according to the present invention includes a first mixture manufacturing step (S10), a second mixture manufacturing step (S20), a stirring step (S30) , A sintering step (S50), a surface polishing step (S60), and a coating step (S70).

《1차 혼합물 제조 공정-S10》&Quot; Primary Mixture Manufacturing Process-S10 "

먼저, 산화규소 100중량부와, 산화규소 100중량부에 대해서, 산화칼륨 4~9중량부, 알루미나 7~15중량부, 보락스 40~60중량부, 산화나트륨 20~30중량부 및 산화칼슘 8~15중량부를 교반기에서 30~60분간 혼합한 다음, 상기 혼합물을 1300~1500℃의 용해로에 투입하여 1~3시간 소성한 후 급냉시키고, 일정 입도로 분쇄하여 1차 혼합물을 제조한다. 이때, 산화규소, 산화칼륨, 알루미나, 보락스, 산화나트륨, 산화칼슘은 생산되는 제품 입도를 별도로 분쇄하지 않고, 투입시킨다.First, 100 parts by weight of silicon oxide and 4 to 9 parts by weight of potassium oxide, 7 to 15 parts by weight of alumina, 40 to 60 parts by weight of borax, 20 to 30 parts by weight of sodium oxide, and calcium oxide And 8 to 15 parts by weight of the mixture are mixed in a stirrer for 30 to 60 minutes and then the mixture is charged into a melting furnace at 1300 to 1500 DEG C for 1 to 3 hours and then quenched and ground to a predetermined particle size to prepare a first mixture. At this time, the silicon oxide, potassium oxide, alumina, borax, sodium oxide, and calcium oxide are added without being pulverized separately.

산화규소는 원적외선 방사효율이 뛰어나 원적외선 방사체 제조시 일반적으로 사용되고 있는 재료이다.Silicon oxide has excellent far-infrared radiation efficiency and is generally used in manufacturing far-infrared ray radiators.

원적외선 방사율이 높은 원적외선 방사체를 제조하기 위해서는 상기 산화규소를 고온에서 소성시키는 것을 필요로 하나, 너무 고온에서 소성할 경우 용융기의 부식으로 인한 장비의 손상 및 불순물의 혼입을 초래하여 오히려 원적외선 방사율을 저하시키게 되는 단점이 있다.In order to manufacture a far-infrared ray radiator having a high far-infrared ray emissivity, it is necessary to burn the silicon oxide at a high temperature. However, if it is baked at an excessively high temperature, it may cause equipment damage and impurities to be introduced due to corrosion of the melter, .

이러한 단점을 해결하기 위하여 산화규소의 용융온도를 낮추는 것이 필요하며, 본 발명에서는 용융온도를 낮추기 위하여 산화규소 함량의 일부를 보락스와 알루미나로 대체하여 사용하였다.In order to solve this problem, it is necessary to lower the melting temperature of silicon oxide. In the present invention, a part of the silicon oxide content is replaced with borax and alumina in order to lower the melting temperature.

상기에서 보락스와 알루미나의 첨가량은 각 물질의 산화규소에 대한 고용량에 따라 결정되는데, 본 발명에서는 산화규소 100 중량부에 대해서, 알루미나 7~15중량부, 보락스 40~60중량부를 사용하였다.In the present invention, 7-15 parts by weight of alumina and 40-60 parts by weight of borax are used relative to 100 parts by weight of silicon oxide in the present invention.

이때, 알루미나는 고온에서 산화규소와 치환과정을 통해 산화규소의 구조를 느슨하게 하여 산화규소의 용융온도를 낮추는 역할을 하는 것으로, 7중량부 미만으로 첨가될 경우 용융온도를 낮추는 충분한 효과가 나타나지 않으며, 그 첨가량이 7중량부를 초과할 경우 산화규소에 대한 알루미나의 치환한도가 초과하여 용융온도가 오히려 증가하는 문제점이 있으므로 알루미나는 7~15중량부 첨가하는 것이 바람직하다.At this time, the alumina loosens the structure of silicon oxide through the substitution process with silicon oxide at a high temperature to lower the melting temperature of silicon oxide. When added at less than 7 parts by weight, alumina does not exhibit sufficient effect of lowering the melting temperature, If the addition amount exceeds 7 parts by weight, there is a problem that the substitution limit of alumina to silicon oxide is exceeded and the melting temperature is rather increased. Therefore, 7 to 15 parts by weight of alumina is preferably added.

그리고, 보락스(borax)는 고온에서 산화규소와 치환과정을 통해 산화규소의 구조를 느슨하게 하여 산화규소의 용융온도를 낮추는 역할을 하는 것으로, 그 첨가량이 40중량부 미만일 경우 용융온도의 충분한 낮춤효과를 얻을 수 없으며, 그 첨가량이 60중량부를 초과할 경우 산화규소의 구조가 너무 느슨해져 제조된 방사체가 취약해지는 문제점이 발생하므로 보락스는 40~60중량부 첨가하는 것이 바람직하다.Borax lowers the melting temperature of silicon oxide by loosening the structure of silicon oxide through the substitution process with silicon oxide at a high temperature. When the addition amount is less than 40 parts by weight, borax lowers the melting temperature sufficiently If the amount is more than 60 parts by weight, the structure of the silicon oxide becomes too loose and the produced emitter becomes weak. Therefore, the borax is preferably added in an amount of 40 to 60 parts by weight.

또한, 산화나트륨의 첨가량이 20중량부 미만일 경우 소성온도를 낮추는 효과를 충분히 얻을 수 없으며, 그 첨가량이 30중량부를 초과할 경우 산화나트륨이 추후에 용출이 되는 문제점이 발생하게 되므로, 산화나트륨의 첨가량은 20~30중량부 첨가하는 것이 바람직하다.When the addition amount of sodium oxide is less than 20 parts by weight, the effect of lowering the firing temperature can not be sufficiently obtained. When the addition amount exceeds 30 parts by weight, there arises a problem that sodium oxide is eluted at a later time. Is preferably added in an amount of 20 to 30 parts by weight.

이와 같이 산화칼륨과 산화나트륨을 투입하게 되면 이들은 수분과 접촉하여 소량이 이온상태로 용출되어 백화현상을 일으키게 되는데, 본 발명에서는 이를 방지하기 위하여 산화칼슘 8~15중량부를 첨가하였다.When potassium oxide and sodium oxide are added, they are contacted with water and a small amount thereof is eluted into an ionic state to cause whitening. In the present invention, 8-15 parts by weight of calcium oxide is added in order to prevent this.

산화칼슘을 첨가하게 되면 칼슘이온은 칼륨 및 나트륨 등의 알칼리 이온들과 혼합되면서 칼륨 및 나트륨 이온의 용출을 방해하는 동시에 재료의 인성을 증대시키게 된다.When calcium oxide is added, calcium ions are mixed with alkali ions such as potassium and sodium, thereby preventing the elution of potassium and sodium ions and increasing the toughness of the material.

한편, 산화규소, 산화칼륨, 알루미나, 보락스, 산화나트륨, 산화칼슘의 분쇄 입도는 150~250메쉬의 입도를 가지는 데, 150메쉬 미만인 경우 제품의 표면이 거칠고, 250메쉬를 초과하는 경우 취급이 어렵고, 제조 단가가 상승되는 문제점이 있다.On the other hand, the particle size of silicon oxide, potassium oxide, alumina, borax, sodium oxide and calcium oxide has a particle size of 150 to 250 mesh. When the particle size is less than 150 mesh, the surface of the product is rough. And the manufacturing cost is increased.

또한, 소성온도가 1300℃ 미만일 경우 첨가재료들이 충분히 용융 혼합되지 않아 제조된 원적외선 방사체의 균일한 특성이 나타나지 않는 문제점이 있으며, 소성온도가 1500℃를 초과할 경우 용해로의 부식으로 인한 불순물의 혼입을 초래하여 원적외선 방사율을 저하시키는 문제점이 발생하게 되므로 상기 범위내의 온도에서 소성하는 것이 바람직하다.Further, when the firing temperature is less than 1300 ° C, the additive materials are not sufficiently melted and mixed so that the uniform characteristics of the manufactured far-infrared ray radiator are not exhibited. When the firing temperature exceeds 1500 ° C, impurities are mixed due to corrosion of the melting furnace And a problem of lowering the far-infrared ray emissivity occurs. Therefore, it is preferable to perform the calcination at a temperature within the above range.

또, 소성 후 용융물을 서서히 냉각시킬 경우 용융물의 결정화로 인해 원적외선 방사효율이 감소되므로 이를 방지하기 위해서 본 발명에서는 용융물을 급냉시켰으며, 급냉은 상온의 물을 이용하여 실시하였다.In addition, when the melt after the firing is slowly cooled, the far infrared ray emission efficiency is reduced due to the crystallization of the melt. To prevent this, the melt is quenched in the present invention, and quenching is performed using water at room temperature.

《2차 혼합물 제조 공정-S20》&Quot; Secondary Mixture Manufacturing Process-S20 &

급냉된 1차 혼합물 100중량부에 대하여 팽창 흑연 분말 10~20 중량부와, 화산 송이 분말 10~20중량부를 혼합한다.10 to 20 parts by weight of expanded graphite powder and 10 to 20 parts by weight of a volcanic clay powder are mixed with 100 parts by weight of the quenched primary mixture.

또한, 팽창 흑연 분말의 첨가량이 10중량부 미만일 경우 그 효과가 미미하고, 그 첨가량이 20중량부를 초과할 경우 제조 단가가 상승되고, 강도가 저하되는 문제점이 있고, 화상 송이 분말의 첨가량이 10중량부 미만일 경우 그 효과가 미미하고, 그 첨가량이 20중량부를 초과할 경우 제조 단가가 상승되고, 강도가 저하되는 문제점이 있고, If the amount of the expanded graphite powder is less than 10 parts by weight, the effect is insignificant. If the amount of the expanded graphite powder is more than 20 parts by weight, the production cost is increased and the strength is lowered. The effect is insignificant. When the amount of the additive is more than 20 parts by weight, the production cost is increased and the strength is lowered.

이때, 팽창 흑연 분말과 화산 송이 분말은 150~250메쉬의 입도를 가지는 데, 150메쉬 미만인 경우 제품의 표면이 거칠고, 250메쉬를 초과하는 경우 취급이 어렵고, 제조 단가가 상승되는 문제점이 있다.In this case, the expanded graphite powder and the volcanic silicate powder have a particle size of 150 to 250 mesh. When the particle size is less than 150 mesh, the surface of the product is rough. When the particle size exceeds 250 mesh, it is difficult to handle.

또한, 팽창 흑연 분말과 화산 송이 분말은 후투입하는 이유는 1차 혼합물처럼 용융되지 않고, 원래의 성질을 그대로 유지하도록 하여 원적외선 방사량을 증대시키고, 열전도도를 향상시키기 위함이다.The reason why the expanded graphite powder and the volcanic silicate powder are injected afterwards is that they do not melt like the first mixture and maintain the original properties so as to increase the far infrared radiation dose and improve the thermal conductivity.

한편, 팽창 흑연은 천연광산으로부터 흑연을 채굴한 후, 분쇄 및 수분급의 공정을 거쳐 흑연을 만들고, 이 흑연을 강산을 이용하여 세정하고 고온 및 알칼리 상태에서 소결한 후에 세정 공정을 거쳐 순도 99.5%의 흑연을 만들며, 이 흑연의 층간에 화학품을 삽입(Intercalation)한 다음에 중화 공정을 거친 후에 세정 및 건조하여 팽창흑연을 제조한다.On the other hand, expanded graphite is produced by mining graphite from natural minerals and then crushing and watering the graphite. The graphite is washed with strong acid, sintered in high temperature and alkali state, The graphite is intercalated between the layers of the graphite, and then subjected to a neutralization process, followed by washing and drying to produce expanded graphite.

이와 같이 제조된 팽창 흑연은 열에 의해 층간에 함유된 화학품에서 가스가 발생되면서 팽창이 일어난다. 사용하는 화학품에 따라 팽창 흑연의 팽창 개시 온도가 결정된다.In the expanded graphite produced in this manner, expansion occurs as gas is generated in the chemical contained in the interlayer by heat. The expansion starting temperature of the expanded graphite is determined according to the chemical used.

팽창 흑연은 독성이 없고, 가벼우며, 할로겐 성분을 함유하지 않고, 물에 불용성이며, 유독가스를 발생하지 않는 등의 장점을 가지고 있고, 더욱이 열전도성이 우수하다.Expanded graphite has no toxicity, is lightweight, does not contain a halogen component, is insoluble in water, does not generate toxic gas, and has excellent thermal conductivity.

또, 화산 송이(Scoria)는 일명 화산암이라고도 하며, 화산 송이는 화산 활동에 의해 1600℃로 천연 소성된 약알칼리성(pH 7.4) 화산분출물로 색깔은 적갈색, 황갈색, 흑색 및 암회색을 띠고 있다.Scoria is also called a volcanic rock. The volcanic rocks are alkaline (pH 7.4) volcanic eruptions naturally fired at 1600 ℃ by volcanic activity, and are colored reddish brown, yellowish brown, black and dark gray.

이러한 화산 송이는 보온, 단열, 방음, 방습 재료로 사용되어 왔으며, 마당이나 소로에 깔아 복사열 방지 및 여과제로 사용되어 왔다. 화산 송이는 원적외선 방사량이 우수하고, 흡음, 탈취, 축열 기능, 곰팡이와 진드기 번식억제에 효과가 있어 최근에 웰빙제품으로 각광받고 있으며, 특히 새집증후군의 원인이 되는 포름알데히드(VOC), 휘발성 유기화합물의 저감효과로 실내공기질을 개선해 각종 피부염이나 아토피를 예방할 수 있다고 보고된 바 있다.These volcanic clusters have been used as thermal insulation, insulation, soundproofing and moisture proofing materials, and have been used as a radiation prevention and filtration agent in yards or small roads. The volcanic pine mushroom has excellent far-infrared radiation dose, is effective for absorbing, deodorizing, storing heat, inhibiting fungus and mite propagation, and has recently become a well-being product. Especially, formaldehyde (VOC), volatile organic compound It has been reported that it can prevent various dermatitis and atopy by improving indoor air quality.

《교반 공정-S30》&Quot; Stirring process-S30 "

2차 혼합물의 혼합이 완료되면, 2차 혼합물 80~90중량%와 바인더 10~20중량%를 혼합하여 이루어진 배합물을 교반기에 투입한 후 2~4시간 교반한다.When the mixing of the secondary mixture is completed, the mixture consisting of 80 to 90% by weight of the secondary mixture and 10 to 20% by weight of the binder is put into a stirrer and stirred for 2 to 4 hours.

이때, 바인더는 폴리에틸렌, 폴리프로필렌, 에틸렌 비닐 아세테이트, 폴리스티렌, 폴리아세탈, 폴리메칠메타크릴레이트 중에서 선택된 1종 이상을 포함하는 것이 바람직하다.In this case, the binder preferably includes at least one selected from the group consisting of polyethylene, polypropylene, ethylene vinyl acetate, polystyrene, polyacetal, and polymethyl methacrylate.

또한, 바인더를 10중량% 미만으로 투입하는 경우 결합력이 상대적으로 약해지고, 바인더를 20중량%을 초과하여 투입하는 경우 성형시 제품 형상이 변형될 수 있다.In addition, when the binder is added in an amount of less than 10% by weight, the binding force is relatively weak. When the binder is added in an amount exceeding 20% by weight, the product shape may be deformed during molding.

《성형 공정-S40》&Quot; Forming process-S40 "

교반이 완료된 2차 혼합물을 금형에 주입하고, 프레스를 이용하여 10~50㎏/㎠의 압력으로 5~10초간 가하여 제품을 성형한다.After the stirring, the secondary mixture is poured into a mold, and the product is molded using a press at a pressure of 10 to 50 kg / cm < 2 > for 5 to 10 seconds.

《소결 공정-S50》&Quot; Sintering Process-S50 "

성형이 완료되면, 바인더를 제거하고, 강도를 강화시키도록 성형물을 소결로에 투입하고, 1500~1700℃로 12~24시간 동안 소결한 후 상온에서 냉각한다.When the molding is completed, the binder is removed and the molded product is put into a sintering furnace so as to strengthen the strength, sintered at 1500 to 1700 ° C for 12 to 24 hours, and then cooled at room temperature.

《표면 연마 공정-S60》"Surface Polishing Process-S60"

소결 냉각이 완료된 성형물의 표면을 연마하고, 이물질을 제거한다.The surface of the molded article after sintering and cooling is polished, and foreign matters are removed.

《코팅 공정-S70》&Quot; Coating process-S70 "

표면 연마가 완료된 성형물의 표면을 마감재로 코팅한 후 건조시켜 제품을 완성한다. 이때, 마감재는 테프론이다.The finished surface of the surface-polished product is coated with a finish and dried to complete the product. At this time, the finishing material is Teflon.

이와 같이 제조된 본 발명에 따른 고효율 원적외선과 음이온 방사체는 5~20㎛의 파장대에서 최대파장을 나타내며, 원적외선 방사율은 0.97 정도로 매우 높아 원적외선 방사에 의한 효능을 극대화시킬 수 있으며, 음이온 방출량도 매우 높아 인체의 건강증진에 유용하게 활용될 수 있다.The high-efficiency far-infrared ray and anion emitter according to the present invention thus manufactured exhibits a maximum wavelength at a wavelength range of 5 to 20 탆, and the far-infrared emissivity is as high as 0.97, thereby maximizing the efficacy by far-infrared radiation and having an extremely high anion emission. Which can be useful for the promotion of health.

특히, 본 발명에 따라 제조된 고효율 원적외선과 음이온 방사체는 열전도도가 높아 난방 제품이나 개인 온열 치료기 등의 제품에 적용하는 경우 온열 치료 효과를 증대시킬 수 있다.Particularly, the high-efficiency far-infrared rays and anion radiators manufactured according to the present invention have high thermal conductivity and can increase the effect of thermal therapy when applied to a product such as a heating product or a personal thermotherapy device.

《실험예》&Quot; Experimental Example &

이하, 본 발명을 하기한 실험예를 통하여 보다 상세하게 설명하기로 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following experimental examples. However, the present invention is not limited thereto.

<실시예><Examples>

산화규소 1000g, 산화칼륨 60g, 알루미나 100g, 보락스 500g, 산화나트륨 250g 및 산화칼슘 100g을 교반기에 넣고 30분간 혼합한 다음, 1차 혼합물을 1400℃의 용해로에 투입하여 2시간 소성한 후 급냉시킨 다음, 200메쉬로 분쇄시켰다.1000 g of silicon oxide, 60 g of potassium oxide, 100 g of alumina, 500 g of borax, 250 g of sodium oxide and 100 g of calcium oxide were put into a stirrer and mixed for 30 minutes. Then, the primary mixture was put into a melting furnace at 1400 캜 and calcined for 2 hours, Then, it was pulverized to 200 mesh.

그런 다음, 1차 혼합물 1000g, 200메쉬인 팽창 흑연 분말 200g, 200메쉬인 화산 송이 분말 200g을 교반기에 넣고 60분간 혼합한 다음, 2차 혼합물 900g와 바인더 100g을 혼합하여 이루어진 배합물을 교반기에 투입한 후 3시간 교반하였다.Then, 1000 g of the first mixture, 200 g of expanded graphite powder of 200 mesh, and 200 g of 200 g of the crushed volcanic ash powder were put in a stirrer and mixed for 60 minutes. Then, 900 g of the second mixture and 100 g of the binder were mixed, Followed by stirring for 3 hours.

이러한 상태에서, 2차 혼합물을 금형에 주입하고, 30㎏/㎠의 압력으로 10초간 가하여 제품을 성형한 다음 1600℃의 소결로에 투입하여 16시간 동안 소결한 후 냉각하여 제품을 완성하였다.In this state, the secondary mixture was poured into a mold and molded at a pressure of 30 kg / cm 2 for 10 seconds to form a product. The product was then sintered in a sintering furnace at 1600 ° C. for 16 hours and then cooled to complete the product.

상기 제조된 원적외선 방사체를 50℃로 가열한 후 FT-IR(미국 MIDAC사, M 2400-C)을 이용하여 5~20㎛의 원적외선 방사율과 방사에너지를 측정하였으며, 또한 제조된 원적외선 방사체 분말을 초고감도 미약전류 측정장치(신호전자주식회사(일본), 제품명 KST900)를 이용하여 음이온농도를 측정하고, 상기 원적외선 방사율과 방사에너지 및 음이온농도 측정결과를 하기 표 1에 나타내었다.The prepared far-infrared ray radiator was heated to 50 DEG C, and far-infrared ray emissivity and radiant energy of 5 to 20 mu m were measured using FT-IR (MIDAC Corp., M 2400-C, USA) The anion concentration was measured using a highly sensitive and weak current measuring device (Signal Electronics Co., Ltd. (Japan), product name: KST900), and the far infrared ray emissivity, radiant energy and anion concentration measurement results are shown in Table 1 below.

<비교예><Comparative Example>

종래의 특허공개공보 제10-2014-0110380호에 개시된 바와 같이 산화규소 1000g, 산화칼륨 50g, 알루미나 80g, 보락스 400g, 산화나트륨 200g 및 산화칼슘 90g, 페그마타이트 300g, 실란(MTMS) 200g을 용기에 넣고 30분간 혼합한 다음, 상기 혼합물을 1500℃의 용해로에 투입하여 2시간 소성한 후 급냉시키고, 200메쉬로 분쇄한 다음, 혼합물 900g와 바인더 100g을 혼합 교반 후 금형에 주입하고, 30㎏/㎠의 압력으로 10초간 가하여 원적외선 방사체를 제조하였다.1000 g of silicon oxide, 50 g of potassium oxide, 80 g of alumina, 400 g of borax, 200 g of sodium oxide and 90 g of calcium oxide, 300 g of pegmatite and 200 g of silane (MTMS) were placed in a vessel as disclosed in the conventional patent publication 10-2014-0110380 And the mixture was calcined for 2 hours, followed by quenching and pulverization to 200 mesh. Then, 900 g of the mixture and 100 g of the binder were mixed and stirred, and the mixture was poured into a mold, followed by stirring at 30 kg / cm 2 For 10 seconds to produce a far-infrared ray radiator.

상기 제조된 원적외선 방사체를 상기 실시예와 동일한 방법으로 원적외선 방사율과 방사에너지 및 음이온농도를 측정하고 그 결과를 하기 표 1에 나타내었다.The far-infrared ray emissivity, radiant energy and anion concentration of the prepared far-infrared ray radiator were measured in the same manner as in the above examples, and the results are shown in Table 1 below.

구분division 원적외선 방사율Far-infrared emissivity 방사에너지(W/㎡·㎛)Radiant energy (W / m &lt; 2 &gt; 음이온농도(개/㎖)Anion concentration (parts / ml) 실시예Example 0.980.98 5.4×102 5.4 x 10 2 21002100 비교예Comparative Example 0.950.95 4.6×102 4.6 × 10 2 16001600

본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood, however, that the invention is not to be limited to the specific forms thereof, which are to be considered as being limited to the specific embodiments, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. .

Claims (6)

산화규소 100중량부와, 산화규소 100중량부에 대해서, 산화칼륨 4~9중량부, 알루미나 7~15중량부, 보락스 40~60중량부, 산화나트륨 20~30중량부 및 산화칼슘 8~15중량부를 30~60분간 혼합한 다음, 상기 혼합물을 1300~1500℃의 용해로에 투입하여 1~3시간 소성한 후 급냉시켜 150~250메쉬의 입도로 분쇄하는 1차 혼합물 제조 공정과;
급냉된 1차 혼합물 100중량부에 대하여 150~250메쉬의 입도의 팽창 흑연 분말 10~20 중량부와, 150~250메쉬의 입도의 화산 송이 분말을 10~20중량부를 혼합하는 2차 혼합물 제조 공정과;
2차 혼합물 80~90중량%와 폴리에틸렌, 폴리프로필렌, 에틸렌 비닐 아세테이트, 폴리스티렌, 폴리아세탈, 폴리메칠메타크릴레이트 중에서 선택된 1종 이상을 포함하는 바인더 10~20중량%를 혼합하여 이루어진 배합물을 2~4시간 교반하는 교반 공정과;
교반이 완료된 상기 2차 혼합물을 금형에 주입하고, 10~50㎏/㎠의 압력으로 5~10초간 가하여 제품을 성형하는 성형 공정과;
상기 바인더를 제거하고, 강도를 강화시키도록 성형물을 소결로에 투입하고, 1500~1700℃로 12~24시간 동안 소결한 후 냉각하는 소결 공정과;
소결 냉각이 완료된 상기 성형물의 표면을 연마하고, 이물질을 제거하는 표면 연마 공정; 및
표면 연마가 완료된 성형물의 표면을 마감재인 테프론으로 코팅하는 코팅 공정으로 이루어지는 것을 특징으로 하는 고효율 원적외선과 음이온 방사체의 제조방법.
100 parts by weight of silicon oxide and 4 to 9 parts by weight of potassium oxide, 7 to 15 parts by weight of alumina, 40 to 60 parts by weight of borax, 20 to 30 parts by weight of sodium oxide, 15 parts by weight of the mixture is mixed for 30 to 60 minutes and then the mixture is charged into a melting furnace at 1300 to 1500 DEG C for 1 to 3 hours followed by quenching and pulverization at a particle size of 150 to 250 mesh;
10 to 20 parts by weight of expanded graphite powder having a particle size of 150 to 250 mesh with 100 parts by weight of a quenched primary mixture and 10 to 20 parts by weight of a volcanic clay powder having a particle size of 150 to 250 mesh are mixed, and;
A mixture comprising 80 to 90% by weight of a secondary mixture and 10 to 20% by weight of a binder containing at least one selected from the group consisting of polyethylene, polypropylene, ethylene vinyl acetate, polystyrene, polyacetal, and polymethyl methacrylate, Stirring for 4 hours;
Injecting the secondary mixture, which has been stirred, into a mold and applying the mixture at a pressure of 10 to 50 kg / cm &lt; 2 &gt; for 5 to 10 seconds to mold the product;
A sintering step of putting the formed product into a sintering furnace to remove the binder and strengthening the sintered body, sintering the sintered body at 1500 to 1700 ° C for 12 to 24 hours, and then cooling the sintered body;
A surface grinding step of grinding the surface of the molded article after sintering and cooling and removing foreign matter; And
And a coating step of coating the surface of the molded article with the surface polished with Teflon as a finishing material.
삭제delete 삭제delete 삭제delete 삭제delete 제 1 항의 고효율 원적외선과 음이온 방사체의 제조방법에 의해 제조된 고효율 원적외선과 음이온 방사체.A high efficiency far infrared ray and anion radiator manufactured by the manufacturing method of high efficiency far infrared ray and anion radiator of claim 1.
KR1020170029972A 2017-03-09 2017-03-09 High efficiency far infrared ray and anion radiator and producing method thereof KR101878897B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170029972A KR101878897B1 (en) 2017-03-09 2017-03-09 High efficiency far infrared ray and anion radiator and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170029972A KR101878897B1 (en) 2017-03-09 2017-03-09 High efficiency far infrared ray and anion radiator and producing method thereof

Publications (1)

Publication Number Publication Date
KR101878897B1 true KR101878897B1 (en) 2018-07-17

Family

ID=63048865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170029972A KR101878897B1 (en) 2017-03-09 2017-03-09 High efficiency far infrared ray and anion radiator and producing method thereof

Country Status (1)

Country Link
KR (1) KR101878897B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091534A (en) 2020-01-14 2021-07-22 김정봉 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000816A (en) * 2000-10-20 2001-01-05 이현태 Composition with High Emissivity of Far Infrared Ray and Medical Band Using the Same for Relieving Pain
KR100344944B1 (en) 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20020072084A (en) * 2001-03-08 2002-09-14 최창용 Manufacturing process and composite of inner and outer building materials for charcoal and silica
KR101433881B1 (en) * 2013-10-31 2014-08-29 박태선 Method for manufacturing carbon molding for bed top using scoria
KR20140110380A (en) 2013-03-07 2014-09-17 손상호 Far infrared ray materials and method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000816A (en) * 2000-10-20 2001-01-05 이현태 Composition with High Emissivity of Far Infrared Ray and Medical Band Using the Same for Relieving Pain
KR20020072084A (en) * 2001-03-08 2002-09-14 최창용 Manufacturing process and composite of inner and outer building materials for charcoal and silica
KR100344944B1 (en) 2002-01-21 2002-07-22 Hanil Medical Company Ltd Far infrared ray radiator and preparation method thereof
KR20140110380A (en) 2013-03-07 2014-09-17 손상호 Far infrared ray materials and method of the same
KR101433881B1 (en) * 2013-10-31 2014-08-29 박태선 Method for manufacturing carbon molding for bed top using scoria

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091534A (en) 2020-01-14 2021-07-22 김정봉 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

Similar Documents

Publication Publication Date Title
KR100907656B1 (en) Method for producing bio-ceramic for medical instruments
KR101610679B1 (en) Eco-friendly filler for artificial grass and manufacturing method thereof
KR101878897B1 (en) High efficiency far infrared ray and anion radiator and producing method thereof
KR20160061723A (en) Method for preparation of wall finishing material
CN105413628A (en) Healthcare type negative ion far infrared particles as well as preparation raw materials, preparation method and application thereof
KR100754424B1 (en) Elastic floor having antibacterial and deodorization using phyllite and manufacturing and constructing method thereof
RU2217373C1 (en) Substance with emission in short-wave ir-spectrum and method for its preparing
CN113416056B (en) Ceramic energy storage tube and preparation method thereof
JP2710768B2 (en) Tourmaline compact and its manufacturing method
KR101315633B1 (en) Resin composition including sericite powders, manufacturing method thereof and plastic goods using the same
KR20100080246A (en) Manufacturing process of the adsorbents made from coal wastes and the adsorbents manufactured by the process
KR100967633B1 (en) Functional synthetic resin composition and method for manufacturing thereof
KR20170030245A (en) An manufacturing method of far infrared ray radiation material with phyllosilicate
KR101433881B1 (en) Method for manufacturing carbon molding for bed top using scoria
KR20140110380A (en) Far infrared ray materials and method of the same
KR102146794B1 (en) foam ceramic fabrication and manufacturing method thereof
KR101649927B1 (en) Method for producing nanodiamond bio-ceramic
KR20100053293A (en) Ceramic flowerpot radiating far-infrared rays and manufacturing method thereof
KR101112066B1 (en) An Anion-Emitting Solid Body Containging Salt and Producting Method Thereof
KR101469841B1 (en) ceramic bolls for food waste and manufacturing method for ceramic bolls
KR101732715B1 (en) Panel for construction and manufacturing method thereof
KR101076672B1 (en) The manufacturing method of functional textile
KR20090103474A (en) Mica piece let out for pore and manufacture method thereof
KR20000066594A (en) Manufactured germanium substance for far infrared rays emission and the production method
KR940002031B1 (en) Composition of Far Infrared Radiation Powder

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant